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Abstract—Current satellite and terrestrial backhaul systems
are deployed in disjoint frequency bands. This fact precludes an
efficient use of the spectrum and limits the evolution of wireless
backhauling networks. In this paper, we propose an interference
mitigation technique in order to allow the spectrum coexistence
between satellite and terrestrial backhaul links. This interference
reliever is implemented at the terrestrial backhaul nodes which
are assumed to be equipped with multiple antennas. Due to the
large bandwidth and huge number of antennas required in these
systems, we consider pure analog beamforming. Precisely, we
assume a phased array beamforming configuration so that the
terrestrial backhaul node can only reduce the interference by
changing the phases of each beamforming weight. Two cases are
considered: the 18 and 28 GHz band where transmit and receive
beamforming optimization problems shall be tackled respectively.
In both cases, the optimization problem results in a non-convex
problem which we propose to solve via two alternative convex
approximation methods. These two approaches are evaluated and
they present less than 1 dB array gain loss with respect to the
upper bound solution. Finally, the spectral efficiency gains of the
proposed spectrum sharing scenarios are validated in numerical
simulations.

Keywords—Beamforming, satellite communications, backhaul
systems, non-convex QCQP, phase-only beamforming.

I. INTRODUCTION

Future exponential user data rate demands will not only
impact the radio access technology but also the backhauling
mechanisms. Indeed, these backhaul services are meant to be
ubiquitous, offering extremely high rate wireless connectivity
in order to reduce the capital expenditures. With the aim
of attending to these demands, the spectral efficiency of the
frequency bands where these services are currently deployed
shall be increased.

In here, we consider the millimeter wave (mmWave) bands
of 17.3− 20.2 GHz and 27.5− 30 GHz currently utilized by
fixed satellite services (FSS) and backhaul fixed services (FS).
These two portions of the spectrum are currently fragmented
by FSS exclusive use, FS exclusive use and shared for both
services [1]. Despite the spectrum regulation permits spectrum

This work has received funding from the European Union’s Horizon
2020 research and innovation programme under grant agreement No 645047
(SANSA); the Spanish Ministry of Economy and Competitiveness (Minis-
terio de Economia y Competitividad) under project TEC2017-90093-C3-1-R
(TERESA); and from the Catalan Government (2017-SGR-1479, 2017-SGR-
891 ).
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sharing, neither FS nor FSS deploy their services in shared
bands as no interference protection can be claimed.

According to the recent results in cellular mmWave spec-
trum sharing techniques, due to the high directional anten-
nas used, very large spectral efficiencies can be obtained if
multiple transmitters share the spectrum [2]–[5]. In addition,
the authors in [6], [7] consider the spectrum sharing between
FSS and mmWave cellular systems and they propose different
configurations for keeping the interference towards the FSS
terminals low.

The shared use of the spectrum between FS and FSS is
also studied in [8], [9]. The authors in [8] propose the use
of databases jointly with spectrum sensing for dynamically
allocate the spectrum for FS and FSS. In addition, the use
multiple low noise blocks (LNB) at the FSS is analyzed in
both [8] and [9] for mitigating the interference with the aim
of using a more aggressive frequency reuse among FS and
FSS.

Interference between FS and FSS has been identified in
[10], precluding an efficient use of the spectrum in certain
cases. This paper focuses on interference mitigation techniques
for supporting the spectrum sharing between FS and FSS. In
particular, we consider that the FS terminals are equipped with
multiple antennas with the objective of not only obtaining a
high gain towards the intended link, but also to reduce the
interference towards the non-intended receivers. Alternatively,
we consider that the FSS terminals are only equipped with a
single antenna.

Our approach differs to the previous commented works:
the use of multiple antennas in the FS links has not been
addressed before for interference mitigation. Two main cases
are considered. In the 17.3 − 20.2 GHz band devoted to the
satellite forward link (space to Earth communication), we
design the FS transmit beamforming that shall keep the inter-
ference towards the FSS terminals under a certain threshold.
In addition, we consider the 27.5− 30 GHz band dedicated to
the satellite return link (Earth to space transmission) where the
FS terminals shall design their receive beamforming in order
to mitigate the received FSS interference.

Since fully-digital transceivers cannot be used due to its
tremendous cost and complexity [11], we resort to analog
beamforming schemes. In particular, we focus on phased array
architectures where the transceiver is only equipped with a
single radio frequency chain and the spatial processing is done
through phase shifters. Note that in backhauling mmWave
transmissions, the scattering is expected to be limited and; thus,
the resulting channel matrix generally only admits a single-
stream transmission (i.e. beamforming) [12].
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Phased arrays present less flexibility than digital beamform-
ing solutions. While fully-digital schemes can vary not only
the phase and amplitude of the beamforming weights, phased
arrays can only change their phase, keeping its magnitude
fixed. In this context, the traditional beamforming designs
for spectrum sharing systems [13], [14] must be revisited to
become phase-only designs.

Despite the recent works on phase-only beamforming [15]–
[17], little is known about interference mitigation techniques
using this multiantenna configuration. To the best of authors
knowledge, the work in [18] is the first one considering
interference mitigation via phase-only beamforming.

We first introduce the fully-digital optimization problems
and; posteriorly, we describe and remark the differences with
the phased array (phase-only) problems. Both transmit and
receive phase-only beamforming designs lead to non-convex
quadratically constraint quadratic programs (QCQP) due to
the equality quadratic constraints imposed by the phase-only
restrictions. These problems are difficult to solve and convex
relaxation techniques are required. We resort to two different
alternatives based on the concave-convex procedure (CCP)
[19]. First, we consider the equivalent semidefinite program
(SDP) reformulation and we apply the CCP method on the
rank one constraint. Alternatively, we consider the penalized
CCP (PCCP) presented in [20] of the original QCQP scheme.
Both approaches behave better than the SDP relaxation (SDR)
and Gaussian randomization method [21] which is known to
be inefficient when there are dual-side constraints [22], [23].

To sum up, the contributions of the paper are the following:
1) We propose two optimization frameworks for dealing

phase-only beamforming optimization, namely SDP-
CCP and QCQP-PCCP. While the transmit case SDP-
CCP is preliminary studied in [18], QCQP-PCCP is
a new scheme specially adapted for this problem. In
addition, the design of phase-only receive beamforming
is novel.

2) The proposed optimization frameworks are compared
in terms of performance and computational complexity.
Interestingly, the most adequate optimization frame-
work varies whether we consider the receive or transmit
beamforming problem.

3) The achievable rates of the shared use of the spectrum
between FS and FSS are evaluated in the 17.3 − 20.2
GHz and 27.5−30 GHz bands. We observe a significant
spectral efficiency gain by using the proposed interfer-
ence mitigation techniques.

The paper is organized as follows. Section II describes the
system and channel model. Section III presents the receive and
transmit analog beamforming optimization problems. Section
IV proposes two optimization frameworks for optimizing the
described problems. Section V depicts the numerical simula-
tion results and Section VI concludes.

Notation: Throughout this paper, the following notations
are adopted. Boldface upper-case letters denote matrices and
boldface lower-case letters refer to column vectors. (.)H , (.)T ,
(.)∗ denote a Hermitian transpose, transpose, and conjugate
matrix, respectively. ||.|| refer to the expected value operator
and the Frobenius norm, respectively. [x]i denotes the i-th

element of vector x. | · | denotes the absolute value operator.
◦ denotes the Hadamard matrix product. Tr (·) denotes the
trace operator. A ≻ 0 describes the set of semidefinite positive
matrices A. The vector zH,(n) is the conjugate transpose of
vector z(n).

II. SYSTEM MODEL AND CHANNEL MODEL

Let us consider a FS link (i.e. a fixed wireless link between
terrestrial entities) where the transmitter is equipped with NT
antennas and the receiver with NR antennas in the shared 18
GHz band. In this portion of the spectrum, satellite receivers
can be deployed but they cannot claim protection from the FS
links. The received signal at the FS receiver can be modelled
by

yFS = Hvs+ n, (1)

where H ∈ CNR×NT is the channel matrix, v ∈ CNT×1 is the
transmit beamforming, s is the transmitted symbol with zero
mean and unit energy and n is the additive white Gaussian
noise term with zero mean and covariance matrix σ2

FS

NR
I.

In the 18 GHz band, the FS transmission takes place in
presence of K very small aperture terminal (VSAT) satellite
receivers. These VSATs are terminals that enable the FSS. That
is, VSATs receive data from the satellite forward link (from
space to Earth). The received signal of the k-th VSAT can be
modelled by

yVSAT,k = gHk vs+ wk, (2)

where gk ∈ CNT×1 is the channel vector between the FS
transmitter and the k-th VSAT receiver and wk is the noise
term of the k-th VSAT receiver assumed to be Gaussian zero
mean with variance σ2

V SAT .
The considered backhauling systems could be deployed in

the 28 GHz band which is used by VSATs for the return link
transmission (from Earth to space). These transmission would
interfere the FS links deployed at the 28 GHz. Mathematically,
the received signal of a FS link in presence of M interfering
VSATs is

zFS = uH

(
Hts+

M∑
m=1

PVSAT,mpmsV SAT,m + n

)
(3)

where u ∈ CNR×1 is the receive beamforming, t ∈ CNT×1

is the transmit beamforming, pm ∈ CNR×1 is the channel
vector between the m-th VSAT transmitter and the FS receiver,
sVSAT,m is the zero mean unit energy symbol transmitted by
the m-th VSAT, PV SAT,m its transmit power and n the noise
term assumed to be Gaussian with zero mean and variance
equal to σ2

VSAT. Figure 1 describes both system models. As
a matter of fact, the mmWave backhaul channel modelling
has not been deeply addressed. Indeed, the literature has been
focused on mmWave urban and cellular systems [24]. To the
best of author’s knowledge, the work in [25, Section 5.7] is
the only one reporting the channel modelling parameters for
backhauling scenarios. In this context, the channel modelling
can be described as follows

H = γ
1√
L

C∑
c=1

L∑
l=1

αclarx (θ
rx
cl , ϕ

rx
cl )atx

(
θtxcl , ϕ

tx
cl

)H
, (4)
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Fig. 1. Schematic of the considered scenarios where the red lines represent
the interference signals and the green ones the legitimate transmissions. On
the left it is depicted the 18 GHz band case where the FS interfere with the
VSATs. Figure on the right describes the 28 GHz shared band case where the
VSATs interfere the FS links.

where L denote the number of sub-paths and C the number of
clusters. The value αcl is a small scale fading term of the l-th
sub-path at the c-th cluster for c > 1 and l > 1 otherwise,
for the value α11 is assumed to be equal to one. Vectors
atx(·, ·) ∈ CNT×1 and arx(·, ·) ∈ CNR×1 are the antenna
responses of both the transmitter and the receiver respectively.
The transmit and receive antenna responses depend on both
the angles of departure (AoD), θtxcl , ϕ

tx
cl , and angles of arrival

(AoA), θrxcl , ϕ
rx
cl , respectively.

The small scale fading can be modelled as

αcl = Acle
ψclj , (5)

where Acl is Rayleigh distributed with mean 0.1 and ψcl
is uniformly distributed from 0 to 2π. We assume that
θtx11, θ

rx
11 , ϕ

tx
11, ϕ

rx
11 are deterministic and it can be computed by

known the relative positions between the transmitter and the
receiver. In addition, for c > 1 and l > 1, we assume that

θtxcl = θtx11 + χtx, ϕtxcl = ϕtx11 + ψtx (6)

θrxcl = θrx11 + χrx, ϕrxcl = ϕrx11 + ψrx, (7)

where χtx, ψtx, ψrx and χrx are zero mean Gaussian dis-
tributed random variables with standard deviation equal to 5.

The steering vectors atx(·, ·) and arx(·, ·) depend on the
antenna array structure and the element spacing. For the FS
terminals, we consider the uniform rectangular array (URA)
whose steering vector can be written as

aURA(θ, ϕ) = vec
(
ax (θ, ϕ)ay (θ, ϕ)

T
)
, (8)

where ax and ay are (9) and (10) respectively. Nx, Ny are the
number of elements in the horizontal and vertical dimension,
dx, dy the element spacing in the horizontal and vertical
dimension and λ the wavelength. For the sake of simplicity
and without loss of generality we assume NxNy = NT = NR.

Note that we have not considered the non-line-of-sight
(NLOS) component of channel modelling which have been
described in several works [26]. This is because we focus on
backhaul cellular networks which are generally deployed in

isolated towers at rural areas or above the rooftop at urban
scenarios [25]. For radio access architectures, NLOS channel
impact is of key importance and it must be considered.

The antenna response of the VSATs can be written as

aV SAT (θ, ϕ) =
√
GmaxG(θ, ϕ) (11)

where Gmax is the maximum antenna gain and G(θ, ϕ) de-
scribes the antenna radiation pattern of the VSAT and it can
be obtained from ITU-R S.465-6 [27]. Finally, γ for denotes
the path-loss which can be written as

γ =

(
1

4πdλ

)
, (12)

where d is the distance between the transmitter and the
receiver.

To sum up, this paper considers two spectrum sharing
scenarios:

1) Scenario A: At 17.3-20.2 GHz where a satellite forward
link transmission (i.e. space to Earth link) and FS links
could coexist.

2) Scenario B: At 27.5-30.0 GHz where a satellite return
link transmission (i.e. Earth to space link) and FS links
could coexist.

In both cases, we consider that the FS terminals (transmit
and receive) have multiple antennas and the FSS links have
a single antenna. In this context, the role of the FS terminals
is different at each scenario: while in scenario A, they have
to restrict the created interference to the FSS; in scenario B
they have to mitigate the interference that they receive from
the FSS. This is, we do not consider that the FSS terminals
perform interference mitigation. This approach will support
the deployments in the mentioned spectrum sharing scenarios
without updating the FSS terminals equipment.

It is important to remark that despite we consider transmit
and receive beamforming for the FS links, this paper does
not tackle the transmit and receive joint optimization prob-
lem. Instead, we consider transmit and receive beamforming
optimization separately, addressing the 18 and 28 GHz bands
sub-problems respectively.

III. BEAMFORMING OPTIMIZATION PROBLEM
STATEMENTS

This Section presents the optimization problems to be
tackled in order to allow the spectrum sharing coexistence of
FSS and FS links. Precisely, the beamforming optimization is
presented both at the transmit and receive side of the FS links.
We present both the fully-digital and fully-analog beamforming
solutions, which offer a substantial different cost. Indeed, while
the fully-digital solution requires either NT or NR RF chains
at both the receiver and the transmit side, the fully-analog
scheme only requires a single RF chain. Figures 2 and 3 depict
the fully-digital and fully-analog beamforming solutions.
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ax (θ, ϕ) =
1√
Nx

(
1, ej

2π
λ dx sin(θ) cos(ϕ), . . . , ej

2π
λ (Nx−1)dx sin(θ) cos(ϕ)

)T
(9)

ay (θ, ϕ) =
1√
Ny

(
1, ej

2π
λ dy sin(θ) sin(ϕ), . . . , ej

2π
λ (Ny−1)dy sin(θ) sin(ϕ)

)T
(10)
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Fig. 2. Fully-digital FS beamforming. In contrast to an all-analog scheme,
this architecture spatially processes the data in a baseband processor which
offers a large flexibility in terms of operations.
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Fig. 3. Fully-analog FS beamforming. In contrast to an all-digital scheme, the
spatial processing can only be done in analog domain through phase-shifters.
Note that the power amplifiers are fixed to a transmit power that cannot be
modified.

A. Transmit Beamforming Optimization Problem (Scenario A)
The transmit beamforming optimization with an all-digital

architecture can be mathematically described as follows

maximize
v

∥Hv∥2 (13a)

subject to (13b)
|gHk v|2 ≤ ϵk k = 1, . . . ,K, (13c)
∥v∥2 ≤ P (13d)

where P is the maximum available power and ϵk the maximum
allowed array gain value towards the k-th VSAT. The optimiza-
tion problem in (13) aims to maximize the data rate of the FS
link while keeping an interference constraint towards the FSS
receivers. By modifying ϵk we can control the interference
power signal received by the FSS receiver.

The optimization problem (13) is a non-convex QCQP since
it is the maximization of a convex function. The optimization
problem in (13) can be relaxed to a convex problem with the
SDR method. This technique relaxes the original problem into

maximize
V≽0

Tr
(
HV

)
subject to
Tr (GkV) ≤ ϵk k = 1, . . . ,K,

Tr (V) ≤ P,

(14)

where
H = HHH ,Gk = gkg

H
k . (15)

The optimization problem in (14) is the SDR of the optimiza-
tion problem in (13). That is, if we include in (14) an additional
constraint

rank (V) = 1, (16)

where rank (·) denotes the rank operator; the optimization
problems in (14) and (13) are equivalent.

The optimization problem (14) is a semidefinite program
which is convex and; thus, it can be solved via interior
point methods. Indeed, whenever the optimal solution of (14)
denoted by V⋆ is rank one, the SDR is tight and the optimal
solution of the original problem (13) can be obtained by com-
puting the eigenvector associated to the maximum eigenvalue
of V⋆. Nevertheless, the optimal solution V⋆ is generally high
rank so that Gaussian randomization methods are required.
These methods are based on the creation of a large number
of Gaussian randomization instances with zero mean and
covariance matrix equal to V⋆. Among all realizations, it is
selected the one with the best performance (the best array gain
for our case) that does not violate the constraints. The reader
can refer to [21] for further details.

Whenever the transmitter can only modify the phases of
the beamforming weights, the optimization problem in (13)
becomes

maximize
v

∥Hv∥2 (17a)

subject to (17b)
|gHk v|2 ≤ ϵk k = 1, . . . ,K, (17c)
|[v]n|2 = P/NT n = 1, . . . , NT (17d)

where the main difference compared to (13) is (17d), which
are the phase-only beamforming constraints. Even though a
priori these new set of constraints do not impact on the
optimization problem, it entails a major difficulty for the
SDR and; specifically, for the Gaussian randomization. This
is described in the following.

Considering the SDR relaxation in (14) with the correspond-
ing phase-only set of constraints (17d) and V⋆ not being rank
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one, the Gaussian randomization technique computes a vector
Gaussian random variable with zero mean and covariance
matrix V⋆. With this variable, vrand, the system designer has
to obtain a feasible solution of (17). This feasible solution is
imposed by the phase-only restrictions which require that the
randomization is transformed into

vrand
k ← vrand ◦ f , (18)

where

f =

(
1

|[vrand]1|
, . . . ,

1

|[vrand]NT |

)T
. (19)

In other words, the scaling factor is not unique. This fact differs
from other optimizations that have used SDR. This is the case
of the multigroup multicast optimization [28], [29] where after
the Gaussian randomization the SDR requires a scaling factor
optimization bearing in mind the constraints. This technique
cannot be applied here as there is no flexibility in the scaling
factor. As a result, the SDR leading to a high rank solution
has an enormous difficulty of delivering a feasible rank one
solution due to the equality constraints. Numerically, we ob-
served the performance of SDR and Gaussian randomization
for solving (14). We validate that for 100 realizations and 1
interference 107 Gaussian randomizations are unable to yield
to a feasible solution of (14). This motivates the techniques
presented in Section IV.

B. Receive Beamforming Optimization Problem (Scenario B)
Let us consider the receive beamforming focuses on max-

imizing the received desired signal SINR [13]. For our case,
the SINR can be written as

SINR =
|uHHt|2∑M

m=1 PV SAT,m|uHpm|2 + σ2
FS∥u∥2

. (20)

Bearing in mind that the SINR in (20) does not depend on
the norm of the receive beamforming (∥u∥2), the receive
beamforming that maximizes the SINR can be written as

u⋆ =

(
M∑
m=1

PV SAT,mpmpHm + σ2
FSI

)−1

ĥ, (21)

where
ĥ = Ht. (22)

In case we restrict the receive beamformer, v to be phase-only,
we shall consider the following optimization problem

maximize
u

uĤu

uRu
,

subject to
|[u]n|2 = 1/NR n = 1, . . . , NR,

(23)

where

R =
M∑
m=1

PV SAT,mpmpHm +
σ2
FS

NR
I, (24)

Ĥ = ĥĥH . (25)

The optimization problem in (23) is a difficult fractional
quadratic optimization problem that does not admit a closed-
form solution like for the digital case. In order to solve this
problem, we consider the next change of variable

w =
u√

uHRu
, ϑ =

1

uHRu
. (26)

With this, the optimization problem in (23), can be rewritten
as

maximize
w,ϑ

wHĤw

subject to
|[w]n|2 = ϑ/NR n = 1, . . . , NR,

wHRw = 1.

(27)

Note that once the optimization problem in (27) is solved, the
optimal solution of the original problem is obtained such as

u⋆ = w⋆/ϑ⋆. (28)

In any case, this last optimization problem presents the same
difficulties as the transmit beamforming optimization due to
phase-only constraints and the additional equality constraint
wHRw = 1. Bearing this in mind, the next Section proposes
to solve the problem of phase-only beamforming under spec-
trum sharing restrictions.

IV. CONVEX RELAXATION PHASE-ONLY BEAMFORMING
TECHNIQUES

This Section proposes two alternatives for efficiently phase-
only beamforming optimization problems. Both approaches are
novel solutions for the aforementioned problems and, as it is
shown, they can provide approximate efficient solutions with
a relatively low computational complexity.

A. SDP Concave-Convex Procedure
The optimization problem (17) can be written as

maximize
V≽0

Tr
(
HV

)
(29a)

subject to (29b)
Tr (GkV) ≤ ϵk k = 1, . . . ,K, (29c)
Tr (EnV) = P/NT n = 1, . . . , NT , (29d)
Tr (V)− λmax (V) ≤ 0, (29e)

where En is a matrix with zero entries instead the n-th
diagonal element which is equal to one.

As discussed in [23], the constraint (29e) is equivalent to

rank (V) = 1, (30)

for any arbitrary semidefinite positive matrix V. The optimiza-
tion problem in (29) is non-convex due to the inequality in
(29e) (i.e. λmax (X) is a convex function for X semidefinite
positive). These type of non-convex problems can be solved
via the concave-convex procedure, also known as sequential
convex programming [30]. This method substitutes the non-
convex (concave) parts of the problem by an affine approx-
imation around an arbitrary point Z(k). Given a feasible
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initial point Z(0), the method consists of sequentially solving
the approximated optimization problem considering Z(k) the
previous optimal solution.

For our case, the affine approximation of λmax (V) around
matrix Z(k) is given by [31]

λ̂max (V) = λmax

(
Z(k)

)
+ Tr

(
z(k)maxz

(k),H
max

(
V − Z(k)

))
,

(31)
where z

(k)
max is the eigenvector associated to the maximum

eigenvalue of Z(k). This approximation has considered that
z
(k)
maxz

(k),H
max is a subgradient of λmax

(
Z(k)

)
as reported in [31].

Since obtaining an initial feasible point Z(0) is as chal-
lenging as obtaining a solution of (29), we resort to the
penalty method. This mechanism replaces a set of constraints
by adding a penalty function in the objective function. This
penalty function shall be a measure of the replaced constraints
violation. For our case, we elect and reformulate the approx-
imate rank one constraint to act as a penalty function. With
this, the optimization problem in (29) becomes

maximize
V≽0

Tr
(
HV

)
− µ(k)Tr

((
I− z(k)maxz

(k),H
max

)
V
)

(32a)

subject to (32b)
Tr (GkV) ≤ ϵk k = 1, . . . ,K, (32c)
Tr (EnV) = P/NT n = 1, . . . , NT , (32d)

where µ(k) is a parameter that balances the penalty function
importance over the whole objective function. For high values
of µ(k), the optimization focuses on obtaining a rank one
solution whereas for low values of µ(k), the optimization
targets the maximization of the array gain towards the intended
user.

By iterative solving (32) and updating z
(k)
max with the eigen-

vector associated with the largest eigenvalue of the previous
optimization solution, we can obtain an objective value solu-
tion of the optimization problem (17). As for general methods
dealing with non-convex problems, the performance of the
obtained solution depends on the proper election of Z(0) and
the value of µ(k). In here, we consider an initial Z(0) equal to
the optimal problem of (29) without (29e). This initial point
follows the heuristics that the optimal rank one solution shall
be close to its high rank optimal design.

Furthermore, the parameter µ(k) is initialized with a low
value and increased at each iteration. With this, we ensure that
at the first steps of the iteration, the algorithm is focused on
the objective function optimization while for the latter steps,
a rank one solution is obtained. The mechanism is depicted in
Algorithm 1 where κ controls the convergence of the algorithm
and κ guarantees the rank one of the final solution. Precisely,
the value of κ shall be very low (10−3 at least) in order to
obtain a rank one solution. We coin this scheme as SDP-CCP.

The algorithm presented in this Section suffers from certain
drawbacks. First, the number of iterations can be high, leading
to a very large computational complexity. In addition, at each
iteration a SDP shall be solved whose worst-case asymptotic
computational complexity is high. The next Section provides

Data: Z(0) from (29) without (29e) and µ(0)

Result: v⋆

while Tr (V)− λmax (V) ≤ κ do
Compute V(k) according to (32).;
if
∥∥V(k) −V(k−1)

∥∥ ≤ κ then
Update µ(k+1) ←

(
µ(k)

)2
;

else
k ← k + 1;
Z(k+1) ← V(k);
Compute z

(k+1)
max ;

end
end
Output the final solution;

Algorithm 1: SDP-CCP procedure for phase-only spectrum
sharing transmit beamforming techniques

an alternative convex relaxation that yields to an efficient
solution with a lower computational complexity scheme per
iteration.

Prior to presenting this alternative method, we describe
the receive beamforming optimization. Given the optimization
problem in (27), the SDP-CCP approach to this optimization
problem can be written as

maximize
W≽0,ϑ

Tr
(
ĤW

)
− µ(k)Tr

((
I− z(k)maxz

(k),H
max

)
W
)

subject to
Tr (EnW) = ϑ/NR n = 1, . . . , NR,

Tr (RW) = 1.
(33)

For this case, we shall update at each iteration Z(k+1) ←W(k)

where W(k) is the optimal solution in the k-th iteration. In
this context, Algorithm 1 leads to an objective value solution
of the problem in (27). Note that SDP-CCP always converge
to a feasible solution as for high values of µ, the optimization
problem yields to a rank one solution.

B. QCQP Penalty Convex-Concave Procedure
An alternative to the previous method is to consider the

concave-convex procedure of the original optimization prob-
lem. By writing the optimization problem in (17) in standard
form, we have

minimize
v

− vHHv (34a)

subject to (34b)
vHGkv ≤ ϵk k = 1, . . . ,K, (34c)
vHEnv ≤ P/NT n = 1, . . . , NT , (34d)
− vHEnv ≤ −P/NT n = 1, . . . , NT , (34e)

Note that the set of equality constraints have been expanded
in two sets of inequality constraints. By observing (34) it
is indicated that the non-convexity of the problem is due
to the objective function and the constraints in (34e). Now,
in contrast to the previous case, we consider the penalized
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convex-concave method directly to this optimization problem.
This method approximates the concave parts of the problem
by its first Taylor approximation and iteratively solves the
equivalent problem. We describe this approximation for our
case in the following.

For any v, z ∈ CNT×1, the inequality

(v − z)
H
X (v − z) ≤ 0 (35)

where X ∈ CNT×NT is negative definite can be expanded by

vHXv ≤ 2R
{
zHXv

}
− zHXz. (36)

Therefore, using the linear restriction around the point z, we
might replace the non-convex inequalities in (34) so that

maximize
v

2R
(
zHHv

)
− zHHz

subject to
vHGkv ≤ ϵk k = 1, . . . ,K,

vHEnv ≤ P/NT n = 1, . . . , NT ,

zHEiz ≤ −P/NT + 2R
{
zHEiv

}
n = 1, . . . , NT ,

(37)

The optimization problem (37) is a second order cone program-
ming (SOCP) that can be efficiently solved via interior point
methods. Under this context, given an initial feasible value of
z, z(0), iteratively solving (37) leads to a Karush-Kuhn-Tucker
(KKT) point of (34) [32].

However, obtaining an initial feasible point z(0) is as chal-
lenging as optimizing (34). In order to solve this problem,
the authors in [20] impose the use of slack variables over all
constraints and penalizing the objective function with its sum.
Following this approach, the optimization problem at the n-th
iteration can be described as

maximize
v,{sm}NT

m=1

2R
{
zH,(n)Hv

}
− zH,(n)Hz(n) − β(n)

NT∑
m=1

sm

subject to
vHGkv ≤ ϵk k = 1, . . .K,

vHEiv ≤ P/NT i = 1, . . . , NT ,

zH,(n)Eiz
(n) ≤ −P/NT + 2R

{
zH,(n)Eiv

}
+ si i = 1, . . . , NT ,

sm ≥ 0 m = 1, . . . , NT ,
(38)

where β is a regularization factor that controls the feasibility
of the constraints. This regularization factor can be updated
over the iterations. For our case, we consider a multiplicative
update by a factor ρ. For high values of β, the optimization
focuses on yielding to a feasible point of (29). For low values
of β, the optimization problem targets to maximize the array
gain towards the secondary user. The algorithm is summarized
in Algorithm 2 and coined QCQP-PCCP.

As it can be observed, the proposed algorithm includes the
stopping criteria

∣∣∣∑NT

m=1 sm

∣∣∣ ≤ ψ. This condition guarantees
that all the constraints of the original problem (34) are fulfilled
for a sufficiently low ψ. Note that, it is possible to allow dif-
ferent maximum violations of each constraint by weighting the
different components of the penalty function

∑NT

m=1 β
(n)
m sm.

Data: z(0) and µ(0)

Result: p⋆

while
∣∣∣∑2NT

m=1 sm

∣∣∣ ≤ ψ and ∥p(n) − p(n−1)∥ ≤ ω do
if t < Tmax then

Compute p(n) according to (38).;
z(n+1) ← p(n);
β(n+1) ← max

(
ρβ(n), βmax

)
;

t← n+ 1;
else

t← 0;
Initialize with a new random value z(0);
Set up β(0) again;

end
end
Output the final solution;

Algorithm 2: QCQP-PCCP optimization for phase-only
beamforming optimization.

The role of β is to balance the optimization of the array gain
to the intended users and the minimization of the constraint
violation (i.e. for very high β the optimization problem seeks a
feasible point rather than optimizing the array gain). We vary
the value of β over the different iterations. First, we set a
relatively low value of β(0) and; posteriorly, we sequentially
increase this value. In other words, the proposed scheme first
focuses on maximizing the array gain to the secondary user
and, later, it seeks for a feasible solution. To avoid β taking a
very large value when the number of iterations becomes large,
leading to numerical difficulties, we consider a maximum β
value βmax.

Algorithm 2 is not a descent algorithm as [20] mentions.
With the aim of fostering the convergence, a maximum number
of iterations Tmax is imposed and, in case it is reached, we start
with a new random initial point.

For the sake of completeness, let us formulate the QCQP-
PCCP scheme of the receive beamforming optimization
method

maximize
w,ϑ,{sm}NT +1

m=1

2R
{
zH,(n)Ĥw

}
− β(n)

NT+1∑
m=1

sm

subject to
wHEiw ≤ ϑ i = 1, . . . , NT ,

zH,(n)Eiz ≤ ϑ+ 2R
{
zH,(n)Eiw

}
+ si i = 1, . . . , NT ,

wHRw ≤ 1

zH,(n)Rz ≤ 1 + 2R
{
zH,(n)Rw

}
+ sNT+1,

sm ≥ 0 m = 1, . . . , NT + 1.
(39)

With this and Algorithm 2, we can achieve an objective
value solution of the original phase-only receive optimization
problem.
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C. Computational Complexity Analysis
This Section aims at studying the computational complex-

ities of the presented algorithms. Note that both schemes
depend on the average number iterations which is a problem-
dependent parameter that cannot be analytically obtained. Un-
der this context, we assume that a total number of QSDP-CCP and
QQCQP-PCCP iterations are required for the SDP convex-concave
procedure and the QCQP penalized convex-concave procedure.
We first consider the computational complexity of the transmit
beamforming case and, later, we identify the computational
complexity for the receive beamforming optimization case.

The SDP convex-concave procedure solves a SDP at each
iteration. This SDP finds an efficient matrix of NT × NT
dimensions with 2NT + K constraints. On the contrary, the
QCQP penalized convex-concave procedure approach requires
to find a vector of 2NT dimensions with a total number of
constraints of K + 3NT .

As discussed in [33], it is generally more convenient to solve
a SOCP rather than a SDP via interior point methods. Indeed,
it is known that the upper bound of number of iterations
needed to find an efficient solution of SOCP is O

(√
A
)

where A is the number of constraints of the SOCP. On the
contrary, the worst case number of iterations in a SDP is
O
(∑B

w=1 uw

)
, where B is the total number of constraints

and uw the dimensions of the w-th constraint of the SDP.
In addition, at each iteration an interior point method

requires a worst-case number of operations for the SDP of
O
(
C
∑B
w=1 u

2
w

)
, where C are the dimensions of the SDP

variable. For SOCP, the computational complexity per iteration
is reduced to O

(
D
∑A
w=1 vw

)
, where D are the dimensions

of the SOCP variable and vw the dimensions of the w-th
constraint. Considering the above results, the computational
complexity for the SDP convex-concave procedure becomes

MSDP-CCP = O
(
QSDP-CCPN

6
T (2NT +K)

2
)
, (40)

By the asymptotic composition rule of computational complex-
ity, the resulting computational complexity becomes

MSDP-CCP = O
(
QSDP-CCPN

8
T

)
, (41)

where it has been assumed that NT ≫ K. This is the number
of antennas is much higher than the number of FSS which is
consistent with the system we are considering.

Bearing in mind the results for the SOCP, the computational
complexity for the QCQP penalized convex-concave procedure
is

MQCQP-PCCP = O
(
QQCQP-PCCP

√
2(K + 2NT )N

2
T (2Nt +K)

)
.

(42)
Under this context, the computational complexity of the
QCQP-PCCP method becomes

MQCQP-PCCP = O
(
QQCQP-PCCPN

3.5
T

)
, (43)

where it is evident the substantial computational complexity
reduction with respect to SDP-CCP method in terms of the
NT exponential factor. From the analytical perspective it is

Parameter Value
P 24 dBW

Receive Antenna Gain 44 dB
σ2

FS −121 dBW
Distance between FS and FSS [1000, 20000] meters

θ [−10, 10] degrees
ϕ [−60, 60] degrees

Channel model parameters C = 1, L = 3 degrees
TABLE I. FS SCENARIO DEFINITION

Parameter Value
Distance 35.78 · 106 meters

Satellite EIRP ( Psatellite ) 60 dBW
Gmax 40 dB
PVSAT 58 dBW
σ2

VSAT −121 dBW
Satellite Elevation Angle 40 degrees

TABLE II. FSS SCENARIO DEFINITION

difficult to derive an upper bound of the number of iterations
of both methods. This is completed in the following Section.

It is important to remark that for the receive beamforming
optimization, the same asymptotic computational complexity
results are obtained in both cases. This is due the fact that
the same order of magnitude of constraints and number of
variables are employed for both the receive and transmit
beamforming optimization cases.

V. NUMERICAL RESULTS

This Section presents the numerical evaluation of the pro-
posed methods. To solve the described optimization problems
we used CVX, a package for specifying and solving convex
programs [34], [35]. This solver runs in a Windows desktop
with 4 Intel i5 cores and 4GB of RAM. We consider 1000
Montecarlo runs for every numerical result.

As described in the previous sections, we consider the
presence of FS and FSS in the same spectrum. We first describe
the communication parameters of the FSS transmission in
Table I. The distance between two FS and other FSS is
assumed to be uniform random distributed between 1 and 20
Kms. Considering this distance, the elevation angle variation
is low and assumed to be uniformly distributed between -10
and 10 degrees. In addition, ϕ is considered to be uniformly
distributed between -60 and 60 degrees. As a backhaul scenario
with long distances is assumed, we consider the channel model
parameters of one cluster (C = 1) and L = 3 sub-rays.

The FSS communication link parameters are described in
Table II. We consider a geostationary orbit (i.e. the satellite
user terminal points to a fixed satellite) with an standard
carrier-over-noise (C/N0) value of 10.5 dB. In addition, it is
assumed that the satellite user terminal has an elevation angle
of 40 degrees, a common value for Western countries. In all
simulations we utilize the channel model described in Section
II with the AoD, AoA, C and L described in Table I. We
first evaluate the transmit beamforming method and then we
describe the results for the receive beamforming case.

For both optimization frameworks, we assume

µ(0) = β(0) = 10, χ = ψ = ω = κ = κ = 10−4. (44)
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Moreover, for the QCQP-PCCP, we consider the following
parameters

βmax = 105, Tmax = 30, ρ = 10. (45)

A. Transmit Beamforming (Scenario A)
Let us first consider the transmit beamforming case. Both

proposed techniques are first compared in Figures 4 and 5.
For obtaining these results we considered the case of K = 1
and NT = 36, 49, 64, 81 and 100 transmit antenna elements.
In addition, ϵ = −40 dB. In Figure 4 we plot the performance
loss defined as

LossTx = 10 log10

(
∥Hv∥2

Tr
(
HV∗

)) , (46)

where V∗ is the SDR solution of (17). The figure of merit of
LossTx describes how close the relaxation technique approxi-
mates to the upper bound solution of V∗. For the QCQP-PCCP
method we consider two initialization methods: a Gaussian
randomization considering the covariance matrix of V∗ and
I. The idea of using an initial random point considering V∗

relays on the heuristic that the rank one solution should be
close to its high rank solution.
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SDP-CCP
QCQP-PCCP with Random Initialization

QCQP-PCCP with SDR Initialization

Fig. 4. Performance Loss for phase-only transmit beamforming optimization
problem.

Considering the results in Figure 4, the method that behaves
most closely to the upper bound is SDP-CCP. We observe a
substantial difference between the two initialization alterna-
tives: the QCQP-PCCP method using the SDR initialization
shows a better performance compared to the case where the
initial point is obtained pure randomly. In other words, the use
of the SDR initialization is essential for obtaining an efficient
solution with the QCQP-PCCP method.

The central processing unit time to compute a solution is
described in Figure 5. It can be observed a large difference
between SDP-CCP and QCQP-PCCP with both initializations.
The performance gain of QCQP-PCCP is especially large when
NT increases. It is important to remark that the QCQP-PCCP
presents a slightly better performance in CPU time when the
SDR initialization is used.
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Fig. 5. Average CPU time versus number of antennas for phase-only transmit
optimization problem.

Under this context, we can establish that QCQP-PCCP with
SDR initialization is the method that presents the best CPU
time and performance trade-off: its computational efficiency
makes it appropriate to next generation multiantenna backhaul
systems. Due to that, we use it for computing the achievable
data rates in an scenario described by Table I. The results are
depicted in Figure 6 where we plot the empirical cumulative
distribution function of the average VSAT achievable rate
defined as

RVSAT =
1

K

K∑
k=1

PsatelliteG

σ2
VSAT + |gHk v|2

. (47)

We consider the case where K takes with equal probability
the values of 1, 2 and 3 and NT = 49. Furthermore, we include
two cases ϵ = −30 and ϵ = −50 dBW.
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Fig. 6. Empirical cumulative distribution of the FSS achievable rates, RVSAT,
when optimizing the transmit beamforming with QCQP-PCCP with SDR
initialization considering NT = 49 and different ϵ values.

As it can be observed in Figure 6, the use of interference
mitigation techniques is essential for providing a sufficiently
large data rate for the satellite user terminals. Indeed, whenever
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no interference mitigation techniques are used, it is observed
that the data rates yield to very low values. As a matter of
fact, the lower ϵ the larger the satellite achievable rates are
obtained.

B. Receive Beamforming (Scenario B)

We now focus on the receive beamforming case. The losses
figure of merit are computed such that

LossRx = 10 log10

 |ĥHu|2Tr (RU∗)

Tr
(
ĤU∗

)
uHRu

 , (48)

where U∗ is the solution of the semidefinite relaxation of (23)
and u is the obtained solution with the proposed optimization
frameworks. As it can be observed in Figure 7, we observe
a similar behaviour as in the transmit beamforming case:
SDP-CCP is the one offering the lowest performance loss.
In addition, the use of an SDR randomization as an initial
point results in a better performance compared to the pure
random initialization for the QCQP-PCCP as it happens with
the transmit beamforming optimization.
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SDP-CCP

Fig. 7. Performance Loss for phase-only receive beamforming optimization
problem.

On the other hand, the CPU time conducts differently to the
transmit beamforming case. Considering the results in Figure
8, SDP-CCP is the solution offering the lowest average CPU
time. Indeed, despite SDP-CCP obtains the highest worst case
asymptotic computational complexity, the overall CPU time
is lower compared to QCQP-PCCP with the two initialization
alternatives. This is due to the average number of iterations
required for each method. We observe that for the SDP-CCP
most of the cases it is only required 2 or 3 iterations while for
the QCQP-PCCP a number higher of 10 iterations is required.

In light of the above results, SDP-CCP scheme is the most
adequate alternative for optimizing the receive beamforming
case. This alternative is employed for obtaining the results in
Figure 9 where we plot

RFS = log2 (1 + SINR) , (49)
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Fig. 8. Average CPU time versus number of antennas for phase-only receive
optimization problem.

where SINR is defined in (20). As a benchmark, we consider
the case where there is no interference (i.e. PV SAT = 0).
As it can be observed in Figure 9, despite the presence of
interference, the receive beamforming design is able to offer
an achievable rate similar to the case where no interference is
present.
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Fig. 9. Empirical cumulative distribution of the FS achievable rates, RFS,
when the FS receiver is equipped with NR = 49 antennas and the optimization
method used is SDP-CCP.

VI. CONCLUSIONS

This paper proposes the use of phased arrays in spectrum
sharing satellite-terrestrial backhaul systems. In the considered
scenario, interference between FS and FSS occurs and, in order
to mitigate it, we propose two optimization frameworks for
obtaining efficient transmit and receive beamforming designs.
As discussed in the numerical evaluation, while for trans-
mit beamforming QCQP-PCCP presents the best performance
CPU time trade-off, for the receive beamforming case, SDP-
CCP is the most convenient alternative as it shows a very
low CPU time yet a very large performance gain. In both
cases, the obtained array gain presents less than 1 dB loss
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compared to the SDP upper bound. Considering the resulting
spectral efficiencies and the reduced hardware implementation
cost, the conceived techniques are promising solutions for next
generation wireless spectrum sharing deployments in mmWave
bands.

The beamforming techniques presented in this paper are
key enabling components for both allowing an extraordinary
increase of the spectrum usage for satellite systems and a
potential spectrum license reduction for cellular operators. In
other words, while currently there is no satellite deployments
in the Ka shared band and no backhaul links in the exclusive
satellite band, the use of the proposed multiantenna optimiza-
tion techniques will enable those new spectrum applications.
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