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ABSTRACT 9 

Methanogenic archaea enrichment of a granular sludge was undertaken in an upflow anaerobic 10 

sludge blanket reactor (UASB) fed with methanol in order to enrich methylotrophic and 11 

hydrogenotrophic methanogenic populations. A microbial community assessment, in terms of 12 

microbial composition and activity –throughout the different stages of the feeding process with 13 

methanol and acetate– was performed using specific methanogenic activity assays (SMA), 14 

quantitative real-time polymerase chain reaction (qPCR), and high throughput sequencing of 16S 15 

rRNA genes from DNA and cDNA. Distinct methanogenic enrichment was revealed by qPCR of 16 

mcrA gene in the methanol-fed community, being two orders of magnitude higher with respect to 17 

the initial inoculum, achieving a final mcrA/16S rRNA ratio of 0.25. High throughput sequencing 18 

analysis revealed that the resulting methanogenic population was mainly composed by 19 

methylotrophic archaea (Methanomethylovorans and Methanolobus genus), being also highly 20 

active according to the RNA-based assessment. SMA confirmed that the methylotrophic pathway, 21 

with a direct conversion of methanol to CH4, was the main step of methanol degradation in the 22 

UASB. The biomass from the UASB, enriched in methanogenic archaea, may bear great potential 23 

as additional inoculum for bioreactors to carry out biogas production and other related processes.  24 

 25 
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Introduction 1 

Biogas production in anaerobic digestion plants is spreading due to its potential as an alternative to 2 

fossil fuels. This renewable energy carrier can be stored and used in different applications, such as 3 

heating or electricity production, or upgraded to biomethane to inject into the grid or use as 4 

transport fuel. Raw biogas consists mainly of methane (CH4, 40-75%) and carbon dioxide (CO2, 5 

15-60%), and trace amounts of other components such as water (H2O, 5-10%), hydrogen sulphide 6 

(H2S, 0.005-2%) or ammonia (NH3, <1%) (Ryckebosch et al. 2011). In order to transform biogas 7 

into biomethane, a cleaning and upgrading process should be performed. Upgrading consist in the 8 

adjustment of the calorific value of the biogas –separating CH4 from CO2–  generally performed in 9 

order to meet the standards required to use it as vehicle fuel or for injection in the natural gas grid. 10 

After biogas transformation, applying techniques for biogas upgrading such as pressure swing 11 

adsorption, membrane separation or chemical CO2-absorption, the final product obtained typically 12 

contains 95-97% of CH4 and 1-3% of CO2 (Ryckebosch et al. 2011). An alternative to these 13 

enrichment techniques, focused on CO2 removal without changing CH4 mass, is biological 14 

methane enrichment using hydrogenotrophic methanogenic populations capable of using CO2 as a 15 

carbon source and H2 as an energy source, and convert them to CH4 (Equation 1) (Strevett et al. 16 

1995), or even capable of obtaining these electrons directly from the cathode in a process known 17 

as electromethanogenesis (Cheng et al. 2009). 18 

4H2 + CO2 �CH4 + H2O     (1) 19 

Hydrogenotrophic methanogens belong to the orders Methanobacteriales, Methanococcales, 20 

Methanomicrobiales and Methanosarcinales (Karakashev et al. 2005). Thus, obtaining a biomass 21 

rich in these microorganisms to be used as inoculum could accelerate the start up of biogas 22 

production, and of other related bioreactors processes.  23 

Upflow anaerobic sludge blanket reactors (UASB) are suitable for enriching methanogenic archaea 24 

because they can be operated at low hydraulic retention times (HRT). Bhatti et al. (1996) 25 

investigated the feasibility of methanolic waste treatment in an UASB reactor and demonstrated 26 

that methanol can be converted to methane via at least three routes. Later, Vavilin (2010) 27 

developed a model for explaining the metabolic pathways for methanol degradation with 13C-28 

labeled methanol. Methanol can either be i) directly converted to methane by methylotrophic 29 

methanogens (Equation 2), ii) generated via the intermediate formation of acetate (acetogenesis) 30 

and later converted to methane by acetoclastic methanogens (Equations 3 and 4), iii) or by 31 

hydrogenotrophic methanogens, with the use of H2 and CO2 (Equation 5 and 6). 32 

4CH3OH �3CH4 + CO2 + 2H2O     (2) 33 

4CH3OH + 2H2CO3 � 3CH3COOH + 4H2O    (3) 34 
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CH3COOH +H2O � CH4 + H2CO3     (4) 1 

CH3OH + 2 H2O � 3 H2 + HCO3
- + H+    (5) 2 

4 H2 + 2 HCO3
- + H+ � CH4 + 3 H2O     (6) 3 

Methanol was used in a previous study to favour the emergence of hydrogenotrophic methanogens 4 

when treating domestic wastewater at low to moderate temperatures (<20 ºC), and improve 5 

methane generation (Saha et al. 2015). Therefore, methanol feeding can be an alternative to 6 

CO2/H2 gassing or cultivation in an electrochemical bioreactor, to enrich an inoculum with 7 

hydrogenotrophic methanogenic archaea.  8 

The main aim of this study was to assess the utilization of a methanol-fed UASB as a system for 9 

enriching a granular sludge in methanogenic archaea and characterise the evolution of the 10 

microbial community when shifting from acetate to methanol substrate, in terms of composition and 11 

activity, using quantitative real-time polymerase chain reactions (qPCR) and high throughput 12 

sequencing of 16S rDNA and 16S rRNA. Specific methanogenic activity tests (SMA) were also 13 

performed so as to corroborate the results obtained through the microbial community analysis on 14 

active methanol routes in the UASB. 15 

 16 

Materials and methods  17 

Experimental set-up 18 

A lab-scale UASB reactor with a working volume of 0.5 L was used. The reactor was constructed 19 

with glass and equipped with a water jacket to keep the temperature at mesophilic temperature 20 

range (35 ºC). Peristaltic pumps were used to control the influent feed rate and the recirculation 21 

rate. The reactor was inoculated with 100 mL of anaerobic granular sludge (volatile suspended 22 

solids content, VSS, of 59.60 g kg-1) taken from a full-scale UASB reactor processing fruit juice 23 

wastewater (Mollerussa, Spain). The inoculum was stored at 4 ºC until its utilization in this study.   24 

 25 

Reactor operation 26 

The UASB was fed in continuous mode with a mineral medium, with a hydraulic retention time 27 

(HRT) fixed at 6 h. The reactor was operated for 416 days in 3 different phases (Table 1). The 28 

UASB was initially fed with an acetate influent for 214 days, increasing the organic loading rate 29 

(OLR) from 3 to 10 kgDQO m-3 d-1 in order to activate the biomass and acclimate it to a high OLR 30 

(Phase 1). Having achieved high operational performance, the feed was progressively changed to 31 

a methanol substrate during 21 days (Phase 2). And finally, only methanol was used as substrate 32 

for another 180 days in order to promote the enrichment in methanogenic archaea biomass (Phase 33 

3). The mineral medium contained acetate and/or methanol as organic carbon source, in 34 
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concentrations shown in Table 1 for each phase, and (per litre of deionised water): NH4Cl, 1.33 g; 1 

CaCl2, 0.04 g ; KH2PO4, 3 g; Na2HPO4, 6 g; MgSO4 0.25 g; yeast extract, 0.1 g and 1 mL of a trace 2 

mineral solution. The trace mineral solution contained (per litre of deionised water): FeCl3·H2O, 3 

1.50 g; H3BO3, 0.15 g; CuSO4·5H2O, 0.03 g; KI, 0.18 g; MnCl2·4H2O, 0.12 g; Na2MoO4·2H2O, 0.06 4 

g; ZnSO4·7H2O, 0.12 g; CoCl2·6H2O, 0.15 g; NiCl2·6H2O, 0.023 g; EDTA, 10 g (Lu et al. 2006).  5 

 6 

Specific methanogenic activity (SMA) 7 

SMAs of the anaerobic granular sludge used as inoculum, and those at the end of phase 1 8 

(acetate operation) and 3 (methanol operation) were evaluated at 36 ºC in serum bottles (120 mL), 9 

in duplicate (Angelidaki et al. 2009; Silvestre et al. 2015; Soto et al. 1993). Acetate, a VFA mix 10 

(acetate/propionate/butyrate, 70/20/10), methanol and H2 were used as substrates. The serum 11 

bottles were filled with a 50 mL solution of the granular sludge (5 gVSS L-1), substrate (5 gCOD L-1), 12 

macronutrients, micronutrients and bicarbonate (1 gNaHCO3- gCODadded
-1). A control duplicate without 13 

the medium was included in the setup. The bottles were sealed with rubber stoppers and capped 14 

with aluminium crimp caps. The headspace was purged for 5 min with N2 in order to remove O2. 15 

Methane production was monitored periodically taking a gas sample (0.2 mL) from the head space 16 

with a gas-tight syringe, and analysing the gas composition by gas chromatography. The SMA was 17 

calculated from the linear increase in the CH4 concentration at the beginning of the experiments –18 

when no lag phase was observed– divided by the amount of VSS. 19 

 20 

Analytical methods and calculations 21 

Reactor head space methane content, soluble chemical oxygen demand (CODs) and pH of the 22 

UASB effluent were used as control parameters for each experimental condition. Volatile 23 

suspended solids (VSS), CODs and pH (CRISON 2000 pH electrode) were determined according 24 

to Standard Methods 5220 (APHA 1999). CODs removal efficiency was calculated from the 25 

difference between influent and effluent concentrations, divided by the influent concentration. 26 

Biogas composition (CH4, CO2) was analysed using a VARIAN CP-3800 (Varian, USA) gas 27 

chromatograph equipped with a thermal conductivity detector (TCD). 28 

 29 

Microbial community analysis 30 

A microbial community assessment in the initial UASB inoculum and in the granular sludge at the 31 

end of Phase 1 (acetate feed) and 3 (methanol feed) was performed using both culture-32 

independent molecular techniques –quantitative real-time polymerase chain reactions (qPCR) and 33 

high throughput sequencing (MiSeq, Illumina) of 16S rDNA and 16S rRNA. Nucleic acid extracts 34 

such as DNA, RNA, and cDNA were stored frozen at -80 ºC. 35 

 36 

 37 



5 

 

Nucleic acid extraction and complementary DNA (cDNA) synthesis  1 

Simultaneous total genomic DNA and RNA (including rRNA) were extracted from triplicate 2 

independent samples at each sampling event from known weights (granular biomass) by means of  3 

PowerMicrobiomeTM RNA Isolation Kit (MoBio Laboratories Inc., Carlsbad, CA, USA), according to 4 

the manufacturer’s instructions. Purified mRNA and rRNA were obtained by removal of co-5 

extracted DNA with DNase I incubation (provided in the kit) at 25 ºC for 10 min, and inactivation of 6 

DNase I with EDTA 50 mM (Thermo Scientific Fermentas, USA) at 75 ºC for 5 min. A reverse 7 

transcription step PCR (RT-PCR) for cDNA synthesis from the obtained RNA was performed using 8 

a PrimeScriptTM RT Reagent Kit (Takara Bio Inc., Japan). The reaction was carried out in a final 9 

volume of 30 µL which contained 15 µL of purified RNA, 6 µL of PrimeScriptTM buffer, 1.5 µL of 10 

retrotranscriptase mix, 1.5 µL of Random 6 mers, and 6 µL of RNase Free dH2O. Henceforth, the 11 

term cDNA or 16S rRNA is used to refer to the extracted RNA or 16S amplicons from cDNA, as a 12 

measure of gene expression and microbial activity, whereas DNA or 16S rDNA terms will be used 13 

to refer to the extracted genomic DNA and 16S amplicons from DNA. 14 

 15 

Quantitative PCR assay (qPCR) 16 

Total and expressed gene copy numbers of eubacterial 16S rRNA gene and mcrA gene 17 

(methanogenic archaeal methyl coenzyme-M reductase) were quantified by means of quantitative 18 

real-time PCR (qPCR). Each sample was analysed in triplicate by means of the three independent 19 

DNA and RNA (cDNA) extracts. The analysis was carried out with the Brilliant II SYBR Green 20 

qPCR Master Mix (Stratagene, La Jolla, CA, USA) in a Real-Time PCR System Mx3000P 21 

(Stratagene) following the protocol described elsewhere (Cerrillo et al. 2016). 22 

Standard curve parameters of the qPCRs show that the reactions performed, highly efficient, were 23 

as follows (for 16S rRNA and mcrA, respectively): slope of -3.515 and -3.558; correlation 24 

coefficient of 0.999 and 0.996; efficiency of 93 and 91%.  25 

 26 

High throughput sequencing of 16S rDNA and 16S rRNA and data analysis 27 

Simultaneous extracts of DNA and RNA (cDNA), obtained from the initial inoculum and the UASB 28 

granular sludge, were assessed by RT-qPCR analysis and high throughput 16S-sequencing 29 

purposes. The specific steps followed during the MiSeq analysis of massive libraries of 16S rDNA 30 

and 16S rRNA both for eubacteria and archaea were carried out as follows. Massive bar-coded 31 

16S rRNA gene libraries (16S rDNA and 16S rRNA), targeting eubacterial region V1-V3 16S rRNA 32 

and archaeal region V3-V4, were sequenced utilizing MiSeq equipment (Illumina, San Diego, CT, 33 

USA). Each DNA or cDNA was amplified separately (16S rDNA and 16S rRNA respectively) with 34 

both 16S-based eubacteria and archaea set of primers. For eubacteria libraries the primers set 35 

was 27F (5’-AGRGTTTGATCMTGGCTCAG–3’) and 519R (5’-GTNTTACNGCGGCKGC TG-3’), 36 

while the archaeal set of primers was 349F (5’-GYGCASCAGKCGMGAAW-3’) and 806R (5’–37 
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GGACTACVSGGGTATCTAAT-3’). The sequencing step was performed at MR DNA 1 

(www.mrdnalab.com, Shallowater, TX, USA) on a MiSeq instrument following the manufacturer’s 2 

guidelines. The obtained reads were compiled in FASTq files for further bioinformatics processing, 3 

following the steps described elsewhere (Sotres et al. 2016). OTUs were then taxonomically 4 

assigned using the Ribosomal Database Project (RDP training set 14) Naïve Bayesian Classifier 5 

(http://rdp.cme.msu.edu), and compiled into each taxonomic level with a bootstrap cutoff value of 6 

80% (Cole et al. 2009; Wang et al. 2007). 7 

The data obtained from sequencing datasets were submitted to the Sequence Read Archive of the 8 

National Center for Biotechnology Information (NCBI) under study accession number SRP071847 9 

for eubacterial and archaeal populations. 10 

Diversity indices estimators (Shannon (H’), inverted Simpson and sampling Goods coverage) were 11 

calculated with the defined OTUs table (shared.file) using MOTHUR software, version 1.34.4, for 12 

each sample, normalising the number of reads of all samples to those of the sample with the 13 

lowest number of reads (http://www.mothur.org) (Schloss et al. 2009). Statistical multivariate 14 

analysis by means of correspondence analysis (CA) on the OTUs abundance matrix of Eubacterial 15 

and Archaeal OTUs distribution was performed. The obtained samples and predominant OTUs 16 

were depicted in a 2D biplot (relative abundance above 1%). Statistical multivariate 17 

correspondence analysis of MiSeq data was performed by means of XLSTAT 2014 software 18 

(Addinsoft, Paris, France). 19 

 20 

Results 21 

Operation performance 22 

Average COD removal efficiencies and methane content in the biogas for each phase are shown in 23 

Table 2. The COD removal efficiency by the end of Phase 1 was of 82±12%, gradually increasing 24 

during the acetate shift to methanol, up to an average value of 97±1% by the end of Phase 3. 25 

Methane content in the head space of the reactor increased from 68±14%, when using acetate as 26 

feed, to 85±1% during the methanol fed phase. The low methane content during Phase 1 was 27 

partly due to operational problems with the outlet of the reactor, which led to air flowing into the 28 

head space.  29 

 30 

Metabolic pathways and granular sludge activity 31 

To better understand the metabolic pathways of methanol in the UASB (Vavilin 2010), and assess 32 

the activity of the biomass in the UASB reactor, both the SMA of the granules used as inoculum 33 

and from the samples taken at the end of Phase 1 –acetate activated–, and Phase 3 –methanol 34 

feed–, were determined with different substrates (VFA mix, acetate, H2, and methanol). Table 3 35 

shows that at the end of Phase 3, the granular sludge had a high SMA for methanol, acetate and 36 
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VFA mix (470; 239 and 220 mg CODCH4 g
-1 VSS d-1, respectively), while being 20-40 fold lower for 1 

H2 (12 mg CODCH4 g
-1 VSS d-1). Nevertheless, this latter value increased 6 times with respect to 2 

the one corresponding to the acetate feeding phase (2 mg CODCH4 g
-1 VSS d-1). Again, the VFA 3 

mix and acetate SMA showed values 70 times higher than those of the H2 assay.  4 

 5 

Microbial community assessment  6 

The microbial community structure and the activity of the samples taken from the initial inoculum 7 

and the biomass in the UASB by the end of Phase 1 (acetate feeding) and 3 (methanol feeding) 8 

were characterised by means of qPCR technique and high throughput sequencing (MiSeq) of the 9 

16S rRNA gene  –of the total and active eubacteria and archaea. 10 

 11 

Quantitative analysis by qPCR 12 

qPCR results of the 3 samples, regarding DNA (present microorganisms) and cDNA (active 13 

microbial populations), for 16S rRNA (eubacteria) and mcrA (methanogenic archaea) gene copy 14 

numbers showed a progressive increase in mcrA gene copy numbers from the inoculum to the 15 

biomass sample by the end of Phase 3 (Figure 1). This result correlates with the observed 16 

increase in methane content in the biogas in the UASB. An increase of two orders of magnitude of 17 

mcrA gene (at DNA level) in Phase 3, in comparison to the initial inoculum (1.13·1010 and 1.25·108 18 

gene copy numbers g-1, respectively) was revealed; while the mcrA expression (cDNA level) in 19 

Phase 3 was twice the one obtained in Phase 1 (4.76·108 and 2.46·108 gene copy numbers g-1, 20 

respectively). On the contrary, 16S rRNA gene copy numbers remained in the same order of 21 

magnitude in both Phases and the initial inoculum. As a consequence, the highest mcrA/16S rRNA 22 

gene ratio achieved was of 0.25, by the end of Phase 3.  23 

   24 

Sequencing results for eubacteria and archaea 25 

During high throughput sequencing analysis (MiSeq) 2,770 and 483 OTUs were detected for 26 

eubacteria and archaea, respectively, with 50,466-64,777 reads for eubacteria, and 66,226-27 

121,706 reads for archaea. Figure 2a shows the relative abundance of eubacterial phyla in the 28 

inoculum and the anaerobic granular sludge of the UASB at the end of Phase 1 (acetate feeding) 29 

and 3 (methanol feeding), both at DNA and RNA (cDNA) level. Although Proteobacteria was the 30 

predominant phylum in the inoculum (39%), Bacteroidetes, Firmicutes and Synergistetes grew into 31 

the most abundant ones in Phase 1 (40, 26 and 14%, respectively) and Phase 3 samples (61, 14 32 

and 8%, respectively). At gene expression level (cDNA), the relative abundance of the 33 

predominant phylum was consistent with the one obtained for DNA, except for an increase to 22% 34 

in Proteobacteria in Phase 1 sample and a general reduction of Synergistetes phylum. At family 35 

level, between 24% and 74% of the OTUs were unclassified, Phase 3 sample showing the highest 36 
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values (Figure 2b). Of the classified OTUs, Pseudomonadaceae accounted for 37% of the relative 1 

abundance in the inoculum, it being below 1% in the granular sludge of the UASB in Phase 1 and 2 

Phase 3. Porphyromonadaceae, Ruminococcaceae and Synergistaceae were the predominant 3 

families in Phase 1 (28, 13 and 14%, respectively), which were less abundant in Phase 3 (14, 6 4 

and 8%, respectively). The first family, Porphyromonadaceae, maintained its predominance as an 5 

active group (cDNA level) in Phase 1 (19%), and Desulfobulbaceae revealed itself as a highly 6 

active family (15%) in spite of its low relative abundance (2%) at DNA level. Finally, in Phase 3 7 

sample, no clear dominant active families were highlighted, due to the high number of unclassified 8 

OTUs (74%).  9 

For archaea population, Figure 3 shows a clear Methanosarcinaceae family enrichment in the 10 

UASB, particularly in Phase 3, both in community composition and activity (52 and 64% of relative 11 

abundance, respectively). On the contrary, Methanotrichaceae, an acetotrophic family formerly 12 

known as Methanosaetaceae, was clearly reduced during Phase 3 due to methanol feeding. 13 

Although maintaining 19% of relative abundance at DNA level, it solely represented 3% of all OTUs 14 

at cDNA level.  15 

 16 

Biodiversity analysis 17 

Table 4 shows the results for the biodiversity analysis performed on UASB granular sludge 18 

samples. The Inverted Simpson and Shannon indices for archaea population decreased 19 

throughout the entire operation time of the UASB, and when the change from acetate to methanol 20 

feeding was carried out. The inoculum was the most diverse sample, followed by Phase 1 and 21 

Phase 3 samples. This biodiversity reduction in Phase 3 is observed not only at community 22 

composition level, but also at activity level. For eubacterial population, both indices showed that 23 

the inoculum sample was the least diverse community. The highest biodiversity was harboured by 24 

the Phase 1 sample, according to the Shannon index but, according to the Inverted Simpson index, 25 

it was harboured by the Phase 3 sample. On the contrary, both indices were the highest in Phase 1 26 

when it comes to gene expression (cDNA). 27 

 28 

Correspondence analysis 29 

Correspondence analysis results for eubacteria community are shown in Figure 4a. A clear 30 

evolution in population was evidenced with the change of feed, from the inoculum to Phase 1 31 

sample, using acetate, and from Phase 1 to Phase 3 sample, with methanol as a substrate. DNA 32 

(16S rDNA) and cDNA samples (16S rRNA) for each phase were clustered together, suggesting 33 

that few differences could be found between existing and active microorganisms. Therefore, the 34 

distribution of the samples agrees with the discussion of the sequencing results. In archaea 35 

correspondence analysis, Phase 1 sample remained near to the inoculum when looking at DNA 36 
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composition but moved away when looking at gene expression. Phase 3 samples, as in the case of 1 

eubacteria community, were clustered together and far from the 3 other samples. 2 

 3 

Discussion  4 

COD removal efficiency by the end of Phase 3 (97±1%) was in the range of the 86-98%, obtained 5 

with a similar OLR as the one previously described by Badshah et al. (2012). These values are 6 

also comparable or even higher than those described in previous studies with higher OLR, such as 7 

97.1% and 92.5% with an OLR of 30 and 48 kgDQO m-3 d-1, respectively (Kobayashi et al. 2011; Lu 8 

et al. 2015); showing high adaptation of the UASB biomass to the methanol feeding. 9 

The results obtained from the SMA of the granules used as inoculum and from the samples taken 10 

at the end of Phase 1 –acetate activated–, and Phase 3 –methanol feed– (Table 3) suggest that in 11 

spite of the long term operation of the reactor with methanol as the sole carbon source (180 days), 12 

the granular sludge did not completely lose its acetate utilisation capacity. Other studies have 13 

reported the loss of acetic activity after long periods of methanol feeding (Paulo et al. 2003). A 14 

recent study stated that after operating an UASB with methanol for 143 days, the granules 15 

presented an acetate SMA of 150 mg CODCH4 g
-1 VSS d-1, losing completely this capacity after 300 16 

days of operation (Lu et al. 2015). In this same study, higher SMA values were achieved for H2 and 17 

methanol (0.08 and 2.11 g CODCH4 g
-1 VSS d-1, respectively) than those obtained in the present 18 

study. From the SMA results, it can be concluded that the main pathway in the UASB reactor for 19 

methanol conversion to methane was more likely methylotrophic methanogenesis, although the 20 

conservation of acetic activity suggests that the acetogenesis-acetoclastic route may be taking 21 

place as well. Finally, such a low hydrogenotrophic activity indicates that the methanol oxidation 22 

followed by hydrogenotrophic methanogenesis was not promoted in the operational conditions 23 

applied in the UASB, the hydrogenotrophic methanogenic enrichment not taking place. 24 

Nevertheless, these hypotheses should be confirmed by a microbial community assessment 25 

simultaneously performed. 26 

qPCR results prove that a progressive enrichment in methanogenic archaea was taking place in 27 

the reactor biomass, and that its activity was coincident with an enhancement of methane 28 

production. Since the ratio between methanogenic archaea and eubacteria in the biomass clearly 29 

increased during the methanol feeding phase of the UASB, it may harbour a great potential as 30 

inoculum for biogas production and other related bioreactor processes. 31 

High throughput sequencing showed that no clear dominant active eubacteria family was 32 

highlighted in Phase 3 (Figure 2b), due to the high number of unclassified OTUs (74%). 78% of the 33 

unclassified OTUs obtained in Phase 3 cDNA sample corresponded to Bacteroidetes phyla, and 34 

21% to Firmicutes. These OTUs which cannot be assigned to a known family could be novel taxa 35 

or perhaps still poorly defined in the RDP database. As for archaea, the presence of 36 

Methanotrichaceae in the granular sludge (Figure 3) is relevant since it correlates well with the 37 
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results obtained in the SMA test, in which the acetic activity of the granular sludge was high when 1 

acetate was used as feed. The fact that the Methanotrichaceae (Methanosaeta) family was still 2 

active after 180 days of methanol feeding as sole carbon source suggests that the 3 

homoacetogenic route may be responsible of methanol transformation to acetate. Bicarbonate 4 

plays an important role in the anaerobic conversion of methanol, as a required co-substrate in the 5 

acetogenic breakdown. Although bicarbonate was not added to the medium used in this assay –in 6 

order to avoid the acetogenic route–, it is produced when methanol is converted into methane 7 

(Equation 4). According to stoichiometry, up to one third of the methanol can potentially be 8 

consumed by acetogens from the endogenous methanogenic supplied bicarbonate (Florencio et al. 9 

1997). Indeed, the methylotrophic acetogenic eubacteria Sporomusa was active in the granular 10 

sludge with a low relative abundance (0.2%), and may be involved in the conversion of methanol to 11 

acetate. In Phase 1, the Methanotrichaceae family accounted for the highest relative abundance at 12 

cDNA level (60%), demonstrating its high activity during acetate feeding in spite of presenting a 13 

lower relative abundance at DNA level (39%). However, according to a recent study, it seems that 14 

Methanothrix (Methanosaeta) is capable of accepting electrons via direct interspecies electron 15 

transfer (DIET), to reduce carbon dioxide to methane (Rotaru et al. 2014) and, not being strictly 16 

aceticlastic, to what extend it could have a role in the hydrogenotrophic route in Phase 3 should be 17 

analysed in depth. Methanobacteriaceae and Methanoregulaceae –families where most of its 18 

members obtain energy from the reduction of CO2 with H2– decreased their relative abundance 19 

during Phase 3 (10% and not detected, respectively), thus suggesting that the enrichment in the 20 

hydrogenotrophic methanogenic group, aim of this work, was not achieved. Conversely, genus 21 

Methanomethylovorans and Methanolobus, both part of the Methanosarcinaceae family and 22 

defined as methylotrophs (Jiang et al. 2005; Mochimaru et al. 2009), were the predominant and 23 

most active groups. These were followed by the Thermoplasmatales genus 24 

(Methanossiliicoccaceae family), which is also capable of using methanol as a substrate (Poulsen 25 

et al. 2013). The predominance of methylotrophic groups agrees with the results of the SMA test, 26 

which showed a high activity with methanol substrate. These results disagree with the ones 27 

obtained in a previous study where methanol was dosed to an UASB treating domestic wastewater 28 

at low to moderate temperatures (<20 ºC). In that case, it was stated that methanol directly induced 29 

hydrogenotrophic methanogens (Methanobacteriales) and also indirectly induced the acetoclastic 30 

methanogens (Methanosetaceae), due to the demand of H+ created by Methanobacteriales (Saha 31 

et al. 2015). Differences observed compared to the present study may be due to the lower 32 

temperature used by Saha et al. (2015), which favours the emergence of hydrogenotrophic 33 

methanogens. 34 

Although methanol is a simple compound with only one carbon, it can support a very complex food 35 

chain under anaerobic conditions (Florencio et al. 1994). The methylotrophic population enriched in 36 

this study may have been favoured by the pH in operation, which was maintained between 6.9 and 37 
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7.0. A slightly more acidic pH would have stimulated the hydrogenotrophic pathway, according to 1 

Bhatti et al. (1996), who established that at pH values close to 7.0, methanol will either be 2 

converted directly to methane (by methylotrophic methanogens), via the intermediate formation of 3 

acetate (by acetoclastic methanogens), or through a combination of both. Hydrogenotrophic 4 

methanogens will be mainly responsible for this conversion, by utilizing H2 and CO2, only with pH 5 

values between 5.0 and 6.0. 6 

The decrease of Inverted Simpson and Shannon indices for archaea population throughout the 7 

entire UASB operation and the change of feed from acetate to methanol suggest that Phase 3 8 

promoted the enrichment of certain groups of methanogenic microorganisms, reducing the 9 

biomass biodiversity of the granular sludge. This reduction in biodiversity in Phase 3 is observed at 10 

community composition level and also at activity level. In eubacteria population a reduction in 11 

biodiversity was also observed when looking at gene expression (cDNA), suggesting that acetate 12 

feeding promoted more eubacteria species to be active in the granular sludge than when using 13 

methanol as feed. Thus it can be concluded that the use of methanol as carbon source induced a 14 

reduction in the biomass biodiversity due to the high predominance of the methylotrophic route for 15 

its degradation. In the same way, results obtained from the Correspondence Analysis confirm that 16 

a clear population shift in UASB microbial communities was promoted during the operation of the 17 

reactor, obtaining specialised acetotrophic and methylotrophic communities in Phase 1 and Phase 18 

3, respectively, due to the different feeding strategies applied.  19 

In this study, the anaerobic granular sludge used as inoculum in the UASB was activated during 20 

the acetate feeding phase, and later progressively adapted to a methanol substrate, achieving high 21 

COD removal efficiencies (97±1%). From the different metabolic pathways known for methanol, the 22 

methylotrophic methanogenic (by the genus Methanomethylovorans and Methanoglobus) was the 23 

predominant pathway by the end of the UASB operation, followed by the aceticlastic one (by the 24 

genus Methanothrix (Methanosaeta)), while the hydrogenotrophic route presented a low activity. 25 

The ratio between methanogenic archaea and eubacteria in the biomass showed a distinct 26 

increase during the methanol feeding phase of the UASB, so it may harbour a great potential as 27 

inoculum for biogas production and other related bioreactor processes.  28 
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 1 

Tables  2 

 3 

Table 1. Operational conditions of the UASB reactor 4 

Phase 
Length 

(d) 

OLR   

(kgCOD m
-3

 d
-1

) 

Acetate 

concentration (g L
-1

) 

Methanol 

concentration (g L
-1

) 
Aim of the phase 

135 3.25 1.02 0 

7 6.05 1.89 0 

7 8.44 2.64 0 
1 

65 10.08 3.15 0 

Start-up, activation 

of the biomass and 

acclimatization to 

high OLR 

7 10.08 2.01 0.53 

7 10.08 1.34 1.06 2 

7 10.08 0.67 1.58 

Acclimatization of 

the biomass to 

methanol feeding 

3 180 10.08 0 2.11 

Enhancement of 

the biomass 

enrichment 

 5 

 6 

 7 
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 1 
Table 2. Average performance of the UASB reactor through the different operational phases 2 

(mean±standard deviation). 3 

Carbon source  

(% COD) Phase 

Acetate Methanol 

OLR 

(kgCOD m
-3

 d
-1

) 

COD removal efficiency 

(%) 

Biogas CH4 content 

(%) 

3.25 73±9 22±8 

6.05 74±1 41±1 

8.44 82±3 32±1 
1 100 0 

10.08 82±12 68±14 

75 25 10.08 70±16 70±0 

50 50 10.08 93±13 81±8 2 

50 75 10.08 96±1 81±3 

3 0 100 10.08 97±1 85±1 

 4 

 5 
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 1 
Table 3. Specific methanogenic activity (SMA) of the inoculum, Phase 1 and Phase 3 granular sludge, fed 2 

with different substrates (mean±standard deviation). ND: not determined. 3 

SMA (mg CODCH4 / g VSS d)  
Phase 

AGV Mix Acetate H2 Methanol Blank 

Inoculum 107±25 125±3 40±5 ND 6±2 

1 138±3 149±27 2±1 ND 0.4±0.1 

3 220±0 239±90 12±1 470±65 3±0 

 4 

 5 
 6 

 7 

 8 

 9 
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 1 
Table 4. Diversity index for Eubacteria and Archaea communities for the inoculum and biomass in the UASB 2 

by the end of Phase 1 (acetate feeding) and Phase 3 (methanol feeding) for DNA and cDNA samples 3 

(mean±standard deviation). Data normalised to the sample with the lowest number of reads (50466 and 4 

66226 for eubacteria and archaea, respectively). 5 

 6 

 Coverage Inverted Simpson Shannon 

Eubacteria    

Inoculum 1.00±0.00 8.35±0.03 3.66±0.00 

Phase 1-DNA 0.99±0.00 15.06±0.00 4.01±0.00 

Phase 3-DNA 0.99±0.00 15.27±0.04 3.75±0.00 

Phase 1-cDNA 0.99±0.00 9.80±0.02 3.66±0.00 

Phase 3-cDNA 0.99±0.00 5.44±0.02 2.94±0.01 

Archaea    

Inoculum 1.00±0.00 5.92±0.02 2.33±0.00 

Phase 1-DNA 1.00±0.00 4.12±0.01 1.95±0.00 

Phase 3-DNA 1.00±0.00 2.83.±0.00 1.63±0.00 

Phase 1-cDNA 1.00±0.00 3.37±0.01 1.99±0.01 

Phase 3-cDNA 1.00±0.00 2.97±0.01 1.85±0.01 

 7 
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 1 

Figure captions 2 

 3 

 4 

Figure 1 Gene copy numbers for 16S rRNA and mcrA genes, and DNA ratio, of the initial 5 

inoculum and the biomass in the UASB by the end of Phase 1 (acetate feeding) and Phase 3 6 

(methanol feeding). 7 

 8 

Figure 2  Taxonomic assignment of sequencing reads from the Eubacterial community of the 9 

initial inoculum and biomass of the UASB by the end of Phase 1 (acetate feeding) and Phase 3 10 

(methanol feeding) for genomic DNA and RNA (cDNA) level, at a) phylum b) family levels. Relative 11 

abundance was defined as the number of reads (sequences) affiliated with any given taxon, 12 

divided by the total number of reads per sample. Phylogenetic groups with a relative abundance 13 

lower that 1% were categorized as “others” 14 

 15 

Figure 3 Taxonomic assignment of sequencing reads from Archaeal community of the initial 16 

inoculum and biomass of the UASB by the end of Phase 1 (acetate feeding) and Phase 3 17 

(methanol feeding) for genomic DNA and RNA (cDNA) at family level. Relative abundance was 18 

defined as the number of reads (sequences) affiliated with any given taxon, divided by the total 19 

number of reads per sample. Phylogenetic groups with a relative abundance lower that 1% were 20 

categorized as “others”. 21 

 22 

Figure 4 Correspondence Analysis of the initial inoculum and biomass of the UASB by the 23 

end of Phase 1 (acetate feeding) and Phase 3 (methanol feeding) for DNA and cDNA samples 24 

regarding (a) Eubacteria and (b) Archaea communities. 25 
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