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Abstract. Nuclear fragmentation produced in 
12

C ion therapeutic beams contributes 21 

significantly to the Relative Biological Effectiveness (RBE) - weighted dose in the distal 22 

edge of the Spread out Bragg Peak (SOBP) and surrounding tissues in out-of-field. 23 

Complex mixed radiation field originated by the therapeutic 
12

C ion beam in a phantom is 24 

difficult to measure. This study presents a new method to characterise the radiation field 25 

produced in a 
12

C ion beam using a monolithic ΔE-E telescope which provides the 26 

capability to identify the particle components of the mixed radiation field as well as the 27 

microdosimetric spectra that allows derivation of the RBE based on a radiobiological 28 

model. The response of the monolithic ΔE-E telescope to a 290 MeV/u 
12

C ion beam at 29 

defined positions along the pristine Bragg Peak was studied using the Geant4 Monte Carlo 30 

toolkit. The microdosimetric spectra derived from the ΔE stage and the two-dimensional 31 

scatter plots of energy deposition in ΔE and E stages of the device in coincidence are 32 

presented, as calculated in-field and out-of-field. Partial dose weighted contribution to the 33 

microdosimetric spectra from nuclear fragments and recoils, such as 
1
H, 

4
He, 

3
He, 

7
Li, 

9
Be 34 

and 
11

B, have been analyzed for each position. Comparison of simulation and experimental 35 

results are presented and demonstrates that the microdosimetric spectra changes 36 

dramatically within 0.5 mm depth increments close to and at the distal edge of the Bragg 37 

Peak which is impossible to identify using conventional Tissue Equivalent Proportional 38 

Counter (TEPC).  39 

1. Introduction 40 

Charged particle therapy with 
12

C ions has the advantage over X-ray radiotherapy due to the Bragg 41 

Peak (BP) producing a highly conformal dose profile. Charged particle therapy is normally used for 42 

the treatment of deep-seated tumours while preserving the surrounding healthy tissues. The energy 43 

deposition mechanism of ions in matter is dominated by the electronic collisions for the relevant 44 

energies of primary ion, described by Bethe-Bloch formula [1, 2]. The nuclear reactions contribute 45 

substantially to the ion dose via nuclear fragmentation and neutrons production. The determination of 46 

the Relative Biological Effectiveness (RBE) is crucial for particle therapy, particularly for heavier ions 47 

such as 
12

C, as the biological dose is required as a parameter in patient treatment planning. Accurate 48 

knowledge of the RBE in-field and out-of-field is essential for determining the physical dose at a 49 



 

 

 

 

 

 

particular depth, D, to have the biological dose (RBED) constant along the SOBP, and to evaluate the 50 

secondary cancer risk and biological dose at Organs At Risk (OAR) out of the treatment field. 51 

The RBE of a 
12

C therapeutic beam changes dramatically with depth, especially towards the end of 52 

the Bragg Peak (BP) due to the very high Linear Energy Transfer (LET) of the 
12

C ions in this region 53 

[3]. Additional complexity in the determination of the RBE in the target is associated with the nuclear 54 

fragmentation process in the SOBP. 
12

C fragmentation produces lighter charged ions with lower LET 55 

than for primary 
12

C ions as well as neutrons, which results in a slight reduction of the primary 
12

C 56 

ions with increasing of the depth, as well as the production of a mixed radiation field which causes a 57 

low dose “tail” that extends beyond the distal edge of the SOBP [4]. The shape of the SOBP is formed 58 

by means of multiple pristine 
12

C Bragg Peaks, which result in the formation of RBE ripples along the 59 

plateau of the SOBP. 60 

An effective approach to derive the RBE for a 
12

C ion beam is microdosimetry [5]. The 61 

microdosimetric approach involves measuring the frequency f(y) of the stochastic lineal energy 62 

deposition y, in a micron sized tissue equivalent sensitive volume (SV). The lineal energy deposition y 63 

is defined as: 64 

l

E
y  , 

                                               

(1) 

 

where E is the energy deposition in the SV, which has an average chord length <l>. Once the 65 

microdosimetric spectra y
2
f(y) vs y of a radiation field in tissue equivalent material is known, the RBE 66 

can be derived based on the modified microdosimetric-kinetic model (MKM) [6]. The RBE10 of the 67 
12

C ion beam is defined as the ratio of the dose required to achieve 10% cell survival using X-rays to 68 

that required when using the radiation of interest:  69 

𝑅𝐵𝐸10 =
2𝛽𝐷10,𝑅

√𝛼2 − 4𝛽𝑙𝑛(0.1) − 𝛼
 , 

(2) 

where α, β are individual tissue radiosensitivity coefficients (α, in units of Gy
-1

 and β, in units of Gy
-2

) 70 

determined the cell survival, D10,R = 5.0 Gy is the dose corresponding to 10% survival for human 71 

salivary gland (HSG) cells using 200 kVp X-rays as reference radiation.  is defined as:  72 

 
𝛼 =  𝛼𝑜 +

𝛽

𝜌𝜋𝑟𝑑
2  𝑦∗, 

 

(3) 

where 𝛼0 = 0.13 𝐺𝑦−1 is a constant that represents the initial slope of the survival fraction curve in the 73 

limit of zero LET, 𝛽 = 0.05 𝐺𝑦−2 is a constant independent of LET, 𝜌 = 1 𝑔 𝑐𝑚3⁄  is the density of 74 

tissue and 𝑟𝑑 = 0.42 𝜇𝑚 is the radius of a sub-cellular domain in the MK model.   75 

𝑦∗ =
𝑦𝑜

2 ∫ (1 − 𝑒𝑥𝑝(−𝑦2/𝑦𝑜
2))𝑓(𝑦)𝑑𝑦

∞

0

∫ 𝑦𝑓(𝑦)
∞

0
𝑑𝑦

 , 
 

(4) 

where yo = 150 keV/µm is used in this study in order to match the calculation method used at the 76 

Heavy Ion Medical Accelerator in Chiba (HIMAC) in experiments with the tissue equivalent 77 

proportional counter (TEPC).  78 

    The Centre for Medical Radiation Physics (CMRP), University of Wollongong, has initiated the 79 

concept of silicon microdosimetry to replace the current microdosimetry gold standard, the TEPC. 80 

Compared to the TEPC, silicon microdosimeters are advantageous due to being a solid-state detector 81 

with no gas-flow ensemble, having very low operating voltages less than 10 V, extremely high spatial 82 

resolution (𝜇m scale) and a high degree of portability. Current status of  silicon microdosimetry can be 83 

found elsewhere [7]. 84 

The characteristics of secondary charged particles in 
12

C ion beams of 200 and 400 MeV/u have 85 

been previously studied using the combination of energy loss and time-of-flight (TOF) measurements. 86 

A thin scintillation paddle with 1.5 mm thick coupled to a Hamamatsu photomultiplier tube was used 87 

[8]. The monolithic ΔE-E telescope with 1.8 µm thick ΔE stage can be used at the same time as a 88 

microdosimeter and as detector to identify products deriving from nuclear fragmentation [9, 10]. 89 



 

 

 

 

 

 

The latest design of the monolithic telescope has a pixelated ΔE detector with SVs similar in 90 

geometry to CMRP SOI microdosimeters [7, 11]. The pixelated ΔE stage allows the device to be used 91 

as a microdosimeter while also providing particle identification [12].  92 

The ΔE-E telescope was used earlier to derive the RBE based on the microdosimetric approach, at 93 

defined positions along and downstream of a 100 MeV pristine proton Bragg peak and including distal 94 

part of SOBP at the proton therapy facility at Loma Linda University [13]. It was demonstrated that 95 

the maximum RBE value did not coincide with the physical dose peak position but was slightly 96 

downstream of the distal edge of the Bragg Peak. The study showed that the RBE varied with the 97 

depth along the SOBP and was higher than the RBE value being used in proton treatment planning 98 

(equal to a constant value of 1.1 along the SOBP). This was in agreement with currently published 99 

experimental microdosimetry based derived RBE obtained with high spatial resolution in therapeutic 100 

proton beams [14].     101 

We are currently investigating the use of the ΔE-E monolithic telescope for RBE determination 102 

both in-field and out-of-field of the 
12

C ion beam field. The project involved experimental 103 

characterisation of the device at the HIMAC facility, Chiba, Japan, coupled with Geant4-based 104 

simulation studies. 105 

In this paper we present the response of the ΔE-E telescope in-field and out-of-field of a 290 106 

MeV/u 
12

C beam simulated by Geant4 to justify application of the ΔE-E telescope as a high spatial 107 

resolution Quality Assurance (QA) tool in heavy ion therapy (HIT).  The simulation results are 108 

compared to experimental measurements performed at HIMAC, to have a first indication on the 109 

accuracy of the Geant4 simulation model. Particular attention was devoted to the study of the 
12

C 110 

fragmentation and neutrons contribution to the derived RBE in the distal part and downstream of the 111 

Bragg peak. 112 

2. Materials and Methods 113 

2.1 ΔE-E Telescope System Description. 114 

The monolithic ΔE-E monolithic telescope, manufactured at ST Microelectronics (Catania, Italy), 115 

consists of a 1.8 µm ΔE and a 500 µm E thick stage, both manufactured on a single silicon substrate. 116 

The detector response can be presented as a two-dimensional scatter plot of the ΔE vs ΔE + E energy 117 

deposition via coincidence data acquisition.  118 

A schematic of the ΔE-E telescope is shown in Fig. 1, where thin metallised N
+
 implanted n-p  119 

junctions for both E and E detectors are depleted towards a P
+
 buried anode which is a common 120 

ground contact separating the two stages of the detector. To fully deplete the particle telescope the N
+
 121 

contact ΔE was biased at +5 V and the N
+
 contact of the E stage was biased at +100 V relative to the 122 

P
+
 buried layer. 123 

The ΔE-E particle telescope can be operated in a number of modes by utilizing the ΔE and E 124 

detectors separately or in coincidence. When operated separately, the ΔE detector acts like a 125 

microdosimeter in the case when the charged particle beam is normally incident to the surface of the 126 

detector. The mean chord length is defined by the thickness of the ΔE detector (1.8 µm) for normally 127 

incident radiation.  128 

 129 

Figure 1. Schematic of ΔE-E telescope. Figure adapted from [14].  130 
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2.2 Geant4 Simulation Application 132 

The Geant4 version 4.9.6.p01 [15] was used to model the radiation field and the response of the 133 

ΔE-E telescope to a 290 MeV/u 
12

C beam in a PMMA phantom. 134 

 The experimental setup of the simulation, illustrated in Figure 2, reflected the experimental 135 

conditions of the measurements performed at HIMAC. The 
12

C ion beam was simulated with an area 136 

of 1 x 1 mm
2 

and the distance from the ion beam line exit window to the surface of the phantom was 137 

10 m as shown in Fig. 2. A 0.4 mm thick lead scatterer, placed at 5 mm from the ion beam line exit 138 

window, was used for beam scattering. A 50 mm thick brass collimator with 10 x 10 cm
2
 square 139 

aperture was placed at 30 cm from the surface of the phantom. The mixed radiation field produced by 140 

the incident 
12

C ion beam was studied in the PMMA phantom, modelled as a 30 x 30 x 30 cm
3
 box, 141 

with elemental composition taken from ICRU [16] and with a density of 1.17 g/cm
3
. 142 

The electromagnetic interactions of particles were described by means of the Geant4 Standard 143 

Physics Package (G4EmStandardPhysics_option3).  The hadronic interactions were described by 144 

means of the QGSP_BIC_HP physics list. Ion nuclear interactions were modeled with the 145 

G4IonBinaryCascadeModel.   146 

In the first part of the study, the mixed radiation field deriving from the 
12

C ion beam was 147 

characterised. The output of the simulation consisted of the energy deposition in the PMMA phantom 148 

as well as the position of secondary particles generated within the phantom. The energy deposition 149 

derived from the incident primary beam and from the secondary nuclear fragments was tallied 150 

separately. The Bragg Peak was calculated along the direction of the incident beam with 0.1 mm 151 

spatial resolution. The deposited energy at a given depth on a beam central axis and laterally was 152 

stored in the 2D histogram which had 1 mm
2
 pixels.    153 

In the second part of the study, the response of the ΔE-E telescope to a 290 MeV/u 
12

C beam was 154 

modelled to verify the capability of this device in identifying different nuclear fragments in-field and 155 

out-of-field.  156 

The geometry of the ΔE and E stages was modelled as 1 mm x 1 mm x 1.8 µm and 1 mm x 1 mm x 157 

500 µm silicon slabs. The ΔE-E telescope was placed in the PMMA phantom at different depth. The 158 

Geant4 cuts per region [17] were used to reduce the simulation times without affecting the accuracy of 159 

the results. The size of the region was chosen based on a conservative consideration of the range of 160 

secondary electrons produced by the primary 
12

C ion beam field. The maximum range of delta 161 

electrons produced by a 290 MeV/u 
12

C was approximately 2.4 mm in PMMA (NIST database [18]). 162 

Based on these considerations the region was centred with the detector, with a lateral size of 5 mm to 163 

track all δ-electrons at the required accuracy in the surrounding ΔE-E telescope. The range cut was set 164 

low enough to track the δ-electrons down to the low energy limit of the Geant4 Standard 165 

Electromagnetic Physics of 1 keV. Outside the region, the cut was set to 2 mm to reduce computation 166 

time because those δ-electrons with a range smaller than 2 mm cannot reach the ΔE-E telescope. 167 

 168 
Figure 2. Schematic representation of the simulated geometry of ΔE-E telescope in the Geant4 simulation. 169 



 

 

 

 

 

 

Fig. 2 shows the simulated experimental set-up. The energy deposition was calculated per incident 170 

particle on the device, depositing energy in both ΔE and E stages (coincidence mode). The energy 171 

deposition caused by δ-electrons and other secondary particles originating inside the two detector 172 

stages was assigned to the parent particle incident on the device. The kinetic energy, charge, and 173 

baryon number of the particle producing the energy deposition event in the device were scored. 174 

The in-field and out-of-field response of the ΔE-E telescope was obtained at 15 positions along the 175 

axis of irradiation, that is: 0, 10, 58, 106, 125, 126.5, 127, 128, 128.5, 129.5, 130, 131.5, 136.5, 141, 176 

and 155 mm. These positions were selected to encompass both in-field and downstream of the Bragg 177 

Peak measurements as well as to match the experimental measurement positions. 178 

 179 

Figure 3. Schematic representation of out of field positions of the ΔE-E telescope in the Geant4 simulations and 180 

experiments (not to scale). Positions F4 and E4 corresponding to 47 mm lateral distance from the edge of the 181 

radiation field are not shown due to space limitation. 182 

 183 

The out-of-field response of the ΔE-E telescope was studied to characterise composition of the 184 

mixed radiation field, including the scattered primary ion beam, fragments and neutrons which are 185 

needed to estimate the stochastic probability of secondary cancer induction. The out-of-field study was 186 

done with the ΔE-E telescope facing the 
12

C ion beam (face on 0°) and edge on (90°) as shown in Fig. 187 

3. The ΔE-E telescope was placed at 0 mm, 2 mm, 7 mm and 47 mm laterally from the edge of the 188 

radiation field at the Bragg Peak region (for both cases: “face on” noted as F  and “edge on” noted as 189 

E).  190 

3. Results and discussion 191 

3.1 Characterisation of 
12

C ion beam mixed radiation field 192 

Fig. 4a shows the energy deposited by the incident 290 MeV/u 
12

C ions and by the secondary 193 

fragment particles. A Bragg Peak was observed at (129.5 ± 0.1) mm in the PMMA phantom which 194 

agrees with calculated results by SRIM [19]. The main contribution to the total energy deposition 195 

derived from the incident 
12

C ion beam, fragments, neutrons and the secondary carbon ions. Secondary 196 

carbon ions resulted mostly from neutron elastic scattering within the PMMA. Such secondary carbon 197 

ions are absent in the case of a water phantom. The peak of the secondary carbon ion appeared at 120 198 

mm in the PMMA phantom (Fig. 4b). Contributions to the total energy deposition were seen from 199 

secondary nuclei, due to recoils, namely H, He, Li, Be, B, N, and O. The almost negligible energy 200 

deposition contributed by N and O was not included in Fig. 4b.   201 



 

 

 

 

 

 

 

 

 

Figure 4a. Dose per incident 
12

C ion. The contribution 

deriving from incident 
12

C ions and secondary 

fragments are shown in blue and red, respectively. The 

sum of the two contributions is shown with the black 

curve. The energy deposition at the BP was normalised 

to 1. 

 Figure 4b. Energy deposition deriving from the most 

significant secondary nuclear fragments and recoil 

secondary carbon ions (non-primary carbon ions). 

The total energy deposited by the secondary 

fragments component was normalised to 1. 

 202 

Table 1. Number of secondary particles produced per 

single incident 
12

C ion 

Particle Production per single 
12

C  

H  

Secondary C 

25.33 

4.26 

2.37 

1.48 

1.29 

0.49 

0.24 

0.16 

0.14 

Neutron 

O 

He 

B 

Li 

N 

Be 
 

 

Table 1 shows the number of secondary fragments generated per single incident 
12

C ion and 203 

indicate that protons possess the highest yield. These protons are fragmented protons as well as recoil 204 

protons generated in elastic reactions when the neutrons interacted with the hydrogen nuclei in the 205 

PMMA material. The second largest secondary particle yield was from secondary C followed by 206 

neutron, O, He, B, Li, N and Be ions.  207 

Fig. 5 shows the 2D energy distribution from primary and secondary particles in the PMMA 208 

phantom. Two additional lines were added to mark the edges of the primary beam (10 cm x 10 cm) 209 

and range of the primary carbon ions. The 2D histogram shows the minimal scattering of the primary 210 
12

C ions outside the radiation field that confirm the advantage of HIT with a sharp penumbra. All 211 

fragmented ions are producing dose buildup towards the end of the Bragg peak as demonstrated in 212 

Figs 4b and 5. Fragmented C, O, B, Be and Li ions are mostly forward scattered while H and He ions 213 

are producing essential dose halo laterally and downstream of the Bragg peak. It is worth to mention 214 

that the maximum of deposited energy from H, B and He ions is slightly shifted forward in 215 

comparison to the Bragg Peak of primary C ions. 216 

 217 



 

 

 

 

 

 

 218 

Figure 5. 2D energy deposition map of primary and secondary particles in the PMMA phantom for HIMAC 219 

experiment set up. The results are shown per incident particle. 220 

3.2 Characterisation of the ΔE-E telescope response in-field 221 

Fig. 6 shows the positions (A-O) along the 290 MeV/u 
12

C ion beam Bragg Peak, where the ΔE-E 222 

telescope was set. 223 



 

 

 

 

 

 

 224 

Figure 6. A-O points indicate the positions along the 290MeV/u 
12

C Bragg Peak where the ΔE-E 225 

telescope was set. 226 

The coincident signals from the ΔE and E detectors in response to the 290 MeV/u 
12

C beam were 227 

mapped in a two dimensional (2D) scatter plot as ΔE vs ΔE+E. Fig. 7 shows the simulated 2D (ΔE, 228 

E+ΔE) scatter plots at positions A, C, I, J, K, L, which correspond to 0 mm, 58 mm, 128.5 mm, 129.5 229 

mm, 130 mm and 131.5mm depths within the PMMA phantom. The ΔE-E detector was placed along 230 

the central axis of the beam. It can be seen that at 0 mm depth in the phantom, 290 MeV/u 
12

C ions 231 

completely traversed the E and E stages. The majority of energy events deposited in the E stage 232 

ranged between 11-13MeV. Events occurred in E stage are due to electrons which are traveling 233 

essentially along the ΔE detector and then scattered to E detector. The events along horizontal line 234 

depositing approximately 0.01-0.02MeV in the ΔE stage are due to primary 
12

C ions crossing through 235 

the ΔE and E stage of the detector under different angles.  236 

At a depth of 58 mm in the PMMA phantom, the energy deposition regions corresponding to B, Be, 237 

Li, He, H fragments are clearly visible in the scatter plot.  238 

At 128.5 mm depth in the PMMA phantom, the loci corresponding to fragmentation products are 239 

clearly observed. The maximum energy deposited in the E stage is about 185 MeV, which corresponds 240 

to the energy of 
12

C ion having a range in silicon equal to the thickness of E stage of 500 µm. The 241 

energy deposited in the ΔE stage for 185 MeV 
12

C ion is approximately 0.4 MeV.  Events on a scatter 242 

plot on the left of the kink with an increased energy deposited in E stage are corresponding to 243 

stoppers in the E stage. The most frequent energy deposition events occur between 80 and 100 MeV in 244 

the E stage which means that the majority of primary carbon ions are crossers as this depth while 245 

straggled essentially. The loci corresponding to oxygen and nitrogen were observed and corresponded 246 

to particles produced by inelastic reactions when 
12

C ions interacted with the PMMA phantom.  247 

The 2D energy scatter plot simulated in the ΔE-E telescope placed at the pinnacle of the Bragg 248 

peak (position J at 129.5 mm) is shown in Fig. 7. While most primary C ions are stoppers in E stage 249 

some of the C ions are still crossers due to increased straggling  at the end of the range.  250 

At 130 mm depth, the C ion locus is without a lower part of the kink due to all 
12

C ions stopping 251 

within the E stage with a maximum energy of 2.4MeV in the ΔE stage.  Multiple loci that 252 

corresponded to the detection of different types of fragmented ions such as B, Be, Li, He, H were 253 

clearly seen. At a depth of 131.5 mm the contribution of all fragmentation was still observed  These 254 

results show that in principle the ΔE-E detector is suitable for 
12

C ion beam radiation field 255 

characterisation with high spatial resolution in the distal edge of the Bragg peak providing accurate 256 

information at what depth the deposited energy is due to fragments only. 257 



 

 

 

 

 

 

 258 

Figure 7. Response of ΔE-E telescope to 290 MeV/u 
12

C ion at depths 0, 58, 128.5, 129.5, 130, 131.5 mm in the 259 

PMMA phantom (two-dimensional ΔE-E plot). The results are shown per incident particle. 260 

The microdosimetric spectra in silicon (with area normalised to 1) measured by E stage in 261 

response to  290 MeV/u 
12

C ion beam for depths of 106, 128.5, 129.5, 130 and 131.5 mm in the 262 

PMMA phantom are shown in Fig. 8.  263 

At all depths up to 130 mm, the dose weighted contribution from 
12

C ions was dominated with a 264 

clear shifting  of 
12

C microdosimetric spectrum to the region of higher lineal energies and spreading, 265 

due to the 
12

C ion energy decreasing and 
12

C ion scattering and the energy straggling are increasing 266 

with depth.  267 

The other dose weighted partial microdosimetric spectra  with lineal energies lower than 100 268 

keV/µm, are corresponding to  nuclear fragments such as B, Be, Li, 
3
He, alpha particles and protons.  269 



 

 

 

 

 

 

 270 

Figure 8. Microdosimetric spectra derived from the ΔE stage at positions D, I, J, K, L and M. Separated dose 271 

weighted components have been shown in each microdosimetric spectrum.  272 

 273 

At a further depth in the PMMA phantom close to the distal part of the Bragg Peak (128.5 mm), a 274 

separate sharp peak occurs for the 
12

C dose weighted microdosimetric spectra which corresponds to 275 
12

C ions stopping in the E stage and having range of 1.8 µm which is equal to the thickness of the E 276 

stage. This peak is more pronounced 0.5 mm further downstream at 130mm due to an increasing 277 

number of 
12

C ions with decreased energy at the very distal part of the BP. These detailed results 278 

demonstrate the capability of the silicon microdosimeter to obtain extremely high spatial resolution 279 

measurements, which were impossible with a TEPC, but which are crucial in determining the RBE 280 

accurately within the target tumor and beyond.  281 

An interesting feature of the microdosimetric spectra is a partial dose weighted microdosimetric 282 

spectra peak corresponding to electrons. This peak is originated by scattered delta electrons from 
12

C 283 

ions. These electrons have energies below approximately 600 keV which is calculated using the 284 

formula: 285 

Eelectrons = (4me/Mion)∙ Eion,              
(5)                 



 

 

 

 

 

 

where me is the mass of electron, Mion is the mass of carbon ions and E is the energy of the 
12

C ion. 286 

This peak is absent in the microdosimetric spectra at depth downstream of the Bragg peak that 287 

confirmed the origination of this peak.    288 

  Measurements of microdosimetric spectra at depth 131.5 mm (just behind of the Bragg peak) and 289 

136.5 mm along the distal part of the Bragg Peak shown in Fig. 8 indicated that primary 
12

C ions were 290 

not part of this mixed radiation field, although the contribution from fragments remains significant, 291 

with the largest dose weighted contribution deriving from B ions and alpha particles.  292 

3.3 RBE derivation by the ΔE-E telescope in 
12

C ion beam 293 

Using the microdosimetric spectra obtained by the ΔE stage in response to 290 MeV/u 
12

C pristine 294 

BP for various depths in the PMMA phantom, the dose-mean lineal energy at each depth was 295 

obtained. The microdosimetric spectra have been converted from silicon to tissue using a conversion 296 

factor derived in [20].  297 

The QGSP_BIC_HP physics list and the Quantum Molecular Dynamic (QMD) were used as 298 

alternative hadronic physics approaches to describe ion hadronic interactions. This strategy was 299 

adopted to evaluate the impact of alternative Geant4 physics models when calculating the RBE10, by 300 

means of the MK model applied on the simulation microdosimetric results. Fig. 9 shows the RBE10 301 

profiles obtained with the two alternative physics models. The RBE10 values derived using the two 302 

models agreed well with one another within 0.3±0.03% in the proximal part of the BP, 0.7±0.09% at 303 

the BP and 3.6±1% in downstream of the BP.  304 

 305 
Figure 9: RBE10 calculated adopting in the simulation the Geant4 Binary Ion Cascade and, alternatively, the 306 

QMD model, to describe ion hadronic interactions. 307 

The RBE10 profiles calculated using the MK model obtained by means of the Geant4 simulation 308 

and experimentally using a TEPC are shown in Fig. 10. The maximum derived RBE10 found using the 309 

1.8 µm thick ΔE stage was approximately 2.8. The derived RBE10 profile, obtained by the E stage 310 

agrees well with the profile which was also calculated with MK model using microdosimetric spectra 311 

measured by a TEPC at NIRS, Japan [21], however a discrepancy was observed at an entrance depth 312 

where the TEPC was placed at 1 mm depth in water as presented in [21] and the ΔE-E telescope was 313 

positioned at 0 mm depth in the PMMA phantom. This was due to the fact that the effective depth of 314 

the TEPC in water was actually 7.8 mm including the thickness of an A150 wall (1.27 mm), an Al 315 

shell (0.178mm) and physical size of the TEPC spherical volume (12.7 mm).  It should be noted that 316 

the ΔE-E telescope was measured in a PMMA phantom while the TEPC measurements were carried 317 

out in water, hence range scaling has been used to match the results. 318 



 

 

 

 

 

 

 319 

Figure 10. Derived RBE10 along the central axis of the 
12

C ion pristine BP, obtained by the E stage. The 320 

RBE10 derived from measured values of y* [21] are shown by blue rotated square. 321 

3.4. Characterisation of ΔE-E telescope response out of field 322 

Fig. 11 shows the response of the ΔE-E telescope when the device was placed out-of-field laterally in 323 

two configurations: face on (0º) and edge on (90º) (see Fig. 3). In the face on configuration there was a 324 

clear loci that could distinguish different species of particles (Fig. 11 a) while the edge on 325 

configuration revealed a very different 2D energy scatter plot with an absence of clear loci (Fig. 11 b); 326 

this result indicated the preferable forward directionality of the out-of-field charged ion components. 327 

The direction of the primary and secondary charged ions out-of-field can be seen in Fig. 5. The 328 

absence of loci was due to the long path length of the particles coming through the ΔE stage in edge-329 

on configuration. The observed scatter plot on Fig 11b is mostly due to delta electrons. Using ΔE –E 330 

telescope with pixelatedE stage provided cylindrical well defined SVs that will minimize the 331 

directional effect of the E stage used in microdosimetric mode, however, for identification of 332 

particles, the E-E telescope should be in a face on positioning relative to the primary beam direction. 333 

 334 

 335 

(a)                                                                                    (b)    336 

Figure 11. Response of the telescope detector when positioned out-of-field at 0mm. 20×10
6
 events were 337 

simulated  for both face on (F1) and edge on (E1) configurations. The results are shown per incident particle. 338 



 

 

 

 

 

 

 339 
Figure 12. Microdosimetric spectra derived from the ΔE stage in out of field study at 0 mm, 2 mm, 7 mm and 47 340 

mm from the edge of the beam at the Bragg peak. Separated components are shown in each microdosimetric 341 

spectrum.  342 

Fig. 12 shows the microdosimetric spectra obtained by the ΔE stage when the detector was placed 343 

face on at 0 mm, 2 mm, 7 mm, and 47 mm laterally from the edge of the beam (positions F1, F2, F3 344 

and F4), respectively, and edge on at positions E1, E2, E3 and E4 (see Fig. 3). When the ΔE-E 345 

telescope was placed at 0 mm from the edge of the beam and the surface of the detector is facing the 346 

beam (F1 position), there was a significant contribution to the microdosimetric spectra from
 12

C ions 347 

that formed the penumbra region of the beam. Fragmentation products were also observed with lineal 348 

energies between a few keV/µm and 100 keV/µm, with the largest contribution coming from B ions. It 349 

is interesting that the dose weighted contribution from electrons was negligible due to lack of delta 350 

electrons originating from scattered Carbon ions in the penumbra region. At 2 mm from the edge of 351 



 

 

 

 

 

 

the beam (position F2), the partial dose weighted contribution of the 
12

C ions was reduced while the 352 

contribution from fragments such as B, Be, Li, He, H increased. At 7 mm from the edge of the beam 353 

(position F3) almost all 
12

C ions disappeared at this lateral depth but the fragments still remained 354 

significant due to the sharp penumbra of the 
12

C ion beam. At a further lateral depth of 47 mm, only 355 

protons which corresponded to the combination of fragmented and recoil protons generated from 356 

neutron interactions in PMMA were observed.  357 

A second alignment was carried out with the detector positioned in edge on configuration 358 

(positions E1, E2, E3 and E4). Here more energy was deposited in the ΔE stage from ions travelling 359 

parallel to the side of the ΔE-E detector. This caused a shift of microdosimetric spectra to the higher 360 

lineal energies observed in E1-3 plots of Fig. 12, when a chord length of 1.8 µm was used. This shift 361 

was clearer at positions closer to the field because nuclear fragments have a preferential forward 362 

scattering angular trajectory from the originating ion, while the path along the ΔE detector was 1 mm 363 

long.  364 

The microdosimetric spectra at 47 mm obtained by detector in edge on and face on configurations 365 

are similar with most contribution from the protons originated by neutron elastic interactions in the 366 

phantom with an isotropic distribution. A much closer agreement in the microdosimetric spectra for 367 

positions F4 and E4 confirmed that the fragmented and neutron recoil proton fields were more 368 

isotropic than other heavier fragmented ions that were scattered mostly along the beam.   The results 369 

showed that the microdosimetric spectra obtained by the E stage of the monolithic telescope can give 370 

a detailed insight of the characteristics of the out of field beam. Certainly the microdosimetric spectra 371 

presented for positions E1-3 should not be considered as radiobiologically relevant because of the 372 

reasons cited above. 373 

3.5. Comparison to experiment in HIMAC, Japan 374 

Fig. 13 shows the experimental and the simulated response of the E-E telescope to 290 MeV/u 
12

C 375 

ions in the PMMA phantom at 58 mm and 129 mm for the HIMAC beam line. At (58±1) mm a good 376 

agreement is observed between experimental measurements and simulation results. At (129±1) mm 377 

depth in the PMMA phantom, the maximum energy deposited in the E stage in the experiment was 378 

about 160 MeV which is less than expected energy deposition in 500 µm of Si calculated by the 379 

Geant4 simulation. This discrepancy can be explained by the plasma effect when high LET 
12

C ions 380 

hit the E stage and produce dense electron-hole pairs called plasma columns. This leads to a strong 381 

columnar recombination before drift charge collection is dominated because the electric field in 382 

depleted E stage was not high enough. However, it can be clearly seen that the transmitted 
12

C ions 383 

which have lower LET than 
12

C stoppers deposited the same energy as simulated starting from 384 

approximately 80 MeV in both experimental and simulation results which supports the assumption 385 

that the E stage is 500 m thick and the charge deficit is due to phenomena described above. 386 

 387 

 Figure 13. Comparison of the simulated and experimental response of the E-E telescope, at the 290 MeV/u 388 
12

C ion HIMAC therapeutic beam. 389 



 

 

 

 

 

 

4. Conclusion 390 

The characterisation of the 
12

C ion beam at the HIMAC facility was studied in detail using Geant4. 391 

The 2D histogram of secondary charged particles provides very useful information about the 392 

distributions and directions of different ions of the mixed field. 393 

The response of the ΔE-E telescope to 290MeV/u 
12

C ion beam at various depths in the PMMA 394 

phantom at HIMAC facility was investigated theoretically and experimentally. The RBE10 values 395 

obtained by the ΔE-E telescope were found to be in good agreement with values obtained using a 396 

TEPC. Due to the high spatial resolution of the 1.8 µm thick ΔE stage, more detailed measurements 397 

were obtained at the end of the Bragg Peak compared to the TEPC. One limitation affecting the 398 

reported comparison is that the TEPC measurements were carried out in water which lacks the carbon 399 

component in contrast to PMMA.  400 

It has been demonstrated that using the silicon to tissue conversion factor one can convert the 401 

microdosimetric spectra from silicon to tissue.  402 

This study demonstrated that the ΔE-E silicon telescope can be used to characterise the mixed 403 

radiation field produced by the 
12

C therapeutic beam. It is also possible to simultaneously measure the 404 

microdosimetric spectra with high spatial resolution, which is not currently achievable using TEPCs. 405 

The microdosimetric spectra then can also be used to determine the RBE10 of the radiation field by 406 

means of the MK model.  407 

The ΔE-E telescope can be used to improve the Quality Assurance of existing treatment planning 408 

systems used in Heavy Ion Therapy and Geant4 benchmarking.  409 

This study showed that adopting the G4IonBinaryCascade or, alternatively, the Geant4 QMD 410 

model does not have a significant impact on the calculation of the RBE10.  411 

Good agreement has been observed between simulation and experimental results, however a more 412 

in depth, systematic, quantitative comparison is foreseen as a next stage of the project, to quantify the 413 

accuracy of the Geant4 simulation model, using alternative hadronic physics models for ions.  The 414 

experimental results concerning the response of the monolithic and pixelated ΔE-E telescope in the 415 

290 MeV/u 
12

C ion beam at HIMAC will be presented in more detail in a future paper.  416 

 417 
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