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Abstract

New tools for the design of metamaterials with periodic micro-architectures
are presented.

Initially, a two-scale material design approach is adopted. At the struc-
ture scale, the material effective properties and their spatial distribution are
obtained through a Free Material Optimization (FMO) technique. At the
micro-structure scale, the material micro-architecture is designed by appeal-
ing to a Topology Optimization Problem (TOP). The TOP is based on the
topological derivative and the level set function.

The new proposed tools are used to facilitate the search of the optimal
micro-architecture configuration. They consist of the following:

i) a procedure to choose an adequate shape of the unit-cell domain where
the TOP is formulated. Shapes of Voronoi-cells associated with Bravais
lattices are adopted.

it) a procedure to choose an initial material distribution within the Voronoi
cell being utilized as the initial configuration for the iterative topology
optimization algorithm.

*Corresponding author. E-mail address: ahuespe@intec.unl.edu.ar (A.E. Huespe).
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Symbols for elasticity tensors

C:  Generic effective fourth order symmetric elasticity tensor expressed
in Cartesian coordinates.

Cy: Generic effective elasticity tensor expressed in normal form (see
sub-Section 2.2.2 and Appendix B).

C:  Effective elasticity tensor solution of the FMO problems expressed
in Cartesian coordinates (Section 3).

Cy: Effective elasticity tensor solution of the FMO problems expressed
in normal form (sub-Section 3.3).

C*: Effective elasticity tensor being the average of Cyina given body
sector (sub-Section 3.3).

C":  Homogenized elasticity tensor evaluated with a micro-cell (using a
computational homogenization technique, Section 4) expressed
in Cartesian coordinates.

Ch: Tensor C" expressed in normal form.

C!: Homogenized tensor constituting the database (sub-Section 5.2)
expressed in normal form.

C,: Micro-scale elasticity tensor (Section 4).

1 Introduction

In the carly 1990’s, after the seminal papers of Bendsge and coauthors ([1]-[2]),
the contribution of Ringertz [3] and the book of Bendsge [4], the Free Material
Optimization (FMO) methodology has become a well-established technique in the
mechanical structural optimization community. This methodology seeks, in a given
spatial domain, the optimal distribution of material and its effective properties using
the objective of minimum material resource or minimum compliance.

The most specific aspect of this structural optimization methodology is that
the minimum of the objective function is sought by assuming a free parametriza-
tion of the material elastic tensor. Hence, it is sometime called Design by Free
Parametrization of Material. Such as mentioned in the Section 3.4 of the book [5],
the so-formulated optimization problem is general enough and “...encompasses the
design of structural materials in a broad sense, predicting optimal structural topolo-
gies and shapes associated with the optimum distribution of the optimized material”.

In the following years, the mathematical basis and new numerical algorithms for
the FMO technique have been developed. In fact, some formulations of FMO can be
written as convex optimization problems which satisfy the criterion for guaranteeing
uniqueness of the solution, as shown by Zowe et al. [6] and Koc¢vara et al. [7].
Additionally, Ko¢vara and coauthors have developed optimized algorithms mainly
based on non-linear semi-definite programming procedures for solving very large
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FMO problems, see Kocvara et al. [7] and Stingl et al. [8]. Furthermore, efficient
primal-dual interior point methods for large-scale problems have been proposed and
studied more recently by Weldeyesus and Stolpe [9].

Intrinsically associated with the FMO methodology is the inverse problem of the
material micro-architecture design. In this case, the goal is to find a heterogeneous
composite whose effective properties are similar to those required by the FMO so-
lution. Important contributions to reach this objective have also been proposed in
the 1990’s, particularly in the papers of Sigmund ([10] and [11]), who has solved the
inverse material design problem using a topology optimization procedure. In this
sense, the density-based SIMP (Solid Isotropic Material with Penalization) method
has proved to be a very effective tool for solving this kind of inverse homogenization
problem.

A FMO technique jointly with inverse material design, as a global two-scale
material design methodology, can be utilized as a weakly coupled procedure between
the involved scales. First, a FMO technique is employed to compute the effective
material properties at the large scale, i.e. at the structure length scale identified
as the macro-scale, followed by a technique for designing the micro-structure of the
heterogeneous composite. Such two-scale technique and variants were worked out
by several authors and particularly utilized by Schury et al. [12]. Interestingly, this
type of two-scale technique does not only provide an optimal material distribution
at the macro-scale, but also the requested computational cost is accessible even for
attacking 3D problems.

There is, however, an inherent difficulty associated with this two-scale method-
ology which is caused by the one-way coupling between scales. In fact, it is not
possible to add well-founded mathematical constraints to the FMO formulation in
order to guarantee the micro-structure attainability. Such as mentioned by Allaire in
his book, [13], from the mechanical point of view, this issue is similar to answer the
question on how to characterize the range of the effective properties obtained from
a two-phase composite by varying its micro-structure. In this context, the micro-
structure variation is understood as changing either the void fractions, the distribu-
tions of the constituent phases or their elastic properties. From the mathematical
point of view, this issue corresponds to finding the G-closure of the set of effective
elastic properties obtained from composites with all possible micro-structures, see
also Cherkaev [14]. Milton and Cherkaev [15] have studied this problem and have
determined that any positive definite tensor may be attained using sequential lam-
inates under the condition that a stiff enough material exists. However, positive
definite tensor bounds guaranteeing this property with less stringent conditions to
that required by the Cherkaev and Milton analysis do not exist; for example when
the stiffness of the composite phases have an upper finite limit. Therefore, this
problem is an open issue at the present time.

More recently, there have been intents of including additional manufacture con-
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straints to the FMO problem, such as described in Schury [16]. These constraints
not only force a gradual spatial change of the effective material properties, but also
they restrict the set of FMO solutions by avoiding the use of extreme materials at
the cost of obtaining suboptimal solutions.

From this perspective, additional contributions could be expected by developing
new procedures that help designing micro-architectures with a wide spectrum of
attainable effective elasticity tensors. In this paper we emphasize this specific issue
of the problem.

On the one hand, we adopt a FMO technique at the macro-scale to determine
the material distribution and its effective elastic properties. On the other hand,
we employee a topology optimization technique to solve the inverse micro-structure
design problem. The technique adopted at the micro-scale is similar to the procedure
explained in the Amstutz’s works and uses the concepts of topological derivative and
level-set function, see [17] and [18]. These two techniques are now well-established in
the literature, and therefore, no new contributions on these procedures are revealed
in this paper.

Instead, the essential contribution here aims to describe two new tools that aid
to explore and design a range of periodic material micro-architectures. The principal
ideas supporting these contributions are summarized as follows:

i) The first tool is addressed to define the shape of the unit-cell domain where the
micro-structure material inverse homogenization problem is posed. Our nu-
merical experience shows that adequate cell shapes increase the range of elas-
ticity tensors that can be attained through simple micro-architecture topolo-
gies. In this sense, it should be noted that certain topologies may be hid-
den when only conventional square or rectangular cells subjected to periodic
boundary conditions are taken.

The objective that we pursue here is to use a cell shape matching a unit-
cell shape of the designed periodic material. So, by using the symmetry of
the effective material properties, we conjecture that the stiff material of the
composite is periodically distributed by following a pattern which can be as-
similated to a Bravais lattice having the same class of symmetry as that of
the target eclasticity tensor. Then, the adopted cell for the topological design
problem is a Voronoi cell of this Bravais lattice.

Although the use of polygonal cells for the material inverse design was analyzed
in the past by Diaz and Benard [19], to the best of our knowledge, the use of
Voronoi cells applied to topological design has not been previously considered
in the literature.

ii) The second of these tools provides a procedure to choose an adequate stiff
phase distribution within the Voronoi-cell. This configuration is then utilized
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as the starting point for the topology optimization algorithm determining the
final cell configuration.

A brief description of this paper is the following: the two-scale approach for the
material micro-architecture design is briefly revisited in Section 2. Then, the taxon-
omy of the elastic materials obtained with the structural optimization technique is
explored. This classification is utilized for the posterior development of the relevant
topics in this paper.

Section 3 gives an overview of two FMO problems that are sequentially solved.
Results in terms of extreme materials are analyzed in the same Section.

In Section 4, the adopted methodology for the micro-structure design is first
presented. Then, Section 5 describes the new tools above mentioned.

In the last Section of the paper, we expose the conclusions. Two Appendices
are finally added. The first Appendix describes the FMO discrete formulation and
the algorithm to solve this problem. The second Appendix deals with issues related
to symmetry properties of elastic materials. Also, the algorithm to compute the
symmetry class and the normal form of an arbitrary elasticity tensor is there briefly
exposed.

2 Overview of the two-scale based approach

In this work, the approach taken for the optimal material design of a plane elastic
structure involves two length scales. The macro-scale length ¢ is of the same order
of magnitude as that of the structure size, as shown in Figure 1. The micro-scale
length ¢, is of the same order of magnitude as that of the material micro-architecture
characteristic length. We assume that ¢, < (.

The macro-scale spatial domain is denoted 2. It identifies the region where the
structure is analyzed and where the optimal distribution of the graduated homoge-
nized material is sought. The material at this scale is characterized by its effective
properties, and its optimal distribution is sought by means of a FMO technique.

The material micro-architecture design is defined as an inverse homogenization
problem after the optimal elastic effective properties at the macro-scale point are
known. This inverse problem is solved with a topology optimization technique. The
domain €2, denotes the cell where the material is designed. The goal is to find the
material distribution within this cell such that the homogenized elasticity tensor,
C", matches a target effective elasticity tensor provided by the FMO technique.

The vector @, as shown in Figure 1, denotes the spatial position of a point at
the macro-scale. Also, the vector y identifies the spatial position of a point at the
micro-scale.

Macro-stress and macro-strains are denoted o and e, respectively. The same
entities at the micro-scale are denoted o, and €,. The key material property in this
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Figure 1: Two-scale material design. Notation and entities involved in the analysis. Macro-scale
domain © and micro-cell €2,,.

work is the homogenized clasticity tensor C” at every point  in €. This tensor is
computed through a conventional homogenization technique. The elasticity tensors
of the component phases at the micro-scale are identified with the symbol C,,.

It is convenient to remind the standard concepts of unit-cell and Representative
Volume Element (RVE) utilized for computing effective elastic properties of periodic
materials. A unit-cell in 2-D problems is the smallest area representing the overall
behavior of the heterogeneous material, which, with all possible translation along
the primitive vectors, fills the full plane without overlapping. Unit-cells have not
arbitrary shapes, but they should be adapted in accordance with the periodic ma-
terial micro-structure. Then, conventional periodic boundary conditions are a good
choice for computing the homogenized properties utilizing these cells.

Arbitrary cell shapes, not matching unit-cell shapes, only represent the overall
behavior of the material if they satisfy the condition of being RVEs. This situation
occurs even forcing periodic boundary conditions. In this sense, for a given micro-
structure, the RVE size should be much larger than the unit-cell size; its domain
should comprise several unit-cells.

An additional important point to be also reminded here refers to Voronoi-cells.
Periodically structured materials, such as crystals with their atomic arrangement
represented through Bravais lattices, have one particular unit-cell whose geometry
preserves the symmetry of the underlying lattice. This unit-cell is identified as the
Voronoi-cell of the Bravais lattice.

2.1 Sequence of optimization problems

The two-scale material design procedure is performed in three successive stages.

i) Initially, the FMO problem discussed in Section 3 is solved in the spatial region
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2. This domain is chosen with a predefined geometry. The problem solution
provides a graded distribution of effective properties given by the effective
clasticity tensor € € ST in €, where ST is the symmetric positive definite
fourth order tensor set. Then, considering that tr (é) in the FMO formulation
represents the pointwise material resource, the sub-domains of 2 satisfying the
condition

tr(C) < eFy (1)
are removed, and the original domain results in a smaller domain Q"¢ The
parameter € is a small value (¢ < 1), empirically adopted. The parameter Fj
is a reference Young’s modulus, typically the modulus of the stiff phase of the
designed composite.

Therefore, after the graded material has been defined in the complete domain
through the FMO methodology, the heuristic condition (1) removes the sub-
domains where the demanded material resource is low. A similar result can
also be obtained using a more formal mathematical technique, for example,
the one based on the topology optimization algorithm described in Giusti et al.
[20]. Note that the topologies of Q¢ and 2 may be different.

i1) A second FMO problem is solved in the domain Q"¢ by imposing the additional
constraint, R
(C —41)eS™. (2)

The scalar 0 > 0 is a small parameter ensuring that all the elasticity tensor
eigenvalues are non-null. This constraint has been proposed by Schury [16] as
a manufacture restriction.

Even when constraint (2) generates sub-optimal solutions, it facilitates the
micro-structure design because it fixes lower bounds to the material properties.
The effects of this constraint on the material design process are additionally
discussed in sub-Section 3.2.

The solution of the second FMO problem provides the graded distribution of
elasticity tensors, é’, in Q¢ Then, a target elasticity tensor, C*, represen-
tative of C in a given sector of Q7 is defined. The tensor C* is utilized to
design the material micro-structure in that sector. Sub-Section 3.3 describes
the criteria defining these sectors and how C* is computed.

i) Finally, in a third stage, the micro-structure is designed using a topology opti-
mization technique explained in Section 4. The design of the micro-structure
is performed with C* as the target tensor.

The new tools for material design proposed in this paper are utilized in the third
stage.
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2.2 Charaterization of linear elastic materials for optimal
structures

Two remarkable features of linear elastic materials arising as the FMO problem
solution are their symmetry and stability properties. In this sub-Section, we revisit
both concepts because they are utilized to predict the shape and orientation of the
cell ,.

2.2.1 Bi-mode and uni-mode unstable materials

Bi and uni-mode materials are special sub-classes of materials which frequently ap-
pear as solutions of optimal structural problems with design criterion related to
minimal compliance or minimal material volume. In particular, bi-mode materials
always arise as the optimal FMO solutions of structures subjected to a unique load
system, see Bendsge et al. [1]. But, even considering problems with multiple inde-
pendent load systems ([2]), it is possible that optimal solutions would require bi or
uni-mode materials in restricted regions of the structure. Both kinds of materials
are particularly relevant in this work and analyzed in this Section.

Bi-mode materials are unstable materials having two easy (compliant) modes
of deformation in a two-dimensional space and only one non-easy (hard) mode of
deformation. Alternatively, uni-mode materials have one easy (compliant) mode of
deformation and two non-easy (hard) modes of deformation. The elasticity tensors
of bi and uni-mode materials have two and one null-eigenvalues, respectively. Hence,
the names bi or uni-mode are given to these classes of materials.

Milton and Cherkaev [15] have coined these names in the context of lincar elas-
ticity, see also [21] where additional properties of these materials are analyzed.

Bi and uni-mode materials are special classes of linear anisotropic elastic solids.
They are characterized by elasticity tensors !

C=§Si®5i , (3)

=1

where S; are symmetric second order tensors, n,, = 1 for bi-mode and n,, = 2 for
uni-mode materials, respectively. For uni-mode materials, S; and Sy are orthogo-
nal tensors. As usual, the symbol ® denotes the tensorial product. In the plane
(z1,x2), the eigenvector associated with the non-null eigenvalue in bi-mode materials
is $1/]14]).

'Fourth order tensors are represented by matrices R3*® using the conventional Kelvin’s
notation. Consistent with this notation, symmetric second order tensors are represented by
€ = [ell,agg,ﬂalg]T for strains and o = [011, 022, \/50’12]T for stresses. From now on, we will
indistinctly identify a fourth order tensor by its matrix representation.
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Considering (3), for any strain e, the stresses o result
c=C:e=(S,:¢)S =-pS;, (4)

where
p=—(5:¢) ()
is a pseudo-pressure scalar term. In (4), the trace of the tensorial product is denoted
by the symbol (:).
In accordance with (4), bi-mode materials can only support stresses proportional
to S, with the proportionality factor given by pseudo-pressures. Therefore, this
material collapses when subjected to a different stress state.

2.2.2 Material symmetry

Symmetry classes of elastic materials are well established in the literature, see for
example Ting [22]. In Appendix B we define the four symmetry classes for plane
elasticity tensors and summarize the algorithm to compute them. The same algo-
rithm also computes the rotation angle transforming an arbitrary clasticity tensor
C, expressed in the Cartesian coordinate system, to its normal form Cy?2.

Figure 2 sketches the diagram of sets for the four symmetry classes. Elements
of these sets are elasticity tensors. We denote O(2) for isotropic, Dy for tetragonal,
Dy for orthotropic and Z, for anisotropic symmetries, respectively. From higher
to lower symmetry classes, they are: O(2) C Dy C Dy C Zy. In the Figure, the
number of coefficients characterizing a generic elasticity tensor of the corresponding
symmetry class is depicted in parenthesis.

Bi and uni-mode material sets are also included in the diagram. It can be seen
the relationship between the stability properties of these materials as well as the
number of null eigenvalues and the symmetry class to which they could belong to.
It is remarked that bi or uni-mode materials with isotropic symmetry, O(2), and
bi-mode materials with tetragonal symmetry, Dy, have elasticity tensors Cy being
proportional to those displayed in the Figure 2. They are characterized by only one
parameter Cy. Optimal structure solutions demanding bi-mode materials have been
reported by Bendsge et al. [1], see also Pedersen [23].

Orthotropic bi-mode materials have elasticity tensors with the normal form also
shown in Figure 2. They are characterized by only two parameters. It is important
to remark that a bi-mode isotropic material has an in-plane Poisson ratio v =
(Cn)1122/(Cn)1111 = 1. On the other hand, a tetragonal bi-mode material has a
ratio: (Cn)i22/(Cn)iin = —1.

Important additional observations about this topic are:

2Elasticity tensors in normal axis are denoted with subindex N. The directions of the normal
axes for a generic elasticity tensor C are computed with the algorithm of Auffray et al. described
in Appendix B.
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i) bi-mode materials cannot be fully anisotropic (Z5),

ii) bi and uni-mode materials are characterized with fewer parameters than those
required by generic tensors in the corresponding symmetry class.

Unimode
1
00{1 1 0}

000 Bimode

Figure 2: Diagram of symmetry class sets for plane clasticity tensors. Symmetry classes are
denoted O(2) for isotropic, D4 for tetragonal, Dy for orthotropic and Zy for fully anisotropic
materials. The number of elastic coefficients defining the elasticity tensors in each class is shown
in parenthesis. Bi and uni-mode material sets are also depicted. Cpy, C7 and Cy are material
parameters.

3 Free Material Optimization at the macro-scale

Free Material Optimization (FMO) is a useful technique for obtaining the optimal
distribution of material and effective elastic properties in a given spatial domain such
that this material configuration satisfies a determined structural requirement. In the
present context, the optimization criterion refers to minimum material resource and
the structural requirement refers to the attainment of a limit compliance for a given
external force.

3.1 Problem setting

Let us consider the equilibrium problem of an clastic body in € subjected to an
external load f. The space of displacement fields w in equilibrium with the external
forces, V| is:

Vi = {u | /st:é':vsud\/—<f,v>:0 Yo € V}; (6)
Jo
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where the equilibrium condition is expressed through the conventional virtual work
equation, with V being the space of admissible virtual displacements and C being
the elasticity tensor.

In the present FMO formulation, the optimization problem consists of minimizing
the structural material resource

min / tr(C) dvV
Q

CeSt ueyea

such that: (f,u) < fu, (7)

p<tr(C)<p,

where the term tr(é) represents the pointwise material resource and the design
variables are the displacement field w and the elasticity tensor C. Also, ST is the
space of symmetric positive semi-definite fourth order tensors, p and p are the lower
and upper bounds imposed to the material resource, respectively. The lower bound p
is a solvability condition imposed to avoid singularities in the structural equilibrium
solution. Also, the upper bound p is a manufacturability condition that is chosen by
considering the higher eigenvalue of the matrix representing the isotropic elasticity
tensor of the stiff phase. This eigenvalue is proportional to the Young’s modulus,
Ly, of the composite stiff phase. Then we take

b= BE,, (8)

with 5 < 3 being an adimensional factor related to the volume fraction of the stiff
phase. An empirical rule in material design indicates that the lower the parame-
ter [, the easier is to find extreme materials with complex mechanism-like micro-
structures. In (7), the upper bound for the structural compliance, f,, is taken as
the compliance computed with the structure constituted by a homogeneously dis-
tributed elastic material in €, with an elasticity tensor given by (/3/3)Epl, where 1
is the identity fourth order tensor.

The optimal solution of problem (7) gives: i) the spatial distribution of C, i)
the symmetry class to which the material belongs to and i) the magnitude of the
elastic coefficients.

In structural optimization problems involving several independent load systems,
the constraint (7)-b is replaced by

Nioad

> wi (frowi) < fus 9)
k=1

where n,qq is the number of load cases. The k-th load system is defined by the
external force fj and wy is the associated displacement of the equilibrium solution,

11
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wy (with wy > 0 and >3 wy, = 1) is a factor weighting each load system. and f,
is an upper limit for the weighted average of the compliance.

In Appendix A, we summarize the discretization technique utilized to solve the
present FMO formulation and give some details about the algorithm utilized to solve
it.

3.2 Discussion of results obtained with the FMO technique

Discussions of the results obtained with the FMO technique are mainly addressed
to analyze the stability, symmetry classes, and additional features of the optimal
material properties. This analysis provides basic guidelines for taking adequate
decisions in the posterior stage of micro-structure inverse design.

As an empirical rule in the present discussion, we keep in mind that materials
demanding high effective shear stiffness jointly with effective in-plane Poisson ratio
tending to -1 require the design of complex micro-structures.

3.2.1 First FMO problem

Four conventional structural optimization tests reported in the literature are pre-
sented. They are sketched in the first column of Figure 3 and are: i) L-shaped plate,
ii) cantilever beam, i) plate subjected to bending loads, all of them subjected to
only one load system, f;. The test iv), is a plate subjected to three independent
load systems, fi, fo and fs.

Second to fourth columns of Figure 3, as well as Figure 4, display the results of
the four tests obtained with the FMO methodology and 8 = 0.1 in equation (8).
These Figures show the color maps of the optimal distribution of the following fields:

e Trace of the normalized elasticity tensors, tr (C/FE), ranging from 0.1 to
6 x 107°. The material in regions with low values of this field can be removed.

e Material symmetry classes. In the tests subjected to only one load system
(i to 4ii), the optimal materials determined with the FMO problem are bi-
mode materials with symmetries D4 or Dy. In general, materials with isotropic
symmetry O(2) are not observed.

For the plate subjected to three independent load systems, the optimal solution
gives materials with three non-null eigenvalues, compare Figure 3 and Figure
4. In this case, it is also interesting to observe large regions displaying uni-
mode materials with full anisotropy (Z:), as well as, extended regions with
bi-mode materials.

e Ratio (CN)llgg / (ON)1111~ The material symmetry classes of optimum solu-
tions computed in tests i-ii7, display rather extended regions with tetrago-

12
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nal (Dy) symmetry meaning that (ON)llll = (ON)2222. Therefore, in accor-
dance with the comments remarked in sub-Section 2.2.2; the bi-mode materi-
als in these regions should necessarily have an in-plane Poisson ratio of value

(éN)nQQ/(éN)uu = —1

A further analysis of the ratio (é[\])llgg/(é]v)llll in tests (7 to #44) shows that
the optimal solutions in large part of the structures demand auxetic materials.
Roughly speaking, auxetic materials with ratios close to (éN)llgg / (C‘N)lul ~
—1 requires the design of more complex micro-structures with mechanism-like
topologies.

e Smallest non-null eigenvalues of C / Ey. Solutions corresponding to only
one load system (tests i to 1) display two eigenvalues equal to zero in the
complete structural domain indicating that a bimodal material is the optimal
solution, such as reported by Bendsge et al. [1]. Then, the map of the only
one non-null eigenvalue is identical to the map of tr(C/Ey). We recall from
equation (3) that bi-mode material properties have symmetry axes aligned
with the principal stress and strain directions.

In Figure 4, we show the distribution of the three elasticity tensor eigenvalues
obtained as result of the test iv. Zones with three non-null eigenvalues can
be observed. However, there still exist regions with one and two close to zero
eigenvalues.

3.2.2 Second FMO problem

Next, we analyze the results obtained with the second FMO problem with the ad-
dition of constraint (2) for the L-plate test. This problem is solved in the reduced
domain Q"¢ that results after adopting a tolerance ¢ = 0.015 in expression (1). The
so-reduced domain Q7 is depicted in Figure 5-a.

We start the analysis by studying first the sensitivity of results respects to the
parameters 0 and f introduced in expressions (2) and (8), respectively. Let us
consider the role played by parameter ¢:

e On the one hand, 0 is utilized to suppress solutions yielding extreme materials.
This effect is notoriously shown in the FMO solutions for problems with only
one load system. In these cases, we have already seen that the resulting
elasticity tensors of the first FMO problem corresponds to bi-mode materials
with symmetries Dy and D4. Then, the addition of constraint (2) fixes a lower
bound for the shear modulus, since (C’N)lglg > §/2. Also, it fixes an upper

bound for the ratio (C’N)llgg/(a\;)llll‘. In fact, being (C'N)1111 > (C’N)Qggg >

13
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Test i
Y
Test ii
Test iii luf,
Test iv wfl
£
=
mfz
Color bar [ - : =
scales 6e-5 le-1 -9e-1 0et+0 9e-1

Figure 3: FMO results. First column: test description; second column: elastic tensor
trace; third column: symmetry classes; fourth column: ratio (C'N)llgg / (C'N)1111- The
condition (C’N)llgg / (C'N)1111 < 0 defines the regions where the optimal solution
requires auxetic materials (zones in blue).

| i HE i [ . i
0e+0 1.9e-2 0ct+0 3.7e-2 4.9¢-5 le-1

Figure 4: Eigenvalues of the elastic tensors for the plate with three load systems.
Left to right: from smallest to largest eigenvalues.
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Table 1: L-plate test solved with the second FMO problem, g = 0.1 and different
values of parameters 9.

6/ Fy | min [, tr(C/Ey)dV | min <%> max (%)
0. 1.89e2 -1.00 1.00
0.020 2.27e2 -0.76 0.95
0.025 2.37e2 -0.71 0.93
0.033 2.52¢2 -0.64 0.92
0.040 2.62¢2 -0.52 0.65

4, it results

<

( N)1122

< ((:YN)ZQQQ _ ) ) (1_#> <1 (10)
( N)llll (CN)llll (CN)llll

e On the other hand, by comparing with the original FMO problem, the con-
straint (2) produces sub-optimal solutions. The larger the value § the higher
the optimal cost function value.

( N)llll

Both effects are confirmed by analyzing the results shown in Table 1. This Table
displays the optimal cost functions obtained with different values of 4. In the same
Table, we also show the corresponding lower and upper values of (ON)HQQ / (ON)llll
in Q™. We can see that, as J gets larger, the optimal cost function increases and
the extremal values of the field |((:’N)1122 / ((:‘N)HH] are closer to zero.

Also, in order to understand the connection between the parameters 5 and 4,
it should be kept in mind that designing complex materials could be facilitated by
taking smaller volume fractions of the stiff phase, or similarly, smaller values of f3,
see the discussion about this issue in Sigmund [24]. So, the parameters § and § have
to be adjusted after an adequate trade-off between optimality and manufacturability
requirements.

Finally, the parameter ¢, defining the size of the domain Q"¢?, is related to ¢, in
the sense that it should be taken € < §/Fy. However, this parameter plays a less
important role in the second FMO problem.

Result obtained with the second FMO problem

Figure 5-b displays the ficld tr (C'/ Ey) on the domain 7 of the L-plate problem,
only one load system, obtained with § = Ey/25 and 3 = 0.1.

Figure 5-¢ and d show the color maps of the optimum material symmetry classes
and their ratio (C’N)llgg/ (C'N)1111- The distribution as well as the maximum and
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minimum values are slightly different from those obtained with the original FMO
problem on €2 depicted in Figure 3. Notably in this case, the range of values
(CN)1122/(CN)1111 are limited to —0.52 < (ON)1122/(CYN)1111 < 0.65, which is a
much narrow interval to that displayed by the original FMO solution ranging be-
tween —1 < (é]\])llgg/(é]\[)lul < 1, see Figure 3. Also, in accordance with the
constraint (2), the smallest eigenvalue of the elasticity tensor is d.

(@) RS ' © 0

Figure 5: L-plate test solved with the second FMO problem. a) Reduced domain Q"¢ after
adopting ¢ = Ey/25. b) Trace of the elasticity tensor (tr(C/Ep)); ¢) material symmetry classes;
d) ratio (Cn)1122/(Cn)1111

3.3 Domain partition criterion for material design

Once solved the second FMO problem, the structure domain "¢ is partitioned into
disjoint sectors with similar effective material properties. The criterion to define
this partition is next discussed.

Given the fields: tr(C’/EO) and (C'N)llgg/(é]v)llll , we take the intervals defined
by their extreme values:

a) Iy = [min(tr(é’/Eo));max(tr(é/Eo))],

b) Zp = [min (—((gﬁ))llllff)) ; max (—((630‘5))11111212))]'

and divide them in N;. and Np, proportional sub-intervals, respectively. Also,
we take the Ny, different symmetry classes of the elasticity tensors found in the
FMO solution. With these sub-intervals and classes of symmetries, we can define
Ny X Npoi X Ngym sets of elastic properties sharing similar values. Then, it can be
defined a natural map relating the Ny, X Npo X Ny sets of elastic properties to
sectors in €27°¢ whose points have effective elastic properties lying within the range
of the associated sets, with similar elastic properties: tr(é’ /Eo), (éN)llgg / (éN)llll
and symmetry class. Then, these sectors are denoted Q7°! with i = 1,...,n, and nj
is the number of sectors satisfying n, < Ny X Npoi X Nym.
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Figure 6: Domain partition criterion for the material micro-structure design, /Ny, =
Npoi = 13, Ngym = 3, and n, = 91. Only a small number of sectors Q;.”Ed (with ¢ =
1,6,13,24,70,84,85,91), defined by similar effective elastic properties are identified
in colors.

For the L-plate test and taking Ny = Npo; = 13 and Ny, = 3, it results ng, = 91.
Some of these sectors are identified in Figure 6.

Finally, for every sector, a representative elasticity tensors C} can be computed
as the average

1 o
C'=_—— CndV Vi=1,.. n, ) 11
i ‘Q£6d| gz;_”ed N ) ¢ y ey 1O ( )

where ]Qged\ is the area of the corresponding i-th sector.
The tensor® C* is taken as the target tensor to design the micro-structure using
the algorithm described in the following Section.

4 Micro-architecture design

Let us consider a two-phase composite constituted by a periodic distribution of a
stiff phase M1 and a soft phase M2. Figure 7 represents the micro-cell of the periodic
composite. We seek the distribution of phases M1 and M2 within the micro-cell such
that the homogenized elasticity tensor C%*, of this composite material, is identical
to the target elasticity tensor C* derived from the treatment given to the FMO
problem solution in the previous Section.

3In the following development, sub-index i identifying the sector of Q7¢? is dropped out of the
notation.
4The micro-structure design is performed in the normal basis.
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This goal is reached by using an inverse homogenization approach that is for-
mulated as a Topology Optimization Problem (TOP). The TOP is solved in a pre-
defined micro-domain €2, with the algorithm proposed by Amstutz and André [17]
and Amstutz et al. [18], see also Lopes et al. [25] and Méndez et al. [26].

The TOP uses a computational technique for evaluating the homogenized elas-
ticity tensor C%, the topological derivative concept of the homogenized elasticity
tensor and a function describing the distribution of phases in the micro-cell. The
zero-level set of this function represents the interfaces within the cell.

In this work, we only remark some aspects of the TOP which have been partic-
ularly adapted for solving the present inverse homogenization problem. They are:
the TOP cost function, the imposed constraints and the augmented Lagrangian
technique to solve it. Other more conventional aspects of the topology optimiza-
tion algorithm, such as the topological derivative expression, are not addressed here
because they have been extensively treated in the above-referenced literature.

Micro-cell (2,

2 e Ml
N4 M2 \n
|7

Y

AN
=

Figure 7: Original micro-cell problem with a material distribution perturbation consisting of
introducing a ball ¢ of soft phase within the stiff phase. The radius of the infinitesimal ball is &.

4.1 Inverse material design as a TOP

Let us consider a micro-cell, €2, of the periodic composite constituted by isotropic
elastic phases M1 and M2 occupying the domains Qt and Qi, respectively. See
Figure 7. The corresponding elastic tensors of both phases are CZ = A/C’}L with ~
being a contrast factor. The characteristic and contrast functions in €2, are defined
by

0 Vye? v if :x=0
X(y) = { { ey = { v (12)
L Vyeq, 1 if:x=1
respectively. Evidently, the homogenized elasticity tensor C" of the composite de-

pends on the way in which phases M1 and M2 are distributed in §2,,. This dependence
is made explicit by introducing the notation C"(y).
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Next, we redefine the micro-architecture inverse design problem as a topology
optimization problem expressed as follows: given the target effective elasticity tensor
C*, find the characteristic function y satisfying

min/ X dS)
X Jg (13)

2

such that: |C%(x) — C*|| =0 .

The cost function represents the stiff phase volume fraction. In particular, con-
sidering that the soft phase is void, the problem (13) identifies a minimum weight
problem.

4.2 Algorithm for solving the TOP

The TOP (13) can be solved by introducing a level set-funtion ¢ € C°(§,,) defined
by

<0 Vy € Q)
by =9 >0 vyeqal (14)
0 in the interfaces

and utilizing an augmented Lagrangian technique. In this case, the problem is
rewritten as follows

max mq/in T (), N), (15)

with:
T3 = [ () d2+ XICh) - € 1) + FICk W) - C*)* (19

where A is the the constraint Lagrange multiplier and « is the penalty parameter.
The algorithm for solving the problem (15) utilizes two nested loops. In an
internal loop, the objective function 7 is minimized by holding fixed A and «. This
loop, with index denoted k, consists of a level-set function-based iteration. While,
an external loop, with index denoted [/, modifies iteratively .
The minimum of 7 in the internal loop is searched with a descent direction
algorithm. For problem (15), the topological derivative is given by

(C]}b — C*) . szCh)
ICx — C~||

DT (6 N) =1 ((A ~alich - c) (17)

where D,C" is the topological derivative of the homogenized elasticity tensor, see
[18] for an additional description of this term. Then, we define the function :

—(DyT) if (<0
gl ):{ (D)) ifits0 (18)
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The updating formula for v, at the (k + 1)-th internal loop, is defined by
M= 4F 1y, (19)

with the scaling factor 7 being determined by means of a line search technique.
In the (I + 1)-th external loop, the Lagrange multiplier A is updated using the
Uzawa algorithm
AT = max(0, N + a|Ch — C*)). (20)

The penalty parameter « is held fixed during the full process.
A local optimality criterion of problem (15), see Amstutz [27], is given by the
condition
DyT >0 ; Vyel, (21)

which can be implemented by verifying the equality

fw gy dV

= 0. 99
g1l 221l 2 (22)

arccos [

5 Methodology for searching the optimal micro-
structure

Leaving aside the issue related to existence of solutions®, finding one solution of
problem (15) may be difficult, especially when extreme materials are designed. The
search of a solution with the algorithm described in sub-Section 4.2 is facilitated by
following two procedures that are summarized in sub-Section 5.1 and 5.2.

5.1 Selection of the micro-cell shape (),

The shape of the domain €, is an implicit variable utilized in the inverse homoge-
nization problem (13) that should be defined in advance. Considering that problem
(13) searches for an optimal periodic micro-structure, this variable plays a major
role to find an adequate material micro-architecture adjusting the target elasticity.

A good decision is to choose €, coinciding with the shape of a micro-structure
unit-cell. However, in view that the periodic micro-structure is unknown at the
moment of solving the inverse homogenization problem, we conjecture that the pe-
riodic micro-cell €, coincides with the shape of the Voronoi Cell of a Bravais lattice
related to a crystal which elasticity tensor has the same symmetry as that displayed
by the target tensor C*.

5As previously mentioned, this issue can be mitigated through the handling of the parameter §
in equation (2).
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In Figure 8, we show the only five different Bravais lattices in 2D and their associ-
ated symmetry classes. A Bravais lattice is fully described with the primitive vectors
a; and a,. Therefore, Bravais lattices could be described with two parameters, the

ratio w = ||asl|/||@1| and the angle ¢ = arccos|[(asz - a1)/(]|az]|||la@1|])]. Additional
information about this topic can be found in the book [28].
7, e Dz. Orthorhombic o D, 0(2)
Fully anisotropic ~ Voronoi Tetragonal Hexagonal
a, . Uni cell
nit-cell )
R Unit-cell .
® P ® EK; ,7 ® Voronoi
\ il
Voronoi -4 @ o Y
Unit-cell cell a; ¥ ay ® ! ® !
| ®--@
ap 2ara)faif  s<nn Tl 2aoy
Ny ° e o %+ &'
, a, NS 2 C )
a4 Voronoi ‘ ® a4
Unit-cell cell a4
,,,.7
lal#la,| a ¢ | lal#la| lasl=la,| lasl=la,|
S<m/2 ‘ S=n/2 S=m/2 C=3m/2
[

Figure 8: Bravais lattices and Voronoi cells (Wigner—Seitz cells) for the material symmetry classes
in plane problems. There are only five Bravais lattices in two dimensions, see Kittel [29].

Also, in the same Figure, it can be observed that several unit-cells are associated
with a given Bravais lattice, see for instance the unit-cells of the lattice with Dy
symmetry.

From all possible unit-cells, our interest lies in the Voronoi cells (Weigner-Seitz
cells) also depicted in the Figure. Voronoi-cell shapes preserve the symmetry of the
underlying lattice. Observing the lattice with D, symmetry, horizontal and vertical
directions are axes of symmetry for the lattice, however, they are not symmetry axes
for all the unit-cells. Instead, the Voronoi-cell is symmetric respect to both axes, as
well as to rotations of +90.deg.

What is more important for the topology optimization problem is that the sym-
metry class of the homogenized elasticity tensor can be guaranteed by distributing
the material within a Voronoi-cell with certain spatial symmetry prescribed accord-
ing to each type of lattice. So, following this criterion, we force the material distri-
bution defined by the level-set function in the iterative algorithm of sub-Section 4.2
to satisfy the rotational or reflection symmetries displayed in Figure 9.

Figure 10-a displays the plane w,< in k%, where each pair w, < define a Bravais
lattice. In gray, we show a bounded space of points with coordinates (w, <) defining
the full set of all possible Bravais lattices. This reduced space is found by applying
symmetry conditions to Bravais lattices. Notice, for example, that the lattice repre-
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Figure 9: Voronoi-cell of a two-phase composite material. Planes and angles of symmetry utilized
in the topology optimization algorithm for material distribution. The central symbol indicates the
rotation angle preserving the symmetry. Reflection planes are symbolized with double segments.

sented in the Figure 10-b by the point denoted W’ with coordinates (0.967, 75.deg),
is the same lattice as that represented by the point denoted W with coordinates
(0.5,30.deg).

Figure 10-c shows, in the same bounded space, the Voronoi cells associated with
different points and the corresponding symmetry classes of these lattices. So, in
the case that the target elasticity tensor C* has symmetry Dy or Dy, as it generally
happens in FMO problem solutions with only one load system, it should be sufficient
to restrict the search of the €2, shape to some of the Voronoi-cells represented by
the set of parameter w, ¢ lying along the boundary of the gray region.

An additional criterion to determine which point (w,<) of this set is the most
convenient one, is described in the following sub-Section.

5.2 Additional criteria to choose the micro-cell shape and
the initial material configuration in (),

The criteria for choosing a particular Voronoi-cell of the space (w, ), as well as an
adequate distribution of material within this cell which can be taken as the initial
configuration for the iterative algorithm solving the problem (13), are summarily
explained here. A full description of this procedure is given in [30].

Initially, an off-line computation of several homogenized elasticity tensors is per-
formed. These results are used to build a database of homogenized elastic tensors.

The homogenized elastic tensors stored in the data base are the results of several
micro-cells with varying shapes and material configurations, such as described in
the following items:

e Voronoi-cells with lattice parameters w and ¢ sweeping the entire range of
values depicted in gray in Figure 10-a;

e two material configurations denoted pattern A and B in Figure 10d-e. The
material configuration of pattern A corresponds to equal thickness bars of solid
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Figure 10: Space of parameters w, ¢ and micro-cell shapes. a) Bounded space of parameters w, ¢
identifying the complete set of Bravais lattices; b) a Bravais lattice can be represented by two
different points, W’ and W, in the space w,¢; ¢) Voronoi cells and symmetry classes; d) and e)
material distribution patterns A and B for determining the map C% (w,s, f, P)
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material placed on the boundaries of the cells. The pattern B also corresponds
to equal thickness bars placed on the boundaries of the cells but with a re-
entrant configuration.

e several volume fractions f of solid material. This parameter f determines the
bar thickness in each case.

Therefore, all computed homogenized elasticity tensors in the database can be
characterized by four parameters: w and ¢, defining the Voronoi-cell shape, the solid
volume fraction f and P defining the “Pattern” A or B. We identify each database
entry with the notation C% (w,s, f, P).

We recall that auxetic materials can be built with re-entrant configurations of
bars, see Kolken and Zadpoor [31]. A profuse literature about honeycomb re-entrant
auxetic materials exists, see for example Fu et al. [32] and references cited therein.
The fact of capturing materials with negative ratios (Cgb) 1122/ (Cf}b)nu is the reason
why we include pattern B in the database.

The database is built with a bar material having a normalized Young’s modulus®
I/ = 1. and Poisson ratio v = 0.3. Several values of f are used. We take approxi-
mately 6e3 points to sweep the reduced domain in the plane (w,s). Therefore, the
database stores more than 1e5 homogenized elasticity tensors.

Partial results of this database corresponding to the patterns A, B and f = 0.05
are depicted in Figure 11. These colored maps show in column: a) the maximum
eigenvalue of the homogenized elasticity tensors, b) the ratios (C%)1120/(C%) 1111
and c¢) the normalized shear stiffness (C%)1912/(Ch)1111. As expected, the ratio
(Ch)1122/(C)1111 of pattern B shows a large region of parameters w,s defining
auxetic micro-architectures. The maximum eigenvalue gives an idea of the maxi-
mum stiffness displayed by the respective configuration. Also, note the connection
between the ratio (C%)1120/(C%)1111 and the shear stiffness for different configura-
tions.

With this database, the most adequate micro-cell shape and material distribution
is adopted by using the criterion

c=wg{mn|ChO) - Ol where ¢i= (s £P) (29)

db

which defines the instance of the database that is closer to the target elasticity
tensor. The search of the minimum in (23) is restricted to the set of parameters
(w,<) whose lattices have the same symmetry as C*.

SFor all configurations displayed in this study, where the soft phase is void, the homogenized
elasticity tensor is proportional to Young’s modulus of the stiff phase.
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Figure 11: Maps of homogenized elastic properties of Voronoi cells parameterized
with w and ¢, stiff material is distributed according to the patterns A and B and
volume fraction of the stiff phase is f = 0.05.

5.3 Results
5.3.1 L-panel with one load system

Figure 12 shows the micro-structures computed with the explained design method-
ology. The results correspond to nine sectors of the L-panel denoted 1, 13, 24, 70,
72, 80, 84, 85 and 91, respectively. The unit-cells computed for these sectors are
depicted such that the horizontal direction coincides with one of the homogenized
tensor normal bases. In the same Figure, an assembly of several cells is also shown
but rotated to the global Cartesian directions. The angle —# transforms the normal
basis direction to the global Cartesian one. Therefore, 6 transforms C into Cly,
recalling that Cy is used to compute equation (11). This angle 6 is determined for
every point of the L-panel.

Figure 13 compares the micro-cells gathered from the database and those ob-
tained as solution of the TOP. The micro-cells depicted in the Figure correspond to
the Sectors 1,13, 24,80 and 85. Micro-cells gathered from the database, using the
procedure (23), are adopted as the initial configuration for the iterative topology
optimization algorithm. Their homogenized elasticity tensor are denoted C%. Al-
ternatively, the homogenized elasticity tensor computed with the micro-cells being
the solution of the TOP are denoted C%.
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\ 89.29deg

Figure 12: Computed micro-cells for several sectors of the L-panel test. The Carte-
sian basis of the micro-cells coincides with the normal basis. Assembled micro-cells
are rotated to the physical directions in each sector.
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Figure 13: L-panel test, micro-structure design with the TOP. First column reveals
the symmetry class of the target elastic tensor. Second column denotes the designed
Sector. Third column depicts the micro-cells taken from the database as initial
configurations for the topology optimization algorithm. Fourth column depicts the
micro-cells obtained as solution of the topology optimization algorithm.

Note that the micro-architecture configurations remain rather simple and almost
similar to the initial configurations gathered from the database. Also, observe that
the micro-architectures in all sectors are honeycomb-like structures, but the cell
shapes change notably in different sectors.

Even when a given sector of the L-panel has similar elastic properties, in ac-
cordance with the criterion adopted to define them, explained in the previous sub-
Section, sectors have non-uniform distribution of the normal basis directions. There-
fore, the designed representative micro-cell for one sector has to be rotated to the
physical directions with the angle —f at every point of the structure. We evidence
this result in Figure 14. There, we depict the designed micro-structure for this sec-
tor in the physical directions for an identical sector which has been designed with a
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Figure 14: Resulting micro-structure of Sector 6 rotated to the physical directions.
The rotation angle — is shown in accordance with the color scale.

unique micro-cell.

Table 2 displays the components of the target elasticity tensor C*, C% and C%
in the mentioned sectors, respectively.

Note that, even when the initial configuration value C% is close to the target
one, the optimization algorithm improves notably the results even without changing
substantially the material distribution of the initial configuration. The last column
in this Table identifies the volume fraction of the gathered and solved micro-cells.

Note also that from Figure 12 and Table 2, the Sector 13 requires a material with
isotropic symmetry O(2), as well as, an elasticity tensor with zero Poisson ratio and
low stiffness. In this case, the re-entrant micro-structure designed with the present
procedure facilitates the attainment of effective properties with almost zero Poisson
ratio.

5.3.2 Plate subjected to three load systems

Figure 15 shows the micro-structures computed for two sectors of the plate subjected
to three independent load systems.

The optimal structural result is taken from the first FMO problem solution, see
Figure 3, test iv. In this case, material with symmetry Z, is found in the solution of
the FMO problem even without including constraint (2). As the most challenging
cases, we design the micro-structures of two points where the ratio |Cf},5/C5 1] 18
maximum. One case corresponds to a tensor with one null eigenvalue. The other
case corresponds to a tensor with three non-null eigenvalues.

Figure 16 compares the micro-cells taken as initial configurations of the topology
optimization algorithm with those obtained as solutions of the TOP. Sectors shown
in this Figure are the same as those depicted in Figure 15.
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Table 2: L-panel test. Topology optimization algorithm results. C* target elasticity
tensor, C% homogenized elastic tensor of the initial configuration (taken from the
database), C% homogenized elastic tensor of the converged configuration. Values
are multiplied by the factor 1000 (Ey = 1.M Pa). Last column displays the volume
fraction of the stiff phase.

Sector Ciin | Ca22 | Ci212 | Caz12 | Chiiz | Crize | Vol. Frac.
1 Chl1793[793[094] 0 0 |-1.79 0.30
1 Ch | 719|719 | 18 | 0 0 |-3.12 0.17
1 C* | 707 | 707 | 200 | O 0 |-3.07 -
6 |Ch | 754|491 065 0 0 |-1.61 0.28
6 Ch| 793 | 541 | 114 | 0O 0 |-2.28 0.21
6 C*| 796 | 537 | 200 | 0 0 |-227 -
13 [Ch | 404 | 404 | 1.90 [ 0 0 0.24 0.35
13 | Ck| 4.04 | 404 | 201 | 0 0 0.02 0.14
13 | C*| 404 | 403 | 200 | 0 0 0.01 -
24 | Ch | 13.73] 3.09 | 1.94 | 0 0 |-0.96 0.40
24 | Ch | 13.22| 429 | 1.57 | 0 0 |-1.80 0.15
24 | C* | 14.03 | 435 | 200 | 0 0 |-1.85 -
70 |Chl6421] 672 [ 009 | 0O 0 |13.79 0.12
70 | C%160.99 | 593 | 0.08 | 0 0 |10.16 0.11
70 | C*|60.75| 590 | 2.00 | 0 0 |10.14 -
72 | Ch 4811 [1527] 012 | O 0 | 1855 0.12
72 | Ch | 4735 13.73 | 007 | 0 0 |20.79 0.10
72 | C* | 48.38(14.03 | 2.00 | 0 0 |21.09 -
80 |Ch 18281 208 [ 237 ] 0 0 |-221 0.40
80 | Ch [80.15| 3.43 | 002 | 0 0 |-0.46 0.12
80 | C* | 8243 | 4.00 | 200 | 0 0 |-0.37 -
84 | Ch 19152 164 [ 220 | 0 0 |-2.29 0.40
84 | Ch |89.69| 3.19 | 002 | 0 0 |-0.18 0.12
84 | C* |91.79 | 4.00 | 2.00 | 0 0 |-0.14 -
85 | Ch 19328 566 [ 083 | 0 0 2.04 0.23
85 | Ck 191.05| 324 | 022 | 0 0 1.37 0.13
85 | C* | 91.91 | 4.02 | 2.00 | 0 0 0.37 -
91 | Ch 5725|5052 ] 086 | 0 0 |3857 0.18
91 | Ch |60.84 |36.03| 076 | 0 0 | 40.68 0.17
91 | C* [60.39 | 35.61 | 200 | 0 0 |42.16 -
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Z, with three non-null eigenvalues

Figure 15: Computed micro-cells for two sectors of the Plate subjected to three load
systems. The right picture depicts the distribution of symmetry classes. Two micro-
cells are shown. The sectors with these micro-cells correspond to Z; symmetries with
one null eigenvalue and three non-null eigenvalues, respectively.

Table 3 displays the components of the target elasticity tensor C* in the men-
tioned sectors. They are also compared with the homogenized elasticity tensors
gathered from the database, C% and with the homogenized elasticity tensors com-
puted with the topology optimization algorithm C%.

6 Conclusions

In this paper, a two-scale material design approach, coupled in one-direction, has
been explored. The effective elasticity tensors at the macro-scale are computed via
a methodology based on a free parametrization of materials. Then, these effective
elasticity tensors are used as target tensors for the inverse design of the micro-
architectures.

This weakly coupled two-scale approach has been previously reported in the
literature. However, the discussions of results obtained with it, and presented in
sub-Sections 3.2, provide the necessary ingredients to state the main contributions
of the paper.

These contributions focus on studying two new tools for the inverse design of
material micro-architectures in optimal structural problems. They are useful pro-
cedures for attaining periodic material configurations with simple honeycomb-like
micro-architectures whose effective elasticity tensors cover a wide range. The main
characteristics of both tools are summarily described as follows:
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Three
7/, | mnon-null
eigenvalues
One null
% eigenvalue

Figure 16: Plate subjected to three load systems. Configurations taken for initial-
izing the topology optimization algorithm and the obtained solutions.

Table 3: Plate subjected to three load systems. Topology optimization algorithm
results for two cases, one of them displays full anisotropic elasticity Z,. C* is the
target elasticity tensor, C is the homogenized elastic tensor of the initial config-
uration, gathered from the database, and C?% is the homogenized elastic tensor of
the topology optimization algorithm converged configuration. Values are multiplied
by the factor 1000 (Ey = 1.M Pa). Last column displays the volume fraction of the
stiff phase.

Sector Criin | Coz | Ci212 | Camrz | Cinz | Chige | Vol Frac.
With one C[}b 13.00 | 5.69 | 4.68 | 1.62 | -1.62 | -0.25 0.45
null C]}(, 1552 | 3.56 | 6.72 | 4.13 | -4.60 | -2.58 0.29
eigenvalue | C* | 15.63 | 3.18 | 6.79 | 4.63 | -4.63 | -2.56 -
With three ijb 883 | 824 | 535 | -2.17 | 217 | 1.94 0.35
non-null | C% | 14.41 | 2.94 | 6.65 | -3.46 | 3.68 | -0.57 0.17
eigenvalues | C* | 14.38 | 2.61 | 6.66 | -3.65 | 3.65 | -0.63 -
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i) The first tool defines a rule for the cell shape selection. Then, the TOP is
solved in the spatial domain limited by the so-chosen cell. These cells are the
Voronoi-cells of Bravais lattices having the same kind of symmetry than the
one displayed by the target effective elasticity tensors.

it) The other tool defines an adequate material distribution in the adopted cell.
This material distribution is taken as the initial configuration for the iterative
topology optimization algorithm.

An additional rule proposed in this paper is the alignment of the Voronoi-cell
periodicity directions with the natural coordinate system directions of the target
elasticity tensor. This rule simplifies the material distribution configurations within
the Voronoi-cells. In this case, it is necessary to compute the natural coordinate
system of every target elasticity tensor.

Both tools, when combined with the above-mentioned rule, mitigate the most
significant limitation of the two-scale material design methodology described in this
paper. This is a remarkable result which is useful for the development of realizable
optimal structures using this methodology.

Finally, it is emphasized that the new proposed tools are not only limited to
the inverse design of micro-architectures in the context of structural optimization
problems, but also they can be applied to other more general types of metamaterial
inverse homogenization problems.
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A APPENDIX: Discretization of the FMO for-
mulation

The finite element method is used to compute the structural response solution and
evaluate u € V0 as a function of C (x) and f. Conventional bilincar quadrilateral
finite elements are used. The elasticity tensor C; is taken to be constant within
every i-th finite element, with the indices: ¢ = 1,....,n¢ and ng is the number of
finite elements in the mesh. The symmetry of each tensor C; is enforced by defining
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only the six independent components, CA'i1111, Ci11227 Ci11127 Ci22227 Ci22127 Ci12127 as
design variables for the i-th finite element.
Utilizing this approach, the FMO problem can be rewritten as follows 7

Nel

min Z tr (C;)Qe (24a)

(Clv"vc’nel 7u17""""'nloa,d) i=1

el
such that: Kuy — f, = 0; (K = /\ / (B)'C;B’ dV) k=1, .., Noad)
. e

j=1 J
(24D)
Nioad _
w, (fr - ug) < f; (24c)
k=1
p<tr(C)<p; (i=1,...ng) (24d)
Ci-0; (i=1,..,ng) (24e)

where € is the area of the i-th finite element. Expressions (24b) are the 7544
equilibrium equations, one for each independent load system. The stiffness matrix
of the discrete equilibrium equations is denoted K and is computed with a con-
ventional numerical integration. B denotes the conventional strain-displacement
matrix. Expression (24e) imposes the positive semi-definite character on C..

This FMO problem has (6 X n¢ + Nioad X Naop) design variables, where ngqy
is the number of degrees of freedom of the finite element mesh (dimension of the
interpolated displacement field).

We solve the semi-definite optimization problem (24) using the IPOPT primal-
dual algorithm, see Wachter and Biegler [33], with a second-order method. The
Hessian matrix is simple to evaluate, but it requires enormous resources of memory.
In general, problems presented in this work, up to 10000 quadrilateral finite ele-
ments, need 50 to 70 iterations. Here, we do not pursue the objective of evaluating
the computational performance of IPOPT for solving very-large-scale problems. For
computational benchmarks of structural optimization problems using the IPOPT
algorithm, see Rojas-Labanda and Stolpe [34]. Additional information about spe-
cific algorithms designed for solving FMO problems can be found in the paper of
Weldeyesus and Stolpe [9] and references cited therein.

"Introducing an abuse of notation, discrete and continuous fields in this Section are identified
with the same symbols.
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B APPENDIX: Symmetries of the elasticity ten-
sor in plane problems

Let us consider a generic plane elasticity tensor C. In the Cartesian coordinate
system, its components are denoted Cjjx, with 7,5, k, 1 =1, 2.
Following the Kelvin’s notation, this tensor can be written in the matrix format

C(1111 C(1122 \/501112
C= C'2211 C'2222 \/502212 . (25)
\/§01211 \/§01222 2C(1212

Also, C can be expressed in the normal coordinate system (normal basis), see Auf-
fray and Ropars [35] and Cowin and Mehrabadi [36]. The normal coordinate system
is rotated an angle # respect to the Cartesian coordinate system.

In normal coordinates, the tensor (25) is represented by the matrix

K+G+a1+d1 K—G—dl \/5(12
Cy = K-G-d, K+G—-—a+d —V2dy |, (26)
V2dy —V/2d, 2G — 2d,

called the normal form of C. In this expression, K, G, a;, d; and dy are material
parameters. The angle 6 should also be considered as an additional material param-
eter. Note that € is the rotation angle taking the matrix (25) and transforming it
to expression (26).

According to the symmetry group qualifying Cly, these material parameters K,
G, ay, di and dy are:

e Symmetry Z, (anisotropic) has six independent elastic coefficients: K, G, a,
dy and dy plus the angle 6. The normal form of C'y results with the components

(CYN)1112 = - (CN)2212-

e Symmetry Dy (orthotropic) has five independent elastic coefficients: K, G, a;
and d; plus the angle 6. The normal form of C'y results with the components

(Cn)i112 = (Cn)az2 = 0 (dy = 0).

e Symmetry D, (tetragonal) has four independent elastic coefficients: K, G
and d; plus the angle 0 that should be defined such that a; = ds = 0. The
normal form of Cy results with the components: (Cy)i111 = (Cn)azee and

(Cn)1iz = (Cn)2212 = 0.

e Symmetry O(2) (isotropic), has two independent elastic coefficients: K, G.
The angle 0 is arbitrary. Then, The normal form of Cpy results with the
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components: (CN)llll = (ON)2222 ) (ON)1212 = (CN)1111 - (ON)1122 and
(Cn)1112 = (Cn)2212 = 0. In this particular case, we identify

G
—K—— 2
R= K-, (21)

where, x is the 3-D bulk modulus and G is the shear modulus.

In all cases, except for isotropic symmetry, the angle § is an additional parameter
of the elasticity tensor.

We recall that the normal format (26) of C is not preserved in arbitrary Cartesian
bases.

B.1 Reorientation of the elasticity tensor to the normal ba-
sis

The rotation angle 6 transforming C' to the normal axis is found with the algorithm
proposed by Auffray and Ropars [35], see also [37].

Auffray et al. introduce the fourth and second order tensors denoted D, a and
the coefficients A and p. All these terms are defined as follows:

Dijr =Cijr—

1 .
- 6(5ij0kplp + 01 Clipjp + 9ikCipjp + 01;Cipip + 9 Clipkp + 05 Cipip)

C . C .
+ 2L (58,01 — Oirdj1 — Oudjx) — p8pqq (30ij0m — 0idji — 0udji) ,  (28)

12
1 Y Y
Qi :E(zcipjp — Cpgpg0ij)
1
A :g(?’cppqq - 2Cpqpq) )
1

u =_(20pqm - Cppqq) .

0¢)

With these expressions, the invariants of C' are calculated

Li=X+p ; Ji=p ) Iy = apqap, (29)
Jy = qurstqrs ) I3 = aqupqrsars ) J3 = quaquprstast .

0 1
()
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These invariants define the symmetry class of C. The procedure is described in
Figure 17. Also, the coefficient determining the normal form of C, equation (26),
are determined with expressions (28) as follows:

K =

G =

a; =
Ay =

dy =

d2=

Il7

le

1

5((111 - (122) >

1

§(a12 +as) ,

NG

?(Dnu + Daoo — Di122 — Di2i2

- D2112 - D2121 - D1221 - D2211) )
V3

—(D1112 + D1121 + Dronn + Doinn

8
— Dozt — Dagiz — Dargz — Diga)

Also, defining the angles:

. 1 1 { Q2 ) o 1 1 dg
0, = —tan <a1> : g = 4tan <d1 )

2

the angle 0 is determined with the rule: 0 = 0, for the classes Z5 or Dy; and 0 = 03

for the class D,.
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