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Abstract: A definition of self-reducibility 
is proposed to deal with logarithmic space 
complexity classes. A general property de- 
rived from the definition is used to prove 
known results comparing uniform and non- 
uniform complexity clmses below polyno- 
mial time, and to obtain new ones regarding 
nondeterministic nonuniform classes and 
reducibility to context-free languages. 

1. Introduction 
The present work is a direct sequel of [2], and reports the 
results of continuing work on the same subject. Famil- 
iarity with this reference is not required but is helpful. In 
particular, motivations for the study of self-reducibility 
structures and a discussion of their usefulness in dealing 
with the relationship between nonuniform and uniform 
complexity classes are presented there. 

In [2], definitions of self-reducibility were proposed 
to capture, under the form of general results, the power 
of certain techniques used in [lo] to obtain some very 
interesting consequences for uniform complexity classes 
from hypothesis about nonuniform complexity classes. 
The purpose of this work was the study of the role played 
by the self-reducibility structures in their proofs, since 
sometimes it is apparent but in some cases it is hidden 
under a “game” structure corresponding to alternating 
computations. We propose here additional possibilities 
for defining self-reducibility structures appropriate to use 
the same techniques to show properties of complexity 
classes below P. 

Throughout this paper, words are finite sequences 
of symbols from a fixed, finite alphabet I?. The set of all 
words is denoted r*, and the length of a word I is de- 
noted 111. We assume a k e d  easily computable pairing 
function denoted by angular brackets (,). The reader 
is,assumed to be familiar with the standard complexity 
classes DLOG, NLOG; P, NP, PSPACE, the polynomial 
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time hierarchy [15] and the like. The class poly con- 
tains all functions h from IN into r* such that lh(n)I is 
bounded by a polynomial in n. The class log contains all 
functions h from IN into I’* such that lh(n)I is bounded 
by c.logn for some constant c. For notations and basic 
results see [4]. 

We recall now the notation for nonuniform com- 
plexity classes defined by Karp and Lipton [lo]. 

1. Let C be a complexity class and F a 
family of functions from IN into r*. Then CIF denotes 
the class of all sets A such that for some 13 E C and 
IL E F it holds that 

Definition. 

Let us review the main results of the paper by 
Karp and Lipton: 

2 .  Theorem [IO]. 

(A) If NP C P/poly then the polynomial time hierar- 

(B) If PSPACE E P/poly then PSPACE = CZ fl l I 2 .  

(C) If EXPTIME C PSPACE/poly then 

(D) If EXPTIME C P/poly then EXPTIME = C2 n 

(E) If NLOG 
(F) For every k, if P C DSPACE(logk n)/log then P 

(G) If NP C P/log then P = NP. 
(H) If PSPACE C P/log then PSPACE = P. 

chy collapses to C2 n IIZ. 

EXPTIME = PSPACE # P 

I I 2 ,  which implies P # NP. 
DLOG/log then NLOG = DLOG. 

DSPACE(logk n). 

In some of the proofs, a self-reducibility prop- 
erty was used explicitly. The general property of self- 
reducible sets which allows one to prove such kind of 
results was isolated in [3], where parts (A) and (B) 
of theorem 1 were obtained from more general princi- 
ples. Other results were deduced as well from the same 
principles. However, under the standard definition self- 
reducible sets are always in PSPACE, while every set 
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in P is trivially self-reducible. Therefore other parts of 
theorem 1 could not be obtained. 

A self-reducibility property able to go up to EX- 
PTIME was defined in [ 2 ] ,  and an analogous general 
theorem about those sets was found which gave rise to 
parts (C) and (D) as corollaries, together with other 
results along the same line. Thus the known relations 
among nonuniform polynomial advice classes and uni- 
form classes were shown to appear as consequences of 
the same principle. 

The purpose of this paper is to present a defini- 
tion of logspace self-reducibility appropriate to work with 
classes possibly smaller than polynomial time, which is 
done in section 2, and to show that this definition has 
also a general property analogous to those of the just 
mentioned references. We present it in section 3, and 
obtain as corollaries parts (E) and (F) above. In sec- 
tion 4 we use the same principle to obtain a new re- 
sult, comparing uniform P with nonuniform NLOG. Here 
the closure under complements of nondeterministic space 
classes [9] plays a crucial role. Section 5 is devoted to ob- 
taining new results, of very similar flavor, for the classes 
LOG(CFL) and LOG(DCFL) of sets reducible in loga- 
iithmic space to context-free languages, resp. deterniin- 
istic context-free languages. We close the paper with a 
short section of conclusions. 

1. Logspace self-reducibility 
Some technical concepts are required for setting up a 
concept of self-reducibility in logarithmic space. We are 
going to present the appropriate model of oracle Tur- 
ing machine, which is based on a property similar to 
a characterization given in [14] of certain nondetermin- 
istic oracle machines. The property that identifies our 
model is that all the queries are small variations of the 
input; more precisely, every query is equal to the input 
in all but the log n last symbols, where n is the length of 
the input. The machine can be thought of as somebody 
that is given a standard sentence. learnt by heart, which 
allows him to start speaking, leaving his natural silent 
state, in order to ask afterwards for a very small piece of 
information. Thus we call them shy machines. 

The following notation will be useful for this pur- 
pose. 

1. Let I and w be words such that Iwl = 

log 1 1 1 .  We denote sub(z ,w)  the word resulting from 
substituting the word w for the last log 1 1 1  symbols of I. 

Notice that sub(2, w) is a word of the same length 
as 5, and that they can be compared’according to lex- 
icographic criteria. Now shy machines are easily intro- 
duced. 

2. Definition. A shy machine is a logspace oracle Turing 

Notation. 

machine, with no bound on the oracle tape, such that on 
input I every query is of the form sub(s,  w) for some w 
of length log 11 I. 

A point that shoud be made is that on input 
sub(z ,w)  the queries made by M are themselves again 
of the form sub(r,  U ) ,  since sub(sub(z, w), U )  = sub(r, U).  

We define next logarithmic space self-reducibility 
in terms of shy machines. The self-reducibility structure 
is enforced to be well-founded via a restriction analogous 
to that of the “word decreasing queries” self-reducibility 
proposed in [ 2 ] .  

3. Definition. A set A is self-reducible in logarithmic 
space (logspace self-reducible for short) if and only if 
there is a logarithmic space shy machine M such that 
A = L ( M ,  A ) ,  and on every input I every word queried 
by M is lexicographically smaller than I. 

A more general definition, considering the prop- 
erties to be imposed to an arbitrary partial order to be 
used in place of the lexicographic order in the preceding 
definition, has been developed by the author in order to 
provide a link with the wdq-self-reducibility studied in 
[ 2 ] .  It is similar in spirit to the self-reducibilit,y of [13]. 
It has not yield new results so far, and therefore will be 
omitted here. 

The following property states the uniqueness of 
the self-reducible set defined by a given shy machine M .  
The argument will be useful in the next sections. 

4. Proposition. Let M be a shy machine which always 
queries words smaller than the input in the lexicograph- 
ical order. If A = L ( M , A )  and B = L ( M , B )  then 
A = B. 

The proof is by the following inductive argument 
on each length n: on the smallest word of length n, M 
cannot query the oracle, therefore it is either both in 
A and B or outside both of them. Now, for any word 
w ,  suppose that A and B coincide on all smaller words. 
Then the behavior of M on w is identical for both oracles, 
and w must be either accepted (and therefore belong 
to both A and B )  or rejected (and therefore belong to 
neither of them). 

Observe that the argument can be done separately 
for each length, using the fact that shy machines always 
query words of the same length as their input. In fact, 
we can say that if A is accepted by a shy machine as 
in proposition 6, and B is a set of words all of them of 
length n such that for every word I of length n,  I is in 
B if and only if I is in L ( M ,  B ) ,  then B is precisely the 
subset of all the words of length n in A.  

To locate these sets, we can state the following 
property. We omit the proof. 
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5.  Proposition. Every logspace self-reducible set is in P. 

We show next that logspace self-reducible sets ex- 
ist; our examples are quite natural encodings of complete 
sets for certain complexity classes. 

6 .  Definition. Let AGAP (standing for Acyclic Graph 
Accesibility Problem) be the set of all words of the form 
G#s#t where G encodes an acyclic graph, s and t are 
nodes of G, and there is a path in G leading from s to t .  
We require further that the nodes are labeled according 
to a topological sort in such a way that the label of each 
node is a number of length log IG#s#tl. 

Note that the requirement of G being an encoding 
of a graph topologically sorted only means that the nun- 
bering of the nodes is such that the source of each edge 
has a number smaller than its target. This can be tested 
easily in logspace, and implies acyclicity; so AGAP is in 
NLOG. Using standard techniques, it is not difficult to 
see that AGAP is complete for NLOG under logspace 
reductions. (In order to obtain an acyclic graph, start 
from a NLOG machine that counts the number of steps 
performed during its computation: this guarantees ab- 
sence of loops.) 

7 .  Proposition. AGAP is logspace self-reducible. 

Proof (sketch). On input G#s#t, i f s  is a predecessor of 
t then accept, otherwise query the oracle about all the 
words G#s#t’ where t‘ is a predecessor o f t  in G. 0 

Our next example is a particular encoding of the 
circuit value problem. 

8. Definition. Let CVP (standing for Circuit Value 
Problem) be the set of all words of the form u#C#g, 
where u is a binary string, C is an encoding of a fan- 
in 2 boolean circuit with IuI inputs, and g is a gate of 
C ,  which we designate as output gate, and which takes 
value 1 on input U .  We require that each gate is labeled 
by a number of length log \u#C#g(, and that the label 
of each gate is greater than the labels of their two input 
gates. 

It can be seen that CVP is complete for P un- 
der logspace reductions [ll]. Our requirements about 
the encoding are irrelevant for the proof. We have the 
following property. 

9. Proposition. CVP is logspace self-reducible. 

Proof (sketch). On input u#c#g,  if g is an input gate 
then check the corresponding symbol of U ;  otherwise, 
let g1 and g2 be the gates that are inputs to g,  query 
the oracle about u#C#gl and u#C#gz to obtain their 
respective values, and apply to the answers the boolean 
function corresponding to gate g.  The number of queries 
is always 2. 0 

The self-reducibility of these sets will be used in 
the next sections. Other logspace self-reducible sets are 
presented in section 5. 

2. Deterministic logspace with advice 
In this section we show a property of logspace self- 
reducible sets which yields as particular cases parts (E) 
and (F) of theorem 1. It is very similar to properties of 
self-reducible sets presented in [2] and [3). 

This property is stated as follows: 

10. Theorem. Let A be a logspace self-reducible set. If 
A E DLOG/log then A E DLOG. 

Proof. We show how to decide A in deterministic loga- 
rithmic space. The algorithm just cycles over all possible 
advices of the appropriate length, searching for a correct 
one, and when found it uses the DLOG algorithm with 
this advice. The self-reducibility structure is used to 
check the correctness of each possible advice. 

More formally, let A = L ( M ,  A )  where M is a shy 
machine which witnesses the logspace self-reducibility of 
A. Further, let M’ be a logspace machine and let h be 
such that 

vx (x E A e=+ ( x , h ( l x I ) )  E L(M‘))  

given by the fact that A belongs to DLOG/log. Without 
loss of generality we assume that the alphabet is large 
enough so that lh(n)I = logn. We say that an advice w 
of length logn is correct for z where 1x1 = n if and only 
if 

Vu (sub(x,u) E A * (sub(x, U ) ,  w) E L ( M ‘ ) )  

where u ranges over the words of length log 1x1, i.e. if it 
can be used without harm instead of the actual value of 
h in order to decide x and the words that M could query 
on x. Consider now the following algorithm. 

input x 
for each word w of length log 1x1 do 

check (using the subroutine below) that 

if it is then exit the for loop 
accept if and only if (z, w) E L(M’) 

w is a correct advice for x 

By the definition of correctness, this program de- 
cides A provided that the subroutine works properly, 
since at least the value h(l.1) will be found (and pos- 
sibly some other correct one). The correctness of the 
candidate advice can be tested as follows. 

for each word u of length log 1x1 do 
simulate M on input sub(x, U )  

whenever M queries about sub(z, v), 
answer YES if and only if (sub(x,  U), w ) E L(M’) 
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check that M accepts svb(z, U )  

if so, return YES, else return NO 
if and only if ( sub(z ,  U ) ,  w) E L(M‘)  

The correctness of this subroutine can be shown 
by applying the inductive argument following proposi- 
tion 6. 0 

Now we can derive easily part (E) of theorem 1 
as announced. Just apply theorem 12 to the set AGAP, 
which was shown in the previous section to be logspace 
self-reducible and NL 0 G -complet e. 

11. Corollary. If NLOG c DLOG/log then NLOG = 
DLOG. 

Similarly, theorem 12 can be applied to CVP, 
yielding the following. 

12. Corollary. If P G DLOG/log then P = DLOG. 

It is very easy to see that if in theorem 12 the 
class DSPACE(1og’n) is substituted for DLOG (keep- 
ing the advice logarithmically bounded) the proof carries 
through. This yields as a corollary part (F) of theorem 1. 

13. C O T O ~ ~ U T ~ .  If P C DSPACE(logkn)/log then P 2 
DSPACE(logk n )  for every k. 

3. Nondeterministic logspace with advice 
The results in the previous section indicate that for 
classes having a complete logspace self-reducible set, be- 
ing included in nonuniform logarithmic space amounts 
to being included in the corresponding uniform class 
DLOG; i.e. the advice is in some sense useless. It is nat- 
ural to wonder whether a similar result can be obtained 
under the hypothesis that P is included in nonuniform 
nondeterministic logarithmic space: is it possible again 
to “get rid of” the advice and show an equality with the 
corresponding uniform class? 

In this section we prove a theorem that allows one 
to obtain precisely this result, thus completing in some 
sense the “map” of implications between the uniform and 
nonuniform classes P, NLOG, and DLOG. The proof is 
similar to that of theorem 12, and requires the use of 
Immerman’s theorem [9] and of some consequences of it. 
More precisely, we need the following property, which is 
easy to prove using the results of [9]. 

14. Proposition. DLOG(NL0G) = NLOG. 

Now we can state the main result of this section. 

15. Theorem. Let A be a logspace self-reducible set. If 
A E NLOG/log then A E NLOG. 

Proof. Let A = L ( M ,  A )  where M is a shy machine which 
witnesses the logspace self-reducibility of A. Further, let 

M‘ be a nondeterministic logspace machine, and let h be 
such that 

which exist since A E NLOG/log. Again, we assume 
that the alphabet is large enough so that lh(n)I = logn. 
The notion of correct advice for a given word z is defined 
exactly as in the deterministic case: 

C O T T ( Z ,  W) : 

Vu(sub(z,u) E A * ( sub ( z ,u ) ,w)  E L(M‘) )  

We claim that the predicate Corr ( z ,w)  can be 
tested in nondeterministic log space. We will do this by 
considering the following deterministic logspace oracle 
machine MI’: 

input 
simulate M on y 

on query z ,  query ( z , w )  

This machine is designed to use L(M’)  as oracle. 
Its only purpose is to present in a clear form the NLOG 
algorithm to decide the correctness of a given advice. In- 
deed, we show this claim by proving the following equiv- 
alence: 

(*) Corr(s,w) * 
pw = 1% 1.1) 

( ( sub ( z ,u ) ,w)  E L(M”,L(M’)) 

-e+ ( 5 4 2 ,  U ) ,  4 E L(M’) ) ]  
The universal quantifier can be tested in log space; 

the quantified predicate is trivially a DLOG(NLOG), 
and therefore an NLOG predicate by proposition 16. 
Thus, the predicate Corr(z ,  w )  can be decided in NLOG. 
Let us now prove (*). 

Assume that Corr(z,w) is true. Then, since M 
is shy, all queries of M” on ( sub ( z ,u ) ,w)  are of the 
form ( sub(z ,  U ) ,  w) and therefore, by the correctness of 
w, correctly answered by L(M’).  Thus (sub(z,u),w) E 
L(M”,L(M’)) if and only if ( s u b ( z , u ) , w )  E A ,  and 
again by the correctness if and only if (sub(s,u),w) E 

Conversely, if the right hand side of (*) holds then 
the set of words sub(z ,u)  such that ( sub ( z ,u ) ,w)  E 
L(M’)  is easily seen to be consistent with the self- 
reducing machine M .  By an inductive argument as the 
one following proposition 6, we obtain that sub(z, U )  E 
A U (sub(z,u),w) E L(M’) ,  and therefore w is cor- 
rect for I. This proves the claim that correctness can be 
decided in NLOG. 

Now it is immediate to prove the theorem: on 
input I, guess a correct advice w, check its correctness in 

L(M’) .  
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NLOG, and use it to decide whether I E A by simulating 
M' on (I, w). 0 

In the same manner as in the preceding, section, 
this theorem can be applied to CVP: 

16. Corollary. If P NLOG/log then P = NLOG. 

Once more, the proof carries through if a class of 
the form NSPACE(logk n) is substituted for NLOG (but 
again keeping the advice logarithmically bounded). We 
obtain: 

17. Corollary. If P C NSPACE(1og'n)llog then P E 
NSPACE(1og' n) for every k. 

4. Reducibility to context-free languages 
An interesting class contained in P is the closure of 
the class of context-free languages under logspace m- 
reducibility, denoted LOG(CFL). Its analog class for 
the deterministic context-free languages is LOG (D CFL). 
They have been characterized in [16] in terms of mul- 
tihead pushdown automata, and logspace polynomial 
time auxiliary pushdown automata. Their relationship 
to the logspace complexity classes is obviously related 
to the open question of whether context-free languages 
can be decided in logarithmic space. We show here 
that languages in these classes can be captured by cer- 
tain logspace self-reducible sets, and therefore results like 
corollaries 14 and 18 can be obtained for them. 

Our results are based on a smart technique pre- 
sented in [6], which is based in turn on the decision pro- 
cedure for context-free languages of [l]. Reference [6] 
applies this technique to auxiliary pushdown automata. 
Although we apply it to pushdown automata as in [l], 
we follow the approach of the former since it is closer to 
our goal: we want to make apparent the logspace self- 
reducibility structure underlying the technique. For the 
proof of our main theorem in this section we will require 
the following two lemmas. 

18. Lemma. 
1. There is a pushdown automaton M I ,  with no A- 

transitions, which accepts by empty store, such 
that L(M1) is complete for LOG(CFL) under 
logspace m-reducibility. 

2. There is a deterministic pushdown automaton 
M2, with nq A-transitions, which accepts by 
empty store, such that L(M2) is complete for 
LOG(DCFL) under logspace m-reducibility. 

PTOOf .  

1. The hardest context-free language of Greibach [7] 
does not contain the empty word, and is com- 
plete under homomorphism for the class of CFL's 

2. 

that do not contain the empty word; therefore 
it is logspace m-complete for LOG(CFL). By a 
classical result of automata theory (see [SI, the- 
orem 5.5.1), it is accepted by empty store by a 
pushdown automaton with no A-transitions. 
In [16], a deterministic CFL is exhibited that is 
logspace m-complete for the class of deterministic 
CFL's (lemma 8 and proof of lemma 9 of [16], see 
also footnote in page 413). Also, in the same refer- 
ence, it is shown (lemma 7) that every determinis- 
tic CFL is logspace m-reducible to a deterministic 
CFL recognized by empty store by a deterministic 
pushdown automaton with no A-transitions. Our 
claim follows from the transitivity of the logspace 
m-reducibility. 0 
Let AuxPDA,*(log) denote the class of sets de- ~. ~ 

cidable by nondeterministic logspace auxiliary push- 
down automata in polynomial time, and similarly 
AuxDPDApt(log) for deterministic logspace auxiliary 
pushdown automata. 

19. Lemma. The following equalities hold: 

LOG(CFL) = AuxPDA,r(log) 
LOG(DCFL) = AuxDPDA,t(log) 

PTOOf.  It is theorem 1 in [16]. 0 
Now we present our main theorem of this section. 

For closely related material and analogous notation and 
properties, see the proof of theorem 1 of [SI, part (b) im- 
plies (c). 

20. Theorem. Let M be a pda with no A-transitions 
which accepts by empty store. There is a set A E 
LOG( CFL) which is logspace self-reducible, such that 
L ( M )  E DLOG(A). Furthermore, if M is deterministic 
then A E LOG(DCFL). 

The proof requires to develop some definitions and 
notation. Given the pushdown machine M as in the the- 
orem, a surface configuration of M on input w is a triple 
( p ,  q, 2 ) ;  p is the position of the input tape head, q is a 
state of M ,  and 2 is the top symbol in the pushdown. 
A pair of surface configurations P, Q is realizable if and 
only if there is a partial computation of M on input 
w starting at a configuration c1 corresponding to surface 
configuration P ,  ending at a configuration c2 correspond- 
ing to surface configuration &, and such that the height 
of the pushdown is the same in c1 and in c2, and dur- 
ing that computation this height never drops below this 
threshold. Note that realizability depends on the input. 

We encode pairs of surface configurations as 
strings of length logw over a large enough alphabet. 
We assume that this encoding is such that the follow- 
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ing condition holds: if in surface configuration Q1 the 
input tape head is scanning a symbol strictly at the left 
of the symbol scanned in surface configuration Q2, then 
the encoding of the pair ( P I ,  Q 1 )  is smaller in the lexico- 
graphic ordering than that of ( P z ,  Q2) for every Pi ,  Pz.  
This is attained by encoding the position of the tape 
head in component Q into the most significant digits of 

The key to the self-reducibility structure is given 
( P ,  Q) .  

by the following definition. 

21. Definition. Pairs (P1,Q1) and (Pz,Qz)  yield pair 
(P3,Q3) if and only if PI = P3 and either: 

(i) Q1 = P2 and M goes in one step from Q2 to Q3 
without changing the pushdown, or 

(ii) M goes in one step from Q1 to P2 pushing a sym- 
bol 2, and A4 goes in one step from Q2 to Q3 
popping the same symbol 2. 

The core of the proof is in our next lemma. 

22. Lemma.  Starting from all identity pairs ( P ,  P )  and 
iterating the “yield” relation, exactly the set of all real- 
izable pairs is obtained. 

Proof(sketch). It is not difficult to see by induction that 
every pair obtained by iteration of the “yield” relation 
from the identity pairs is realizable. 

Conversely, suppose that the pair ( P I  Q )  is realiz- 
ableviaacomputat ionP=Pl ,Pz,  ..., Pt = Q .  I f t = l  
then P = Q and the pair is a base identity pair. If t > 1 
and the transition from Pt-l to Pt does not changc the 
pushdown, and assuming inductively that (PI ,  Pt-1) has 
been obtained from the “yield” relation, parr (ij yields 
( P ,  Q). The definition of realizability prrvents the tran- 
sitior, from Ft-; t,o Ft from being a pushing move; thus, 
assume that the pushdown is popped, and consider she 
first, pusliing move ill the partial coniput,ation, say from 
P, to P,+l. Inductively, (P, ,Pt j  and (P;+j.Pt-l) are re- 
alizable and therefore can be obtained from the “yield” 
relation Applying part (ii) of the definition of “yield” 
gives (P, Q ) .  

Of course! in order to decide whether two pairs 
yield another the input must be known. An impor- 
tant point in the previous proof is that every realizable 
pair (excepting identity pairs, of course) can be obtained 
by applying the “yield” relation to pairs having strictly 
smaller encodings, due to the fact that the pushdown 
machine M has no A-transitions. 

We are now ready to prove theorem 22. 
Proof of theorem 22. The set whose existence is asserted 
in the statement is set A formed by all the words of the 
form w # ( P , Q ) ,  such that on input w the pair ( P , Q )  is 
realizable. We show that the theorem holds. To see that 

A E LOG(CFL), we argue that A is accepted in linear 
time by a logspace AuxPDA, which on input w#(P, Q )  
sets up itself on configuration P and simulates M ,  keep 
ing in a counter the height of the stack, and checking that 
Q is reached with no extra symbols left on the stack. 
By lemma 21, A E LOG(CFL). Moreover, if M is de- 
terministic then the AuxPDA is deterministic also, and 
therefore A E LOG(DCFL). 

To see that A is logspace self-reducible, we take 
advantage of the characterization given by the “yield” 
relation, constructing a shy machine that on input. 
w#(P ,  Q )  accepts if P = Q ,  else searches for smaller 
pairs that yield w#(P,  Q )  and queries the oracle to find 
whether they are realizable. It is easy to see that the 
queries have the correct form; its correctness follows from 
lemma 24. 

Finally, L ( M )  is decidable in logarithmic space 
with oracle A by checking whether a realizable pair exists 
starting at the initial configuration of M and ending at 
an accepting configuration. This completes the proof. 0 

As applications of this theorem, we obtain: 

23. Corollary. 

DLOG. 

DLOG. 

NLOG. 

NLOG. 

(a) If LOG(CFL) 2 DLOG/log then LOG(CFL) = 

(b) If LOG(DCFL) DLOG/log then LOG(DCFL) = 

(c) If LOG(CFL) 5 NLOG/log then LOG(CFL) = 

(d) If LOG(DCFL) C NLOG/log then LOG(DCFL) = 

P T O O ~ .  Apply theorem 22 to the pushdown automata de- 
scribed in lemma 20 to obtain logspace self-reducibie sei : 
complete respectively for LOG(CFL) and LOG(DC?LL). 
Then tile results follow from theorems 12 and 17. ? 

As a final remark, notice that this result does I?..?: 

say that if CFL languages can be decided by noxuni- 
form logspace models then they can be decidecl by ui-,,i 
form Iogspare models: the hypothesis required is tbzt  
the whole ciass LOG(CFL) is included in DLOG/Ioy. 
The reason why the proof does not work from a weaker 
hypothesis, like CFL included in DLOG/log, is that 
this second class is not closed under logspace reducibil- 
ity, since each advice is valid for only one length and 
a reducibility may map the words of a given length to 
words of polynomially many different lengths. Therefore 
the inclusion of CFL in DLOG/log does not guarantee 
membership to the nonuniform class of the logspace self- 
reducible complete set for LOG(CFL). 

5. Conclusions 
We have developed a notion of logarithmic space self- 
reducibility, adapting to this resource bound a notion 
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that is becoming very interesting for comparing uniform 
and nonuniform complexity classes. 

Our definition allows one to obtain known and 
new consequences in the comparison between uniform 
and nonuniform classes below polynomial time. In par- 
ticular, we obtain that if a nonuniform model corre- 
sponding to deterministic (resp. nondeterministic) log- 
arithmic space is able of deciding the sets in P then 
the nonuniformity capability can be “switched off”, and 
the equality P = DLOG (resp. P = NLOG) follows. 
Similar results compare NLOG to DLOG, LOG(CFL) 
and LOG(DCFL) to NLOG and DLOG, and P to 
DSPACE(logk n) and to NSPACE(logk n). 

The “/poly” counterparts of some of the nonuni- 
form classes considered here (namely DLOG/poly and 
NLOG/poly) have been studied quite in depth, and can 
be characterized by sequences of bounded-size two-way 
automata and by similarly bounded branching programs 
-see [4] and [12]-. It would be interesting to find anal- 
ogous characterizations of the “/log” classes, and also 
to try to obtain results like those presented here from 
hypothesis regarding the “/poly” classes. 
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