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Humanoid human-like reaching control based on movement primitives

Abstract

This paper deals with the problem of generating realistic human-like reaching movements from a small
set of movement primitives. Two kinds of movement databases are used as reference. The first one is
obtained numerically, by applying biological principles of motor control on the dynamic model of the robot
arm. The second one is obtained by recording reaching movements of human subjects. From these
databases, primitives are extracted and analyzed by using Principal Component Analysis. An original
generalization method is then proposed for generating movements that did not belong to the initial
database. We show that twenty primitives allow to produce new movements, having characteristics
similar to that of humans. Experiments on the humanoid robot HRP-2 are presented to illustrate the result.
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Humanoid human-like reaching control based on movement primitives

Tran Minh Tuan, Philippe Soueres, Michel Taix, Manish N. Sreenivasa and Christophe Halgand

Abstract— This paper deals with the problem of generating
realistic human-like reaching movements from a small set of
movement primitives. Two kinds of movement databases are
used as reference. The first one is obtained numerically, by
applying biological principles of motor control on the dynamic
model of the robot arm. The second one is obtained by recording
reaching movements of human subjects. From these databases,
primitives are extracted and analyzed by using Principal
Component Analysis. An original generalization method is then
proposed for generating movements that did not belong to
the initial database. We show that twenty primitives allow to
produce new movements, having characteristics similar to that
of humans. Experiments on the humanoid robot HRP-2 are
presented to illustrate the result.

I. INTRODUCTION

One of the main theories of motor control in biology
conjectures that the Central Nervous System (CNS) of pri-
mates uses a finite set of elementary motor components,
called primitives, to generate movements. This theory was
suggested by numerous biological experiments. At the kine-
matic level, the primitives are sometimes described as joint
covariations. For example, covariations of ankle, knee and
hip joints during bending movements and walking were de-
scribed in [1] and [2]. A similar coactivation between whole-
body links during reaching movements was reported in [3]
and [4]. Motor primitives or synergies were also pointed
out at the muscular level, from EMG measurements. For
instance, five muscular synergies involved in postural control
were described in [5]. The encoding of motor primitives was
also shown at the neural level. The well known experiment
by Mussa-Ivaldi and Bizzi [6], showing that local stimu-
lation of the spinal chord induce different leg movements
in frogs, is a good illustration of this. Recently, an attempt
at modeling these experimental results in the control theory
framework was proposed in [7]. For roboticists, the idea of
reducing the complexity of control by using a finite set of
movement primitives is very attractive. It offers a promising
alternative to the computation of inverse kinematics and
cost minimization to cope with the high redundancy of
anthropomorphic structures. This idea has already motivated
some applications. Two primitives were used by Hauser et
al. [8], for controlling the balance of a small size humanoid
robot. Lim et al. [9], used Principal Component Analysis
(PCA) to extract primitives from the captured movement of
a human arm modeled as 4 Degrees Of Freedom (DOF)
chain. These primitives were used as basis functions for
parameterizing new realistic robot movements. In the study
of Chhabra et. al. [10], the authors used a nonnegative matrix
factorization method to extract primitives from a database
of control signals to control a 2 DOF arm. Interestingly, it
was shown that new movements can be learned faster in
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Fig. 1. (a) Ilustration of the human experiment during successive reaching
movements. The arm segments are in red and examples of hand trajectories
are drawn in blue (b) The humanoid robot HRP-2 (Kawada Industries
Inc., Japan). (c) Representation of the 32 target positions on two parallel
virtual grids. These target positions were used to drive the human reaching
movements

the primitive space than in the control space [11] . In order
to introduce feedback in the control, Todorov et al. [12]
considered sensorimotor primitives. This kind of primitive
was applied to the control a 2 DOF arm.

In this paper, we propose a method that allow to char-
acterize a set of kinematic primitives from a database of
movements and use them to produce realistic human-like
movements with a 6 DOF humanoid robot arm (Fig. 1-b).
The movements are expected to have the main kinematic
characteristics of human movements, namely: almost straight
hand trajectories with a possible weak regular curvature, and
bell-shaped velocity profiles. In order to develop a suffi-
ciently generic method that allow an easy transfer from the
human movement to the robot motion, we based our study
on two different databases. The first database was obtained
by simulation by applying a biologiocal model of motor
control on the dynamic model of HRP-2’s arm [13], [14].
The second database was constructed by recording human
reaching movement on different subjects using a motion
capture system. From both databases, primitives are extracted
by using PCA, and the reconstruction process, which allows
to express each movement as a linear combination of these
primitives, is analyzed. Then, an original generalization
method is proposed to generate new movements from this
basis of primitives. The proposed method consists in solving
a low-dimensional minimization problem to determine the
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weighting coefficients that allow to approach the minimum-
jerk solution with the best precision. Depending on the
number of primitives, the computation-time and the preci-
sion of the reconstruction processes, are discussed. Finally,
examples of reaching movements computed by this method
are presented on the humanoid robot HRP-2.

II. MOVEMENT DATABASE GENERATION

The first part of the work was devoted to the synthesis
of two databases of reaching movements. The first database
was obtained in simulation, by applying the biological model
of motor control proposed by Guigon et al. [13], on the
dynamical model of HRP-2’s arm. The application of this
model to the control of HRP-2’s reaching movements was
described in a previous work [14]. This result is briefly
recalled here. Guigon’s model is based on the idea that the
CNS processes dynamic efforts (inertial, velocity dependent)
and static efforts (elastic, gravitational) separately, and that
the energy of motoneurons is continuously minimized during
movement. In order to apply these principles to the control of
HRP-2, a global model was considered, which contained the
dynamics of the 6 DOF of the robot arm. For each DOF, an
additional filter simulating the dynamics of a pair of virtual
antagonist muscles was included. From this model, we de-
termined the reaching trajectories minimizing the energy of
the virtual motoneurons, while disregarding the gravitational
term in the model, according to the separation principle. The
robot arm movements obtained using this approach turns out
to be very realistic and exhibit the main kinematic features
of human reaching motions. However, the main drawback
of this approach is the computation time. Indeed, several
minutes were necessary to generate a movement, making the
method unusable for on-line control. This motivated our wish
to determine a finite set of primitives from which the optimal
solutions could be determined faster.

The second database was obtained by recording human
movements using a motion capture technology. Arm mo-
tion of 3 participants were recorded using infrared markers
attached to the shoulder, elbow and wrists. Accuracy of
capture was less than 1mm, with a frequency of 100Hz.
Participants were asked to perform a set of reaching move-
ments while standing up. We considered 32 target positions,
regularly-spaced in two parallel grids located in front of the
participant’s shoulder (Fig. 1). The reaching target was a
small ball at the end of a stick that was manipulated by the
experimenter. The target was placed at one of the 32 position,
and the participants heard a sound to indicate that they should
start moving their hand to the target. Upon reaching the
current target, the next target was randomly chosen from
the other 31 positions, and the experimenter moved the stick
to this new position. Movements were executed such that all
32 targets were reached from each other, giving a total of
993 movements per participant.

The same sequence of task was used for simulating the
reaching movements with the dynamic model of HRP-2, in
order to construct the first database. However, in the case
of the robot, a scaling factor was applied to the dimension
of the target setup and its distance to the robot in order to

obtain comparable values. For both the human subjects and
the robot, the database were constructed for a model of arm
including six joints: three at the shoulder, two at the elbow
and one at the wrist. Note that the remaining DOF of the
human arm were not considered for this application. In order
to simplify the primitive extraction, the robot movements
were all executed with a duration of 1s discretized in 100
time values. In the same way, the human reaching trajectories
were normalized to 1s within the same sampling of 0.01s. So,
for both the robot and the humans, each reaching movement
was described by 600 values encoding the variation of 6
angles.

III. PRIMITIVES EXTRACTION

We are looking for open-loop primitives with no sensory
feedback. In the literature, such primitives are defined as
time functions to be modulated in amplitude by weighting
coefficients [9], [8], [15]. The most general and simplest way
of modeling the problem is to consider that movements can
be express as linear combination of these primitives. For our
problem, each movement of the 6 DOF arm can be repre-
sented by a joint trajectory u(t) € R®. A database of M move-
ments is then described by a set of such trajectories: Uy, (t) =
(UL@©),U2(1),..US(t)T € RS, m=1,...M, t €[0,T]. For
this database, the primitive extraction problem is to deter-
mine K time-functions ®(r) = (@} (z),Pi(t),.. (1)) €
ROk =1,....,K,t € [0,T], such that, for all m = 1,...,M, it
is possible to determine k real coefficients oy, verifying:

K
Un(t) =Y o' @ (1) (1)
k=1

In this expression, the functions @y () represent the ex-
pected primitives and the coefficients @ are weighting
the contribution of each primitive ®(¢) into the movement
Uy (t). Each @;(¢) has then the same dimension as U, (¢), and
constitutes a particular joint trajectory. The determination of
Eqn. (1) states two problems. The first one is to determine
the number, K, of primitives that are necessary to reach a
given precision and the second one is to characterize these K
primitives. To reduce the complexity of the control problem,
K needs to be as small as possible, compared to the number
of parameters necessary to encode the trajectory U, (t). For
a continuous-time problem, this number is infinite. However,
in practice, the problem is solved by considering a sampling
of the time interval [0,7] in J elements. For the 6 DOF arm
we consider, K needs to be small with respect to the 6J angle
values that encode each movement. In other terms, once the
K primitives are determined, it is sufficient to compute K
coefficients oy, k =1,...,K, to generate the movement U,,(r)
over [0,7T], instead of 6J variables. The second problem is
to compute the canonical time-functions ;. Considering the
notation of Eqn. (1), each movement U, and each primitive
@, is defined by a 6 x J matrix as follows:
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Fig. 2. Root Mean Square Error between original trajectories and
reconstructed ones, as a function of the number of primitives K. The curves
corresponding to the three human subject and the robot arm are represented.
In addition, the blue curve represents the mean of the three human subjects.
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where, u}"; and, ¢/Ifj’ h=1,...6,m=1,..M j=1,..J
are real numbers. On this basis, the reconstruction error
relative to the M movements of the database, U,,, m=1,.... M
is defined by:

>

E=E(o,® Z @'9)* ()
Solving this problem is then reduced to the determination of
K primitives, with K as small as possible, (K << 6J), but
sufficiently large to guarantee that the reconstruction error
will be lower than the expected precision threshold. This
compromise will be discussed in the next section. Among
the existing techniques that allow to cope with this kind of
problem (see [18] for an overview), Principal Component
Analysis (PCA), is intrinsically well adapted, simple and
well-performing. It has already been successfully tested in
neurosciences and in robotics [1], [3], [16] [9]. In order to
apply PCA, it is more convenient to use a vector notation
of data. So, instead of using the matrix notation (Eqn. (2)),
each movement U,, m = 1,...,M will be described by the
following vector expression:

MG],...,M@])T (4)

where, each u,;, h=1,...,6, j=1,...,J is the angular
value of joint A at time j. The M column vectors U, of
dimension N = 6J are then gathered to compose a M X N
matrix. The N X N covariance matrix is then computed. The
eigenvectors ¢;, i = 1,...,N and eigenvalues A;, i=1,...,.N
of this covariance matrix are then determined and ordered.
The eigenvalue A; represents the variance of data in the
direction of the corresponding eigenvector e;. The larger A;
is, the more its associated component ¢; is dominant in the

Un = (11, W12, U11, U215 .., UDJ -,

representation of data. The question is then to determine
the number K, such that the first K principal components
ex, k=1,...,K constitute a basis of primitives from which the
whole database can be expressed with the required precision.
Note that each primitive ¢ is itself the representation of
a six-joints trajectory. Finally, for each movement U,,, the
coefficient corresponding to the primitive e; is determined
by computing the scalar product between these two vectors:
o' =< Up,ey >, m=1.M, k=1,...K. Note that the
application of PCA requires the data to be centered. This
condition was almost exactly satisfied for each database.

PCA was separately applied to the robot database and
the human databases described in section II. In each case,
we observed that the variance accounted for (VAF) by
the K = 8 first primitives was more than 96%, while it
was more than 99.5% with the K = 20 first primitives.
Using the previously described approach, we determined
the coefficients that allowed us to reconstruct the whole set
of movements by a linear combination of these primitives.
These reconstructed trajectories were then compared with
the original ones. To compute the reconstruction error for
a whole database, we used the Root Mean Squared Error
(RMSE), which is expressed as follows:

E

RMSE = || ——
(Mx6xJ)

where, E is defined by Eqn. (3). Fig. 2 shows the decay
of the RMSE as a function of the number K of primitives,
for each database. The decay rate of the RMSE is similar
for the three human subjects, while it is slightly different
for the robot arm. For human subjects, beyond the first 8
primitives, each addition of a new primitive induces almost
the same error reduction. Whereas, for the robot model, the
important decay rate between the 8t and the 16th primitive
shows that these primitives still contain an important part
of information. Interestingly, the curves corresponding to
the human subjects and the robot become roughly parallel
after the 18t primitive, showing a certain level of similarity
between both databases. Beyond this level, the regular gap
between the curves seems to be due to the difference in the
kinematics and the dynamics of the arm structures. As human
subject are taller and heavier than the robot, the effect of
inertia and masses are higher on the human arm than on
the robot arm. This might induce a higher reconstruction
error for human movements. In each case, the primitives
computed with PCA allow to represent the original data
with a good precision. Depending on the expected level of
precision, the number of primitives can be easily chosen. For
instance, K = 16 primitives allows to reproduce the robot
database with a mean error of 0.02 radians, (1.2°). The
same number of primitives allows to represent the database
of subject 1 with a mean error of 0.03 radians, (1.7°). As
an example, Fig. 3 shows two trajectories reconstructed from
these primitives and Fig. 4 shows the first 8 primitives for
each database: the robot, subject 1, 2 and 3. The primitives
represent the principal variations of the movements, classi-
fied by decreasing order of dominance variance. The first
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Fig. 3. Example of joint trajectories reconstructed from K = 16 primitives.
The curves on the left picture were obtained with the robot database, whereas
the curves on the right picture were obtained with the database of subject 1.
The original trajectories are in dotted lines and the reconstructed trajectories
in full line.

primitives are rather regular, while the last more oscillatory
one, allows to capture subtle variations of movements. Recall
that each primitive describes the 6 joint trajectories. It is
interesting to remark in Fig. 4, that the curves of primitives
corresponding to the different database are not necessarily
similar. This difference is due to the definition of primitives
given by (1). Indeed, according to this relation, each primitive
represents the simultaneous temporal evolution of the six
arm joints, and these six trajectories are weighted by the
same coefficient ¢. This choice is biologically plausible,
but leads to a different primitive basis of each database.
Indeed, even though the subjects do the reaching movements
in a similar way, the variations due to each subject may
radically modify the expression of primitives.

It is important to note that some authors used PCA to
extract primitive for each link separately [9]. As a conse-
quence, the modulation of primitives is decoupled on each
joint. In that case, it was shown that a lower number K
of primitives is sufficient for each link (usually between 2
and 4), but the number of coefficients is multiplied by N.
Thus, if 3 primitives are necessary for each link of a 6 DOF
arm, then 18 primitives will be necessary for representing
the arm movements. We also tested this approach for our
problem and we found that the variance accounted for by 3
primitives on each link was more than 96%. In particular,
we found a certain similarity between the primitives for the
subject and the robot arm. However, there is no fundamental
difference between the two methods of primitive extraction.
The number of variables are almost identical in both cases.
By looking for primitives containing the 6 arm joints, our
goal was to capture the joints co-activation. In this way, we
expected to reduce the complexity, increase the precision of
reconstructed movements, and find a basis of primitives well
adapted to generalization. This last step is considered in the
next section.

IV. GENERALIZATION

So far, we have shown that large databases of reaching
movements can be expressed as linear combination of a small
number of primitives. The question is now to determine
if it is possible, from these primitives, to generate new
movements having the characteristics of human movements.
In other terms, we want to solve a generalization problem

Subject 1 Subject 2 Subject 3
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Fig. 4. Description of the first 8 primitives obtained with PCA on the
different databases. From left to right the column correspond to the robot,
subject 1, 2 and 3 respectively. From top to down, primitives are classified
by variance dominance. In each scheme, the abscissa axis represents the
time in seconds and the ordinates represent the joint angles in degrees. A
different color is used for each of the 6 arm joints

which can be stated as follows: considering a set of primi-
tives Dy, given the initial arm configuration and a reaching
task defined by the the target position and the movement
duration, determine the coefficients oy that allow to express
the trajectory as a linear combination of the primitives.
However, recall that the objective of this work is to gener-
ate realistic reaching movements rapidly, without having to
solve a complex optimization problem as we did previously
in [14]. Our first attempt to solve the generalization problem
was to apply learning methods in order to characterize fast
input-output interface. We tested different architectures of
multi-layer feedforward neural networks which received as
input the six values of initial arm joints, the three Cartesian
coordinates of the target and the movement duration, and
were expected to give the oy weighting coefficients of the K
primitives as output. For some of these networks, the learning
process on the 993 input-output pairs of each database took
several hours. However, none of them succeeded in character-
izing the o in a sufficiently generic way. In many cases, the
reaching error between the final hand position and the target
was too large and the movements were often not realistic.
Increasing the number of primitives K did not improve the
quality of the result. It seemed that the information learned
by the networks was not sufficiently rich to capture the
movement characteristics. Furthermore, feedforward neural
network does not seem to be well appropriate to cope with
the sensibility of the weighting of motor primitives. Then,
as the learning techniques we considered did not provide us
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Fig. 5. For a same reaching task of amplitude 58cm, description of the
movement successively generated by using an increasing number primitives
K =6, 8, 10, 12, and 20 . From left to right, each horizontal set of 4 pictures
corresponds to a particular value of K and represents: the Cartesian hand
coordinates, the hand velocity profile, the joint trajectories and the hand
trajectory. The reaching errors in ¢m are respectively: 4.07, 1.14, 0.36, 0.12
and 0.11.

with satisfying results, we developed an original approach
which consists in constraining the hand trajectory in the
operational space. This method is described in the following
section.

A. Method of trajectory constraint in the operational space

We want to determine the o that allow to generate new
movements that still have the characteristic of human move-
ments. To this end, we propose to determine the oy which
guarantee that the hand trajectory satisfies the minimum jerk
condition [17]. In order to implement this reasoning, we
formulate an optimization problem whose objective is to
characterize the o coefficients that allow to minimize the
mean error between the hand trajectory and the minimum-
jerk curve in the Cartesian space. As before, the time
interval [0,7] is sampled in J elements 0 =1,,..,zy = T. For
Jj=1,...,J, let us denote by q; = (q1,92j,93;:94j,95j:96;)"
the arm configuration at time 7; and H; = f(g;) the cor-
responding hand position in the Cartesian space, where f
represents the direct kinematics associated to the 6 DOF
arm model. Using this notation, the optimization problem
can be stated as follows: Given K primitives @y, k= 1..K,
each one representing the six arm joint trajectories, the
initial arm configuration q, and a reaching task defined by
the target position Hy, find the value of K real coefficients
0, k=1,...,K, minimizing the function Ej.;; defined by:

Fig. 6. Snapshots of HRP-2 during the execution of reaching motion. The
motion here corresponds to the curves of Fig. 5 for K = 20 primitives.

J
Ejerk Y. 117 (a)) —g(tj By Hy)| (5)
j=1
Recall that, according to the definition of primitives, the
angular value g;,; of joint & at time #;, that appear in the
above definition, is computed from the relation g;; = g +
ZkK:1 ak¢};j, where (I)}’l‘j, j=1,...,J, is the angular value of
the /" joint of the k" primitive at time ¢;, and g is the time-
function representing the hand position along the reference
minimum-jerk trajectory expressed by:

¢(t) = Hy + (H — Hy)(157* — 67° — 107°), (6)

where 7 is the normalized time and 7; =1¢;/T the discrete
normalized value that corresponds to time 7; in [0,7]. In this
problem, the joint limits on the gj; during the movement
are also considered. They are defined by an inequality of the

type:

lhgthguh forh:lv"'767 jzla"'v‘]a (7)

where [, and u; are the upper and lower bounds of joint
h respectively. Note that this problem is different from the
one considered in [9]. Here, the objective is not to minimize
a kinematic or dynamic criterion to determine the control
signals, but instead to follow a reference curve, having the
characteristics of human movement, in the Cartesian space.
This problem is also different from the usual minimum-jerk
problem in the sense that the joint trajectory of the arm is
directly deduced from the knowledge of the oy coefficients.
No additional computation is then required to compute the
joint trajectories; a step which usually requires to solve the
inverse kinematics problem with the minimization of some
additional criterion to cope with redundancy. Furthermore,
note that the generalization problem described by Eqn. (5),
(6) and (7) is a simple optimization problem involving K
real variables and 6J linear constraints, which can be solved
by using standard techniques. For this work, we used the
Matlab finincon solver. The result we obtained is described
in the next section.

B. Results

In order to test the proposed generalization approach, a
large number of new movements were generated by con-
sidering the model of the robot arm. To this end, a shift
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TABLE I
MEAN ERROR AND COMPUTATION TIME FOR DIFFERENT K

K | Mean error (cm) | Computation time (s)
6 3.6504 5.5549
8 1.6120 11.1249
10 1.3822 14.1024
12 1.1417 20.5878
14 1.1169 28.3012
16 1.0842 35.5586
18 1.0415 41.1163
20 0.9676 48.6022

between —10cm and +10cm was applied at random in each
direction of the initial target grid (see Fig. 1) to generate new
targets, and angular increments between —5° and +5° were
randomly added to each arm joint to specify new initial arm
configurations. This allowed to generate a new large set of
reaching tasks with different arm configurations. Note that
the larger amplitude movements were about 1 meter long. In
order to evaluate the compromise between rapidity and reach-
ing precision, different values of K between 6 and 20 were
considered. Table I shows the average reaching error and
computation time on all tested movements for each value of
K. Logically, for a higher K the computation time increases,
while the reaching error decreases. It can be noted that the
reaching error defined by the distance between the target
position and the hand position at final instant 7' can reflect
the error at each time instant on the whole trajectory because
the term E ., in definition (5) is the sum of all instantaneous
errors. Fig.5 shows the characteristics of movements obtained
with the robot arm, for K = 6, 8,10, 12,20. Clearly, the hand
trajectories and the velocity curves are not realistic for K =6
and 8. However, as K increases, the trajectory becomes
straighter and the velocity curve becomes smoother and more
regular. For K = 12 the movement starts being very realistic.
The improvement obtained by adding a new primitive is very
small. For K = 20 the velocity profiles are perfectly bell-
shaped and the hand trajectories are almost straight with a
continuous weak curvature. Fig. 6 shows HRP-2 performing
the motion corresponding to K = 20. For the sake of safety,
we slowed down the motion to 2 s instead of the original 1
s. The human and humanoid experimental trials can be seen
in the video submitted with this paper.

Compared to our preceding result, where reaching tra-
jectories were obtained by solving a complex optimization
problem defined by Guigon’s model [14], the computation
time reduced by a factor of 6, i.e. from 2min to 20s. However
it is important to note that the method proposed in [14],
was encoded in C whereas, so far, the current method is
implemented in Matlab. Therefore, we can claim that the
computation time can be further reduced by at least a factor
5, by using the C programming language for encoding the
current method. In this condition, less that 5s would be
necessary to generate a new realistic reaching movement

V. CONCLUSION

This result shows that the use of movement primitives
coupled with an appropriate generalization process provides
an efficient way to store the complex information of human
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movement, in order to quickly generate new trajectories.
Although it has been suggested that the CNS plans move-
ments by solving complex optimization problems - such as
minimizing the energy of motoneurons - it is likely that the
use of a reduced number of canonical variables allows to
simplify the computation. The application of this kind of
approach to humanoid robotics is interesting as it offers an
alternative to the computation of inverse kinematics with
additional cost minimization. In future works, we plan to
address the problem of combining such open-loop primitives
to produce whole body movements.
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