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Modeling and Identification of a Realistic Spiking
Neural Network and Musculoskeletal Model of the
Human Arm, and an Application to the Stretch Reflex

Manish Sreenivasa, Member, IEEE, Ko Ayusawa, and Yoshihiko Nakamura, Fellow, IEEE

Abstract—This study develops a multi-level neuromuscular
model consisting of topological pools of spiking motor, sensory
and interneurons controlling a bi-muscular model of the human
arm. The spiking output of motor neuron pools were used to
drive muscle actions and skeletal movement via neuromuscular
junctions. Feedback information from muscle spindles were
relayed via monosynaptic excitatory and disynaptic inhibitory
connections, to simulate spinal afferent pathways. Subject-specific
model parameters were identified from human experiments by
using inverse dynamics computations and optimization methods.
The identified neuromuscular model was used to simulate the
biceps stretch reflex and the results were compared to an indepen-
dent dataset. The proposed model was able to track the recorded
data and produce dynamically consistent neural spiking patterns,
muscle forces and movement kinematics under varying conditions
of external forces and co-contraction levels. This additional layer
of detail in neuromuscular models has important relevance to the
research communities of rehabilitation and clinical movement
analysis by providing a mathematical approach to studying neu-
romuscular pathology.
Index Terms—Biological systems modeling, neural engineering,

neurophysiological parameter identification, stretch reflex.

I. SYMBOLS AND DESCRIPTIONS

*subscripts indicate Biceps (B) or Triceps (T)

Joint angle (radians).

Joint torque (Nm).

Muscle force (N).

Muscle activation.
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Muscle velocity (m/s).

Muscle residual length (m).

Neural membrane voltage (V).

Neural membrane capacitance (F).

Neural time constant (s).

Synaptic current (A).

Spike events.

Spindle firing frequency (Hz).

Stimulation (A).

Soma diameter scale factor.

Soma diameter (m).

Motor unit maximum force scale factor.

Motor unit maximum force (N).

Motor unit time to maximum force scale factor.

Motor unit time to maximum force (s).

Resistive torque scale factor.

Pool synaptic center weight.

Pool synaptic variance.

II. INTRODUCTION

M ODELING of human neuromuscular physiology plays
an important role in furthering the state-of-the-art tech-

nology in rehabilitation. In addition to extending our knowl-
edge of human motor control, such models find applications
in the design and control of human-machine interfaces such
as neuro-prostheses and powered exoskeletons, as well as in
the detection of neuromuscular pathology [1]–[6]. In recent re-
search, neuromuscular models have been applied to the sim-
ulation of a wide variety of movements. These studies share
methods such as multi-body kinematics and dynamics, opti-
mization and mathematical modeling, with robotics research.
It is notable that often the neural component is simplified as
a one-dimensional scalar per muscle signifying the activation
level, , ranging from 0 to 1. This is a gross approximation as
individual muscles may be driven, not by one-dimensional in-
puts, but several hundreds to thousands of simultaneous spike

1534-4320 © 2015 IEEE. Translations and content mining are permitted for academic research only. Personal use is also permitted, but republication/
redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.
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trains from spinal motorneurons. Nevertheless, within reason-
able constraints, neuromuscular models of this type have shown
promise in estimating and predicting a wide range of macro-
scopic movements such as disturbance compensation, locomo-
tion and the stretch reflex [3], [7]. The simplified models have
been used to study and explain the conceptual mechanism of the
neuromuscular system. However, as a limitation of the simpli-
fied neural architecture, more detailed aspects of neuromuscular
control such as the recruitment principle and rate coding [8] are
difficult to capture.
The more complex level of modeling involves decomposing

the neural components of muscle control by incorporating neu-
ronal morphology. This extends the scope of the investigation
from qualitative concepts of neuromuscular action to quanti-
tative processes. There are relatively few studies that simulta-
neously investigate these aspects of spinal neural and muscu-
loskeletal architecture (see, for example, [4]–[6], [9]–[13]). At
the simplest level, neural command of muscle action is the flow
of information (spike trains) from spinal -motor neurons to the
innervated muscle fibres. However, this is further qualified by
interacting and interconnected pools of the spinal cord interneu-
rons, proprioceptive feedback information from muscle spin-
dles/Golgi-tendon organs, and modulation from higher neural
centers all the way to the motor cortex of the brain. It is vital
for any model to capture this closed loop nature of the neuro-
muscular system, as clinically observed pathologies may only
be fully explained in the context of feedback dynamics [2], [5],
[6]. Note that here we refer not only to the feedback from the
skeletal muscles, but also the intra-spinal loops that serve to co-
ordinate and modulate reflexes as well as other complex behav-
iors.
There are various challenges involved in reproducing this en-

tire circuitry in a mathematical model. For example, much of
the inner architecture is still unknown and it is not yet possible
to record neural signals in vivo, making it difficult to validate
such models. Additionally, it is computationally infeasible to
simulate the behavior of billions of individual neurons simul-
taneously. Studies thus concentrate on subsets of neural net-
works specific to tasks such as reflexes [4]–[6], [9], [10], or
spinal motor control under isometric conditions [11]. To relate to
the additional neural detail, the corresponding muscle actuation
also needs to be more complex. For example, motor-unit level
force generation models [11], [14] or collection of Hill-type
constructs [12] approximate the macroscopic muscle character-
istics, whereas detailed continuum mechanics models simulate
the molecular level dynamics [13]. Based on these perspectives,
neuromuscular model choices may be considered as a trade-off
between 1) approximating complex neuromuscular behavior by
mathematical functions that are reasonably simple, and 2) de-
termining parameters for these functions that can accurately re-
produce behavior beyond those recorded.
This study bridges the gap between physiologically realistic

topological neural networks and rigid-body musculoskeletal
systems, by modeling and identifying the parameters of a
combined NMS model of the arm. In contrast to similar studies
on spiking neuromuscular models, here we base our models
on physiologically realistic scales and ranges identified from
experimental data. The scenario tested is the stretch reflex of

Fig. 1. NMS model with a topological neural network: In the arm posture
shown above, a stretch in the biceps muscle spindles causes the corresponding
excitation of the biceps motor neurons, and inhibition of the triceps motor
neurons. Neurons were randomly distributed inside fixed volumes to simulate
neural pools in the spine.

the biceps muscle in the posture illustrated in Fig. 1. Here,
we use a simple model of the arm mechanics (1 DoF, two
wire-muscles), and limit our analysis to the reflex loop.
The purpose of this simplification is to focus this study on the
model identification methods at the motor unit level, while still
incorporating the effects of skeletal movements and feedback.
In the following sections, we detail our neuromuscular model,
the human experimental paradigms and the parameter identifi-
cation methodology.

III. NEUROMUSCULOSKELETAL MODEL

The network architecture and neural dynamics detailed in this
section were implemented in the software NEST [15]. Mus-
culoskeletal forward kinematics and dynamics were simulated
using a custom-built software using robotics algorithms and
musculoskeletal visualization, sDIMS [16]. Communication be-
tween the NEST and sDIMS simulators was implemented in the
Message Parsing Interface (MPI) parallel computing environ-
ment using the MUSIC framework [17]. Fig. 2 illustrates the
overall system dynamics.

A. Neural Network
Fig. 1 shows an overview of the NMS model developed in

this study. The neural network consisted of topological distribu-
tions of Motor Neurons (MN), Sensory Neurons (SN) and Inter
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Fig. 2. Schematic of model dynamics: Refer to Section I for description of parameters. Subscript refers to the biceps/triceps.

Neurons (IN). Stimulations, and , were applied as direct
currents to the MN pools of the biceps and triceps, respectively.
Within each pool stimulation was applied to all motor neurons
uniformly. These stimulations represented the cumulative de-
scending outputs from upper spinal neural pools and the brain.
1) Alpha Motor Neurons: For our two muscle system we

chose the number of Motor Units (MUs) based on counts from
human physiology [18], [19] as, for the biceps,
and for the triceps. Note that the triceps MU
number was not directly available and was approximated from
muscle spindle to motor axon ratio [20]. Dynamic behavior of
MNs was modeled by the computationally efficient leaky Inte-
grate And Fire (LIF) neuron model [21]. The LIF model repre-
sents the electrical behavior of one neuron as

(1)

where is the membrane potential, the resting membrane
potential, the membrane time constant, the sum of
alpha-shaped synaptic currents, the external input current and

the membrane capacitance. The incoming currents,
from other pre-synaptic neurons or from an external source,
cause a build up of the neuron membrane potential. For persis-
tent input currents, the membrane potential reaches a pre-de-
fined threshold and fires a spike causing a rapid discharge of the
potential and a reset to its resting value . In the LIF model
used here, the dynamics of this mechanism are primarily gov-
erned by the terms and .
Motor neurons innervating a muscle have varying dynamic

properties. MNs with a smaller soma surface area have a larger
input resistance and for a given synaptic input reach their firing
threshold earlier than bigger MNs. This arrangement of MNs by
size results in an orderly recruitment based on the magnitude of
synaptic inputs and is known as the recruitment principle [18],
[22]. For the LIF neuronsmodeled in this network wemimic this
variation of electrical properties as a function of MN soma di-
ameter. Cat spinal MN diameters have been found to vary from
77.5 to 113 [11], [23]. Allowing for a larger variation in
human MN diameters from 40.0 to 140.0 , we modeled
its distribution as a logarithmically increasing function of MN
number ( , )

(2)

where, refers to the Biceps(B) or Triceps(T) and the soma
diameter of the MN, and are constants defined
in Table I that determine the range of the distribution, is

the total number of MNs in that neural pool, and an ad-
justable scaling factor used in the parameter identification stage.
Membrane capacitance, and the time constant, were com-
puted for eachMN based on this distribution of soma diameters,
using

(3)
(4)

The absolute ranges for these parameters were based on the
values reported in [23], and adjusted to allow for a larger varia-
tion in human spinal MNs. was allowed to range from 14.38
ms to 3.05 ms according to (4), and proportionally mapped to
the soma diameter, i.e., the smallest neuron had the highest time
constant which linearly decreased with increasing neuron size.

was calculated assuming a spherical surface area of the
soma and a specific capacitance [23]. Note
that these ranges defined the maximum and minimum limits for
the model. Their exact values within these ranges were deter-
mined in the parameter identification stage based on the scaling
factors. In addition, we set a constant refractory period of 2 ms
limiting the maximum discharge rate to 500 Hz [21]. The con-
stants that determined the distributions in (2)–(4) are defined
in Table I. Further details of the neuron model and integration
scheme for the sub-threshold dynamics can be found in [21].
2) Sensory Afferents: In the present study we only model

the reflex dynamics due to the primary afferent response of
muscle spindles, that carry information about muscle length and
velocity [24]. Each muscle spindle (MS) in the muscle body is
associated with one SN located just outside the central spinal
pools. In a comparison of various spindle models, Prochazka &
Grassini [25] commented on the efficiency of simple power-law
models in representing the macroscopic firing characteristics
of cat muscle spindles. The complete power law model in-
cluded contributions from muscle velocity, muscle length, and
a constant component representing the background firing of the
spindle. Here, we modified the power law model to encode the

afferent response

(5)

Frequency of spindle spikes was calculated from muscle
velocities and residual length in the forward dy-
namics simulation. Residual length, , was calculated as the
difference between the current and resting length of the muscle.
We added a constant component of 10 Hz to the spindle firing
frequency. In the original study [25], the authors used a higher
frequency of 82 Hz to account for the background firing in the
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TABLE I
NMS IDENTIFIED MODEL

cat biceps Femoris muscle. We opted for a lower background
frequency based on studies on human spindle firing in the
forearm and hand muscles [26]. The discrete spike events cor-
responding to the spindle frequency were approximated using
a Poisson process [15]. Spindles were uniformly distributed in
the corresponding muscle heads. The number of afferents
were based on allometric counts with , in the
biceps muscle and, , in the triceps muscle [19].
3) Interneurons: Connections between the sensory and

motor neuron pools can be mono-synaptic or di-/poly-synaptic
via intermediary pools made up of interneurons, Renshaw cells,
etc. Here, we model one interneuron pool, the Interneurons,
to simulate the di-synaptic antagonist inhibitory action that is
vital to the human stretch reflex. The role of this pathway is
to detect the firing of the agonist (biceps) sensory neurons, and
inhibit the action of the antagonist (triceps) motor neurons. We
modeled these neurons as identical low capacitance LIF neurons
with the default parameters listed in Table I. Spinal interneurons
specific to a certain function, for example the inhibition, are
not easily identifiable in the human spine. We assumed a 1:1
ratio between the Interneurons and the biceps sensory neu-
rons (i.e., ), to ensure good coverage
between the pre-synaptic neurons and their targets. Note that
here we only activate the IN pool responsible for inhibition of
the triceps muscle.
4) Topology and Synaptic Connections: The neurons were

organized topologically to approximate their arrangement in
the human spine, Fig. 1. The neural layer consisted of 5 pools:
2 MN pools, 2 SN pools, and 1 IN pool. The sizes and relative
distances between the pools were chosen such that they ap-
proximated their arrangement in the human spinal column [22].
MN pools for each muscle were arranged in vertical ventral

columns. The positions of the MNs were randomly distributed
inside these columns. SN pools were located dorsally with
neurons randomly distributed in a cuboidal volumn. IN pools
were located between the MN and SN pools. The synaptic
strengths were determined by this topological arrangement
and the distance between a pre-synaptic neuron and its target
[27]. Two types of pathways connected the various neuron
pools; Monosynaptic Excitation (positive feedback to agonist
MN pool), and, Disynaptic Inhibition (negative feedback to
antagonist MN pool).
Synaptic characteristics between source and target neurons

were modeled such that closer cells formed stronger synapses
[11], [27]. Distant-dependent synaptic weight was varied using
a symmetrical Gaussian distribution with center weight and
variance . As the synaptic weight dropped quickly for larger
distances, this implied that target neurons very far from the
source were not influenced by it. Although this was potentially
possible for very large values of (see further comments in
Section IV-D). Thus, for our network all synaptic values could
be determined from the following parameters.
• & : Maximum weight and variance of
synaptic distribution for biceps SN to biceps MN connec-
tions, the ' ' denotes excitation.

• & : Triceps SN to triceps MN.
• & : Biceps SN to IN
• & : IN to triceps MN, the “ ” denotes inhibi-
tion.

Delays due to axonal conduction time were fixed at 5 ms from
MN to muscle fibres and from muscle spindles to sensory neu-
rons (approximated using an axon length of 0.4 m and average
conductance speed of 70 m/s [8], [11], [28]), and 2 ms for all
intra-spinal connections [29].
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B. Neuromuscular Junction
The output of the neural network consisted of

efferent channels containing alpha MN spike events.
These spikes result in MU twitch forces via electro-chemical
processes occurring at the motor end plates, the junction of the
MN axons and the muscle fibres. We decomposed this process
into two parts: 1) neural spike to activation 2) activation to
MU force. The latter part is detailed in Section II-C. Neural
spike to activation was modeled as the impulse response of
a second-order system [14]. We used a modification of the
discrete time equations developed by Cisi and Kohn [11]

(6)

if spike detected
if no spike detected (7)

where, was the activation at time instance and the time
to maximum force. Note that (6) gives us the instantaneous ac-
tivation level of one MU associated with the spiking behavior
of one MN. was a distribution over each muscle's MUs and
is explained further next.

C. Musculoskeletal Model
The arm was modeled as a fixed upper arm connected to

the forearm by a rotational elbow joint, Fig. 1. The skeletal
bones were scaled linearly to the subject-specific dimensions
and corresponding mass and inertia properties approximated
from anthropometric data [16]. The elbow joint was actuated
by means of massless wires representing the biceps and triceps
muscles. The biceps muscle consisted of two heads—biceps
brachii caput breve and biceps brachii caput longum—arising
from the scapula, and attaching to the radius and ulna bones of
the forearm. The triceps muscle consisted of three heads – tri-
ceps brachii caput laterale, triceps brachii caput mediale and tri-
ceps brachii caput longum—arising from scapula and humerus,
and attaching to the posterior olecranon process of the ulna.
Muscle origins, insertion points andmuscle lines-of-action were
defined using via-points identified from physiology.
MU activations (6), were used to calculate MU twitch

forces at each time step. Activation to twitch force was com-
puted using the Hill-type muscle model equation (see [30] for
an overview)

(8)

which relates muscle force to the instantaneous activation
level and maximum force . The terms and are
normalized coefficients that are dependent on the muscle length
and muscle velocity, and were computed based on muscle kine-
matics at each time step. Equation (8) approximates the force
generated by the contractile element of the muscle. To simplify
the muscle model we did not include the tendon dynamics or
the fibre pennation angle. The summation of all MU twitches at
one time step gave the total muscle force.
Similar to motor neurons, muscle fibres also have varying

dynamic characteristics. In literature, muscle fibre bundles are

often classified as S (Slow), FF (Fast Fatigue), or FR (Fatigue
Resistant). This classification is based on a variation of max-
imum force ( ) and the time to maximum force ( ) of the
muscle fibre bundles. Studies on cat motor units have shown
that these distributions are more likely a continuous variation of
and values rather than three distinct groups [28]. However,

we acknowledge that recent studies on classifying the thenar
muscle of the hand have questioned whether a similar associa-
tion exists for human motor units [31]. Here, we mimic the rela-
tion originally reported by Burke et al. [28] by the distributions

(9)

(10)

where, and are the maximum force and time to peak
force of the MU, respectively. and are scaling
factors that determine the parameters of individual MUs. ,

, and are constants that determine the shape of the
distribution and are defined in Table I. As reported in human
physiology [18], [22], muscle fibre bundles described by (9) and
(10) were uniformly distributed within all heads of the corre-
sponding muscle. Passive resistance from synovial fluid (vis-
cous fluid between moving bony surfaces), tendons and wrap-
ping ligaments were modeled as a resistive torque propor-
tional to the joint velocity :

(11)

where, the scaling factor was determined in the identifica-
tion process.

D. Sensitivity Analysis
We conducted a sensitivity analysis on the combined NMS

model. In order to check the necessary conditions of identifia-
bility, we computed the output variances by changing the model
parameters. Sensitivity to parameter changes were calculated
using the measure,

(12)

where is the th output at time step in the forward dy-
namics computations. refers to the output of the system for
a nominal set of parameters and input variables. The outer sum-
mation accumulates the output difference over joint
angle , joint torque , muscle forces and , and activa-
tions and .
We applied changes to each of the parameters in steps of:

0.1, 0.25, 0.5, 1.0, 2.0 times the nominal value, and computed
the sensitivity measure . Fig. 3 plots the results for some of
the most sensitive parameters. In general the system showed
good excitability to modulation of the MU parameters such as

and . The output also showed high sensitivity to
parameters that modulate neuron soma diameter (and hence the
firing pattern) . The lowest sensitivities were found for
some of the reflex parameters, e.g., , , . Note
that in our analysis we modified each of the parameters one at
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Fig. 3. Sensivity Analysis: Bar plots in descending order show the sensivity
measure ((12)) computed by varying model parameters and inputs. Grouped
bars for each parameter show for different perturbation magnitudes (left to
right – , , , , ). Missing bars indicate that the sensitivity
measure could not be computed for that parameter set due to output instability.

a time, but not for all possible combinations, i.e., we did not
cover the entire plausible parameter space. It is possible that the
some of low sensitivities observed about the currently chosen
nominal values are not present in other reaches of the parameter
space.

IV. HUMAN EXPERIMENTS

Two conditions, Graded Recruitment (GR) and Co-con-
tracted Reflex (CR), were designed to identify the parameters
of the NMS model. A third condition, Loaded Reflex (LR), was
used to verify the results of the identified model.

A. Participants
Five male volunteers took part in the experiments. Mean de-

mographics variance: age, years, weight,
kg, height, cm. Participants were in good

health and did not report any neurological or physiological con-
ditions that might interfere with the experiments. They were all
right-handed and chose to use the right arm for the experiments.
Informed written consent was obtained prior to the experiments.
The protocol was designed in accordance with the ethical stan-
dards of the Declaration of Helsinki (rev. 2013).

B. Materials and Methods
Participant joint position data were collected with a

10-camera motion capture system (MotionAnalysis Co., USA)
by attaching markers to the shoulder, elbow and wrist lateral
and medial protuberances, and the dorsal surface of the hand.
The resolution of the capture volume was about 3 mm, and
data was recorded at 200 Hz. Three wireless electromyographs
(Delsys Inc., USA) were attached to the skin by palpitating
the mid-point of the biceps muscle, and the lateral and medial
heads of the triceps muscle. In some trials, we used a bi-direc-
tional force sensor (Imada Z2-1 J, Range , Resolution
0.001 N), mounted on a pedestal such that the sensor axis was
perpendicular to the floor. The sensor could be moved vertically
to adjust for participant height and the mounting apparatus was
heavy enough to be immovable by the participant. We built a
strap made up of a cushion and a rigid element that could be
worn around the wrist. The rigid element could be fixed on
to the sensor such that a downward or upward force could be

applied along the sensor axis by extending or flexing the elbow,
respectively. Both EMG and force sensor data were recorded
at time-matched instances at 1000 Hz. EMG signals were
high-pass filtered at 30 Hz, rectified, and then low pass filtered
at 20 Hz. Force sensor and motion capture position data were
both low pass filtered at 20 Hz. We used second-order zero
phase delay Butterworth filters in all cases. For all conditions,
participants were asked to position their arm such that the upper
arm was vertical and the forearm horizontal (i.e., extending a
90 angle at the elbow) and supinated.
In condition 1, GR, the force sensor was positioned such that

sensor axis was directly below the participant's wrist. After at-
taching the wrist strap, we displayed the current force being ex-
erted by the participant on the sensor as a real-time readout on a
monitor in front of them. Participants were asked to only apply
force by flexion/extension at the elbow, and not for example by
moving their torso or applying their body weight on the sensor.
Compliance with this instruction was verified visually during
the practice trials, and post-hoc using the variance in shoulder
markers. Trial conditions consisted of asking the participants to
apply forces of , , (pushing downwards)
and , , (pulling upwards) on the sensor.
Conditions were presented in randomized order. Trials began
with an audible cue signalling that the participant should apply
the requested force level, and maintain it for 10 s. A second au-
dible cue signalled the end of the trial. Trials were separated by
gaps of 2 min to minimize effects of fatigue.
In condition 2, CR, participants were asked to co-contract

the biceps and triceps muscles to three subjective levels; Low
Co-contraction (LC), Medium Co-contraction (MC) and High
Co-contraction (HC). Note that the force sensor and pedestal
were removed from the experimental area for these trials. Par-
ticipants wore headphones that played an audible cue to signal
the start of trial, and then white noise to mask laboratory sounds.
In addition, a blindfold was drawn over the participant's eyes.
They then co-contracted the biceps and triceps of the instru-
mented arm to the requested subjective level. At a randomly
chosen instant between 5–20 s from start of trial, the experi-
menter applied a sudden perturbation to the participant's wrist.
Perturbation was in the form of a falling weight released from
about 0.5 m above the wrist. The weight was a small plastic
cylinder (15 cm length 5 cm diameter) weighing 0.5 kg. The
motion of the weight was tracked with motion capture markers
to detect the exact start of perturbation and height of fall. Trials
ended about 1–2 s after perturbation was detected by the partic-
ipant. Trials were separated by 2 min to minimize effects of fa-
tigue. In pilot trials, the joint velocity resulting from this pertur-
bation was recorded between 200–300 , which was above the
175 threshold reported for inducing the stretch reflex [32].
We recorded a third condition, LR, which was used for model

verification. Here, we loaded the forearm with 1, 3, or 5 kg
weights. Similar to the CR condition, a randomly timed per-
turbation was applied to the wrist. Recording sessions began
after all participants practised a few trials from the GR, CR and
LR conditions. They all reported that the conditions were easy
to follow and that the perturbation force in CR condition was
not uncomfortable. In addition, we recorded the subject-spe-
cific Maximum Voluntary Contraction (MVC) information be-
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fore the start of experiments. These recordings were done in
order to estimate the maximummuscle forces for the biceps and
triceps muscle, and the corresponding maximum sensor values
of the EMG electrodes. The methodology was similar to the
GR experiment, participants were asked to apply the maximum
possible force on the sensor by flexing or extending the elbow
and hold it for 5 s. The maximum value during these trials was
chosen as the MVC. The entire experiment, per participant, was
recorded in one session of about 1 to 1.5 h with gaps of 5–10
min between conditions.

C. Inverse Dynamics Analysis

Musculoskeletal Inverse Dynamics (ID) was calculated using
a custom-built software, sDIMS [16]. The skeletal and mus-
cular kinematics were identical to that defined in Section II-C.
The muscle dynamics were described by Hill-type models (8),
using values estimated from the MVC recordings. Note that
in the inverse dynamics estimation, denotes the total force
being generated by the whole muscle (in contrast to the motor
units maximum forces, , used in the forward dynamics com-
putations). An accurate value of was vital to the estimation
of the muscle force magnitudes. After filtering of force sensor
data, the highest recorded value during MVC trials and the lever
arms of the biceps and triceps muscle, were used to compute the
maximum muscle force. The lever arms were computed from
the scaled subject-specific musculoskeletal kinematics. Based
on these values we approximated the subject-specific values,
with for the biceps, and,

for the triceps. The generalized forces were
then computed as

with

(13)

where, is the Jacobian matrix of wire lengths with respect
to generalized coordinates, are the muscle tensions, is
the Jacobian matrix of contact points with respect to general-
ized coordinates and the contact forces [16]. To compute the
muscle tensions at each time step, an optimization problem was
defined with constraints coming from the Hill-type force esti-
mation, terms to minimize overall muscle forces, and terms to
ensure continuity of estimated values. For the Hill-type compu-
tation, the activation levels were estimated based on EMG
recordings and the corresponding subject-specific value. This
optimization problem was then solved using quadratic program-
ming [16], [33].
External contact forces such as that exerted upon the sensor

in the GR condition, or, the perturbation in the CR experiment
were applied to the wrist joint of the model. For the GR con-
dition, exerted force could be directly obtained from the force
sensor readings. For the CR condition, we estimated the pertur-
bation force using the weight of the object and post-hoc anal-
ysis of the velocity profile. From the velocity profile and the
video recordings we observed that the contact between object
and wrist lasted approximately 300 ms. For this duration, the

profile of the perturbation force was approximated as a sym-
metric exponential rise and fall.

D. Reference Data
The results of the musculoskeletal ID analysis were used as

the reference for parameter identification. For the GR condition,
the reference data consisted of

(14)

where, was the joint angle, the joint torque, , the biceps
and triceps muscle forces, and , the corresponding muscle
activations. Here, and were computed as the cumulative
force generated by all heads of the biceps and triceps. Note that
the reference was calculated as the average results over the du-
ration of each GR condition, after the required force level was
achieved. The reference values in (14) were calculated for each
participant and for GR recruitment levels.
For the CR condition, we similarly calculated reference

values for the three co-contraction levels. In contrast to the
time-averaged values of the GR reference, here the reference
was a trajectory over time of the parameters in (14), i.e.,

(15)
with, . The reference time window was chosen
to be 25 ms before, to 100 ms after the perturbation. Fig. 5 plots
the computed ID reference data as empty circles.

V. PARAMETER IDENTIFICATION
In Section II some of the model parameters were selected

and fixed based on literature evidence, for example the number
of MUs. Others were distributed over a range based on known
physiological relationships, with their exact values to be deter-
mined by subject-specific scale factors (for example, the distri-
bution of MU and ). Here, we describe the identification
process for these unknown parameters from the experimental
data.

A. Forward Dynamics Simulation
We recall that the control variables for the NMS model de-

scribed in Section II were the biceps and triceps stimulations,
and , respectively. Based on our neural architecture a

higher stimulation would result in a higher number of motor
neurons firing, and consequently a larger force being gener-
ated by the corresponding muscle fibres. For a given stimulation
of the biceps and triceps MN pools, the behavior of the NMS
model was then calculated using a fourth-order Runge-Kutta al-
gorithm with an integration time step of 0.5 ms. Simulation du-
ration was 6 s, with data from the first 4 s not being considered
for identification. This allowed sufficient time for the NMS dy-
namics to stabilize in the absence of external perturbation. Com-
putations for a single simulation took about 30 s on a 2 2.3
Ghz computing node, and multiple instances were highly paral-
lelized using the OpenMPI framework. Parameter identification
problem was solved using the derivative free method BOBYQA
(Bound Optimization BY Quadratic Approximation) [34], im-
plemented in the NLopt library [35]. To simulate the GR and
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Fig. 4. GR Parameter Identification: Fits of forward dynamics results with the data estimated from the GR conditions. (a) Joint angle, (b) Joint Torque, (c) Muscle
forces and (d) Muscle activations. Error bars indicate standard deviations of the mean across participants.

CR conditions, identical external forces as those used in the ID
computations were applied to the NMS model.

B. Isometric Parameters
By the term Isometric we refer to the asymptotic response of

the NMS model under a constant stimulation to the biceps and
triceps neural pools, and in the absence of any other perturba-
tion.We indicate the following parameters that contribute to this
response, and the control inputs

. These parameters were identified from the GR refer-
ence data (14) by solving the least-squares objective function

(16)

(17)

where, refers to the applied force levels in the GR con-
dition. was the vector of reference values from (14) and

the steady state estimates from the forward dynamics sim-
ulation. was a diagonal matrix of normalizing factors that
adjusted the variables to the same order of magnitude. These
normalizing factors were determined post-hoc as the mean of
the reference values . refers to the isometric param-
eters to be identified. and were the 6 control
inputs (neural stimulations) to be determined, corresponding to
the 6 GR levels. The problem thus consisted of solving for the 16
parameters, four of which were common to all GR levels and the
other 6 2 parameters specific to the six GR recruitment levels.
The identification was constrained to values of free param-

eters that resulted in physiologically realistic values for
membrane capacitances, time constants and motor unit twitch
forces (Table I). For these computations, the remaining dynamic
NMS parameters were fixed at the means of the full physiolog-
ical range. For each participant we first evaluated the value of
(16) at 1000 points randomly distributed among the parameters
in (17). We then ran the identification problem for com-
binations with the 10 lowest costs to ensure that the parameter
envelope defined by (17) was well explored.

C. Dynamic Parameters
We classify the remaining parameters as pertaining to the dy-

namic response of the NMS model which were identified using

the CR reference data. To account for a trajectory of reference
values (15), we modified the minimization problem as

(18)

(19)

where , 2, 3, refers to the co-contraction levels
of the CR condition. Here, the objective func-

tion (18) minimizes the error between the forward dynamics
estimate, and the reference , for to 125 ms,
with the free model parameters subject to the bounds in
Table I. Here, the first 3 parameters in were common to
all CR levels, and the other 30 were specific to each CR level
(10 per CR level). In other words, the parameter identification
problem was designed such that stimulation and reflex feedback
could vary between the three recorded CR levels. Similar to
GR identification, the value of the objective function (18) was
evaluated at 6000 random points in the parameter space and the
identification process launched from 10 of the points with the
lowest costs.

D. Identification Results
In general the identification process provided a good fit be-

tween the forward dynamics estimation and the reference data.
Figs. 4 and 5 plot the fits obtained between the forward dy-
namics behavior and the inverse dynamics reference for the GR
and CR conditions, respectively. The average differences for
GR conditions (across all force levels and all participants) in
joint angle, joint torque, muscle forces and muscle activations
were: , , , and

, respectively. The corresponding differences for
the CR conditions were: , ,

, and . Under isometric conditions, the
joint angle, joint torque, cumulative muscle forces and muscle
activation levels from forward dynamics closely matched those
calculated from the inverse dynamics computations. This may
be observed from the fits in Fig. 4 as well as the values in
Fig. 5 before perturbation was applied. For the dynamic be-
havior of the model after perturbation, the largest discrepancy
between inverse and forward dynamics was observed in joint
angle. The FD model presented with excessive joint extension
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Fig. 5. CR Parameter Identification: Fit between the trajectories over time of forward and inverse dynamics for medium co-contraction (MC) condition. The
vertical line indicates the time instant when the arm was perturbed. Shaded regions indicate the standard deviation across participants.

Fig. 6. Identification Results: (a) Variation in soma diameters computed as per (2) and the identification parameter . Shaded region indicates the standard
deviation of the mean across participants. Thin lines indicate the identification search range. (b) Distribution of biceps and triceps motor unit and values
over all participants. (c), (d) and (e) Normalized stimulation and synaptic weights for the various neural pools. Black circles indicate the center weight term of the
Gaussian distribution , and blue circles the corresponding variance . Error bars indicate the standard deviation of the mean across participants.

after perturbation, Fig. 5(a), possibly due to the absence of other
wrapping muscles and tendons in the NMS model.
Fig. 6 and Table I show the range of identified physiological

and normalized parameters for all participants. Statistical sig-
nificance of results was tested in SPSS 22.0 (IBM Corp., USA).
Significance level was set at a -value of 0.05. Mauchly's test
was used to confirm the assumption of sphericity, and in cases
of violation we applied the Greenhouse-Geisser correction and
report the corrected degrees of freedom. Motor neuron soma
diameters ranged between 57.08 to 109.37 , Fig. 6(a).
Across participants, the corresponding identification parameter

showed a variation of upto 13.8% over the mean.
and varied by 19.6% and 13.7% across participants, re-
spectively. The resulting range in motor unit maximum twitch
force and time was from 0.0124 N to 20.2 N, and 28.2 ms to 179
ms, respectively [Fig. 6(b)]. ranged from 0.578 to 0.756
with .
Fig. 6(c) and (d) plots the identified stimulation and synaptic

weights between all neural pools, for the CR conditions. As ex-
pected, the identified stimulation values to the biceps and tri-
ceps motor neuron pools increased for higher co-contraction
conditions. This increase was significant across participants for
both biceps and triceps stimulation, ,

, & , ,
. Interestingly, the parameters responsible for mono-

synaptic excitations between the biceps MS to biceps MN (pos-
itive feedback), and , also showed a significant in-
crease with co-contraction level, , ,

for and , ,
for . In comparison, triceps mono-synaptic

excitation values, and were smaller and of sim-

ilar magnitude to the weights for di-synaptic inhibition, ,
and , , and showed no significant variation

across conditions (all ). Recall that synaptic charac-
teristics were derived from a distance-dependent Gaussian dis-
tribution (Section II-A). Based on the identified values we found
that source neurons made substantial connections (above 10%
of center weight ) with about 95% of target neurons for the
largest , to about 45% for the smallest .

E. Model Verification

The identified models were tested by comparing them to the
inverse dynamics results from the LR condition. In order to
simulate the LR conditions in the forward dynamics model,
we manually chose the control inputs , such that the elbow
angle matched the observation before the application of per-
turbation. Triceps stimulations, , were set to zero. Note that
in the LR experiment the wrist was progressively loaded with
heavier weights (W1, W3, and W5). Thus, in order to maintain
the forearm posture the biceps motor neurons required higher
and higher stimulations. As we found a dependency between the
stimulation and neural feedback parameters, we chose to sim-
ulate the [W1,W3,W5] conditions of the LR experiment with
the neural weights identified for the [LC,MC,HC] conditions of
the CR experiment, respectively. We observed that the identi-
fied models could predict the initial states of joint angle, joint
torque, muscle forces and activations quite well. However, the
dynamic behavior after perturbation showed larger differences
for predicted muscle forces and activations than those observed
in the CR fits. The differences in joint angle, joint torque, muscle
forces and muscle activations were: ( , over all
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Fig. 7. Neural spike trains: (a) 50%, (b) 100%, and (c) 150% feedback gains. Separation of biceps and triceps MN firing into two and three distinct groups
illustrates the respective distributions in each of the muscle heads. For clarity of presentation only about 1/10th of neurons in each of the pools have been plotted.

conditions and all participants): ,
, , and .

VI. SIMULATION OF THE STRETCH REFLEX
Fig. 7 plots simulated spike trains under varying feedback

characteristics. We applied a constant stimulation to the biceps
and triceps MN pools such that around 25% of MNs were re-
cruited in each pool. To approximate varying reflex sensitivity
we scaled the synaptic parameters, , and ,

, from 50% to 150% of the values identified for Sub3 –W3
condition, reflecting weak to excessive feedback. A perturbation
was applied to the wrist after 1 s. For low and 100% feedback the
NMS model exhibited stable settling behavior before and after
the perturbation. We observed that for 50% feedback gain con-
dition there was little muscle force generated due to the stretch
perturbation. This relative unresponsiveness of the system can
also be observed in the almost uniform MN and IN spike trains
in Fig. 7(a). At 100% feedback the perturbation had a significant
effect on the NMS dynamics. The spike trains in Fig. 7(b) show
that the biceps stretch results in increased biceps MN firing and
inhibition of triceps MN firing. This resulted in larger biceps
muscle forces and further inhibition of triceps muscle forces.
As feedback gains were increased to 150%, the system show
rhythmic self-excitatory behavior at about 5 Hz, even without
external perturbation, Fig. 7(c). In physiology, such rhythmic
contraction/relaxation of muscle is characterized as clonus and
a hyperactive stretch reflex has been suggested to be one of its
main causes [2], [5], [32].

VII. DISCUSSION

In this study we developed a neuromusculoskeletal model of
the stretch reflex in the human arm, and identified subject-spe-
cific parameters from experimental data. The model included
the dynamics of spiking motor neurons and muscle fibre bun-
dles (motor units), spindle afferents, intra-spinal connections

and skeletal mechanics. The identified model was able to track
the recorded reflex behavior (joint positions), as well as the es-
timated joint torques, and muscle forces and activations. The
exhibited spike patterns were consistent with those one may ex-
pect from literature evidence [22], [32].
The implementation of discrete neural control layers came at

the cost of additional model parameters that had to be deter-
mined. The challenges and added complexity of this problem
may be justified in three ways. First, the physiologically re-
alistic neuromuscular architecture allows for the investigation
of phenomena such as recruitment and rate coding [18], [22].
This would not have been possible if the neural control were
to be simplified as a scalar muscle activation ratio. Second, a
biomimetic control architecture is a step towards such models
being more clinically relevant (although in the present case our
model simplifications limit this application). For such models,
identifying the model properties also helps in inferring neu-
rophysiological states that are not directly observable. This is
an advantage when designing neural interfaces for rehabilita-
tion, for example neuro-prostheses, or when estimating normal
or pathological neuromuscular behavior. Third, by designing
the connections between discrete spinal networks, continuous
muscle force generation and skeletal movements, such models
are the first step towards connecting physical movements to the
motor cortex and voluntary control.
The identified models produced a neural-reflex (approximate

start of mono-synaptic excitations of agonist MNs) about 15 ms,
and a muscular reflex 25–50 ms (agonist muscle force increase),
after perturbation. The realism of the neural-reflex, number of
MUs recruited, was difficult to evaluate due to the lack of human
experimental data on individual motor unit recordings. How-
ever, the resultant muscle forces and joint torques were con-
sistent in magnitude and rate of increase with those typically
reported in human movement studies [10], [11], [36]. We also
found that the neuromuscular model parameters compare well
with results previously reported in literature. The identified MN



SREENIVASA et al.: MODELING AND IDENTIFICATION OF A REALISTIC SPIKING NEURAL NETWORK AND MUSCULOSKELETAL MODEL 601

membrane capacitances and time constants (based on soma di-
ameter range, 50.83 to 109.37 ) were similar to those re-
ported by Cisi and Kohn [11] and Fleshman et al. [23], as were
the motor unit contraction times (28 ms to 179 ms). Motor unit
twitch forces were much higher than those typically reported
[11], [28]. However, this was to be expected to take into account
the higher force generation capabilities of large human mus-
cles compared to the smaller animal muscles that are typically
tested. We also found an increase in monosynaptic excitatory
feedback with higher muscle co-contractions. This phenomenon
has been previously reported to be related to reflex modulation
via gamma-motorneuron activity, and suggested to occur as a
function of task, co-contraction and perturbation characteristics
[3], [5], [6], [10], [32]. However, as our spindle model did not
contain any fusimotor components, this particular effect could
not be further investigated. As reflex modulation can also play
an important role in the control of joint stiffness, an alternative
would be to incorporate a more complex spindle model (e.g.,
[24]).
As mentioned earlier, the focus of this study was on the

identification of neuromuscular parameters at the motor unit
level while incorporating the effects of skeletal movements,
neural and mechanical feedback. For this reason we simplified
the neural, muscular and skeletal components – and as is the
case with every model, the underlying assumptions and sim-
plifications limit the prediction capabilities. At the neural level
the most significant effects were the missing internal pools and
feedback loops related to the Ib, II afferents, sensitivity tuning
by gamma-motorneurons, as well as axonal and dendritic
effects [9], [11], [24]. These components play an important
role in modulating reflexes and form a major part in organizing
involuntary behaviors. Due to our model simplifications we
constrain our analysis to isometric conditions and movements
occurring within 100 ms after perturbation. The assumption
here was that movements within this time window are not
affected by tuning mechanisms, slower afferents or voluntary
control. An additional limitation arises from the simplified
muscle model that accounts for the macroscopic mechanical
behavior, but not detailed electrochemical behavior such as
those tackled in continuum mechanics models (see, for ex-
ample, [13]). The absence of other arm muscles such as the
brachioradialis and wrapping ligaments, may have been one of
the causes for excessive extension exhibited by our model. Due
to the same reason, there may also have been an overestimation
of biceps and triceps forces. We assumed uniform distributions
of the neuromuscular parameters based on literature evidence.
Most of these studies report data from animal experiments, or
cadaveric observations, and the extent to which they reflect
healthy human neurophysiology is presently unclear. In order
to improve the ecological usefulness of our current approach,
it would be necessary to include these missing components.
In this context, the contribution of our study is to provide the
basis for these extensions and help counter potential problems
in a larger scale NMS model (e.g., by pre-identification of the
presently included component parameters).
Finally, identification based on optimization alone cannot

tackle the problem of neurophysiological redundancy. For
example, the increase in mono-synaptic reflex gains could

be due to a fusimotor tuning based higher sensitivity of the
muscle spindles. However, the same behavior (excessive firing
of agonist motor neurons) could also be exhibited if we were
to decrease the motor neuron firing threshold [2]. To solve
this redundancy we have to introduce additional measurements
that can help discriminate between competing solutions. In
human neurophysiology in vivo spinal recording is presently
unrealistic. However, new advances in EMG technology offer
possible solutions such as dense electrode-matrices and asso-
ciated algorithms that can decompose individual motor unit
action potentials (MUAPs) [37]. This decomposition may help
achieve a more detailed observation of the neurophysiological
state, and consequently a better estimate in the parameter
identification stage.
Despite these limitations, we assert that the architecture and

identification methodology proposed in this study have useful
applications, are modular and extendable to more complex neu-
romuscular behavior. For example, in order to complete the
spinal reflex circuits as proposed by Bashor [9], our model re-
quires additional neural pools and connections. The design of
these pools is relatively straight-forward, however, one chal-
lenge would be to design experimental paradigms to identify
these (additional) parameters. Due to the inherent redundancy in
human neuromuscular control, a careful choice of the reference
data used in parameter identification as well as the algorithms
used would be vital. Similarly, the extension of the current ago-
nist-antagonist framework to include more limbs would be tech-
nically straight-forward. It is however not obvious how more
complicated muscle actions that do not directly act as agonist or
antagonist, or those that change function with movements, may
be included in our framework. Recent advancements in muscle
primitives may prove to be a valuable asset here [7]. We may
consider to develop the concept of neural primitives that denote
descending drives from the upper spinal levels, and would serve
tomodulate and coordinate the behavior of many interconnected
pools of spinal neurons.
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