
Efficient Interaction Analysis for an Effective Provision of

Knowledge about the Discussion Process to CSCL Practices

Santi Caballé
1
, Fatos Xhafa

2
, Thanasis Daradoumis

1
, Ajith Abraham

3

1Open University of Catalonia, Department of Computer Science, Multimedia, and Telecommunication

 Barcelona, Spain
{scaballe, adaradoumis}@uoc.edu

2Polytechnic University of Catalonia, Department of Languages and Informatic Systems

Barcelona, Spain
fatos@lsi.upc.es

3Center of Excellence for Quantifiable Quality of Service, Norwegian University of Science and Technology

Trondheim, Norway
ajith.abraham@ieee.org

Abstract

The discussion process plays an important social

task in Computer-Supported Collaborative Learning

(CSCL) where participants can discuss about the

activity being performed, collaborate with each other

through the exchange of ideas that may arise, propose

new resolution mechanisms, as well as justify and

refine their own contributions and thus acquire new

knowledge. Indeed, learning by discussion when

applied to collaborative learning scenarios can

provide significant benefits for students in

collaborative learning, and in education in general.

However, the discussion process in the context of

distance education presents high dropout in

comparison to traditional programs due chiefly to a

sense of isolation of participants who do not have

knowledge about others nor they can compare their

own progress and performance to the group. To

alleviate this problem, the provision of appropriate

knowledge from the analysis of on-line interaction is

rapidly gaining popularity due to its great impact on

the discussion performance and outcomes. This implies

a need to capture and structure all types of information

generated by group activity and then to extract the

relevant knowledge in order to provide participants

with efficient awareness and feedback as regards

group performance and collaboration. As a result, it is

necessary to process and analyzed complex event log

files from group activity in a constant manner, and

thus it may require computational capacity beyond that

of a single computer. To this end, in this paper we

show how a Grid approach can considerably increase

the overall efficiency of processing group activity log

files and thus allow discussion participants to receive

effective knowledge even in real time. The context of

this study is a real discussion experience that took

place at the Open University of Catalonia (UOC).

1. Introduction

When developing Computer-Supported

Collaborative Learning (CSCL) [1] environments that

support online collaborative learning, several issues

must be taken into account in order to ensure full

support to the online learning activity. One such key

issue is interaction management and analysis to

support awareness, coaching and evaluation, based on

information captured from the actions performed by

participants during the collaborative process [1], [5].

The success of CSCL applications depends to a great

extent on the capability of such applications to embed

information and knowledge extracted from group

activity interaction and use it to achieve a more

effective group monitoring.

 The real context in this study is the virtual

learning environment of the Open University of

Catalonia (UOC) , which offers full distance education

through the Internet. Part of UOC’s courses’ curricula

includes the participation of students in on-line

discussions with the aim of sharing and discussing

their ideas. Indeed, the discussion process plays an

important social task where participants can discuss

about the activity being performed, collaborate with

each other through the exchange of ideas that may

arise, propose new resolution mechanisms, as well as

justify and refine their own contributions and thus

acquire new knowledge [2].

The provision of effective knowledge extracted

from the information collected in CSCL environments

is essential for any discussion process [2]. It allows

implicit coordination of collaborative learning,

opportunities for informal, spontaneous

communication, and gives users awareness [3] and

feedback [4] about what is happening during

discussion. It is indeed crucial for group members to be

aware of others’ participation process as this may

7th Computer Information Systems and Industrial Management Applications

978-0-7695-3184-7/08 $25.00 © 2008 IEEE
DOI 10.1109/CISIM.2008.59

269

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by UPCommons. Portal del coneixement obert de la UPC

https://core.ac.uk/display/160040503?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

enhance the discussion process a great deal in terms of

decision-making, group organization, social

engagement, support, monitoring and so on [5].

These ideas have been incorporated in the design of

a collaborative tool called Communities of Learning

Practice Environment (CoLPE), which was developed

at the UOC to facilitate both the construction of

knowledge among learners and the development of

cognitive-acquisition skills, such as problem-solving

abilities as well as the provision of an adequate multi-

support framework so that tutors and peers can provide

a suitable scaffolding when needed. CoLPE pursue

these objectives by means of seeing discussion as a

medium through which the building and distribution of

cognition is effected.

CoLPE [5] is a web-based collaborative system

designed to enable “democratic” collaborative learning

that involves sets of on-line learners who share a

learning activity to engage in collaborative production

but who do not have a formal workflow for this

collaboration. It also envisions enabling informal

collaborative learning among non-technical learners or

those who lack of the necessary resources to acquire

such systems. To this end, CoLPE provides, among

other features, hierarchical threaded discussion of

documents, support for a range of choices on

discussion and voting methods and enables group

coordinators and tutors without IT expertise to

customize their discussion environments. Finally, this

system implements the above-mentioned fundamental

requirement to sustain collaborative learning

applications by the representation and analysis of

group activity interaction to facilitate coaching and

evaluation as well as awareness and feedback about

what is happening during the collaboration.

 The first results of using CoLPE drawn from real

collaborative learning show very promising benefits

for students in a real context of learning and in

education in general [5]. However, from the evaluation

of CoLPE and its effects in the discussion process we

came across important repercussions derived from

certain non-functional requirements that by now are

hard to be met, such as performance, scalability, fault-

tolerance, and interoperability [6]. Concerning the first

two issues, participants (i.e., students and tutors)

reported many problems when trying to participate in

the discussion by using CoLPE, which influenced the

whole learning experience negatively.

Indeed, system's poor performance is one of the

most frustrating aspects during the on-line

collaborative learning experience as it makes

participants’ requests be waiting for long periods of

time to be served [6]. In order to keep on providing a

high level of quality of service, a learning system

should seamlessly scale to new resources of both

hardware and software at the same pace as the

workload increases. To this end, we show in this paper

how a Grid approach can increase the overall

efficiency of the system while processing a large

amount of information from group activity log files

[7].

The experimental results allow us to show first the

gain provided by our Grid approach [7], [11] in terms

of relative processing time and, second, the benefits of

using the inherent scalable nature of Grid while user

concurrency is high and the input log files are growing

up in both number and large size. The ultimate aim of

this study is to show the feasibility of Grid technology

to achieve an effective provision of the appropriate

knowledge to the discussion process.

This paper is organized as follows. Section 2

presents the experimental setting and data gathered

using CoLPE to support a discussion process and its

effects in the learning experience that motivated this

study. Section 3 proposes a generic parallel model and

a Grid-based realization to efficiently manage the

information about group activity. Section 4

summarizes the paper and points out some guidelines

for future work.

2. Centralized approach to support a

discussion process

An experience using CoLPE took place at the UOC

involving 86 graduated students enrolled in the course

Methodology and Management of Computer Science

Projects. Students were equally distributed into two

classrooms and participated in the experience at the

same time. Students from one classroom were required

to use the standard asynchronous threaded discussion

forum offered by the virtual campus of the UOC while

the other group of students used the new CoLPE

outside the virtual campus to support the same

discussions with the same rules during the same time.

The experience consisted in carrying out a class

assignment in the form an on-line discussion for 3

weeks in the last term. The students enrolled in the

course were free to open zero, one or several

discussion threads where they proposed strategies,

ideas, etc., to appropriately deal with the topic of to the

discussion (i.e, “Change management: necessity or

virtue?”). Any student could contribute in a discussion

thread as many times as needed so as to provide new

argumentations with regards to the issue addressed.

The only requirement was to submit at least one post.

The whole experience was supported by a Zope

server [8] on the server side, which run on a single

node (i.e., Linux SuSE 2.4.21-99 machine, Intel

Pentium 4 CPU 2.00 GHz, 256MB RAM).

270

Table1. Main statistics results from the class assignment

using both discussion tools.

Statistics Standard tool CoLPE

Number of
students

43 43

Number of

threads

29 17

Total of posts 174 93

Mean number
(posts/thread)

M=6.0 SD=2,7 M=5,5 SD=4,5

Mean number

(posts/student)

M=4,0 SD=1,6 M=2,2 SD=3,8

A statistical analysis of the results of the discussion

comparing both the standard and CoLPE tools is

shown in Table 1.

Table2. Excerpt of a questionnaire’s results on CoLPE’s

evaluation to support the discussion process.

Selected questions

Average of
structured

responses

(0 – 5)

Excerpt of
students’ comments

Asses CoLPE as a

collaborative tool

1

Evaluate how the
CoLPE fostered your

active participation

1

Did CoLPE help you
acquire knowledge on

the debate’s issue?

2

Compare CoLPE to
the campus’ standard

discussion tool

2

“The system performed

very slowly, I don’t
understand why the

university is not able to

provide us with a more
powerful server!”

“The standard tool is a

chaos for large debates
(…). Apart from many

technical problems,

CoLPE encouraged me
to participate”

“CoLPE is a powerful

tool but most of times I
couldn’t even accede

because of timeout

problems”

Despite previous experiences [9] using similar ad

hoc knowledge-based collaborative tools resulted

successful and with a positive effect in the discussion

process, the statistical results of this experience

showed that the discussion using CoLPE was poorly

participative (see Table 1). Moreover, the results (see

Table 2) of a structured and qualitative report

conducted at the end of the discussion confirmed a

negative impact of CoLPE on the learning experience.

In particular, the problems were originated as

follows. First, Zope is a powerful server that demands

a fairly amount of hardware resources to run. Second,

the need to process and analyze the complex

information collected from users’ interaction and

present the knowledge extracted (see Figure 1) in

(almost) real time caused CoLPE to perform very

poorly. Third, during the rush hours, the growing

number of users who concurrently requested CoLPE’s

knowledge-related data-intensive functionalities

generated noticeable performance repercussions on the

underlying hardware supporting the system. Finally,

the server was down once for a few hours during the

rush time due to maintenance of the internal network.

Figure 1. Partial feedback presented to all participants.

 As a consequence of this centralized approach,

important non-functional requirements could not be

completely satisfied in terms of fault-tolerance,

scalability and performance. Despite the negative

impact on the discussion process caused by the lack of

fault-tolerance and user scalability, in this study we

concentrate and focus on the performance

repercussions caused by the large amount of complex

information about group activity to be processed.

Indeed, the information stored in very large log files

and databases is often found with a certain degree of

redundancy, tedious and ill-formatted as well as

incomplete as at some cases certain user actions do not

generate any log entry (e.g. user may leave CoLPE by

either closing or readdressing the browser) and have to

be inferred. As a consequence, treating this information

is very costly in terms of time and space needing a

great processing effort. This is certainly the first issue

to be addressed so as to improve the overall system’s

performance. To this end a parallel approach is

proposed next to process log files efficiently.

3. Efficient processing of group activity

information

 This section presents first a generic treatment model

of the parallelization of log files. Based on previous

research [7], [11] in this field, a Grid approach is then

incorporated in the form of the Master-Worker

paradigm so as to realize the approach. Finally, we

give some guidelines of how to leverage real Grid

infrastructure for the processing of log files.

271

3.1 A general model to structure log files

 In a order to prepare the information collected from

group interaction for efficient processing, as soon as

we classified and turned it into persistent data, we store

it in the system as log files, which will contain all the

information collected in specified fields. Next, we

intend to predefine two generic types of log files

according to the two basic criteria, time and

workspace, that characterize group collaboration.

These log files will represent as great a degree of

granularity as possible regarding both criteria and they

will be parameterized so that the administrator can set

them up in accordance with the specific analysis needs.

Thus, the finest grain or the smallest log file should be

set up to store all events occur-ring in each group for

the shortest time interval. Therefore, every single

workspace will have its own log file made up of all the

events occurring within the workspace for a given

period of time.

 During data processing it will be possible to

concatenate several log files so as to obtain the

appropriate degree of granularity thus making it

possible for a distributed system to efficiently

parallelize the data processing according to the

characteristics of the computational resources. The aim

is to efficiently process large amounts of information

enabling the constant presentation of real-time

awareness and constant feed-back to users during the

group activity.

 Thus, concatenating several log files and processing

them in a parallel way, it would be possible to

constantly show each group member's absolute and

relative amount of contribution, which would provide

participants with essential feedback about the

contribution of others as a quantitative parameter

supporting the production function. In a similar way,

real-time awareness is possible by continuously

parallelizing and processing each and every single fine-

grained log file of each workspace involved at the

same time in order to permanently notify all workspace

members of what is going on in their groups. Finally,

showing the results of complex statistics after longer

periods of time (e.g. at 12 hour intervals) is very

important for the group's tutor to be able to monitor

and assess the group activity as a qualitative parameter

supporting acquisition of information about students'

problem-solving behavior, group processing and

performance analysis.

3.2 A Grid-based processing of log files

Over the last years, Grid computing has become a

real alternative for developing parallel applications that

employ its great computational power [10]. However,

due to the complexity of the Computational Grid, the

difficulty encountered in developing parallel

applications is higher than in traditional parallel

computing environments. Thus, in order to simplify the

development of Grid-aware applications several high-

level programming frameworks have been proposed,

among which is the Master-Worker Framework

(MWF) [11].

The Master-Worker (MW) [11] model (also known

as Master-Slave or Task Farming model) has been

widely used for developing parallel applications in

traditional supercomputing environments such as

parallel machines and clusters of machines. In the MW

model there are two distinct types of processors:

master and workers. The master processor performs the

control and coordination and assigns tasks to the

workers. It also decides what data will be sent to the

workers. The workers typically perform most of the

computational work. The MW model has proved to be

efficient in developing applications using different

degrees of granularity of parallelism. Indeed, it has

several advantages such as flexibility and scalability

(the worker processors can be implemented in many

different ways and they can be easily added if needed)

as well as separation of concerns (the master performs

coordination tasks and the worker processors carry out

specific tasks). This paradigm is particularly useful

when the definition of the tasks to be completed by the

workers can be done easily and the communication

load between the master and workers is low.

MWF allows users to easily parallelize scientific

computations through the master-worker paradigm on

the computational Grid. On the one hand, MWF

provides a top level interface that helps the

programming tasks to distribute large computations in

a Grid computing environment; on the other hand, it

offers a bottom level interface to existing Grid

computing toolkits, for instance, using the Condor

system to provide Grid services. The target

applications of MWF are parallel applications with

weak synchronization and reasonably large granularity.

As we show next, this framework is appropriate for

processing log files of group activity since we have

different degrees of granularity available so as to

guarantee efficiency and, furthermore, there is no need

for synchronization or communication between the

worker processors. Moreover, in our application, the

communication load between the master and workers is

very low.

The architecture of the application (see Figure 2 and

[11]) is made up of three parts: (1) the Collaborative

Learning Application Server, which is in charge of

maintaining the log files and storing them in specified

locations; (2) the MW application for processing log

272

files and, (3) the application that uses the resulting

information in the data bases to compute statistical

results and present them to the final user.

Figure 2. Generic architecture of the application for

processing log files

Next subsection introduces a realization of this

general approach based on the architecture showed in

Figure 2 in the form of Grid middleware to efficiently

parallelize the processing of logs files.

3.2.1 The Master-Worker application

We proceed now to present more details of the MW

application, basically how the master and worker

processors are programmed.

The master is in charge of generating new tasks and

submitting them to the MWDriver for distributing

them to the worker processors while the worker

processors run in a simple cycle: receiving the message

describing the task from the master, processing the task

according to a specified routine and sending the result

back to the master.

The MW framework, which schedules the tasks,

manages the lists of workers and of tasks to be

performed by the MWDriver. Tasks are assigned to

workers by giving the first task on the list to the first

idle worker on the worker list. We take advantage of

the fact that the MWDriver’s interface allows the task

list to be ordered according to a user’s criteria and the

list of workers to be ordered according to their

computational power. Thus, we order the task list in

decreasing order of log file size and the machines in

decreasing order of processing capacity so that “good”

machines have priority in receiving the largest log

files. Furthermore, we have a unique type of task to be

performed by the workers that consists in processing a

log file. We assume that the workers have the

processing routine available; otherwise, the worker

would take a copy of the routine on receiving a task for

the first time and then use a flag to indicate whether it

must receive a copy of the routine or not.

The description of the algorithms for the task, and

master and worker processors can be found at [11].

3.2.2 Efficiency issues of the MW Application

It should be observed that the communication takes

place between master and the workers at the beginning

and the end of the processing of each task. Therefore,

our application has weak synchronization between the

master and the workers, which ensures that it can run

without loss of performance in a Grid environment.

Moreover, the number of workers can be adapted

dynamically so that if new resources appear they can

be incorporated as new workers in the application; in

addition, if a worker in the Grid becomes unavailable

while processing a task, the task can be reallocated to

another worker. Finally, by having different degrees of

granularity of the log files it is possible to efficiently

distribute the load balance among workers and

minimize the transmission of the data log files from

their original locations to the worker machine.

3.3 Adding Grid infrastructure

We show here how the MW paradigm is appropriate

for processing log files of group activity in a Grid

environment, since we have different degrees of

granularity available and, moreover, there is no need

for synchronization between the worker processors as

tasks are completely independent from one another. To

this end, we provide the guidelines for a minimal Grid

implementation prototype using the standard Globus

Toolkit [12] middleware as well as how to deploy it on

the “real” grid context of the Planetlab [13] platform.

3.3.1 Using Globus Toolkit

The Globus Toolkit (GT) [13] is the actual de facto

Grid middleware standard. The core of the GT is a

Grid service container implemented in Java that

leverages and extends the Apache’s AXIS [14] web

services container.

Planetlab is turned into a Grid fabric by installing

the GT Grid service container. The worker is then

implemented as a simple Grid service and deployed on

the GT3 container. Finally, a master is in charge of

dispatching tasks just by calling the operations exposed

by the worker Grid services, as follows:

• The worker Grid service publishes an interface

with only one operation that the master calls in

273

order to dispatch a task to the worker. This

operation passes as an input a textual

representation of the events to be processed by that

task and returns a data structure containing

performance information about the task executed

(i.e. elapsed time, number of events processed and

number of bytes processed).

• The master reads from a configuration file (1) the

folder that contains the event log files to process,

(2) the available workers, (3) the number of

workers to use, and (4) the size of the task to be

dispatched to each worker expressed in number of

events. The master then proceeds as follows: it

picks as much workers as needed from the

configuration file and puts them all in a queue of

idle workers. Then it enters a loop reading the

events from the event log files and, each time it

has read a number of events, it either waits for a

worker if the queue is empty or calls the worker’s

operation. Once the call to the worker returns, the

worker is put back into the queue of idle workers.

The master exits the loop when all events in the

event log files have been read and all the tasks that

were dispatched have finalized.

Please note this is not a real GT Grid

implementation of the MW paradigm but a proof-of-

concept, thus important features in a real environment

such as fault-tolerance and dynamic discovery of

available workers, are still to be considered.

4. Conclusions and future work

In this paper, we have first argued how the

provision of continuous information about the

discussion process in on-line CSCL practices can

greatly improve the group activity in terms of decision-

making, group organization, social engagement,

support, monitoring and so on. However, from our

experience at the Open University of Catalonia certain

requirements are especially frustrating when they are

not fulfilled appropriately during the discussion

process, such as fault-tolerance, scalability, and

performance. As a solution to alleviate this problem we

have presented a general Grid approach to overcome

these demanding requirements by improving the

processing time of a large amount of complex event

information of group activity log files

We plan to fully implement this general approach

by developing both an ad hoc processor for the

CoLPE’s log files and a Java version of the MW

paradigm, which will be deployed on the PlanetLab’s

nodes and turned into Grid by using GT middleware.

In addition, we plan to make an in-depth analysis

through data mining techniques to provide tutors with

ongoing progress of students learning during the

discussion activity.

5. REFERENCES

1. Dillenbourg, P. (ed.) (1999): Collaborative Learning.

Cognitive and Computational Approaches. Elsevier

Science Ltd. 1-19.

2. Schellens, T. & Valcke, M. (2006). Fostering

knowledge construction in university students through

asynchronous discussion groups. Computers &

Education. 46(4):349-370, Academic Press: Elsevier

Ltd, May 2006.

3. Gutwin, C., Stark, G. and Greenberg, S. Support for

Workspace Awareness in Educational Groupware. in

Proceedings of the ACM Conference on Computer

Supported Collaborative Learning, Bloomington,

Indiana, USA October 17-20, 1995.

4. Zumbach, J., Hillers, A. & Reimann, P. (2003).

Supporting Distributed Problem-Based Learning: The

Use of Feedback in Online Learning. In T. Roberts

(Ed.), Online Collaborative Learning: Theory and

Practice pp. 86-103. Hershey, PA: Idea.

5. Caballé, S., Feldman, J. (2008). CoLPE: Communities

of Learning Practice Environment. In proceedings of

DIAC-2008/OD2008. Berkeley, CA, USA. To appear.

6. Caballé, S., Xhafa, F., Daradoumis, Th. (2007). A

Service-oriented Platform for the Enhancement and

Effectiveness of the Collaborative Learning Process in

Distributed Environments. In Proc. of GADA 2007.

Vilamoura, Algarve, Portugal. LNCS, vol. 4804. ISBN:

978-3-540-76835-7.

7. Caballé, S., Xhafa, F., Daradoumis, Th. (2008). A Grid

Approach to Efficiently Embed Information and

Knowledge about Group Activity into Collaborative

Learning Applications. Book: The Learning Grid

Handbook. pp. 173-197. Amsterdam, The Netherlands:

IOS Press. ISBN: 978-1-58603-829-8.

8. Zope: http://www.zope.org (web page as of April 2008).

9. Caballé, S., Daradoumis, Th., Xhafa, F. (2008).

Providing an Effective Structured and Context-aware

Asynchronous Discussion Forum for Collaborative

Knowledge Building. In Proceed. of ED-MEDIA 2008.

Vienna, Austria. AACE Press. To appear.

10. Foster, I. and Kesselman, C. The Grid: Blueprint for a

Future Computing Infrastructure. pp. 15-52. Morgan

Kaufmann, San Francisco, CA, 1998.

11. Xhafa, F., Caballé, S., Daradoumis, Th., & Zhou, N.

(2004). A Grid-Based Approach for Processing Group

Activity Log Files. In Proceed. of GADA'04, Agia

Napa, Cyprus. Lecture Notes in Computer Science, vol.

3292, Springer 2004, ISBN 3-540-23664-3.

12. Globus: http://www.globus.org (web page as of April

2008).

13. Planetlab: http://www.planet-lab.org (web page as of

April 2008).

14. Apache Axis: http://ws.apache.org/axis/ (web page as of

April 2008).

274

