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Abstract: In this paper, the design of a performance-varying multivariable Proportional-Integral-
Derivative (PID) controllers is presented. The main objective is to provide a framework for changing
online the closed-loop behavior of the controlled system using the shifting pole placement approach. In
order to carry out this target, the PID design problem is transformed into a static output feedback design
problem which is analyzed through the linear parameter-varying (LPV) paradigm. An academic example
is used to demonstrate the effectiveness of the proposed approach.
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1. INTRODUCTION

PID controllers are still the most widespread controllers in
the process industry owing to the cost/benefit ratio they can
provide, which is often difficult to improve with more advanced
control techniques (Sánchez et al., 2017). Since Ziegler-Nichols
(ZN) presented their tuning method (Ziegler and Nichols,
1942), a large number of other procedures have been devel-
oped, as those based on the control system performance (Co-
hen and Coon, 1952, Lopez et al., 1967, Rovira et al., 1969,
Chien and Fruehauf, 1990, Tavakoli and Tavakoli, 2003), on
robustness (Kristiansson and Lennartson, 2006, Rivera et al.,
1986, Panagopoulos et al., 2002, Alfaro et al., 2010) and the
methods based on multi-objective optimization approach, see
for example (Herreros et al., 2002, Reynoso-Meza et al., 2013,
Sánchez et al., 2015, Reynoso-Meza et al., 2016).

However, there is a continuous interest on finding new ap-
proaches to design PID controllers. The pole placement is a
design procedure which is described in literature for the first
time in Åström and Wittenmark (1984), Astrom (1988). The
main idea of this approach is to find a feedback law such that
the closed loop poles have the desired locations. Looking at
(Zhang and Duan, 2017, Mandal and Sutradhar, 2017, Argha
et al., 2017, Zhai et al., 2017), it can be seen that a lot of effort
has been put in developing techniques using the pole placement
design procedure.

Recently, in Rotondo et al. (2013, 2015), the state-feedback
multivariable case using the shifting specifications to select
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different performances for different values of the scheduling pa-
rameters has been addressed. By introducing some parameters,
or using the existing ones, the controller can be designed in such
a way that different values of these parameters imply different
regions where the closed-loop poles are situated. Since the pole
location is related to the transient behavior of the closed-loop
system, as well as to the magnitude of the control input used to
drive the system to the desired equilibrium state, the shifting
pole placement approach allows the designer to vary online
the control system performance, which can be of interest, for
example, in the case of systems affected by input saturations or
faults.

The main contribution of this paper is the extension of the
design using shifting pole placement to the case where the
controller is not multivariable state-feedback one, but a PID
controller. In order to do so, it is needed to transform the PID
design problem into an equivalent static output feedback (SOF)
problem. In this case, the obtained conditions are Bilinear
Matrix Inequalities (BMIs), see e.g., (Zheng et al., 2002, Ge
et al., 2002, Toscano, 2007, Veselỳ and Ilka, 2017, Goncalves
et al., 2008). BMIs are harder to solve than LMIs, but there are
solvers available such as PENBMI that can address them. Using
an example proposed in the literature, the results obtained in
simulation will demonstrate the effectiveness of the proposed
approach.

The rest of the paper is organized as follows. Section 2, is
devoted to the problem formulation. Then, in Section 3, the
shifting pole placement approach for the design of a parameter-
scheduled, that is the main topic of this paper is presented.
In Section 4, the design conditions based on BMIs for solv-
ing computationally the problem of designing a static output
feedback controller is outlined. In Section 5, an academic ex-
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ample is used to demonstrate the effectiveness of the proposed
approach. Finally, conclusions are outlined in Section 6.

2. PROBLEM FORMULATION

Consider the following continuous-time LTI system:
ẋ(t) = Ax(t)+Bu(t) (1)
y(t) =Cx(t) (2)

for which the vectors x(t) ∈ Rnx , u(t) ∈ Rnu and y(t) ∈ Rny

define the state variables, the control inputs and the available
outputs, respectively, while A, B, C are known matrices with
appropriate dimensions.

For the LTI system (1)-(2), we wish to design a parameter-
scheduled PID controller with the following structure:

u(t) = FA (ρ(t))y(t)+FB (ρ(t))
t∫

0

y(τ)dτ +FC (ρ(t))
dy(t)

dt

(3)
where ρ(t) is an exogenous parameter vector that takes values
in a convex set P ⊂ Rnρ , and FA(·), FB(·), FC(·) are matrix
functions to be designed such that the closed-loop system
made up by the interconnection of (1)-(2) with (3) satisfies
the shifting pole placement specification (Rotondo et al., 2013,
2015), which means that the closed-loop poles are placed in
an LMI region (Chilali and Gahinet, 1996) D (ρ(t)), with a
characteristic function that depends on ρ(t):

D (ρ(t)) = {s ∈ C : fD (s,ρ(t))< 0} (4)

fD (s,ρ(t)) = α (ρ(t))+ sβ (ρ(t))+ s∗β (ρ(t))T

= [αkl (ρ(t))+βkl (ρ(t))s+βlk (ρ(t))s∗]1≤k,l≤m
(5)

where α (ρ(t)) = [αkl (ρ(t))]1≤k,l≤m ∈ Rm×m is a given sym-
metric matrix function, β (ρ(t)) = [βkl (ρ(t))]1≤k,l≤m ∈ Rm×m

is a given matrix function, and s∗ denotes the complex conju-
gate of s. It is worth recalling that among the regions that are
representable as LMI regions, through an appropriate choice of
the matrix functions α(·) and β (·), there are semiplanes, disks
and horizontal strips.
Remark 1. The motivation for scheduling a controller using the
exogenous parameter ρ(t), and using a shifting pole placement
specification instead of a fixed one for its design, lies in the
fact that the controller will behave in such a way that different
values of ρ(t) will lead to different regions where the closed-
loop poles are situated. Hence, the shifting pole placement
approach provides an elegant framework for modifying online
the closed-loop behavior of the controlled system due, for
example, to changes in its health status or the energy cost.

The first step for solving the aforementioned problem of design-
ing a PID controller using a shifting pole placement approach is
to transform (3) into a SOF controller, such that a more general
design procedure can be employed. To this end, following the
steps described in Zheng et al. (2002), under the assumption
that the matrix Ξ(ρ(t)) = I−FC (ρ(t))CB is invertible ∀ρ ∈ P,
the PID controller design can be reduced to design a SOF
controller for the following system:

ż(t) = Āz(t)+ B̄u(t) (6)
ȳ(t) = C̄z(t) (7)
u(t) = F̄ (ρ(t)) ȳ(t) (8)

where:

z(t) =

[
x(t)T ,

(∫ t

0
y(τ)dτ

)T
]T

Ā =

[
A 0
C 0

]
, B̄ =

[
B
0

]
, C̄ =

[ C 0
0 I

CA 0

]
F (ρ(t)) =

[
FA (ρ(t)) FB (ρ(t)) FC (ρ(t))

]
= Ξ(ρ(t))−1 [ FA (ρ(t)) FB (ρ(t)) FC (ρ(t)) ]

By exploiting the fact that the invertibility of Ξ(ρ(t)) ensures
that also

Ξ̃(ρ(t)) = I +CBFC (ρ(t)) (9)
is invertible, then once the matrix functions FA (ρ(t)), FB (ρ(t)),
FC (ρ(t)) have been obtained, the PID gains can be recovered
as:

FC (ρ(t)) = FC (ρ(t))
[
I +CBFC (ρ(t))

]−1 (10)
FB (ρ(t)) = [I−FC (ρ(t))CB]FB (ρ(t)) (11)
FA (ρ(t)) = [I−FC (ρ(t))CB]FA (ρ(t)) (12)

Remark 2. The problem formulated in this section concerns the
regulation of a plant about the zero equilibrium point. Note that
regulation about a non-zero equilibrium point or tracking of
some desired trajectory can be addressed with small changes by
relying on a reference model approach, see e.g. Rotondo et al.
(2017).

3. SHIFTING POLE PLACEMENT USING STATIC
OUTPUT FEEDBACK

In this section, the design of a static output feedback controller
that achieves shifting pole placement is addressed by deriving
a condition in the form of a matrix inequality.

First of all, let us recall from Rotondo et al. (2013) the following
theorem, which provides a characterization of pole clustering in
a parameter-dependent LMI region.
Theorem 1. The matrix A is D-stable in D (ρ(t)), i.e. all its
poles are in D (ρ(t)), if there exists a symmetric matrix P � 0
such that ∀ρ ∈ P:

MD (A,P,ρ)≺ 0 (13)
with:

MD (·) = α (ρ)⊗P+β (ρ)⊗ (AT P)+β (ρ)T ⊗ (PA)

=
[
αkl (ρ)P+βkl (ρ)AT P+βlk (ρ)PA

]
1≤k,l≤m (14)

Proof: It follows the steps of the proof of Theorem 2.2 in Chilali
and Gahinet (1996), thus it is omitted. �

Then, inspired by the results about static output feedback stabi-
lization using the matrix inequality approach (Cao et al., 1998),
we can derive theorems for the LMI regions of most interest in
control:

• Shifting left-hand semiplanes Re(s)< λ (ρ(t))
α (ρ(t)) =−2λ (ρ(t)) , β = 1

• Shifting right-hand semiplanes Re(s)> λ (ρ(t))
α (ρ(t)) = 2λ (ρ(t)) , β =−1

• Disks of radius r (ρ(t)) and center (−q(ρ(t)) ,0)

α (ρ(t)) =
[
−r (ρ(t)) q(ρ(t))
q(ρ(t)) −r (ρ(t))

]
, β =

[
0 1
0 0

]



• Horizontal strips −ω (ρ(t))< Im(s)< ω (ρ(t))

α (ρ(t)) =
[
−2ω (ρ(t)) 0

0 −2ω (ρ(t))

]
, β =

[
0 1
−1 0

]
Theorem 2. The system (6)-(7) is D-stabilizable in the shifting
left-hand semiplane Re(s)< λ (ρ(t)) if there exist a symmetric
matrix P� 0 and a matrix function F̄(ρ) satisfying the follow-
ing matrix inequality ∀ρ ∈ P:[
−2λ (ρ)P+ ĀT P+PĀ−PB̄B̄T P

(
B̄T P+ F̄(ρ)C̄

)T

B̄T P+ F̄(ρ)C̄ −I

]
≺ 0

(15)
Proof: The interconnection of (6)-(7) with (8) leads to the
equivalent autonomous closed-loop system:

ż(t) =
[
Ā+ B̄F̄ (ρ(t))C̄

]
z(t) (16)

By applying Theorem 1 with α (ρ(t)) =−2λ (ρ(t)) and β = 1,
it follows that D-stabilizability in the shifting left-hand semi-
plane Re(s) < λ (ρ(t)) is achieved if there exists a symmetric
matrix P� 0 such that ∀ρ ∈ P:

−2λ (ρ)P+
[
Ā+ B̄F̄(ρ)C̄

]T P+P
[
Ā+ B̄F̄(ρ)C̄

]
≺ 0 (17)

By taking into account that C̄T F̄(ρ)T F̄(ρ)C̄ � 0 ∀C̄, F̄(ρ), the
following is obtained from (17):

−2λ (ρ)P+
[
Ā+ B̄F̄(ρ)C̄

]T P+P
[
Ā+ B̄F̄(ρ)C̄

]
(18)

+C̄T F̄(ρ)T F̄(ρ)C̄ ≺ 0
which is equivalent to (15) by Schur complements. �
Theorem 3. The system (6)-(7) is D-stabilizable in the shifting
right-hand semiplane Re(s)> λ (ρ(t)) if there exist a symmet-
ric matrix P � 0 and a matrix function F̄(ρ) satisfying the
following matrix inequality ∀ρ ∈ P:[

2λ (ρ)P− ĀT P−PĀ−PB̄B̄T P
(
B̄T P− F̄(ρ)C̄

)T

B̄T P− F̄(ρ)C̄ −I

]
≺ 0

(19)
Proof: It follows the steps of the proof of Theorem 2, thus it is
omitted. �
Theorem 4. The system (6)-(7) is D-stabilizable in the disk
of radius r (ρ(t)) and center (−q(ρ(t)) ,0) if there exist a
symmetric matrix P � 0 and a matrix function F̄(ρ) satisfying
the following matrix inequality ∀ρ ∈ P: −r(ρ)P q(ρ)P+ ĀT P C̄T F̄(ρ)T

q(ρ)P+PĀ −
(
r(ρ)P+PB̄B̄T P

)
PB̄

F̄(ρ)C̄ B̄T P −I

≺ 0 (20)

Proof: The interconnection of (6)-(7) with (8) leads to the
equivalent autonomous closed-loop system (16) for which,
applying Theorem 1, D-stabilizability in the disk of radius
r (ρ(t)) and center (−q(ρ(t)) ,0) is achieved if there exists a
symmetric matrix P� 0 such that ∀ρ ∈ P:[

−r(ρ)P q(ρ)P+
(

ĀT +C̄T F̄(ρ)T B̄T
)

P

q(ρ)P+P
(
Ā+ B̄F̄(ρ)C̄

)
−r(ρ)P

]
≺ 0 (21)

By taking into account that C̄T F̄(ρ)T F̄(ρ)C̄� 0 ∀C̄, F̄(ρ), the
following is obtained from (17):[
−r(ρ)P+C̄T F̄(ρ)T F̄(ρ)C̄ q(ρ)P+

(
ĀT +C̄T F̄(ρ)T B̄T

)
P

q(ρ)P+P
(
Ā+ B̄F̄(ρ)C̄

)
−r(ρ)P

]
≺ 0 (22)

which, by an appropriate use of Schur complements, becomes
(20). �
Theorem 5. The system (6)-(7) is D-stabilizable in the hori-
zontal strip −ω (ρ(t))< Im(s)< ω (ρ(t)) if there exist a sym-
metric matrix P � 0 and a matrix function F̄(ρ) satisfying the
following matrix inequality ∀ρ ∈ P:


−2ω (ρ(t))P−PB̄B̄T P −ĀT P+PĀ C̄T F̄(ρ)T PB̄

ĀT P−PĀ −2ω (ρ(t))P−PB̄B̄T P PB̄ C̄T F̄(ρ)T

F̄(ρ)C̄ B̄T P −I 0
B̄T P F̄(ρ)C̄ 0 −I

≺ 0

(23)
Proof: It follows the steps of the proof of Theorem 4, thus it is

omitted. �

4. BMI DESIGN CONDITIONS

In this section, the development of design conditions for solv-
ing computationally the problem of designing a static output
feedback controller that achieves shifting pole placement will
be addressed.

The main difficulty with the conditions provided by Theorems
2-5 is that they do not provide implementable design conditions
because, due to the variability of ρ in P, they impose an infinite
number of matrix inequalities to be solved. However, due to P
being a convex set, which means that:

ρ(t) =
N

∑
i=1

πi (ρ(t))ρi (24)

it is possible to alleaviate this difficulty by choosing λ (ρ(t)),
r (ρ(t)), q(ρ(t)) and ω (ρ(t)) to range in a polytope whose
vertices are the images of ρ1, . . . ,ρN : λ (ρ(t))

r (ρ(t))
q(ρ(t))
ω (ρ(t))

=
N

∑
i=1

πi (ρ(t))

 λi
ri
qi
ωi

 (25)

and choose the controller variable F̄ (ρ(t)) as:

F̄ (ρ(t)) =
N

∑
i=1

πi (ρ(t))F̄i (26)

Then, thanks to a basic property of matrices (Horn and Johnson,
1990), it is possible to obtain appropriate corollaries from The-
orems 2-5 by rewriting the conditions at the polytope vertices,
as detailed hereafter.
Corollary 1. The system (6)-(7) is D-stabilizable in the shift-
ing left-hand semiplane Re(s) < λ (ρ(t)) = ∑

N
i=1 πi (ρ(t))λi if

there exist a symmetric matrix P � 0 and matrices F̄1, . . . , F̄N
satisfying the following BMIs for i = 1, . . . ,N:[
−2λiP+ ĀT P+PĀ−PB̄B̄T P

(
B̄T P+ F̄iC̄

)T

B̄T P+ F̄iC̄ −I

]
≺ 0 (27)

Proof: Due to a basic property of matrices , any linear combina-
tion of (27) with non-negative coefficients is negative definite.
Hence, using the linear combination brought by (24), (27) leads
to (15). �
Corollary 2. The system (6)-(7) is D-stabilizable in the shift-
ing right-hand semiplane Re(s) > λ (ρ(t)) = ∑

N
i=1 πi (ρ(t))λi

if there exist a symmetric matrix P� 0 and matrices F̄1, . . . , F̄N
satisfying the following BMIs for i = 1, . . . ,N:[

2λiP− ĀT P−PĀ−PB̄B̄T P
(
B̄T P− F̄iC̄

)T

B̄T P− F̄iC̄ −I

]
≺ 0 (28)

Proof: It follows the reasoning of the proof of Corollary 1, thus
it is omitted. �
Corollary 3. The system (6)-(7) is D-stabilizable in the disk of
radius r (ρ(t)) = ∑

N
i=1 πi (ρ(t))ri and center (−q(ρ(t)) ,0) =

(−∑
N
i=1 πi (ρ(t))qi,0) if there exist a symmetric matrix P � 0



and matrices F̄1, . . . , F̄N satisfying the following BMIs for i =
1, . . . ,N:  −riP qiP+ ĀT P C̄T F̄T

i
qiP+PĀ −

(
riP+PB̄B̄T P

)
PB̄

F̄iC̄ B̄T P −I

≺ 0 (29)

Proof: It follows the reasoning of the proof of Corollary 1, thus
it is omitted. �
Corollary 4. The system (6)-(7) is D-stabilizable in the hor-
izontal strip −ω (ρ(t)) < Im(s) < ω (ρ(t)) with ω (ρ(t)) =
∑

N
i=1 πi (ρ(t))ωi if there exist a symmetric matrix P � 0 and

matrices F̄1, . . . , F̄N satisfying the following BMIs for i =
1, . . . ,N:
−2ωiP−PB̄B̄T P −ĀT P+PĀ C̄T F̄T

i PB̄
ĀT P−PĀ −2ωiP−PB̄B̄T P PB̄ C̄T F̄T

i
F̄iC̄ B̄T P −I 0
B̄T P F̄iC̄ 0 −I

≺ 0

(30)
Proof: It follows the steps of the proof of Theorem 4, thus it is
omitted. �
Remark 3. As suggested by Zheng et al. (2002), in order
to guarantee the invertibility of Ξ̃(ρ(t)) = I + C̄B̄F̄C (ρ(t)),
needed for using a PID controller instead of the more general
static output feedback controller, as detailed in Section 2, the
following LMIs (i = 1, . . . ,N) can be added to the design con-
ditions provided by Corollaries 1-4:

I +C̄B̄F̄i,C + F̄T
i,CB̄TC̄T � 0 (31)

However, (31) represents a very conservative condition, so it
is recommendable to try first to post-check the invertibility of
I+C̄B̄F̄C(ρ) without using the constraint (31). If this fails, then
modify Corollaries 1-4 by incorporating the constraint (31).
Note that the invertibility of I +C̄B̄F̄C(ρ) may also be checked
using the results detailed in Elsner et al. (2002).

5. EXAMPLE

The example illustrated in this section is taken from COMPleib
(Leibfritz, 2006, Leibfritz and Volkwein, 2007), a constrained
matrix optimization problem library, which contains problems
drawn from a variety of control systems engineering applica-
tions. In particular, the example NN8 is used, which is described
as an academic system stabilizable by a static output feedback
control law, defined by a continuous-time LTI model as in (1)-
(2) with:

A =

[ −0.2 0.1 1
−0.05 0 0

0 0 −1

]
B =

[ 0 1
0 0.7
1 0

]
C =

[
1 0 0
0 1 0

]
For this system, and for illustrative purposes, we wish to design
the parameter-scheduled PID controller (3) with ρ ∈ [0,1]
such that the closed-loop loops stays inside the following LMI
region:

D (ρ(t)) = {s ∈ C :−10ρ−0.5 < Re(s)<−0.5ρ−0.02}
that varies with the scheduling parameter ρ . In practice, the
particular parametrisation of the region with parameter ρ will
depend on the particular meaning of ρ and the control goals that
should be achieved. The design is done using Corollaries 1-2,
modified appropriately by including the additional constraint
(31). In particular, (27) has been written with a Lyapunov
variable Pmax and λ1 = −0.02, λ2 = −0.52, while (28) has
been written with a Lyapunov variable Pmin and λ1 =−0.5 and
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Fig. 1. Closed-loop poles for different values of ρ(t).

λ2 =−10.5, with ρ1 and ρ2 corresponding to ρ = 0 and ρ = 1,
respectively. The resulting BMIs can be solved using available
toolboxes, such as YALMIP (Lofberg, 2004), with the PENBMI
solver (Henrion et al., 2005), obtaining:

Pmax = 105


4.02 −4.50 3.44 1.52 −1.24
−4.50 8.39 −2.77 −1.67 3.82
3.44 −2.77 4.24 1.18 0.17
1.52 −1.67 1.18 0.61 −0.51
−1.24 3.82 0.17 −0.51 2.40



Pmin = 105


3.01 −3.19 4.49 0.59 −0.56
−3.19 7.98 −4.37 −0.96 2.62
4.49 −4.37 7.10 0.80 −0.61
0.59 −0.96 0.80 0.15 −0.26
−0.56 2.62 −0.61 −0.26 1.03


F̄1 =

[
−9.8 0.6 −0.1 0.1 −0.2 −187.5
0.4 −1.5 0.1 −0.4 0.2 0.4

]
F̄2 =

[
−127.3 10.2 −1.8 2.6 −6.5 −2401.3

6.7 −10.9 1.6 −2.9 6.1 4.3

]
which lead to:

F̄A (ρ(t)) =
[
−117.5ρ(t)−9.8 9.7ρ(t)+0.6

6.3ρ(t)+0.4 −9.4ρ(t)−1.5

]
F̄B (ρ(t)) =

[
−1.7ρ(t)−0.1 2.5ρ(t)+0.1
1.5ρ(t)+0.1 −2.5ρ(t)−0.4

]
F̄C (ρ(t)) =

[
−6.3ρ(t)−0.2 −2213.8ρ(t)−187.5
5.9ρ(t)+0.2 3.9ρ(t)+0.4

]
For the sake of illustration, let us consider three fixed values
for the scheduling parameter ρ , i.e. ρ = 0, ρ = 0.5 and ρ = 1,
which correspond to the PID gains shown in Table 1. The re-
sulting closed-loop poles for different values of the scheduling
parameter ρ are plotted in Fig. 1 (red dots). The desired D
region for each value of ρ is highlighted using a light blue
background, proving that the required shifting pole placement
specification is correctly satisfied.

The free responses of the state variables are shown in Fig. 2.
These have been obtained starting from the initial state x(0) =
[1,1,1]T in four different cases, three of which correspond to
a closed-loop behavior with constant values of the scheduling
parameter ρ(t) (ρ = 0, ρ = 0.5, ρ = 1, corresponding to blue,
red and yellow line, respectively), and one to the open-loop
behavior (purple line). It can be seen from the plots that the
closed-loop system behaves as expected: ρ = 0 corresponds to a
slower dynamics of the state response, whereas ρ = 1 to a faster
one. On the other hand, the behavior with ρ = 0.5 is faster than



Table 1. PID gains

ρ = 0 ρ = 0.5 ρ = 1

FA (proportional)
[

23.8 −135.8
0.3 −1.0

] [
489.9 −975.2
0.6 −1.1

] [
997.5 −1819.2
0.7 −1.1

]

FB (integral)
[

6.9 −31.3
0.1 −0.2

] [
131.0 −254.9
0.1 −0.3

] [
265.8 −483.5
0.2 −0.3

]

FC (derivative)
[

18.2 −153.3
0.1 0.3

] [
491.2 −926.7
0.5 0.4

] [
1010.9 −1683.5

0.6 0.4

]
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Fig. 3. Response of x1 for different values of ρ(t).

the one with ρ = 0, but slower than the one with ρ = 1. This is
compatible with the fact that the closer are the dominant poles
to the imaginary axis, the slower is the response.

Fig. 3 shows the response of x1 with the open-loop scenario
replaced by a closed-loop one with a varying parameter ρ(t) =
min(1,0.2t). It is relevant that, in this case, the dynamics
around t = 0s is the same as the one in the case ρ = 0 (at
the beginning of the simulation, the purple line matches the
blue one). As the time increases, so does the value of ρ and
the system becomes faster.
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Fig. 4. Control inputs for different values of ρ(t).

Finally, the input signals are shown in Fig. 4. It can be seen
that the bigger is ρ , the bigger are the control signals, and vice
versa. This is consistent with the fact that strong control actions
are required to make the controlled system faster.

6. CONCLUSIONS

In this paper, the problem of designing multivariable PID con-
trollers, which guarantee the shifting pole placement specifica-
tion for the closed-loop system has been investigated. The de-
sign conditions are derived transforming the PID design prob-
lem into an equivalent static output feedback controller design
problem. In this way, a set of bilinear matrix inequalities is ob-
tained, which can be solved using available solvers. The results
obtained using an academic test problem have demonstrated
the main features of the proposed approach, showing that by
varying the value of scheduling parameter, it is possible to vary
both offline and online the main characteristics of the closed-
loop response.

Future work will focus on extending the proposed design ap-
proach to linear parameter varying systems, in order to enlarge
its applicability to a wider class of systems which comprise
nonlinearities, on considering other types of performance in-
dexes, as well as on replacing the ideal derivative action used
in this paper with a practical implementation which includes a
filter with a small enough time constant.

REFERENCES

V. M. Alfaro, R. Vilanova, V. Méndez, and J. Lafuente. Per-
formance/robustness tradeoff analysis of PI/PID servo and



regulatory control systems. In Industrial Technology (ICIT),
2010 IEEE International Conference on, pages 111–116.
IEEE, 2010.

A. Argha, S. W. Su, A. Savkin, and B. G. Celler. Mixed H2/H∞-
based actuator selection for uncertain polytopic systems with
regional pole placement. International Journal of Control,
pages 1–17, 2017.

K. J. Astrom. Robust and adaptive pole placement. In American
Control Conference, 1988, pages 2423–2428. IEEE, 1988.
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sis for uncertain systems. Journal of process control, 18(1):
19–26, 2008.

D. Henrion, J. Lofberg, M. Kocvara, and M. Stingl. Solving
polynomial static output feedback problems with PENBMI.
In Decision and Control, 2005 and 2005 European Control
Conference. CDC-ECC’05. 44th IEEE Conference on, pages
7581–7586. IEEE, 2005.

A. Herreros, E. Baeyens, and J. R. Perán. Design of PID-
type controllers using multiobjective genetic algorithms. ISA
transactions, 41(4):457–472, 2002.

R. A. Horn and C. R. Johnson. Matrix analysis. Cambridge
university press, 1990.

B. Kristiansson and B. Lennartson. Evaluation and simple
tuning of PID controllers with high-frequency robustness.
Journal of Process Control, 16(2):91–102, 2006.

F. Leibfritz. Compleib: Constrained matrix optimization prob-
lem library, 2006.

F. Leibfritz and S. Volkwein. Numerical feedback controller de-
sign for pde systems using model reduction: techniques and
case studies. In Real-Time PDE-Constrained Optimization,
pages 53–72. SIAM, 2007.

J. Lofberg. Yalmip: A toolbox for modeling and optimization
in matlab. In Computer Aided Control Systems Design, 2004
IEEE International Symposium on, pages 284–289. IEEE,
2004.

A. M. Lopez, J. A. Miller, C. L. Smith, and P. W. Murrill. Tun-
ing controllers with error-integral criteria. Instrumentation
Technology, 14:57–62, 1967.

S. Mandal and A. Sutradhar. Multi-objective control of blood
glucose with H∞ H∞ and pole-placement constraint. Inter-
national Journal of Dynamics and Control, 5(2):357–366,

2017.
H. Panagopoulos, K. J. Astrom, and T. Hagglund. Design

of PID controllers based on constrained optimisation. IEE
Proceedings-Control Theory and Applications, 149(1):32–
40, 2002.

G. Reynoso-Meza, J. Sanchis, X. Blasco, and M. Martı́nez.
Algoritmos evolutivos y su empleo en el ajuste de contro-
ladores del tipo PID: Estado actual y perspectivas. Re-
vista Iberoamericana de Automática e Informática Industrial
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