
Automatic evaluation of top-down predictive parsing
Carles Creus
ccreus@cs.upc.edu

Pau Fernández
pfernandez@cs.upc.edu

Guillem Godoy
ggodoy@cs.upc.edu

Nil Mamano
nil.mamano@gmail.com

Universitat Politècnica de Catalunya, Computer Science Department

Abstract
We develop efficient methods to check whether two given Context-Free Grammars

(CFGs) are transformed into parsers that recognize the same language and construct
the same Abstract Syntax Trees (ASTs) for each input. In this setting, we consider
a model of top-down predictive parser generator with directives for AST construction
that is a simplified variant of PCCTS/ANTLR3. As an application, we implement an
evaluator for an online judge with educational purposes in the context of a Compilers
course.

1 Introduction
For the last few years, we have developed a specialized judge for the Theory of Computation
course, publicly accessible at https://racso.cs.upc.edu with no registration required. It offers
users a list of exercises on deterministic finite automata, context-free grammars (CFGs) [3],
push-down automata, reductions between undecidable problems, and reductions between
NP-complete problems [2]. Users can submit their solution proposals, the judge evaluates
them, and provides a counterexample when the submission is wrong. In our experience, the
judge has had a positive effect on the motivation and involvement of the students of the
course, and showing them counterexamples has proven crucial to help them correct their
mistakes.

In order to make the judge also useful in a Compilers course, we have recently added
exercises on CFGs for top-down predictive parsing [1, 4]. To evaluate this kind of exercises,
we have developed new methods to, on the one hand, check whether the solution propos-
als submitted by users parse the same language as the reference solution provided by the
problem setter and, on the other hand, whether the proposals and the reference solution
construct the same abstract syntax trees (ASTs) for each input. These methods are not com-
plete, but behave well in practice, free the problem setter from the tedious task of creating
comprehensive test sets, and return the verdict in just a few seconds (at worst). The latter
is important in our context, since providing instant feedback to students helps in keeping
them motivated. Moreover, the methods are also able to produce a counterexample when
the submissions are wrong.

We have chosen a specific model of top-down predictive parser generator that is a sim-
plified variant of PCCTS/ANTLR3 [5, 6]. It accepts CFG descriptions like the following:
instruction : IDENTIFIER '='ˆ expression

| 'if'ˆ expression instruction ('else'! instruction |) ;
expression : term ('+'ˆ term | '-'ˆ term)* ;
term : basic ('*'ˆ basic | '/'ˆ basic)* ;
basic : INTCONSTANT | IDENTIFIER | '('! expression ')'! ;
IDENTIFIER : ('a'..'z'|'A'..'Z'|'_')('a'..'z'|'A'..'Z'|'_'|'0'..'9')* ;
INTCONSTANT : ('0'..'9')+ ;

This work has been partially supported by funds from the Spanish Ministry of Economy and Competitiveness
(MINECO) and the European Union (FEDER funds) under grant COMMAS (ref. TIN2013-46181-C2-1-R),
and by funds from the Spanish Ministry of Science and Innovation (MICINN) under grant FORMALISM
(ref. TIN2007-66523). Additionally, the first author has been supported by an FPU-MECD 2010 grant from
the Spanish Ministry of Education.

1

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by UPCommons. Portal del coneixement obert de la UPC

https://core.ac.uk/display/160040526?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
mailto:ccreus@cs.upc.edu
mailto:pfernandez@cs.upc.edu
mailto:ggodoy@cs.upc.edu
mailto:nil.mamano@gmail.com
https://racso.cs.upc.edu

Lowercase identifiers denote variables (non-terminals) and quoted strings as well as upper-
case identifiers denote tokens (terminals). In addition, some tokens are followed by directives
for AST construction, like ˆ to indicate that the token must become the root of the cur-
rently constructed AST, and ! to mark that such token must not be included in the AST.
The previous CFG is ambiguous because a sequence of the form 'if' expression 'if'
expression IDENTIFIER '=' expression 'else' . . . has at least two different syntax
trees, since the 'else' can be associated to either the first or the second 'if'. This is the
classical “dangling else” ambiguity, and it cannot be tackled by a (free-of-conflicts) LL(k)
CFG. Nevertheless, our model gives priority to the left branch of each alternative | when a
conflict occurs, and hence, in the previous example the 'else' is associated to the last seen
'if'. In general, prioritizing rules according to their definition order may cause the parsed
language to be different from the language generated by the given CFG. The interpretation
as a parser of the above CFG corresponds to the following program:

function instruction() returns Forest
Forest ast := empty
Bool rooted := false
if lookahead() = IDENTIFIER
t := consumeToken(IDENTIFIER)
ast.addToForest(t,rooted)
t := consumeToken('=')
ast.addAsRoot(t)
rooted := true
f := expression()
ast.addToForest(f,rooted)

else if lookahead() = 'if'
t := consumeToken('if')
ast.addAsRoot(t)
rooted := true
f := expression()
ast.addToForest(f,rooted)
f := instruction()
ast.addToForest(f,rooted)
if lookahead() = 'else'

consumeToken('else')
f := instruction()
ast.addToForest(f,rooted)

else if lookahead() = $
// Nothing to do

else SYNTAXERROR
else SYNTAXERROR
return ast

function expression() returns Forest
Forest ast := empty
Bool rooted := false
f := term()
ast.addToForest(f,rooted)
while lookahead() ∈ {'+','-'}

if lookahead() = '+'
t := consumeToken('+')
ast.addAsRoot(t)
rooted := true
f := term()
ast.addToForest(f,rooted)

else if lookahead() = '-'
t := consumeToken('-')
ast.addAsRoot(t)
rooted := true
f := term()
ast.addToForest(f,rooted)

return ast

function term() returns Forest
...

function basic() returns Forest
...

In the code above, the lookahead function returns the next token of the input without
consuming it, the consumeToken function consumes and returns the next token of the input
while verifying its lexical class, and $ represents the end-of-input mark. Also, the ast

variable keeps the current constructed AST as a forest, i.e., a list of trees. The instruction
ast.addAsRoot(t) sets ast to be the tree whose root is t and whose list of children is
the previous forest kept in ast. When rooted is false, ast.addToForest(f,rooted) sets
ast to be the forest resulting of concatenating the previous value of ast with f. Otherwise,
when rooted is true, the current value of ast is a tree and ast.addToForest(f,rooted)

modifies it by concatenating its list of children with f.
Note that the ASTs constructed by the above program correspond to an interpretation

of the input where operators ∗ and / have precedence over + and −, and all of them are left-
associative. For example, with input 1∗2/3−4+5/6, the AST returned by the expression
function is +(−(/(∗(1, 2), 3), 4), /(5, 6)), i.e., the expression is interpreted with the implicit
parenthesization (((1 ∗ 2)/3)− 4) + (5/6). A different CFG parsing the same language may
produce different ASTs.

2

1.1 Approach
Given two CFGs G1 and G2, we have to check whether they parse the same language,
i.e., whether LP(G1) = LP(G2), and whether the corresponding constructed ASTs for each
input coincide. The first part is the easiest one and, in fact, it is decidable: note that the
parsing process can be simulated by a deterministic push-down automaton (DPDA), and
equivalence of DPDAs is decidable in non-elementary time [7, 8]. Nevertheless, such time
complexity is excessive, and we prefer to design (perhaps incomplete) methods that behave
well in practice. In [3] we developed an efficient hashing method for testing whether two
CFGs G1 and G2 generate the same language, i.e., whether L(G1) = L(G2). This method is
based on a hash function H that maps multisets of words to natural numbers. To compare
G1 and G2, we fix a length L and compute N1 := H([w | |w| ≤ L ∧ w ∈ L[G1]]) and
N2 := H([w | |w| ≤ L ∧ w ∈ L[G2]]), where L[G] denotes L(G) as multiset by considering
each word as many times as it is generated by G. If N1 = N2, we conclude L[G1] = L[G2],
and in particular L(G1) = L(G2). Note that this conclusion might be wrong, either because
the smallest w ∈ (L(G1)4L(G2)) has length greater than L, or in the event of hash collisions,
although practice shows that this is unlikely. If N1 6= N2, then L[G1] 6= L[G2] necessarily
holds, and if G1 is unambiguous, we can conclude either that L(G1) 6= L(G2) or that G2 is
ambiguous. One of the advantages of this approach is that the function H can be computed
efficiently over the CFG structure without generating the multisets. Moreover, the method
efficiently produces a counterexample to L[G1] = L[G2] when N1 6= N2.

Recall that we need to check LP(G1) = LP(G2) instead of L(G1) = L(G2). Our approach
to check LP(G1) = LP(G2) consists in reducing this problem to check L(G′1) = L(G′2)
using the hashing method, where G′1 and G′2 are unambiguous CFGs obtained from G1
and G2, respectively, such that LP(G1) = L(G′1) and LP(G2) = L(G′2). Intuitively, G′1
and G′2 simulate the deterministic (conflict-resolved) behaviour of the parsers corresponding
to G1 and G2, respectively. Obtaining such CFGs is definitely possible: the languages
parsed by CFGs can be recognized by DPDAs, and it is well known that DPDAs can be
transformed into equivalent unambiguous CFGs. Nevertheless, these transformations are
involved and we present a direct and simpler transformation T such that, given a CFG G,
LP(G) = L(T (G)). Moreover, T can be composed with another transformation A such that
A(T (G)) generates the set of words that represent (in an appropriate formalism) the ASTs
constructed by G. This way, we can test if G1 and G2 construct the same ASTs by checking
L(A(T (G1))) = L(A(T (G2))). This requires to modify the hashing method to compute a
more general function H([σ(w) | |w| ≤ L ∧ w ∈ L[G]]) that depends on a morphism σ. The
morphism allows to represent the fact that tokens followed by ! must be removed from the
AST by mapping them to the empty word, and to make the method more robust against
collisions.

According to our experiments, this method is accurate in practice and runs in a few
seconds with big CFGs when looking for counterexamples of size at most L ≈ 12. This is
because the complexity of this method has a factor L4. Since this limitation can be excessive
in some cases, we propose an alternative transformation P that allows to compare partial
executions of the parsers. More precisely, P (G) generates the set of words w such that
there is a partial execution of G that consumes exactly w without producing a syntax error.
Hence, a counterexample to L(P (G1)) = L(P (G2)) is a word w that produces a syntax
error on a partial execution of just one of G1, G2. The advantage of using P instead of
T is that, in many occasions, the size of such w will be significantly smaller than the size
of a counterexample to LP(G1) = LP(G2). In addition, the transformation P can also be
composed with A to check equivalence of partial AST construction.

1.2 Outline
In Section 2 we recall the basic concepts of words, languages, morphisms, CFGs and their
transformation to CNF. In Section 2.1 we describe in detail the original hashing method

3

that was briefly presented in [3]. In Section 3, we define the model of parser generator. In
Section 4 we present the transformations T and P . In Section 5, we discuss the way to
represent ASTs as words, present the transformation A, and adapt the hashing method to
check equivalence of AST construction. In Section 6 we analyse the empirical performance
of the method. In Section 7 we conclude.

2 Preliminaries
Words are finite-length lists of symbols chosen over an underlying (finite) alphabet Σ. The
length of a word w is denoted by |w|, its i’th symbol by w[i], and its subword between i
and j, inclusive, by w[i . . . j], for 1 ≤ i ≤ j ≤ |w|. The empty word is denoted by ε. The
concatenation of two words x, y is denoted by x · y, or just xy. It is extended to languages
(sets of words) as L1L2 = L1 · L2 = {xy | x ∈ L1 ∧ y ∈ L2}. By Prefixes(L) we denote
{u | ∃v : uv ∈ L}. By match(u, v) we denote that either u is a prefix of v (i.e., v = uv′ for
some v′) or v is a prefix of u. A morphism σ is a mapping from words to words satisfying
σ(xy) = σ(x)σ(y). Thus, it suffices to define σ for symbols, since then it is generalized to
arbitrary words as σ(a1 · · · an) = σ(a1) · · ·σ(an).

We assume that the reader is familiar with the concept of context-free grammar (CFG)
as a structure G = 〈V,Σ, δ, S〉, where V is the (finite) set of variable symbols, Σ is the (finite)
alphabet of terminal symbols, δ ⊂ V × (V ∪ Σ)∗ is the (finite) set of production rules, and
S ∈ V is the initial symbol. We will usually denote variable symbols with uppercase letters
X,Y, Z, . . ., with possible subscripts, and terminal symbols with lowercase letters a, b, c, . . .,
with possible subscripts. Often, grammars are represented by a list of rules, where the
variable at the left-hand side of the first rule is considered the initial symbol. Also, rules
with common left-hand side are usually described together, in compact form, e.g., the two
rules X → u and X → v are represented by X → u | v.

The notation u →∗G w represents the fact that the word u can be transformed into
the word w by applying the rules of G, as well as a specific derivation from u into w,
depending on the context. A derivation is leftmost if, at each step of the derivation, the
variable being rewritten is the one occurring leftmost. The language generated by G is
L(G) = {w ∈ Σ∗ | S →∗G w}, and G is ambiguous if there exist two different leftmost
derivations from S to a word w ∈ L(G) (recall that this definition is equivalent to say that
there exist two different derivation trees of the same word). For any word w, D(G,X,w)
denotes the number of leftmost derivations of G from X to w. We may omit the parameter
G when it is clear from the context, and X when it is the start symbol of G. A variable
is useless if it does not appear in any derivation of the form S →∗G w ∈ Σ∗. Unit rules
and ε-rules are rules of the form X → Y and X → ε, respectively. A CFG is in Chomsky
Normal Form (CNF) if all its rules are of the form X → Y Z or X → a. We assume that the
reader knows the classical transformations on grammars removing useless variables, ε-rules
and unit rules, and the conversion to CNF.

We recall some basic definitions of top-down parsing [1, 4]. We fix a specific symbol $
out from Σ as an end-of-input mark. For u ∈ (V ∪ Σ ∪ {$})+, by First(G, u) we denote
{a ∈ (Σ∪{$}) | ∃w : u→∗G aw}. This is generalized to sets of words U ⊆ (V ∪Σ∪{$})+ as
First(G,U) =

⋃
u∈U First(G, u). For each X ∈ V , by Follow(G,X) we denote {a ∈ (Σ∪{$}) |

∃w1 ∈ (V ∪Σ)∗, w2 ∈ (V ∪Σ∪{$})∗ : S$→∗G w1Xaw2}. When G is clear from the context,
we may omit the parameter G and just write First(u), First(U), or Follow(X).

To denote abstract syntax trees (ASTs) we use the concept of forests, that are finite
structures defined recursively as follows, in combination with the definition of trees. A
forest F is a (possibly empty) list of trees t1t2 · · · tn. A tree is an element of the form a(F),
where a is an alphabet symbol and F is a forest. The tree a() (i.e., a tree without children)
is simply denoted as a. Concatenation of forests F1 and F2 is simply denoted F1F2. A forest
F with just one tree t is identified with t, i.e., F and t are considered identical elements
(a list of one element and the element itself are considered to represent the same concept).

4

When explicitly writing a tree t, we usually separate the trees of the forests occurring inside
t with commas. For example, we will prefer to write a(b, c(d, e), f) rather than a(bc(de)f).

2.1 The hashing method
We describe here in detail the hashing method that was briefly presented in [3] for testing
equivalence of two given CFGs G1, G2. We illustrate the constructions with the CFGs of
the following running example.

Example 2.1 Consider the exercise asking for an unambiguous CFG generating the lan-
guage {aibj | i ≥ j}. Assume that the problem setter has prepared the following unambiguous
CFG Gref as reference solution:

S → aS | X
X → aXb | ε

and that a student submits the following CFG Gsub as proposal of solution:

T → aT | aTb | ε

Note that L(Gref) = L(Gsub) = {aibj | i ≥ j}, but Gsub is ambiguous since D(Gsub, aab) = 2.
Thus, the judge should produce a rejection verdict together with a counterexample, preferably
one of minimum size like aab.

As a first step, the method transforms the two given CFGs G1, G2 to CNF. This trans-
formation preserves the generated language, except for the empty word ε that is no longer
generated. Thus, for the particular case of ε we must check whether it is generated by G1 or
by G2, and how many times, before continuing. The transformation to CNF also preserves
ambiguity and unambiguity, except for certain ill cases of ambiguity that can be detected.
For example, the CFG

S → XY | a
X → S
Y → ε

generates a in infinitely many different ways, but the process removing ε-rules and unit rules
produces the unambiguous CFG S → a.

Example 2.2 We illustrate the transformation process to CNF of the CFGs Gref and Gsub
of Example 2.1 as follows:

Gref :
{
S → aS |X
X→ aXb | ε

}
bound−−−−−→

 S → aS |X
X→ aY | ε
Y →Xb

 ε-delete−−−−−→

 S → aS |X | a
X→ aY
Y →Xb | b

unit-delete−−−−−−−→

 S → aS | aY | a
X→ aY
Y →Xb | b

 rename−−−−−→

S →AS |AY | a
X→AY
Y →XB | b
A → a
B → b

Gsub :

{
T → aT | aTb | ε

} bound−−−−−→
{
T → aT | aZ | ε
Z→Tb

}
ε-delete−−−−−→

{
T → aT | aZ | a
Z→Tb | b

}

unit-delete−−−−−−−→
{
T → aT | aZ | a
Z→Tb | b

}
rename−−−−−→

T →AT |AZ | a
Z→TB | b
A→ a
B→ b

We also call Gref and Gsub to the corresponding CNF CFGs to avoid introducing new names.
Note that now L(Gref) = L(Gsub) = {aibj | i ≥ j} \ {ε} = {aibj | i ≥ j ∧ i > 0}, and that

5

Gref and Gsub are still unambiguous and ambiguous, respectively, as the same counterexample
aab shows.

The hashing method fixes a hashing function h from words to natural numbers defined
in a usual way over a natural number B (the base) and a prime natural number M (the
modulus). To simplify the notation, we assume that all arithmetic operations in this section
are done moduloM. The hashing function h is then defined as h(a0 . . . an) = a0B0 +a1B1 +
· · ·+ anBn, where each symbol in the alphabet is implicitly identified with a fixed positive
natural number.

The method looks for a word w such that D(G1, w) 6= D(G2, w), i.e., a word generated
a different number of times (with leftmost derivations) with G1 and G2. To this end, it
fixes a maximum length L for the size of w, and for each ` ≤ L and each G ∈ {G1, G2}, it
computes H(G, `) =

∑
|u|=` ∧ u∈L(G)D(u) ·h(u). Note that this corresponds to the addition

of all h(u), for words u ∈ L(G) of length `, by considering each u as many times as it is
generated.

Example 2.3 Consider the resulting CFGs in CNF from Example 2.2, that is:

Gref :

S →AS |AY | a
X→AY
Y →XB | b
A → a
B → b

 Gsub :

T →AT |AZ | a
Z→TB | b
A→ a
B→ b

The hashing method obtains the following values of H(Gref , `) and H(Gsub, `):

` = 1 ` = 2 ` = 3
H(Gref , `) a (a+ aB) + (a+ bB) (a+ aB + aB2) + (a+ aB + bB2)
H(Gsub, `) a (a+ aB) + (a+ bB) (a+ aB + aB2) + 2(a+ aB + bB2)

It stops for ` = 3 since H(Gref , 3) 6= H(Gsub, 3) (unless an unfortunate selection of B,M
and the values corresponding to a and b produces a hash collision).

The values H(G, `) are obtained by computing the following values for each variable X
of G (where the parameter G is left implicit to ease the presentation):

C(X, `) =
∑
|u|=` ∧ X→∗

G
u∈Σ∗ D(X,u)

H(X, `) =
∑
|u|=` ∧ X→∗

G
u∈Σ∗ D(X,u) · h(u)

These values can be computed as follows, where δ is the set of rules of G:

C(X, `) =
∑

(X→Y Z)∈δ ∧ 1≤`′≤`−1(C(Y, `′) · C(Z, `− `′))+∑
X→a∈δ ∧ `=1 1

H(X, `) =
∑

(X→Y Z)∈δ ∧ 1≤`′≤`−1(H(Y, `′) · C(Z, `− `′)+
B`′ · C(Y, `′) ·H(Z, `− `′))+∑

X→a∈δ ∧ `=1 h(a)

Using memoization, the above values can be computed for all ` ≤ L in O(|G| · L2), where
|G| denotes the number of rules of G. Note that H(G, `) coincides with H(S, `), where S
is the start symbol of G. Thus, we can compute and compare the pairs H(G1, `), H(G2, `)
in O((|G1| + |G2|) · L2). If H(G1, `) 6= H(G2, `) for some `, we conclude that there exists
a word w of length ` such that D(G1, w) 6= D(G2, w). In the particular case where G1 is
unambiguous, we conclude that either L(G1) 6= L(G2) or that G2 is ambiguous, and call
any such word w a counterexample to the correctness of G2.

6

Example 2.4 The hashing method obtains the following values of C(W, `) for each variable
W of the CFGs Gref and Gsub of Example 2.3. Note that, before, we intentionally used
distinct variable names for each CFG in order to avoid the need to specify the corresponding
CFG names here (except for the variables A and B, that have identical rules in both CFGs).

` = 1 ` = 2 ` = 3
C(A, `) 1 0 0
C(B, `) 1 0 0
C(Z, `) 1 1 2
C(T, `) 1 2 3
C(X, `) 0 1 0
C(Y, `) 1 0 1
C(S, `) 1 2 2

Note that C(S, 3) 6= C(T, 3). This already implies that D(Gref , w) 6= D(Gsub, w) for some
word w holding |w| = 3. Thus, for this case, it is not necessary to compute the values H in
order to realize that; nevertheless, we show them to make the example more complete:

` = 1 ` = 2 ` = 3
H(A, `) a 0 0
H(B, `) b 0 0
H(Z, `) b a+ bB (a+ aB + bB2) + (a+ bB + bB2)
H(T, `) a (a+ aB) + (a+ bB) (a+ aB + aB2) + 2(a+ aB + bB2)
H(X, `) 0 a+ bB 0
H(Y, `) b 0 a+ bB + bB2

H(S, `) a (a+ aB) + (a+ bB) (a+ aB + aB2) + (a+ aB + bB2)

Thus, we obtain H(S, 3) 6= H(T, 3) (in the absence of hash collisions), and this again proves
D(Gref , w) 6= D(Gsub, w) for some word w holding |w| = 3.

The hashing method also allows to efficiently construct such counterexample w. This
is done iteratively by first constructing w[1], then w[2], then w[3], and so on, as follows.
Suppose that we have already constructed w[1], w[2], . . . , w[i − 1] for 1 ≤ i ≤ `. Now, we
consider each symbol a ∈ Σ and check whether p = w[1] · · ·w[i − 1] · a is a prefix of some
word w′ of length ` such that D(G1, w

′) 6= D(G2, w
′). To this end, for each G ∈ {G1, G2}

we compute H(G, p, `) =
∑
|u|=` ∧ u[1...|p|]=p ∧ u∈L(G)D(u) · h(u). When for some a ∈ Σ the

corresponding p satisfies H(G1, p, `) 6= H(G2, p, `), then this a is a valid choice for w[i], and
we can proceed to construct w[i + 1] analogously. In order to compute H(G, p, `), we need
to generalize the above computation to obtain the following values, where 1 ≤ j ≤ ` and
1 ≤ `′ ≤ `− j + 1:

C(X, p, j, `′) =
∑
|u|=`′ ∧ X→∗

G
u∈Σ∗ ∧ (j>|p| ∨ match(u,p[j...|p|]))D(X,u)

H(X, p, j, `′) =
∑
|u|=`′ ∧ X→∗

G
u∈Σ∗ ∧ (j>|p| ∨ match(u,p[j...|p|]))D(X,u) · h(u)

Note that for j > |p| the values C(X, p, j, `′) and H(X, p, j, `′) coincide with the previously
computed values C(X, `′) and H(X, `′), respectively. For the cases j ≤ |p| we can proceed
as follows:

C(X, p, j, `′) =
∑

(X→Y Z)∈δ ∧ 1≤`′′≤`′−1(C(Y, p, j, `′′) · C(Z, p, j + `′′, `′ − `′′))+∑
X→a∈δ ∧ `′=1 ∧ p[j]=a 1

H(X, p, j, `′) =
∑

(X→Y Z)∈δ ∧ 1≤`′′≤`′−1(H(Y, p, j, `′′) · C(Z, p, j + `′′, `′ − `′′)+
B`′′ · C(Y, p, j, `′′) ·H(Z, p, j + `′′, `′ − `′′))+∑

X→a∈δ ∧ `′=1 ∧ p[j]=a h(a)

For a fixed p, the above values can be computed for all such j, `′ in O(|G| · `3). Since this is
done for each G ∈ {G1, G2} and repeated to obtain each of the symbols of w, the total time
to construct w is in O((|G1|+ |G2|) · |Σ| · `4).

7

Example 2.5 Continuing from Example 2.4, we have to generate a counterexample w of
size 3. We start by considering the case where w starts with an a. Thus, we fix p = a and
compute the values C(S, p, 1, 3) and C(T, p, 1, 3):

C(S, p, 1, 3) = C(A, p, 1, 1) · C(S, p, 2, 2) + C(A, p, 1, 2) · C(S, p, 3, 1)+
C(A, p, 1, 1) · C(Y, p, 2, 2) + C(A, p, 1, 2) · C(Y, p, 3, 1)

= 1 · C(S, 2) + 0 · C(S, 1) + 1 · C(Y, 2) + 0 · C(Y, 1) = 2
C(T, p, 1, 3) = C(A, p, 1, 1) · C(T, p, 2, 2) + C(A, p, 1, 2) · C(T, p, 3, 1)+

C(A, p, 1, 1) · C(Z, p, 2, 2) + C(A, p, 1, 2) · C(Z, p, 3, 1)
= 1 · C(T, 2) + 0 · C(T, 1) + 1 · C(Z, 2) + 0 · C(Z, 1) = 3

Since these values differ, we know that there exists a word w of size 3 starting with an a and
holding D(Gref , w) 6= D(Gsub, w). We do not need to compute the values of H here or in the
remaining of the example to realize that. Thus, for simplification purposes, we do not show
their computation.

Now, we consider the case where the second symbol of w is an a. Thus, we fix p = aa
and compute the values C(S, p, 1, 3) and C(T, p, 1, 3):

C(S, p, 1, 3) = C(A, p, 1, 1) · C(S, p, 2, 2) + C(A, p, 1, 2) · C(S, p, 3, 1)+
C(A, p, 1, 1) · C(Y, p, 2, 2) + C(A, p, 1, 2) · C(Y, p, 3, 1)

= 1 · C(S, p, 2, 2) + 0 · C(S, 1) + 1 · C(Y, p, 2, 2) + 0 · C(Y, 1)
= C(A, p, 2, 1) · C(S, p, 3, 1) + C(A, p, 2, 1) · C(Y, p, 3, 1)+
C(X, p, 2, 1) · C(B, p, 3, 1)

= 1 · C(S, 1) + 1 · C(Y, 1) + 0 · C(B, 1) = 2
C(T, p, 1, 3) = C(A, p, 1, 1) · C(T, p, 2, 2) + C(A, p, 1, 2) · C(T, p, 3, 1)+

C(A, p, 1, 1) · C(Z, p, 2, 2) + C(A, p, 1, 2) · C(Z, p, 3, 1)
= 1 · C(T, p, 2, 2) + 0 · C(T, 1) + 1 · C(Z, p, 2, 2) + 0 · C(Z, 1)
= C(A, p, 2, 1) · C(T, p, 3, 1) + C(A, p, 2, 1) · C(Z, p, 3, 1)+
C(T, p, 2, 1) · C(B, p, 3, 1)

= 1 · C(T, 1) + 1 · C(Z, 1) + 1 · C(B, 1) = 3

Since these values differ, we know that there exists a word w of size 3 starting with aa and
holding D(Gref , w) 6= D(Gsub, w). Now, we consider the case where the third symbol of w is
also an a. Thus, we fix p = aaa and compute the values C(S, p, 1, 3) and C(T, p, 1, 3):

C(S, p, 1, 3) = C(A, p, 1, 1) · C(S, p, 2, 2) + C(A, p, 1, 2) · C(S, p, 3, 1)+
C(A, p, 1, 1) · C(Y, p, 2, 2) + C(A, p, 1, 2) · C(Y, p, 3, 1)

= 1 · C(S, p, 2, 2) + 0 · C(S, p, 3, 1) + 1 · C(Y, p, 2, 2) + 0 · C(Y, p, 3, 1)
= C(A, p, 2, 1) · C(S, p, 3, 1) + C(A, p, 2, 1) · C(Y, p, 3, 1)+
C(X, p, 2, 1) · C(B, p, 3, 1)

= 1 · 1 + 1 · 0 + 0 · 0 = 1
C(T, p, 1, 3) = C(A, p, 1, 1) · C(T, p, 2, 2) + C(A, p, 1, 2) · C(T, p, 3, 1)+

C(A, p, 1, 1) · C(Z, p, 2, 2) + C(A, p, 1, 2) · C(Z, p, 3, 1)
= 1 · C(T, p, 2, 2) + 0 · C(T, p, 3, 1) + 1 · C(Z, p, 2, 2) + 0 · C(Z, p, 3, 1)
= C(A, p, 2, 1) · C(T, p, 3, 1) + C(A, p, 2, 1) · C(Z, p, 3, 1)+
C(T, p, 2, 1) · C(B, p, 3, 1)

= 1 · 1 + 1 · 0 + 1 · 0 = 1

Since this values coincide, the third symbol of the counterexample is not an a. Hence, we
consider now the case where the third symbol of w is a b. Thus, we fix p = aab and compute

8

the values C(S, p, 1, 3) and C(T, p, 1, 3) again:

C(S, p, 1, 3) = C(A, p, 1, 1) · C(S, p, 2, 2) + C(A, p, 1, 2) · C(S, p, 3, 1)+
C(A, p, 1, 1) · C(Y, p, 2, 2) + C(A, p, 1, 2) · C(Y, p, 3, 1)

= 1 · C(S, p, 2, 2) + 0 · C(S, p, 3, 1) + 1 · C(Y, p, 2, 2) + 0 · C(Y, p, 3, 1)
= C(A, p, 2, 1) · C(S, p, 3, 1) + C(A, p, 2, 1) · C(Y, p, 3, 1)+
C(X, p, 2, 1) · C(B, p, 3, 1)

= 1 · 0 + 1 · 1 + 0 · 1 = 1
C(T, p, 1, 3) = C(A, p, 1, 1) · C(T, p, 2, 2) + C(A, p, 1, 2) · C(T, p, 3, 1)+

C(A, p, 1, 1) · C(Z, p, 2, 2) + C(A, p, 1, 2) · C(Z, p, 3, 1)
= 1 · C(T, p, 2, 2) + 0 · C(T, p, 3, 1) + 1 · C(Z, p, 2, 2) + 0 · C(Z, p, 3, 1)
= C(A, p, 2, 1) · C(T, p, 3, 1) + C(A, p, 2, 1) · C(Z, p, 3, 1)+
C(T, p, 2, 1) · C(B, p, 3, 1)

= 1 · 0 + 1 · 1 + 1 · 1 = 2

Since these values differ, we conclude that w = aab satisfies D(Gref , w) 6= D(Gsub, w). We
have obtained the expected counterexample mentioned at the beginning.

Although the hashing method behaves well in many practical situations, it fails in some
cases independently of the chosen B,M, like in this example presented in [3]:

Example 2.6 Consider any two unambiguous CFGs G1, G2 in CNF generating the lan-
guages L1 = {anbn | n ≥ 0} ∪ {cndn | n ≥ 0} and L2 = {andn | n ≥ 0} ∪ {cnbn | n ≥ 0},
respectively. For all ` ≥ 0, the pairs H(G1, `), H(G2, `) coincide, although L1 6= L2. This is
because the contribution of each symbol s at each position depends only on how many times s
occurs at such position, regardless of which symbols appear before and after each of the occur-
rences. For example, H(G1, 2) = h(ab)+h(cd) = (a+ bB)+(c+dB) = (a+dB)+(c+ bB) =
h(ad) + h(cb) = H(G2, 2).

In Section 5.4 we show how to solve some of these anomalies by extending the hashing
method with an adequate use of a morphism.

3 The model of parser generator
Our model of parser generator admits grammars described with a special syntax borrowed
from the PCCTS/ANTLR3 tools. We have chosen it due to its simplicity and ability to de-
scribe the AST construction process in a natural way. We call such grammars PCFGs. Each
variable X of a PCFG is at the left-hand side of exactly one rule, denoted Rule(X), whose
right-hand side is a parenthesized expression over variables, terminals, and the operators
|, ·, ∗ (listed in increasing order of precedence). Alternative | and concatenation · (sometimes
omitted) are binary infix operators, whereas Kleene star ∗ is postfix and unary. In contrast to
the introduction and to ease the presentation, we use uppercase letters X,Y, Z,A,B,C, . . .
instead of arbitrary lowercase identifiers to denote variables, as well as lowercase letters
a, b, c, . . . instead of uppercase identifiers and quoted strings to denote tokens/terminals. In
some examples, we may also use =,+, •,4,�,# as tokens. Each token can be followed by
either ˆ (to indicate that it must become the root of the AST) or ! (to denote that it must
not be included in the AST), and variables in left-hand sides can be followed by ˆ (to indicate
that the variable must become the root of the constructed AST for each part of the input
parsed with that variable). The latter use of ˆ is not an option of the PCCTS/ANTLR3
tools, but we have incorporated it for its usefulness and simplicity.

Example 3.1 The following PCFG describes lists of instructions, where each instruction
is an assignment (token =) of a number (n) to an identifier (i):

Lˆ→ I∗
I→ i=ˆn

9

By using Lˆ as left-hand side of the first rule, the ASTs produced for any input will be of
the form L(=(i, n),=(i, n), . . .). Note that the variable symbol L is in the AST although it
is not a token.

To ease the presentation, we consider a normalized form for PCFGs where each subex-
pression of the right-hand side is replaced by a new variable. Moreover, we mark original
variables X as X̄, since, in order to describe the AST construction process, the parser gen-
erator needs to distinguish which variables are original from which ones have been generated
by the transformation. This way, rules of a normalized PCFG are of the form X → Y | Z,
X → Y Z, X → Y ∗, X → a, X → â , X → a!, X → ε, X → Ȳ , X̄ → Y , or X̄ˆ → Y .
Note that original variables in a normalized PCFG (i.e., those variables marked like X̄) only
appear in unit productions. This fact allows to simplify later transformations.

Example 3.2 The normalized form for the PCFG of Example 3.1 is:

L̄ˆ→Lλ
Lλ→L1∗
L1→ Ī

Ī→ Iλ
Iλ→ I1I2
I1→ I11I12

I11→ i
I12→=ˆ
I2→n

The notions of generated language, First and Follow of CFGs are adapted to PCFGs by
implicitly assuming that each rule of the form X → Y ∗ can be replaced by X → Y X | ε.
The interpretation of a normalized PCFG as a parser is given by Definition 3.3.

Definition 3.3 Let G be a normalized PCFG. For each variable X of G, we define Code(X)
depending on the form of Rule(X) as detailed in Table 1.

The parsed language of G, denoted LP(G), is the set of words w ∈ Σ∗ such that w$ is
entirely consumed without error when calling Code(S) and then consumeToken($), where S
is the start symbol of G. Similarly, the partially parsed language of G, denoted LPP(G), is
the set of non-empty words w ∈ (Σ∪{$})+ such that w is entirely consumed by the previous
calls before producing any error. We say that G does eager detection of syntax errors if it
produces a syntax error as soon as the currently consumed word cannot be extended to a
word of the parsed language, i.e., if LPP(G) = Prefixes(LP(G)$) \ {ε}.

Note that non-eager detection of syntax errors requires PCFGs with unnatural construc-
tions like, e.g., S → a∗a. This example produces a syntax error on any word of the form
aa · · · a, but the error is only detected after consuming the whole input. Usually, such
constructions do not produce a correct parser for the intended language. Also note that
LPP(G1) 6= LPP(G2) implies that either LP(G1) 6= LP(G2) or one of G1, G2 does not
produce syntax errors eagerly.

Example 3.4 The normalized PCFG of Example 3.2 gives rise to the following code:

function L̄() returns Forest
Forest ast := empty
Bool rooted := false
while lookahead()∈ {i}

f := Ī()
ast.addToForest(f,rooted)

ast.addAsRoot(L)
return ast

function Ī() returns Forest
Forest ast := empty
Bool rooted := false
t := consumeToken(i)
ast.addToForest(t,rooted)
t := consumeToken(=)
ast.addAsRoot(t)
rooted := true
t := consumeToken(n)
ast.addToForest(t,rooted)
return ast

Note that with input i=ni=ni=n the resulting AST is L(=2(i1, n3),=5(i4, n6),=8(i7, n9)),
where the superindices have been added to make it easier to identify the original position of
each token in the input.

10

Table 1: Definition of Code(X) depending on the form of Rule(X), where X is a variable of
a given normalized PCFG. The lookahead function returns the next token of the input
without consuming it, and consumeToken consumes and returns the next token of the
input after checking its lexical class. If F is the current forest kept in ast, the instruction
ast.addAsRoot(t) sets ast := t(F). If, in addition, rooted is false, the instruction
ast.addToForest(f,rooted) sets ast := Ff, and, otherwise, F is a tree of the form a(F ′)
and it sets ast := a(F ′f).
• If Rule(X) = X̄ → Y :

function X̄() returns Forest
Forest ast := empty
Bool rooted := false
Code(Y)
return ast

• If Rule(X) = X̄ˆ→ Y :
function X̄() returns Forest
Forest ast := empty
Bool rooted := false
Code(Y)
ast.addAsRoot(X)
return ast

• If Rule(X) = X → Ȳ :
f := Ȳ ()
ast.addToForest(f,rooted)

• If Rule(X) = X → Y | Z:
if lookahead()∈ First(Y Follow(X))

Code(Y)
else if lookahead()∈ First(ZFollow(X))

Code(Z)
else SYNTAXERROR

• If Rule(X) = X → Y Z:
Code(Y)
Code(Z)

• If Rule(X) = X → Y ∗:
while lookahead()∈ First(Y)

Code(Y)

• If Rule(X) = X → a!:
consumeToken(a)

• If Rule(X) = X → a:
t := consumeToken(a)
ast.addToForest(t,rooted)

• If Rule(X) = X → â :
t := consumeToken(a)
ast.addAsRoot(t)
rooted := true

• If Rule(X) = X → ε:
// Nothing to do

4 Transformations T and P

We define a transformation T that, given a normalized PCFG G, gives rise to an unambigu-
ous CFG T (G) such that L(T (G)) = LP(G). The transformation T creates new variables of
the form Xab that are intended to generate the set of words w such that a ∈ First(wb) and
Code(X) runs correctly with input wb having consumed exactly w. The specific production
rules ofXab introduced by T depend on Rule(X). Consider for instance Rule(X) = X → Y Z,
and note that any correct execution of Code(X) on wb consuming w first executes Code(Y),
which consumes a prefix of w, say α, and then Code(Z), which consumes the remaining part
of w, say β. Inductively, the execution of Code(Y) on αβb consuming α and the execution of
Code(Z) on βb consuming β are simulated by variables of the form Yac and Zcb, where c is
the first symbol of βb (and hence c ∈ First(βb)). Since β could be any suffix of w, the trans-
formation T introduces a rule of the form Xab → YacZcb for each possible symbol c. Note
that α, as well as β, could be empty words. Now consider Rule(X) = X → Y | Z, and note
that any correct execution of Code(X) on wb consuming w executes only one of the branches,
giving more priority to the first one: Code(Y) is executed when a ∈ First(Y Follow(X)), and
Code(Z) is executed when the previous case is not possible and a ∈ First(ZFollow(X)). These

11

executions are simulated by variables of the form Yab and Zab, respectively, and hence, the
transformation T introduces a single rule for Xab of the form Xab → Yab or Xab → Zab,
depending on which branch has to be taken. The following definition formalizes the previous
reasoning, extending it to the remaining cases of Rule(X).

Definition 4.1 Given a normalized PCFG G = 〈V,Σ, δ, S〉, the CFG T (G) is defined over
Σ, with set of variables V = {S′} ∪ {Xab | X ∈ V ∧ b ∈ Follow(X) ∧ a ∈ First(Xb)}, start
symbol S′, and the following set of rules:

{S′ → Sa$ | a ∈ First(S$)} ∪
{Xab → Yab | (X → Y |Z) ∈ δ ∧ b ∈ Follow(X) ∧ a ∈ First(Y Follow(X))} ∪
{Xab → Zab | (X → Y |Z) ∈ δ ∧ b ∈ Follow(X) ∧ a 6∈ First(Y Follow(X)) ∧

a ∈ First(ZFollow(X))} ∪
{Xab → YacZcb | (X → Y Z) ∈ δ ∧ b ∈ Follow(X) ∧ c ∈ First(Zb) ∧ a ∈ First(Y c)} ∪
{Xab → YacXcb | (X → Y ∗) ∈ δ ∧ b ∈ Follow(X) ∧ c ∈ First(Xb) ∧ a ∈ First(Y)} ∪
{Xbb → ε | (X → Y ∗) ∈ δ ∧ b ∈ Follow(X) ∧ b 6∈ First(Y)} ∪
{Xbb → ε | (X → ε) ∈ δ ∧ b ∈ Follow(X)} ∪
{Xab → a | (X → a) ∈ δ ∧ b ∈ Follow(X)} ∪
{Xab → Yab | (X → Y) ∈ δ ∧ b ∈ Follow(X) ∧ a ∈ First(Y b)}

For clarity, we have omitted the directives for AST construction and we do not distinguish
original variables from the ones introduced in the normalization. Nevertheless, it is implicitly
assumed that these decorations are preserved by T .

Example 4.2 Applying T to the normalized PCFG of Example 3.2, and after removing all
useless rules and variables, we obtain:

S′→ L̄$$ | L̄i$
L̄$$ˆ→Lλ,$$
L̄i$ˆ→Lλ,i$
Lλ,$$→ ε
Lλ,i$→L1,i$Lλ,$$ | L1,iiLλ,i$
L1,i$→ Īi$
L1,ii→ Īii

Īi$→ Iλ,i$
Īii→ Iλ,ii

Iλ,i$→ I1,inI2,n$
Iλ,ii→ I1,inI2,ni
I1,in→ I11,i=I12,=n

I11,i=→ i
I12,=n→=ˆ
I2,n$→n
I2,ni→n

Lemma 4.3 Let G = 〈V,Σ, δ, S〉 be a normalized PCFG, and let G′ = T (G). Then, G′ is
an unambiguous CFG such that L(G′) = LP(G).

Proof sketch. By definition, G′ is a CFG that simulates the behaviour of the parser
generated from G by conjecturing the first unread symbol at each step. There is a bijection
between the executions of the parser and the terminal derivations with G′. This concludes
L(G′) = LP(G). Unambiguity follows from the fact that the parser is a deterministic
program: a parsed word w has only one execution, and hence, only one leftmost derivation
with G′. �

As a consequence of Lemma 4.3, given two normalized PCFGs G1, G2, in order to test
LP(G1) = LP(G2), we can equivalently test L(T (G1)) = L(T (G2)) using the hashing
method. This method is expected to produce a counterexample w to L(T (G1)) = L(T (G2)),
when one exists satisfying |w| ≤ L. Since the cost of the method has a factor L4, only small
counterexamples can be considered. For this reason, we focus on an alternative approach
that does not need to produce the entire w, but only a prefix of w that suffices to deter-
mine L(T (G1)) 6= L(T (G2)). One possibility would be to transform T (G1) and T (G2) into
new unambiguous CFGs generating the corresponding sets of prefixes, and test equivalence
again. There are simple standard procedures on CFGs to this end, but, unfortunately, they
do not preserve unambiguity. We present a direct transformation P on the initial normal-
ized PCFG G that produces an unambiguous CFG P (G) satisfying L(P (G)) = LPP(G).

12

Thus, in particular, L(P (G)) = Prefixes(L(T (G))$) \ {ε} if G does eager detection of syntax
errors. The transformation P creates variables of the form Xab with the same interpretation
as transformation T , and also variables of the form Xa that are intended to generate the
set of non-empty words w such that a is the first symbol of w (and hence a ∈ First(w))
and there is a partial execution of Code(X) that consumes exactly w and does not produce
syntax error. The specific production rules of Xa introduced by P depend on Rule(X). Con-
sider for instance Rule(X) = X → Y Z, and note that there are two possible kinds of partial
executions: either the whole w is consumed while executing Code(Y), or Code(Y) consumes
a proper prefix of w, say α, and then Code(Z) consumes the remaining part of w, say β.
For the first case, the transformation P introduces a rule of the form Xa → Ya, and for the
second case it introduces a rule of the form Xa → YacZc for each symbol c in First(β). The
following definition formalizes the previous reasoning, extending it to the remaining cases
of Rule(X).

Definition 4.4 Given a normalized PCFG G = 〈V,Σ, δ, S〉, the CFG P (G) is defined over
Σ ∪ {$}, with set of variables V = {S′} ∪ {Xab | X ∈ V ∧ b ∈ Follow(X) ∧ a ∈
First(Xb)} ∪ {Xa | X ∈ V ∧ a ∈ First(X)}, start symbol S′, and where the set of rules
contains exactly the ones of Definition 4.1 except {S′ → Sa$ | a ∈ First(S$)}, and also the
following rules:

{S′ → Sa$$ | a ∈ First(S$)} ∪
{S′ → Sa | a ∈ First(S)} ∪
{Xa → Ya | (X → Y |Z) ∈ δ ∧ a ∈ First(Y)} ∪
{Xa → Za | (X → Y |Z) ∈ δ ∧ a 6∈ First(Y Follow(X)) ∧ a ∈ First(Z)} ∪
{Xa → Ya | (X → Y Z) ∈ δ ∧ a ∈ First(Y)} ∪
{Xa → YacZc | (X → Y Z) ∈ δ ∧ c ∈ First(Z) ∧ a ∈ First(Y c)} ∪
{Xa → YacXc | (X → Y ∗) ∈ δ ∧ c ∈ First(X) ∧ a ∈ First(Y)} ∪
{Xa → Ya | (X → Y ∗) ∈ δ ∧ a ∈ First(Y)} ∪
{Xa → a | (X → a) ∈ δ} ∪
{Xa → Ya | (X → Y) ∈ δ ∧ a ∈ First(Y)}

As in Definition 4.1, AST directives are omitted and original variables are not distinguished,
but these decorations are implicitly assumed to be preserved by P .

Example 4.5 Applying P to the normalized PCFG of Example 3.2, and after removing all
useless rules and variables, we obtain all the rules of Example 4.2 except S′ → L̄$$ | L̄i$,
and the following rules:

S′→ L̄$$$ | L̄i$$ | L̄i
L̄iˆ→Lλ,i
Lλ,i→L1,i | L1,iiLλ,i
L1,i→ Īi

Īi→ Iλ,i
Iλ,i→ I1,i | I1,inI2,n
I1,i→ I11,i | I11,i=I12,=

I11,i→ i
I12,=→=ˆ
I2,n→n

Lemma 4.6 Let G = 〈V,Σ, δ, S〉 be a normalized PCFG, and let G′ = P (G). Then, G′ is
an unambiguous CFG such that L(G′) = LPP(G).

5 Checking equivalence of AST construction
Once we have tested that two PCFGs G1, G2 parse the same language, we want to check
that they construct the same AST for each parsed word. In Section 5.1 we present a first
(incorrect) approach to tackle this problem, and in Section 5.2 we discuss its limitations.
We solve its flaws in Sections 5.3 and 5.4 with an additional transformation on CFGs and
improvements of the hashing method, respectively.

13

5.1 A first approach to check equivalence of AST construction
Our goal is to define an adequate formalism representing ASTs as words, and a transfor-
mation A′ from PCFGs into CFGs such that, given a PCFG G, A′(G) generates the set of
words that represent (in this new formalism) the ASTs constructed for the words parsed by
G. Next, given two PCFGs G1, G2, we can compare L(A′(G1)),L(A′(G2)) using the hashing
method to determine if G1, G2 construct the same ASTs.

In order to discuss which representation for ASTs is adequate, consider the PCFG of
expressions G : {E → T (+ˆT)∗, T → n(•̂ n)∗} over addition (token +) and product (to-
ken •) with the usual precedence and left associativity. With the input n•n•n+n•n+n•n,
the constructed AST is +10(+6(•4(•2(n1, n3), n5), •8(n7, n9)), •12(n11, n13)), where the su-
perindices have been added to make it easier to identify the original position of each token in
the input. Note that this is already a word representing an AST. However, this formalism is
not adequate because the symbols are reordered in a way that is difficult to describe by A′.
In general, one of the difficulties is that, for each rule X → Y Z, the root of a constructed
AST could be inside Y or Z, depending on the input word.

To find a better form to represent ASTs, we make the following observation: to deduce
how the AST is constructed from an input word w, we just need to know how each token of
w has been inserted into the AST (with addToForest, with addAsRoot, or not inserted),
which subwords of w have been entirely consumed by an execution of a procedure of the
parser generated from G, and which procedure has inserted a variable symbol into the AST.
All this information can be represented by, e.g., appending a symbol ∧ to each symbol
inserted with addAsRoot, appending a symbol ! to each symbol consumed but not inserted,
enclosing between brackets each subword entirely consumed by a procedure, and adding
a variable name just before the closing brackets, if necessary. We call Tree(G,w), or just
Tree(w) by omitting G, the result of modifying a word w in this way according to G. For
our previous example, we have Tree(n•n•n+n•n+n•n) = [[n•∧n•∧n]+∧[n•∧n]+∧[n•∧n]].
Note that the tokens preserve their ordering, and that the constructed AST is implicitly
represented.

We can easily describe the transformation A′ from PCFGs to CFGs such that L(A′(G)) =
{Tree(G,w) | w ∈ LP(G)}. It suffices to alter the transformation T by replacing each
directive ˆ by the new terminal symbol ∧, each directive ! by the new terminal symbol !,
each rule of the form X̄ → Y by X̄ → [Y], and each rule of the form X̄ˆ→ Y by X̄ → [YX∧]
for a new terminal symbol X.

Example 5.1 Applying A′ to the normalized PCFG of Example 3.2 and removing all useless
rules and variables gives rise to the rules of Example 4.2, except for some of them that are
modified as follows:

L̄$$ˆ→ [Lλ,$$L∧]
L̄i$ˆ→ [Lλ,i$L∧]

Īi$→ [Iλ,i$]
Īii→ [Iλ,ii]

I12,=n→=∧

Unfortunately, A′ is not suitable to check that two PCFGs construct the same ASTs due to
some anomalies that we describe in the next section.

5.2 Anomalies
First, note that the same AST can be represented by several different words of our formalism.
This can be an advantage in some cases. For instance, consider the PCFGs G1 : S → â b | b̂ a
and G2 : S → ab̂ | bâ . Both parse the same language {ab, ba} and construct the same set of
ASTs {a(b), b(a)}, but they are not equivalent since each parsed word gives rise to a different
AST. In this case, A′ works properly, since L(A′(G1)) = {[a∧b], [b∧a]} 6= {[ab∧], [ba∧]} =
L(A′(G2)). Now, consider a more dubious case with G1 : S → î i and G2 : S → iî . Again,
both PCFGs parse the same word ii and produce the same AST i(i), but L(A′(G1)) =
{[i∧i]} 6= {[ii∧]} = L(A′(G2)). Thus, we will conclude that the constructed ASTs differ.

14

But this is not a wrong conclusion: in general, the AST is the mechanism to give a structured
interpretation to the input, and putting the tokens in different places of the AST corresponds
to the representation of a different concept, even if the swapped tokens are of the same class.

The previous examples are not actually anomalies of A′, but its desirable behavior.
Nevertheless, the fact that different words can represent the same AST can also cause some
problems. On the one hand, in some cases a ˆ is superfluous from the point of view of AST
construction, and thus, a ∧ should not be inserted by the transformation. For example,
the PCFGs G1 : S → â and G2 : S → a produce the same AST for the same word, but
[a∧] 6= [a]. Here, the problem is that for a variable consuming a single token it does not
matter whether this token is followed by ˆ or not. Also, G1 : S → â b̂ and G2 : S → ab̂
produce the same AST for the same word, but [a∧b∧] 6= [ab∧]. In general, the ˆ of the first
token read inside a procedure is useless if it is immediately followed by another token with
.̂ On the other hand, not all subwords consumed by procedures should be enclosed between
brackets. Consider for instance the PCFGs G1 : S → abc and G2 : {S → aXc, X → b},
which produce the same AST for the same word, but [abc] 6= [a[b]c]. To solve this problem, it
is necessary to have brackets only when the corresponding subword contains a token followed
by .̂ This has to be combined with the solution to the previous anomalies to work properly.
For example, in G : {S → aXc, X → b̂ } the ˆ is superfluous and should be ignored, and
thus, the inner brackets should not be inserted. Another case where brackets are useless is,
e.g., the PCFGs G1 : S → ab̂ ĉ and G2 : {S → Xĉ , X → ab̂ }, where the ASTs are equal
but [ab∧c∧] 6= [[ab∧]c∧]. In general, the inner brackets of an AST of the form [[w]c∧ . . .]
should be removed. In Section 5.3 we give a transformation A on the CFG resulting from
T or P that solves all the previous anomalies.

Nevertheless, the most severe problems arise with symbols followed by !. For instance,
the PCFGs G1 : {S → â b!X, X → ĉ d} and G2 : {S → â X, X → b!ĉ d} generate the same
AST for the same input word, but [a∧b![c∧d]] 6= [a∧[b!c∧d]]. To solve these cases in general,
we would need to be able to move a symbol followed by ! any number of brackets inside or
outside. However, this cannot be easily managed by a transformation on CFGs. Another
option would be to modify A′ so that those symbols are removed. This seems to make sense
because these symbols do not take part in the AST, which is what we are just trying to
represent. But this may have undesirable side effects. On the one hand, since the formalism
would not keep the original w, false positives may occur. For example G1 : S → a!ĉ d | b!cd̂
and G2 : S → a!cd̂ | b!ĉ d construct different ASTs for each word, but the set of represented
ASTs after removing the symbols followed by ! is {[c∧d], [cd∧]} for both PCFGs. On the
other hand, unambiguity may be lost. For instance, after applying the transformation that
removes the symbols followed by ! to the PCFG G : S → a!b | b, it holds that the AST b
is generated twice. This particular example is not problematic since the hashing method
counts each word as many times as it is generated, so it will distinguish such G from, e.g.,
the PCFG G′ : S → b. But there are cases where the loss of ambiguity may cause the
hashing method to be inapplicable. For instance, with G : S → (b!)∗ the resulting CFG
would generate the empty word infinitely many times. Summarizing, we need to discard
symbols followed by ! without removing them from the CFG. In Section 5.4 we face this
problem by generalizing the hashing method to compute H([σ(w) | |w| ≤ L ∧ w ∈ L[G]])
depending on a morphism σ. This way, unambiguity is preserved, and by defining σ so that
these symbols followed by ! are mapped to ε, all the false negatives disappear.

5.3 Transformation A

As justified in the previous discussion, the transformation A has two main goals. On the one
hand, it has to identify those ˆ that lead to degenerate ASTs of the form [a∧] or [a∧b∧ . . .],
and erase them. On the other hand, and after having erased the appropriate ,̂ it has to
detect which of the original variables need to introduce brackets. Recall that brackets are
only needed when there is some occurrence of ∧, except in an AST of the form [[w]a∧ . . .],
where the inner brackets surrounding w are unnecessary even if w has occurrences of ∧. To

15

simplify the presentation, we define A as the composition of two transformations, A2 ◦ A1.
Intuitively, the goal of A1 is to erase the superfluous ,̂ and to add information to the variables
of the grammar to easily distinguish when an original variable generates a non-empty AST,
and moreover, when such an AST has a defined root (i.e., it has generated a ∧). In the case
of A2, it further adds information to the variables of the grammar to detect when an original
variable generates an AST x that is always placed inside an AST of the form [xa∧ . . .], and
thus, x should not be bracketed even if it has occurrences of ∧.

We start describing A1. To this end, we need to introduce notation to easily distin-
guish which kind of tokens are generated by a variable. In particular, we are interested in
distinguishing whether the generated tokens have a decorator, and in the case they have a
decorator, whether it is a !, or a superfluous ,̂ or a useful .̂ We use the following symbols:

∗ denotes that anything is generated (maybe nothing).
! denotes that only !-tokens are generated (if any).
∨ denotes that any number of !-tokens and exactly one non-!-token are generated, and

the latter has a ˆ that is superfluous, and thus, must be erased.
∧ analogous to ∨ but the ˆ is useful and must be preserved.
Σ denotes that any number of !-tokens and either a non-!-token without a ˆ or a non-

empty sub-AST are generated.
Σ+ analogous to Σ but with possible repetitions.

Note that in all the cases there might be !-tokens, and thus, from now on we do not explicitly
mention such tokens. We combine the previous symbols to denote more complex cases, where
the order in which the symbols are combined is relevant, for instance: ∨∧∗ means that the
generated AST is of the form a∧b∧ . . ., i.e., it starts with a token with a superfluous ˆ to
erase, followed by a token with a useful ˆ to preserve, followed by anything (maybe nothing).

The transformation A1 will split each variable X into several variables Xr, where r is
a label composed of the previous symbols {∗, !, ∨, ∧, Σ, Σ+}. Moreover, it will guarantee
that Xr generates the specific subset of the ASTs generated by X that conform to the label
r. Fortunately, the number of distinct labels to consider for our goals is very small. Consider
for instance an original variable X̄, and note that any possible AST that it generates can be
classified into one of the following six disjoint cases. First, if the AST has no defined root,
then it corresponds to one of the two following classes:

! it is empty.
Σ+ there are some tokens without ˆ or non-empty sub-ASTs.

The third case corresponds to ASTs that have a defined root but nothing else, i.e., the class:

∨ there is an isolated token with a superfluous .̂

The last three cases correspond to when there is a defined root and something else:

∨∧∗ the first two tokens have ,̂ and thus the first is superfluous, then there is anything.
∧Σ∗ the first token has a ,̂ it is followed by a token without ˆ or a non-empty sub-AST,

and then anything.
Σ+∧∗ it starts with some tokens without ˆ or non-empty sub-ASTs, then a token with ,̂ and

then anything.

In summary, the variable X̄ can be distinguished into six disjoint variables X̄!, X̄Σ+ , X̄∨,
X̄∨∧∗, X̄∧Σ∗, X̄Σ+∧∗ depending on the form of the generated AST. Note that X̄!, X̄Σ+ , X̄∨
generate ASTs that do not require brackets since there is no root defined (in the last case
there is a root, but the ˆ is superfluous), whereas X̄∨∧∗, X̄∧Σ∗, X̄Σ+∧∗ generate ASTs that (a
priori) require brackets due to the presence of at least one useful .̂ Moreover, by considering

16

these six cases, we have precisely identified when a ˆ is useless: X̄∨ generates a useless ,̂
and the first ˆ generated by X̄∨∧∗ is useless; any other ˆ is useful.

Intuitively, A1 can be seen as a recursive transformation, which forwards the class of ASTs
specified at the left-hand side of a rule to the corresponding right-hand sides. Initially, it
starts with S′ → S! | SΣ+ , where S′ is a new variable and S is the starting variable of the
input CFG (by construction, S is not an original variable of the grammar, but an auxiliary
variable introduced by the transformation T , and its productions are of the form S → X̄),
and then proceeds expanding the rules for S! and SΣ+ . Note that, according to our notation,
the variable S! is intended to generate empty ASTs, whereas SΣ+ is intended to generate non-
empty ASTs (actually, it will generate non-empty sub-ASTs, since S immediately generates
an original variable of the grammar). Consider the case where the input CFG has the rule
S → X̄, and X̄ is a variable that was not decorated with ˆ in the original grammar. In such
case, A1 must introduce for S! the rule S! → X̄!, since only X̄! guarantees that the generated
AST is empty. On the other hand, SΣ+ must capture the remaining cases of ASTs described
above, i.e., A1 introduces the rules SΣ+ → X̄Σ+ | X̄∨ | X̄∨∧∗ | X̄∧Σ∗ | X̄Σ+∧∗. Afterwards,
the process continues by introducing rules for each of the new variables X̄!, X̄Σ+ , X̄∨, X̄∨∧∗,
X̄∧Σ∗, X̄Σ+∧∗. The main difficulty arises when we consider a variable Wr, where r is any
of the possible labels for the classes of ASTs, and the input CFG has a rule of the form
W → Y Z. In such case, part of the AST of class r must be conjectured to be generated by
Y , and the remaining part by Z. This forces us to split the previous classes of ASTs and
introduce the following extra classes: ∗, ∧, ∧∗, and Σ∗. Overall, all the classes of ASTs that
we need to consider correspond to the following set of labels:

R = {∗, !, ∧, ∨, ∧∗, ∨∧∗, Σ∗, ∧Σ∗, Σ+, Σ+∧∗}

The transformation A1 can be formalized as follows. Given the unambiguous CFG
G = 〈V,Σ, δ, S〉 resulting from the transformation T , we define the unambiguous CFG
A1(G) = 〈V ′,Σ, δ′, S′〉 where V ′ = {S′} ∪ {Xr | X ∈ V ∧ r ∈ R} and δ′ has the rules
S′ → S! | SΣ+ and also the rules described in Table 2.

For A2 it suffices to identify whether an original variable occurs leftmost inside brackets,
and whether it is followed by a token with .̂ To this end, we extend the variables to
distinguish 3 cases: it is leftmost and the next token has ,̂ it is leftmost and the next token
does not have ,̂ and any other case. This transformation is straightforward: it roughly
consists in forwarding the information of the left-hand side of a rule to its right-hand sides,
leveraging the information already introduced by A1. Only left-hand sides of the form X̄r

and X̄rˆ must be handled with care: if their label r implies that they must be enclosed
within brackets, then the information of leftmost must be set to true, and the information
of being followed by ˆ to false for X̄r and to true for X̄r .̂

We can also compose A with P . In this case, however, we have to modify A1 to erase any
rule of the form Xa → a!. This is done to guarantee that variables of the form Xa generate
at least one non-!-token, and hence, that their ASTs are not empty. If such condition was
not ensured, there might be anomalies with original variables with :̂ for example, with input
a, there is a partial execution of G : {S → a!X, Xˆ → b} that produces an empty AST,
whereas any partial execution of the equivalent G′ : {S → X, Xˆ→ a!b} produces the AST
X. By removing such rules we force that the input a is not considered for checking partial
executions, and instead we start by considering the input ab. With such input, partial (and
complete) executions of G and G′ produce the same AST X(b).

5.4 Generalization of the hashing method
In this section we generalize the method presented in [3] and outlined in Section 2.1. This
generalization is based on a given morphism σ, and the idea consists in replacing the sum
of hashes of the generated words by the sum of hashes of the images through σ of the
generated words. The original hashing method corresponds to the particular case where σ
is the identity.

17

Table 2: Definition of the rules of A1(G) produced from the rules δ of G.
• for each X → Ȳ ∈ δ such that Ȳ has rules of
the form Ȳ → Z (i.e., no ˆ at the left-hand
side), r1 ∈ {∗, !}, r2 ∈ {∗, Σ∗, Σ+}:

Xr1 → Ȳ!
Xr2 → ȲΣ+ | Ȳ∨ | Ȳ∨∧∗ | Ȳ∧Σ∗ | ȲΣ+∧∗

• for each X → Ȳ ∈ δ such that Ȳ has rules
of the form Ȳˆ→ Z (i.e., ˆ at the left-hand
side), r ∈ {∗, Σ∗, Σ+}:

Xr → Ȳ! | ȲΣ+ | Ȳ∨ | Ȳ∨∧∗ | Ȳ∧Σ∗ | ȲΣ+∧∗

• for each X → Y Z ∈ δ:

X∗ →Y∗Z∗
X! →Y!Z!
X∧ →Y∧Z! | Y!Z∧
X∨ →Y∨Z! | Y!Z∨
X∧∗ →Y∧∗Z∗ | Y!Z∧∗
X∨∧∗ →Y∨∧∗Z∗ | Y∨Z∧∗ | Y!Z∨∧∗
XΣ∗ →YΣ∗Z∗ | Y!ZΣ∗
X∧Σ∗ →Y∧Σ∗Z∗ | Y∧ZΣ∗ | Y!Z∧Σ∗
XΣ+ →YΣ+Z! | YΣ+ZΣ+ | Y!ZΣ+

XΣ+∧∗ →YΣ+∧∗Z∗ | YΣ+Z∧∗ |
YΣ+ZΣ+∧∗ | Y!ZΣ+∧∗

• for each X → a ∈ δ, r ∈ {∗, Σ∗, Σ+}:

Xr → a

• for each X → â ∈ δ, r ∈ {∗, ∧, ∧∗}:

Xr → â
X∨ → a

• for each X → a! ∈ δ, r ∈ {∗, !}:

Xr → a!

• for each X → ε ∈ δ, r ∈ {∗, !}:

Xr → ε

• for each X̄ → Y ∈ δ, r ∈ {!, ∨, ∨∧∗,
∧Σ∗, Σ+, Σ+∧∗}:

X̄r → Yr

• for each X̄ˆ→ Y ∈ δ, r ∈ {!, ∨, ∨∧∗,
∧Σ∗, Σ+, Σ+∧∗}:

X̄rˆ→ Yr

• for each X → Y ∈ δ, r ∈ R:

Xr → Yr

The function H(G, `) is generalized to H(G, `, σ) =
∑
|u|=` ∧ u∈L(G)D(u) ·h(σ(u)). This

value is obtained by computing the following values for each variable X of G (where the
parameter G is left implicit):

E(X, `, σ) =
∑
|u|=` ∧ X→∗

G
u∈Σ∗ D(X,u) · B|σ(u)|

H(X, `, σ) =
∑
|u|=` ∧ X→∗

G
u∈Σ∗ D(X,u) · h(σ(u))

These values can be computed as follows (recall function C of Section 2.1):

E(X, `, σ) =
∑

(X→Y Z)∈δ ∧ 1≤`′≤`−1(E(Y, `′, σ) · E(Z, `− `′, σ))+∑
X→a∈δ ∧ `=1 B|σ(a)|

H(X, `, σ) =
∑

(X→Y Z)∈δ ∧ 1≤`′≤`−1(H(Y, `′, σ) · C(Z, `− `′)+
E(Y, `′, σ) ·H(Z, `− `′, σ))+∑

X→a∈δ ∧ `=1 h(σ(a))

This can be done in O(|G| · L2 + ‖σ‖) for all ` ≤ L, where ‖σ‖ =
∑
a∈Σ |σ(a)|. Note

that H(G, `, σ) coincides with H(S, `, σ), where S is the start symbol of G. Thus, we can
compute and compare the pairs H(G1, `, σ), H(G2, `, σ) in O((|G1| + |G2|) · L2 + ‖σ‖). If
H(G1, `, σ) 6= H(G2, `, σ) for some `, we conclude that there exists a word w of length ` such
that D(G1, w) 6= D(G2, w). We generalize the function H(G, p, `) used while constructing

18

the counterexample w as H(G, p, `, σ) =
∑
|u|=` ∧ u[1...|p|]=p ∧ u∈L(G)D(u) ·h(σ(u)). In order

to compute it, we need to generalize the above computation to obtain the following values,
where 1 ≤ j ≤ ` and 1 ≤ `′ ≤ `− j + 1:

E(X, p, j, `′, σ) =
∑
|u|=`′ ∧ X→∗

G
u∈Σ∗ ∧ (j>|p| ∨ match(u,p[j...|p|]))D(X,u) · B|σ(u)|

H(X, p, j, `′, σ) =
∑
|u|=`′ ∧ X→∗

G
u∈Σ∗ ∧ (j>|p| ∨ match(u,p[j...|p|]))D(X,u) · h(σ(u))

Note that for j > |p| the values E(X, p, j, `′, σ) and H(X, p, j, `′, σ) coincide with the pre-
viously computed values E(X, `′, σ) and H(X, `′, σ), respectively. For the cases j ≤ |p| we
can proceed as follows:

E(X, p, j, `′, σ) =
∑

(X→Y Z)∈δ ∧ 1≤`′′≤`′−1(E(Y, p, j, `′′, σ) · E(Z, p, j + `′′, `′ − `′′, σ))+∑
X→a∈δ ∧ `′=1 ∧ p[j]=a B|σ(a)|

H(X, p, j, `′, σ) =
∑

(X→Y Z)∈δ ∧ 1≤`′′≤`′−1(H(Y, p, j, `′′, σ) · C(Z, p, j + `′′, `′ − `′′)+
E(Y, p, j, `′′, σ) ·H(Z, p, j + `′′, `′ − `′′, σ))+∑

X→a∈δ ∧ `′=1 ∧ p[j]=a h(σ(a))

For a fixed p, these values can be computed for all such j, `′ in O(|G| ·`3 +‖σ‖). Since this is
done for each G ∈ {G1, G2} and repeated to obtain each symbol of w, the time to construct
w is inO((|G1|+|G2|)·|Σ|·`4+‖σ‖). This can be reduced to O((|G1|+|G2|)·log(|Σ|)·`4+‖σ‖)
by doing binary search on Σ when trying to identify each symbol of the counterexample.

Our generalization of the hashing method with a morphism σ avoids some cases where
the properties of the hashing for words are degraded when one considers its generalization
to sets of words:

Example 5.2 Consider the two unambiguous CFGs G1, G2 from Example 2.6. Now, by
defining σ as σ(a) = aa and as the identity for the rest of symbols, we obtain H(G1, 2, σ) 6=
H(G2, 2, σ) (unless there is a collision), since H(G1, 2, σ) = h(σ(ab)) +h(σ(cd)) = h(aab) +
h(cd) = (a + aB + bB2) + (c + dB) whereas H(G2, 2, σ) = h(σ(ad)) + h(σ(cb)) = h(aad) +
h(cb) = (a+ aB + dB2) + (c+ bB). Thus, the false positive is avoided.

5.4.1 Application to check equivalence of AST construction

As we mention in Section 5.2, the generalization of the hashing method by allowing the use
of a morphism σ is essential to tackle the !-tokens: instead of removing them from the CFG,
we just define σ(a!) = ε for each symbol a. This way, such symbols do not contribute to
the computation of the hash, and hence, the corresponding anomalies do not take place.
The use of the morphism has other additional advantages. Note that in the transformation
A we do not transform each â into a∧ as is done with A′. Instead, we can simply define
σ(â) = a∧. Note that with A′ the size of the counterexamples increases as new symbols ∧
are inserted, whereas by using σ the size is preserved. Since the size of the counterexample
has a strong influence on the performance of the method, the approach using σ is preferable.

A similar argument can be made with the insertion of the brackets for the original
variables. The transformation A does not insert such brackets to avoid increasing the size
of the counterexamples, and instead, we simulate their insertion with further changes of
the hashing method. On the one hand, the process removing ε-rules and unit rules must
be adapted, so that the particular unit rules with an original variable as left-hand side are
preserved. Note that, according to the normalization process of PCFGs and the definitions
of the transformations T, P,A, such variables appear always in unit rules. The computations
can be extended to these rules in a straightforward way:

C(X, `) =
∑

(X→Y)∈δ C(Y, `)
E(X, `, σ) =

∑
(X→Y)∈δ E(Y, `, σ)

H(X, `, σ) =
∑

(X→Y)∈δH(Y, `, σ)

19

On the other hand, for those variables X that should insert brackets, we have to modify the
computation of the values E(X, `, σ), H(X, `, σ) as follows:

E(X, `, σ) =
∑

(X→Y)∈δ B|σ([)| · E(Y, `, σ) · B|σ(α1)σ(α2)|

H(X, `, σ) =
∑

(X→Y)∈δ h(σ([)) · C(Y, `)+
B|σ([)| · (H(Y, `, σ) + E(Y, `, σ) · h(σ(α1)σ(α2)))

where the expression σ([) represents the application of the morphism σ to the symbol [,
the word α1 is X̄∧ when the original variable X̄ that gives rise to X is followed by ,̂
and ε otherwise, and the word α2 is] when X is a variable of the form X̄ab, and ε when
it is a variable of the form X̄a. The remaining functions C(X, p, j, `′), E(X, p, j, `′, σ),
H(X, p, j, `′, σ) are adapted analogously.

The following theorem states that the method does not produce false negatives. Of
course, it may produce false positives, either because it is used with `’s up to a too small L
or because there is a hash collision. However, collisions are very unlikely if the execution is
iterated several times with different σ’s.

Theorem 5.3 Let σ be a morphism, and let ` be a natural number. Let G1, G2 be two
normalized PCFGs such that LP(G1) = LP(G2) and each word parsed by them generates
the same AST. Then, H(A(T (G1)), `, σ) = H(A(T (G2)), `, σ). Moreover, if G1 and G2 do
eager detection of syntax errors, then H(A(P (G1)), `, σ) = H(A(P (G2)), `, σ).

6 Performance
Given a normalized PCFG G = 〈V,Σ, δ, S〉, T (G) and P (G) have O(|δ| · |Σ|2) variables
and O(|δ| · |Σ|3) rules, and the same holds for (A ◦ T)(G) and (A ◦ P)(G) but with a bigger
constant factor. To appreciate this growth, we consider a PCFG Gn,m for expressions similar
to those found in most programming languages, parameterized by the number n of literals
(tokens ai) and the number m of levels of precedence of operators (tokens 4i, �i), with two
operators at each precedence level and allowing to parenthesize subexpressions (tokens o, c
represent the opening and closing parentheses, respectively):

Xm → Xm−1 ((4mˆ | �m)̂ Xm−1)∗
Xm−1 → Xm−2 ((4m−1ˆ | �m−1)̂ Xm−2)∗
Xm−2 → Xm−3 ((4m−2ˆ | �m−2)̂ Xm−3)∗

...
X1 → X0 ((41ˆ | �1)̂ X0)∗
X0 → a1 | a2 | . . . | an | o! Xm c!

Figure 1 shows the number of variables of the CFGs resulting from applying the transforma-
tions to Gn,m. The increase in the number of variables is notorious since the Follow sets are
big for most of the Xi’s, as they include all the operators with higher subindex (i.e., lower
precedence). Thus, these experimental results can be considered pessimistic with respect to
a practical setting. Also note that, since the variables generated by T are a subset of those
generated by P , the latter generates more variables, but the overhead is not significant. Fi-
nally, notice that the process of cleaning useless variables and unit rules significantly reduces
the size of the CFGs, and that the constant factor increase due to A is approximately 10.

We also evaluate the performance of constructing a counterexample with the hashing
method. Recall that this corresponds to the most expensive step: the transformations
T and P produce an increase in the number of rules proportional to |Σ|3, and thus, the
cost of generating a counterexample of length ` for two normalized PCFGs G1, G2 is in
O((|G1| + |G2|) · |Σ|3 · log(|Σ|) · `4 + ‖σ‖). We define the PCFGs Gn,m,r and G′n,m,r as
variations of Gn,m, where Gn,m,r is obtained by erasing the operators �i and by replacing
the rule of Xm by Xm → Xm−1 (4mˆ Xm−1)∗ | # · · ·#, with exactly r occurrences of

20

n = 5

m
0 5 10 15 20

nu
m

be
r

of
 v

ar
ia

bl
es

101

102

103

104

105
m = 5

n
0 5 10 15 20

T
C(T)
P
C(P)
A∘T
C(A∘T)
A∘P
C(A∘P)

Figure 1: Amount of variables generated by each transformation on Gn,m, as a function of
the number m of levels of operators and for a fixed number n = 5 of literals (left), and as a
function of n and for a fixed m = 5 (right). In the legend, C denotes the process of cleaning
useless variables and unit rules.

1

2
4

8
16P

r

5

10

15

20

m
5 10 15 20

1
2

4

8
16

32
64

A ∘ P

m
5 10 15 20

Figure 2: Execution times in seconds of the hashing method when given as input the pair
P (Gn,m,r), P (Gn,m,r+1) (left) and the pair (A ◦ P)(Gn,m,r), (A ◦ P)(G′n,m,r) (right), with
n fixed to 1.

a new symbol #, and G′n,m,r is obtained analogously except that the last occurrence of
is followed by !. We compare P (Gn,m,r) with P (Gn,m,r+1) and (A ◦ P)(Gn,m,r) with
(A ◦ P)(G′n,m,r), in both cases yielding a counterexample of size r. Figure 2 shows the
execution times1 obtained in both tests when varying the parameters m and r, with n fixed
to 1. As expected, the execution time depends non-linearly on r. For the second test, the
construction takes roughly 1 second with m = r = 10, which is acceptable for the judge,
and over a minute with m = 20 and r = 15.

Finally, we adapt a PASCAL parser2 implemented with ANTLR3 to the judge syntax
(see Appendix A) in order to test the performance with a real programming language. The
resulting PCFG GPAS has 69 tokens and 72 variables, most of which have non-trivial right-
hand sides. Computing the hash up to L = 20 takes 0.13 seconds for P (GPAS), and 0.41
seconds for (A ◦ P)(GPAS). When comparing GPAS with a variant G′PAS that constructs
wrong ASTs for words of size 14, a counterexample is obtained in 23.58 seconds when using
the transformation T , whereas with P it only takes 2.48 seconds to find a prefix of size 8.

1All measurements have been taken on a 64-bit Intel® Pentium® T4400 at 2.2 GHz with 3GB of RAM.
2Available at: http://www.antlr3.org/grammar/list.html

21

http://www.antlr3.org/grammar/list.html

7 Conclusions
We have developed efficient methods to check equivalence of the parsed language as well as
the AST construction for grammars interpreted as top-down predictive parsers. The syntax
of the grammars and their interpretation as parsers are based on the PCCTS/ANTLR3
tools. These tools are well established in the field, and our methods run fast enough with
grammars for some real programming languages. Thus, they can be used in practice to verify
whether two syntax definitions, with the corresponding AST construction, are equivalent.

The equivalence problem for parsed languages of grammars interpreted in this way can
be reduced to the equivalence of languages recognized by deterministic push-down automata,
which is known to be decidable [7, 8]. It would be interesting to study the decidability of
equivalence of AST construction as well.

We have implemented the two variants based on the transformations T and P , and use
the latter in the judge to evaluate the list of exercises on parsing. These exercises are
designed to help students understand the basics of top-down predictive parsing and improve
their ability to define adequate grammars for parser generators. Thus far, students have
been able to reach an acceptance verdict 1200 times, only giving up on 56 occasions. The
mean number of submissions needed to reach an acceptance has been 3.6, whereas it goes
up to 7 for those that have given up. Overall, the judge has provided over two thousand
counterexamples to submissions that parsed the wrong language and almost a thousand to
submissions that constructed the ASTs wrongly. The mean size of these counterexamples
has been 2.6 tokens for the former and 2.9 tokens for the latter. These stats are mostly
analogous when considering the exercises of the exams performed on the judge, the main
differences being that students have given up more often (on 17.96% of the occasions instead
of 4.46%) but trying harder (7.8 submissions until giving up instead of 7). Also, the size of
the counterexamples for wrong AST construction has increased significantly in exams, up
to 4.2 tokens, with the longest one having 14 tokens and obtained in 1.1 seconds. All these
differences are a simple consequence of exam exercises asking for more complex languages.

References
[1] Alfred V. Aho, Monica S. Lam, Ravi Sethi, and Jeffrey D. Ullman. Compilers: Principles,

Techniques, and Tools (Second Edition). Addison-Wesley, 2006.

[2] Carles Creus, Pau Fernández, and Guillem Godoy. Automatic evaluation of reductions
between NP-complete problems. In SAT, pages 415–421, 2014.

[3] Carles Creus and Guillem Godoy. Automatic evaluation of context-free grammars (sys-
tem description). In RTA-TLCA, pages 139–148, 2014.

[4] Dick Grune and Ceriel J. H. Jacobs. Parsing Techniques: A Practical Guide. Springer,
2008.

[5] Terence Parr. Language Translation using PCCTS and C++: A Reference Guide. Au-
tomata Publishing Company, 1993.

[6] Terence Parr and Kathleen Fisher. LL(*): the foundation of the ANTLR parser gener-
ator. In PLDI, pages 425–436, 2011.

[7] Géraud Sénizergues. The equivalence problem for deterministic pushdown automata is
decidable. In ICALP, pages 671–681, 1997.

[8] Colin Stirling. Deciding DPDA equivalence is primitive recursive. In ICALP, pages
821–832, 2002.

22

A PCFG for PASCAL
We present the PCFG GPAS for the PASCAL language that is used in the experiments of
Section 6. It is described with the syntax expected by the online judge. The only kind
of metacharacter that has not been introduced in Section 3 is the postfix operator ? to
denote optional blocks, i.e., an expression such as (e)? is equivalent to (e|). To simplify
the presentation, we do not include the lexer rules for the tokens IDENTIFIER, INT_LIT,
REAL_LIT, STRING_LIT.

1 // Program b lock s
2 programˆ: heading block '.'! ;
3 heading: 'PROGRAM'ˆ id ('('! ids ')'!)? ';'!
4 | 'UNIT'ˆ id ';'! ;
5 id: IDENTIFIER ;
6 idsˆ: id (','! id)* ;
7 block: (labelDecl | constBlock | typeDef | varBlock | procfunDecl |

usesUnits)* compoundStmt ;
8 usesUnits: 'USES'ˆ ids ';'! ;
9 labelDecl: 'LABEL'ˆ label (','! label)* ';'! ;

10 label: unsignedInteger ;
11 constBlock: 'CONST'ˆ constDef ';'! (constDef ';'!)* ;
12 constDef: id '='ˆ const ;
13 const: ('+'ˆ | '-'ˆ)? (unsignedNumber | id)
14 | STRING_LIT
15 | constChr ;
16 constChr: 'CHR'ˆ '('! unsignedInteger ')'! ;
17 unsignedNumber: unsignedInteger | REAL_LIT ;
18 unsignedInteger: INT_LIT ;
19
20 // Types
21 typeDef: 'TYPE'ˆ typeDefAux ';'! (typeDefAux ';'!)* ;
22 typeDefAux: id '='ˆ (type | funcType | procType) ;
23 funcType: 'FUNCTION'ˆ formalParams ':'! resType ;
24 procType: 'PROCEDURE'ˆ formalParams ;
25 type: simpleType | structType | pointerType ;
26 simpleType: scalarType
27 | id ('..'ˆ const)?
28 | const '..'ˆ const
29 | 'CHAR'
30 | 'BOOLEAN'
31 | 'INTEGER'
32 | 'REAL'
33 | 'STRING'ˆ ('['! (id|unsignedNumber) ']'!)? ;
34 scalarTypeˆ: '('! ids ')'! ;
35 typeId: id | 'CHAR' | 'BOOLEAN' | 'INTEGER' | 'REAL' | 'STRING' ;
36 structType: 'PACKED'ˆ unpackedStructType
37 | unpackedStructType ;
38 unpackedStructType: arrayType | recordType | setType | fileType ;
39 arrayType: 'ARRAY'ˆ '['! indexTypes ']'! 'OF'! componentType ;
40 indexTypesˆ: indexType (','! indexType)* ;
41 indexType: simpleType ;
42 componentType: type ;
43 recordType: 'RECORD'ˆ fields 'END'! ;
44 fields: recordSection ';'! (recordSection ';'!)* ;
45 recordSectionˆ: ids ':'! type ;
46 setType: 'SET'ˆ 'OF'! baseType ;
47 baseType: simpleType ;
48 fileType: 'FILE'ˆ ('OF'! type)? ;

23

49 pointerType: '^'ˆ typeId ;
50
51 // Dec larat ions
52 varBlock: 'VAR'ˆ varDecl ';'! (varDecl ';'!)* ;
53 varDeclˆ: ids ':'! type ;
54 procfunDecl: (procDecl | funcDecl) ';'! ;
55 procDecl: 'PROCEDURE'ˆ id formalParams ';'! block ;
56 funcDecl: 'FUNCTION'ˆ id formalParams ':'! resType ';'! block ;
57 formalParamsˆ: ('('! formalParam (';'! formalParam)* ')'!)? ;
58 formalParam: ('VAR'ˆ|'FUNCTION'ˆ|'PROCEDURE'ˆ)? ids ':'! typeId ;
59 resType: typeId ;
60
61 // Expressions
62 variable: ('@'ˆ id | id) ('['ˆ expr (','! expr)* ']'! | '.'ˆ id | '^'ˆ)*

;
63 expr: add (('='ˆ|'<>'ˆ|'<'ˆ|'<='ˆ|'>='ˆ|'>'ˆ|'IN'ˆ) add)* ;
64 add: term (('+'ˆ|'-'ˆ|'OR'ˆ) term)* ;
65 term: signed (('*'ˆ|'/'ˆ|'DIV'ˆ|'MOD'ˆ|'AND'ˆ) signed)* ;
66 signed: ('+'ˆ|'-'ˆ)? factor ;
67 factor: id (('['ˆ expr (','! expr)* ']'! | '.'ˆ id | '^'ˆ)*
68 |'('ˆ expr (','! expr)* ')'!)
69 | variable // the id express ion s t a r t i n g by @
70 | '('! expr ')'!
71 | unsignedConst
72 | set
73 | 'NOT'ˆ factor ;
74 setˆ: '['! elems ']'! ;
75 elems: (elem (','! elem)*)? ;
76 elem: expr ('..'ˆ expr)? ;
77 unsignedConst: unsignedNumber | constChr | STRING_LIT | 'NIL' ;
78
79 // Statements
80 stmt: (label ':'ˆ)? unlabelledStmt ;
81 unlabelledStmt: simpleStmt | structStmt ;
82 simpleStmt: assignOrCall | gotoStmt ;
83 assignOrCall: IDENTIFIERˆ (('['ˆ expr (','! expr)* ']'!
84 | '.'ˆ id
85 | '^'ˆ)* ':='ˆ expr
86 | ('('! expr (','! expr)* ')'!)?)
87 | variable ':='ˆ expr ; // ass i gns s t a r t i n g by @
88 gotoStmt: 'GOTO'ˆ label ;
89 structStmt: compoundStmt | condStmt | repStmt | withStmt ;
90 compoundStmtˆ: 'BEGIN'! stmts 'END'! ;
91 stmtsˆ: stmt (';'! stmt)* ;
92 condStmt: if | cases ;
93 if: 'IF'ˆ expr 'THEN'! stmt ('ELSE'! stmt)? ;
94 cases: 'CASE'ˆ expr 'OF'! case ';'! (case ';'!)* ('ELSE'! stmts)? 'END'!

;
95 case: consts ':'ˆ stmt ;
96 constsˆ: const (','! const)* ;
97 repStmt: while | repeat | for ;
98 while: 'WHILE'ˆ expr 'DO'! stmt ;
99 repeat: 'REPEAT'ˆ stmts 'UNTIL'! expr ;

100 for: 'FOR'ˆ id ':='! expr ('TO'ˆ|'DOWNTO'ˆ) expr 'DO'! stmt ;
101 withStmt: 'WITH'ˆ recordVariables 'DO'! stmt ;
102 recordVariables: variable (','! variable)* ;

Note that the previous PCFG has 4 rules with conflicts. First, the second and third
alternatives of the variable simpleType (lines 27 and 28) have the token IDENTIFIER in their

24

First sets. The same happens for the first and second alternatives of the variable factor
(lines 67 and 69) and also the first and second alternatives of the variable assignOrCall
(lines 83 and 87). Finally, the optional block occurring in the rule of the variable if (line
93) has a conflict with lookahead 'ELSE' since this token is in its First and Follow sets.

25

	Introduction
	Approach
	Outline

	Preliminaries
	The hashing method

	The model of parser generator
	Transformations T and P
	Checking equivalence of AST construction
	A first approach to check equivalence of AST construction
	Anomalies
	Transformation A
	Generalization of the hashing method
	Application to check equivalence of AST construction

	Performance
	Conclusions
	PCFG for PASCAL

