
LO GSPACE SELF-REDUCIBILITY

Extended Abstractt

Jos6 L. BalcAzar
Facultad de InformAtica de Barcelona, U.P.C.

08028 Barcelona, SPAIN
e-mail: balqui@fib.upc.iris.cernvax (bitnet)

Abstract: A definition of self-reducibility
is proposed to deal with logarithmic space
complexity classes. A general property de-
rived from the definition is used to prove
known results comparing uniform and non-
uniform complexity clmses below polyno-
mial time, and to obtain new ones regarding
nondeterministic nonuniform classes and
reducibility to context-free languages.

1. Introduction
The present work is a direct sequel of [2], and reports the
results of continuing work on the same subject. Famil-
iarity with this reference is not required but is helpful. In
particular, motivations for the study of self-reducibility
structures and a discussion of their usefulness in dealing
with the relationship between nonuniform and uniform
complexity classes are presented there.

In [2], definitions of self-reducibility were proposed
to capture, under the form of general results, the power
of certain techniques used in [lo] to obtain some very
interesting consequences for uniform complexity classes
from hypothesis about nonuniform complexity classes.
The purpose of this work was the study of the role played
by the self-reducibility structures in their proofs, since
sometimes it is apparent but in some cases it is hidden
under a “game” structure corresponding to alternating
computations. We propose here additional possibilities
for defining self-reducibility structures appropriate to use
the same techniques to show properties of complexity
classes below P.

Throughout this paper, words are finite sequences
of symbols from a fixed, finite alphabet I?. The set of all
words is denoted r*, and the length of a word I is de-
noted 111. We assume a k e d easily computable pairing
function denoted by angular brackets (,). The reader
is,assumed to be familiar with the standard complexity
classes DLOG, NLOG; P, NP, PSPACE, the polynomial

t This work has been partially supported by CIRIT.

time hierarchy [15] and the like. The class poly con-
tains all functions h from IN into r* such that lh(n)I is
bounded by a polynomial in n. The class log contains all
functions h from IN into I’* such that lh(n)I is bounded
by c.logn for some constant c. For notations and basic
results see [4].

We recall now the notation for nonuniform com-
plexity classes defined by Karp and Lipton [lo].

1. Let C be a complexity class and F a
family of functions from IN into r*. Then CIF denotes
the class of all sets A such that for some 13 E C and
IL E F it holds that

Definition.

Let us review the main results of the paper by
Karp and Lipton:

2 . Theorem [IO].

(A) If NP C P/poly then the polynomial time hierar-

(B) If PSPACE E P/poly then PSPACE = CZ fl l I 2 .

(C) If EXPTIME C PSPACE/poly then

(D) If EXPTIME C P/poly then EXPTIME = C2 n

(E) If NLOG
(F) For every k, if P C DSPACE(logk n)/log then P

(G) If NP C P/log then P = NP.
(H) If PSPACE C P/log then PSPACE = P.

chy collapses to C2 n IIZ.

EXPTIME = PSPACE # P

I I 2 , which implies P # NP.
DLOG/log then NLOG = DLOG.

DSPACE(logk n).

In some of the proofs, a self-reducibility prop-
erty was used explicitly. The general property of self-
reducible sets which allows one to prove such kind of
results was isolated in [3], where parts (A) and (B)
of theorem 1 were obtained from more general princi-
ples. Other results were deduced as well from the same
principles. However, under the standard definition self-
reducible sets are always in PSPACE, while every set

CH2542-9/88/oooo/oo40$01.00 Q 1988 IEEE
40

in P is trivially self-reducible. Therefore other parts of
theorem 1 could not be obtained.

A self-reducibility property able to go up to EX-
PTIME was defined in [2] , and an analogous general
theorem about those sets was found which gave rise to
parts (C) and (D) as corollaries, together with other
results along the same line. Thus the known relations
among nonuniform polynomial advice classes and uni-
form classes were shown to appear as consequences of
the same principle.

The purpose of this paper is to present a defini-
tion of logspace self-reducibility appropriate to work with
classes possibly smaller than polynomial time, which is
done in section 2, and to show that this definition has
also a general property analogous to those of the just
mentioned references. We present it in section 3, and
obtain as corollaries parts (E) and (F) above. In sec-
tion 4 we use the same principle to obtain a new re-
sult, comparing uniform P with nonuniform NLOG. Here
the closure under complements of nondeterministic space
classes [9] plays a crucial role. Section 5 is devoted to ob-
taining new results, of very similar flavor, for the classes
LOG(CFL) and LOG(DCFL) of sets reducible in loga-
iithmic space to context-free languages, resp. deterniin-
istic context-free languages. We close the paper with a
short section of conclusions.

1. Logspace self-reducibility
Some technical concepts are required for setting up a
concept of self-reducibility in logarithmic space. We are
going to present the appropriate model of oracle Tur-
ing machine, which is based on a property similar to
a characterization given in [14] of certain nondetermin-
istic oracle machines. The property that identifies our
model is that all the queries are small variations of the
input; more precisely, every query is equal to the input
in all but the log n last symbols, where n is the length of
the input. The machine can be thought of as somebody
that is given a standard sentence. learnt by heart, which
allows him to start speaking, leaving his natural silent
state, in order to ask afterwards for a very small piece of
information. Thus we call them shy machines.

The following notation will be useful for this pur-
pose.

1. Let I and w be words such that Iwl =

log 1 1 1 . We denote sub(z ,w) the word resulting from
substituting the word w for the last log 1 1 1 symbols of I.

Notice that sub(2, w) is a word of the same length
as 5, and that they can be compared’according to lex-
icographic criteria. Now shy machines are easily intro-
duced.

2. Definition. A shy machine is a logspace oracle Turing

Notation.

machine, with no bound on the oracle tape, such that on
input I every query is of the form sub(s, w) for some w
of length log 11 I.

A point that shoud be made is that on input
sub(z ,w) the queries made by M are themselves again
of the form sub(r, U) , since sub(sub(z, w), U) = sub(r, U).

We define next logarithmic space self-reducibility
in terms of shy machines. The self-reducibility structure
is enforced to be well-founded via a restriction analogous
to that of the “word decreasing queries” self-reducibility
proposed in [2] .

3. Definition. A set A is self-reducible in logarithmic
space (logspace self-reducible for short) if and only if
there is a logarithmic space shy machine M such that
A = L (M , A) , and on every input I every word queried
by M is lexicographically smaller than I.

A more general definition, considering the prop-
erties to be imposed to an arbitrary partial order to be
used in place of the lexicographic order in the preceding
definition, has been developed by the author in order to
provide a link with the wdq-self-reducibility studied in
[2] . It is similar in spirit to the self-reducibilit,y of [13].
It has not yield new results so far, and therefore will be
omitted here.

The following property states the uniqueness of
the self-reducible set defined by a given shy machine M .
The argument will be useful in the next sections.

4. Proposition. Let M be a shy machine which always
queries words smaller than the input in the lexicograph-
ical order. If A = L (M , A) and B = L (M , B) then
A = B.

The proof is by the following inductive argument
on each length n: on the smallest word of length n, M
cannot query the oracle, therefore it is either both in
A and B or outside both of them. Now, for any word
w , suppose that A and B coincide on all smaller words.
Then the behavior of M on w is identical for both oracles,
and w must be either accepted (and therefore belong
to both A and B) or rejected (and therefore belong to
neither of them).

Observe that the argument can be done separately
for each length, using the fact that shy machines always
query words of the same length as their input. In fact,
we can say that if A is accepted by a shy machine as
in proposition 6, and B is a set of words all of them of
length n such that for every word I of length n, I is in
B if and only if I is in L (M , B) , then B is precisely the
subset of all the words of length n in A.

To locate these sets, we can state the following
property. We omit the proof.

41

5. Proposition. Every logspace self-reducible set is in P.

We show next that logspace self-reducible sets ex-
ist; our examples are quite natural encodings of complete
sets for certain complexity classes.

6 . Definition. Let AGAP (standing for Acyclic Graph
Accesibility Problem) be the set of all words of the form
G#s#t where G encodes an acyclic graph, s and t are
nodes of G, and there is a path in G leading from s to t .
We require further that the nodes are labeled according
to a topological sort in such a way that the label of each
node is a number of length log IG#s#tl.

Note that the requirement of G being an encoding
of a graph topologically sorted only means that the nun-
bering of the nodes is such that the source of each edge
has a number smaller than its target. This can be tested
easily in logspace, and implies acyclicity; so AGAP is in
NLOG. Using standard techniques, it is not difficult to
see that AGAP is complete for NLOG under logspace
reductions. (In order to obtain an acyclic graph, start
from a NLOG machine that counts the number of steps
performed during its computation: this guarantees ab-
sence of loops.)

7 . Proposition. AGAP is logspace self-reducible.

Proof (sketch). On input G#s#t, i f s is a predecessor of
t then accept, otherwise query the oracle about all the
words G#s#t’ where t‘ is a predecessor o f t in G. 0

Our next example is a particular encoding of the
circuit value problem.

8. Definition. Let CVP (standing for Circuit Value
Problem) be the set of all words of the form u#C#g,
where u is a binary string, C is an encoding of a fan-
in 2 boolean circuit with IuI inputs, and g is a gate of
C , which we designate as output gate, and which takes
value 1 on input U . We require that each gate is labeled
by a number of length log \u#C#g(, and that the label
of each gate is greater than the labels of their two input
gates.

It can be seen that CVP is complete for P un-
der logspace reductions [ll]. Our requirements about
the encoding are irrelevant for the proof. We have the
following property.

9. Proposition. CVP is logspace self-reducible.

Proof (sketch). On input u#c#g, if g is an input gate
then check the corresponding symbol of U ; otherwise,
let g1 and g2 be the gates that are inputs to g, query
the oracle about u#C#gl and u#C#gz to obtain their
respective values, and apply to the answers the boolean
function corresponding to gate g. The number of queries
is always 2. 0

The self-reducibility of these sets will be used in
the next sections. Other logspace self-reducible sets are
presented in section 5.

2. Deterministic logspace with advice
In this section we show a property of logspace self-
reducible sets which yields as particular cases parts (E)
and (F) of theorem 1. It is very similar to properties of
self-reducible sets presented in [2] and [3).

This property is stated as follows:

10. Theorem. Let A be a logspace self-reducible set. If
A E DLOG/log then A E DLOG.

Proof. We show how to decide A in deterministic loga-
rithmic space. The algorithm just cycles over all possible
advices of the appropriate length, searching for a correct
one, and when found it uses the DLOG algorithm with
this advice. The self-reducibility structure is used to
check the correctness of each possible advice.

More formally, let A = L (M , A) where M is a shy
machine which witnesses the logspace self-reducibility of
A. Further, let M’ be a logspace machine and let h be
such that

vx (x E A e=+ (x , h (l x I)) E L(M‘))

given by the fact that A belongs to DLOG/log. Without
loss of generality we assume that the alphabet is large
enough so that lh(n)I = logn. We say that an advice w
of length logn is correct for z where 1x1 = n if and only
if

Vu (sub(x,u) E A * (sub(x, U) , w) E L (M ‘))

where u ranges over the words of length log 1x1, i.e. if it
can be used without harm instead of the actual value of
h in order to decide x and the words that M could query
on x. Consider now the following algorithm.

input x
for each word w of length log 1x1 do

check (using the subroutine below) that

if it is then exit the for loop
accept if and only if (z, w) E L(M’)

w is a correct advice for x

By the definition of correctness, this program de-
cides A provided that the subroutine works properly,
since at least the value h(l.1) will be found (and pos-
sibly some other correct one). The correctness of the
candidate advice can be tested as follows.

for each word u of length log 1x1 do
simulate M on input sub(x, U)

whenever M queries about sub(z, v),
answer YES if and only if (sub(x, U), w) E L(M’)

42

check that M accepts svb(z, U)

if so, return YES, else return NO
if and only if (sub(z , U) , w) E L(M‘)

The correctness of this subroutine can be shown
by applying the inductive argument following proposi-
tion 6. 0

Now we can derive easily part (E) of theorem 1
as announced. Just apply theorem 12 to the set AGAP,
which was shown in the previous section to be logspace
self-reducible and NL 0 G -complet e.

11. Corollary. If NLOG c DLOG/log then NLOG =
DLOG.

Similarly, theorem 12 can be applied to CVP,
yielding the following.

12. Corollary. If P G DLOG/log then P = DLOG.

It is very easy to see that if in theorem 12 the
class DSPACE(1og’n) is substituted for DLOG (keep-
ing the advice logarithmically bounded) the proof carries
through. This yields as a corollary part (F) of theorem 1.

13. C O T O ~ ~ U T ~ . If P C DSPACE(logkn)/log then P 2
DSPACE(logk n) for every k.

3. Nondeterministic logspace with advice
The results in the previous section indicate that for
classes having a complete logspace self-reducible set, be-
ing included in nonuniform logarithmic space amounts
to being included in the corresponding uniform class
DLOG; i.e. the advice is in some sense useless. It is nat-
ural to wonder whether a similar result can be obtained
under the hypothesis that P is included in nonuniform
nondeterministic logarithmic space: is it possible again
to “get rid of” the advice and show an equality with the
corresponding uniform class?

In this section we prove a theorem that allows one
to obtain precisely this result, thus completing in some
sense the “map” of implications between the uniform and
nonuniform classes P, NLOG, and DLOG. The proof is
similar to that of theorem 12, and requires the use of
Immerman’s theorem [9] and of some consequences of it.
More precisely, we need the following property, which is
easy to prove using the results of [9].

14. Proposition. DLOG(NL0G) = NLOG.

Now we can state the main result of this section.

15. Theorem. Let A be a logspace self-reducible set. If
A E NLOG/log then A E NLOG.

Proof. Let A = L (M , A) where M is a shy machine which
witnesses the logspace self-reducibility of A. Further, let

M‘ be a nondeterministic logspace machine, and let h be
such that

which exist since A E NLOG/log. Again, we assume
that the alphabet is large enough so that lh(n)I = logn.
The notion of correct advice for a given word z is defined
exactly as in the deterministic case:

C O T T (Z , W) :

Vu(sub(z,u) E A * (sub (z ,u) ,w) E L(M‘))

We claim that the predicate Corr (z ,w) can be
tested in nondeterministic log space. We will do this by
considering the following deterministic logspace oracle
machine MI’:

input
simulate M on y

on query z , query (z , w)

This machine is designed to use L(M’) as oracle.
Its only purpose is to present in a clear form the NLOG
algorithm to decide the correctness of a given advice. In-
deed, we show this claim by proving the following equiv-
alence:

(*) Corr(s,w) *
pw = 1% 1.1)

((sub (z ,u) ,w) E L(M”,L(M’))

-e+ (5 4 2 , U) , 4 E L(M’))]
The universal quantifier can be tested in log space;

the quantified predicate is trivially a DLOG(NLOG),
and therefore an NLOG predicate by proposition 16.
Thus, the predicate Corr(z , w) can be decided in NLOG.
Let us now prove (*).

Assume that Corr(z,w) is true. Then, since M
is shy, all queries of M” on (sub (z ,u) ,w) are of the
form (sub(z , U) , w) and therefore, by the correctness of
w, correctly answered by L(M’). Thus (sub(z,u),w) E
L(M”,L(M’)) if and only if (s u b (z , u) , w) E A , and
again by the correctness if and only if (sub(s,u),w) E

Conversely, if the right hand side of (*) holds then
the set of words sub(z ,u) such that (sub (z ,u) ,w) E
L(M’) is easily seen to be consistent with the self-
reducing machine M . By an inductive argument as the
one following proposition 6, we obtain that sub(z, U) E
A U (sub(z,u),w) E L(M’) , and therefore w is cor-
rect for I. This proves the claim that correctness can be
decided in NLOG.

Now it is immediate to prove the theorem: on
input I, guess a correct advice w, check its correctness in

L(M’) .

43

NLOG, and use it to decide whether I E A by simulating
M' on (I, w). 0

In the same manner as in the preceding, section,
this theorem can be applied to CVP:

16. Corollary. If P NLOG/log then P = NLOG.

Once more, the proof carries through if a class of
the form NSPACE(logk n) is substituted for NLOG (but
again keeping the advice logarithmically bounded). We
obtain:

17. Corollary. If P C NSPACE(1og'n)llog then P E
NSPACE(1og' n) for every k.

4. Reducibility to context-free languages
An interesting class contained in P is the closure of
the class of context-free languages under logspace m-
reducibility, denoted LOG(CFL). Its analog class for
the deterministic context-free languages is LOG (D CFL).
They have been characterized in [16] in terms of mul-
tihead pushdown automata, and logspace polynomial
time auxiliary pushdown automata. Their relationship
to the logspace complexity classes is obviously related
to the open question of whether context-free languages
can be decided in logarithmic space. We show here
that languages in these classes can be captured by cer-
tain logspace self-reducible sets, and therefore results like
corollaries 14 and 18 can be obtained for them.

Our results are based on a smart technique pre-
sented in [6], which is based in turn on the decision pro-
cedure for context-free languages of [l]. Reference [6]
applies this technique to auxiliary pushdown automata.
Although we apply it to pushdown automata as in [l],
we follow the approach of the former since it is closer to
our goal: we want to make apparent the logspace self-
reducibility structure underlying the technique. For the
proof of our main theorem in this section we will require
the following two lemmas.

18. Lemma.
1. There is a pushdown automaton M I , with no A-

transitions, which accepts by empty store, such
that L(M1) is complete for LOG(CFL) under
logspace m-reducibility.

2. There is a deterministic pushdown automaton
M2, with nq A-transitions, which accepts by
empty store, such that L(M2) is complete for
LOG(DCFL) under logspace m-reducibility.

PTOOf .

1. The hardest context-free language of Greibach [7]
does not contain the empty word, and is com-
plete under homomorphism for the class of CFL's

2.

that do not contain the empty word; therefore
it is logspace m-complete for LOG(CFL). By a
classical result of automata theory (see [SI, the-
orem 5.5.1), it is accepted by empty store by a
pushdown automaton with no A-transitions.
In [16], a deterministic CFL is exhibited that is
logspace m-complete for the class of deterministic
CFL's (lemma 8 and proof of lemma 9 of [16], see
also footnote in page 413). Also, in the same refer-
ence, it is shown (lemma 7) that every determinis-
tic CFL is logspace m-reducible to a deterministic
CFL recognized by empty store by a deterministic
pushdown automaton with no A-transitions. Our
claim follows from the transitivity of the logspace
m-reducibility. 0
Let AuxPDA,*(log) denote the class of sets de- ~. ~

cidable by nondeterministic logspace auxiliary push-
down automata in polynomial time, and similarly
AuxDPDApt(log) for deterministic logspace auxiliary
pushdown automata.

19. Lemma. The following equalities hold:

LOG(CFL) = AuxPDA,r(log)
LOG(DCFL) = AuxDPDA,t(log)

PTOOf. It is theorem 1 in [16]. 0
Now we present our main theorem of this section.

For closely related material and analogous notation and
properties, see the proof of theorem 1 of [SI, part (b) im-
plies (c).

20. Theorem. Let M be a pda with no A-transitions
which accepts by empty store. There is a set A E
LOG(CFL) which is logspace self-reducible, such that
L (M) E DLOG(A). Furthermore, if M is deterministic
then A E LOG(DCFL).

The proof requires to develop some definitions and
notation. Given the pushdown machine M as in the the-
orem, a surface configuration of M on input w is a triple
(p , q, 2) ; p is the position of the input tape head, q is a
state of M , and 2 is the top symbol in the pushdown.
A pair of surface configurations P, Q is realizable if and
only if there is a partial computation of M on input
w starting at a configuration c1 corresponding to surface
configuration P , ending at a configuration c2 correspond-
ing to surface configuration &, and such that the height
of the pushdown is the same in c1 and in c2, and dur-
ing that computation this height never drops below this
threshold. Note that realizability depends on the input.

We encode pairs of surface configurations as
strings of length logw over a large enough alphabet.
We assume that this encoding is such that the follow-

44

ing condition holds: if in surface configuration Q1 the
input tape head is scanning a symbol strictly at the left
of the symbol scanned in surface configuration Q2, then
the encoding of the pair (P I , Q 1) is smaller in the lexico-
graphic ordering than that of (P z , Q2) for every Pi , Pz.
This is attained by encoding the position of the tape
head in component Q into the most significant digits of

The key to the self-reducibility structure is given
(P , Q) .

by the following definition.

21. Definition. Pairs (P1,Q1) and (Pz,Qz) yield pair
(P3,Q3) if and only if PI = P3 and either:

(i) Q1 = P2 and M goes in one step from Q2 to Q3
without changing the pushdown, or

(ii) M goes in one step from Q1 to P2 pushing a sym-
bol 2, and A4 goes in one step from Q2 to Q3
popping the same symbol 2.

The core of the proof is in our next lemma.

22. Lemma. Starting from all identity pairs (P , P) and
iterating the “yield” relation, exactly the set of all real-
izable pairs is obtained.

Proof(sketch). It is not difficult to see by induction that
every pair obtained by iteration of the “yield” relation
from the identity pairs is realizable.

Conversely, suppose that the pair (P I Q) is realiz-
ableviaacomputat ionP=Pl ,Pz, ..., Pt = Q . I f t = l
then P = Q and the pair is a base identity pair. If t > 1
and the transition from Pt-l to Pt does not changc the
pushdown, and assuming inductively that (PI , Pt-1) has
been obtained from the “yield” relation, parr (ij yields
(P , Q). The definition of realizability prrvents the tran-
sitior, from Ft-; t,o Ft from being a pushing move; thus,
assume that the pushdown is popped, and consider she
first, pusliing move ill the partial coniput,ation, say from
P, to P,+l. Inductively, (P, ,Pt j and (P;+j.Pt-l) are re-
alizable and therefore can be obtained from the “yield”
relation Applying part (ii) of the definition of “yield”
gives (P, Q) .

Of course! in order to decide whether two pairs
yield another the input must be known. An impor-
tant point in the previous proof is that every realizable
pair (excepting identity pairs, of course) can be obtained
by applying the “yield” relation to pairs having strictly
smaller encodings, due to the fact that the pushdown
machine M has no A-transitions.

We are now ready to prove theorem 22.
Proof of theorem 22. The set whose existence is asserted
in the statement is set A formed by all the words of the
form w # (P , Q) , such that on input w the pair (P , Q) is
realizable. We show that the theorem holds. To see that

A E LOG(CFL), we argue that A is accepted in linear
time by a logspace AuxPDA, which on input w#(P, Q)
sets up itself on configuration P and simulates M , keep
ing in a counter the height of the stack, and checking that
Q is reached with no extra symbols left on the stack.
By lemma 21, A E LOG(CFL). Moreover, if M is de-
terministic then the AuxPDA is deterministic also, and
therefore A E LOG(DCFL).

To see that A is logspace self-reducible, we take
advantage of the characterization given by the “yield”
relation, constructing a shy machine that on input.
w#(P , Q) accepts if P = Q , else searches for smaller
pairs that yield w#(P, Q) and queries the oracle to find
whether they are realizable. It is easy to see that the
queries have the correct form; its correctness follows from
lemma 24.

Finally, L (M) is decidable in logarithmic space
with oracle A by checking whether a realizable pair exists
starting at the initial configuration of M and ending at
an accepting configuration. This completes the proof. 0

As applications of this theorem, we obtain:

23. Corollary.

DLOG.

DLOG.

NLOG.

NLOG.

(a) If LOG(CFL) 2 DLOG/log then LOG(CFL) =

(b) If LOG(DCFL) DLOG/log then LOG(DCFL) =

(c) If LOG(CFL) 5 NLOG/log then LOG(CFL) =

(d) If LOG(DCFL) C NLOG/log then LOG(DCFL) =

P T O O ~ . Apply theorem 22 to the pushdown automata de-
scribed in lemma 20 to obtain logspace self-reducibie sei :
complete respectively for LOG(CFL) and LOG(DC?LL).
Then tile results follow from theorems 12 and 17. ?

As a final remark, notice that this result does I?..?:

say that if CFL languages can be decided by noxuni-
form logspace models then they can be decidecl by ui-,,i
form Iogspare models: the hypothesis required is tbzt
the whole ciass LOG(CFL) is included in DLOG/Ioy.
The reason why the proof does not work from a weaker
hypothesis, like CFL included in DLOG/log, is that
this second class is not closed under logspace reducibil-
ity, since each advice is valid for only one length and
a reducibility may map the words of a given length to
words of polynomially many different lengths. Therefore
the inclusion of CFL in DLOG/log does not guarantee
membership to the nonuniform class of the logspace self-
reducible complete set for LOG(CFL).

5. Conclusions
We have developed a notion of logarithmic space self-
reducibility, adapting to this resource bound a notion

45

that is becoming very interesting for comparing uniform
and nonuniform complexity classes.

Our definition allows one to obtain known and
new consequences in the comparison between uniform
and nonuniform classes below polynomial time. In par-
ticular, we obtain that if a nonuniform model corre-
sponding to deterministic (resp. nondeterministic) log-
arithmic space is able of deciding the sets in P then
the nonuniformity capability can be “switched off”, and
the equality P = DLOG (resp. P = NLOG) follows.
Similar results compare NLOG to DLOG, LOG(CFL)
and LOG(DCFL) to NLOG and DLOG, and P to
DSPACE(logk n) and to NSPACE(logk n).

The “/poly” counterparts of some of the nonuni-
form classes considered here (namely DLOG/poly and
NLOG/poly) have been studied quite in depth, and can
be characterized by sequences of bounded-size two-way
automata and by similarly bounded branching programs
-see [4] and [12]-. It would be interesting to find anal-
ogous characterizations of the “/log” classes, and also
to try to obtain results like those presented here from
hypothesis regarding the “/poly” classes.

6. Acknowledgements

The author is grateful to Gerd Wechsung for suggesting
this research, to Jacobo Torbn for interesting discussions
and proofreading, to B. Jenner and B. IGrsig for call-
ing his attention to Sudborough’s work [16], to Mario
Rodriguez Artalejo for providing him reference [l], and
to Josep M. Humet for providing him reference [7].

7. References

[l] A. Aho, J. Hopcroft, J. Ullman: “Time and tape
complexity of pushdown automaton languages”.
Information and Control 13 (1968), 186-206.

[2] J.L. Balcizar: “Self-reducibility”. In: Proc. Sym-
posium on Theoretical Aspects of Computer Sci-
ence (1987), Lecture Notes in Computer Science
247, Springer-Verlag, 136-147.

[3] J.L. Balcdzar, R.V. Book, U. Schoning: “The
polynomial time hierarchy and sparse oracles”.
Journal ACM 33 (1986), 603-617.

[4] J.L. Balcbzar, J. Diaz, J. Gabarr6: Struc-
tural Complexity I. EATCS Monographs, vol. 11,
Springer-Verlag (1987).

[5] J.L. Balcbzar, J. Gabarr6: “Nonuniform complex-
ity classes specified by lower and upper bounds”.
Preprint (1987). To appear in Id. Theor. et Ap-
plications.

[6] S. Cook: “Characterizations of pushdown ma-
chines in terms of time bounded computers”. Jour-
nal of the ACM 18 (1971), 4-18.

[7] S. Greibach: “The hardest context-free language”.
SIAM J. Comput. 2 (1973), 304-310.

[SI M.A. Harrison: Introduction to formal language
theory. Addison-Wesley (1978).

[9] N. Immerman: “Nondeterministic space is closed
under complement”. Preprint (1987). See also
these proceedings.

[lo] R. Karp, R. Lipton: “Some connections between
nonuniform and uniform complexity classes”. In:
Proc. 12 ACM Symposium on Theory of Comput-
ing (1980), 302-309.

[ll] R. Ladner: “The Circuit Value Problem is
logspace complete for P”. SIGACT News, January

[12] C. Meinel: “pprojection reducibility and the
complexity classes L(nonuniform) and NL(non-
uniform)”. In: Proc. Mathematical Foundations of
Computer Science (1986), Lecture Notes in Com-
puter Science 233, Springer-Verlag, 527-535.

[13] A. Meyer, M. Paterson: “With what frequency
are apparently intractable problems difficult?”.
M.I.T. Tech. Report TM-126 (1979).

1975, 18-20.

[14] W. Ruzzo, J. Simon, M. Tompa: “Space-bounded
hierarchies and probabilistic computations”. J.
Comp. Syst. Sci. 28 (1984), 216-230.

[15] L. Stockmeyer: “The polynomial-time hierarchy”.
Theor. Comp. Sci. 3 (1977), 1-22.

1161 I.H. Sudborough: “On the tape complexity of de-
terministic context-free languages”. Journal of the
ACM 25 (1978), 405-414.

46

