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ABSTRACT This paper concerns covariance matrix-based spectrum sensing over frequency-selective
channels. The impact of frequency-selective channels on the covariancematrix of received signals is analyzed
in frequency domain, and it is shown that the phases of channel spectra degrade the performance of
covariance matrix-based detectors. To overcome this problem, we propose a new detector which employs
only the magnitude spectra of received signals and therefore achieves considerable performance gain.
Theoretical performance, in terms of the false-alarm and detection probabilities of the proposed detector,
is analyzed. Simulation results verify our theoretical analyses and demonstrate the superior performance of
the proposed detector.

INDEX TERMS Cognitive radio, frequency-selective channels, spectrum sensing, uncalibrated receivers.

I. INTRODUCTION
Cognitive radio, which allows the operation of secondary
users (SUs) in the occasionally unused spectrum licensed to
primary users (PUs), has been recognized as one of promising
technologies for alleviating the problem of spectrum short-
age. To probe available spectrum holes and avoid interfering
PUs harmfully, spectrum sensing plays a very important role
in cognitive radio [1]–[4].

A variety of spectrum sensing methods have been pro-
posed in the literature [3] and [4]. Among the detectors
with low computational complexity, energy detection (ED)
delivers an outstanding performance without requiring the
a priori knowledge of primary signals [5]. However,
ED needs the knowledge of noise power and its perfor-
mance degrades severely under noise (power) uncertainty [6].
To combat the noise uncertainty, detection approaches with
noise power estimation have been investigated [6]–[9].
In [7], the noise power is initially estimated by switch-
ing off radio frequency (RF) terminals, and it is then
updated with noise samples from previous sensing durations.
However, switching off RF terminals excludes noises from
these terminals and surrounding environments. Without dis-
connecting RF terminals, we proposed two noise power esti-
mators by exploiting the correlations of pilot and cyclic prefix
in sensing orthogonal frequency divisionmultiplexing signals

in [8] and [9]. However, the requirement of the a priori
knowledge about the correlations of primary signals may
limit their applications.

To circumvent the requirement of noise power, multi-
ple antennas can be employed for spectrum sensing by
exploiting spatial correlations [4]. The eigenvalue-based
detection [10]–[14] and the covariance-based detec-
tion [15]–[19] are two kinds of typical spectrum sensing
methods with multiple antennas. Various eigenvalue-based
detectors, such as the maximum-minimum eigenvalue detec-
tor (MMED) [11], the maximum eigenvalue to arithmetic
mean (MEAM) [12], the arithmetic to geometric mean
(AGM) [21], were proposed in the framework of generalized
likelihood ratio test (GLRT). In [11], approximate and exact
threshold expressions for MMED were presented. In [20],
the asymptotic performance of MEAM was analyzed by
using the Chi-squared distribution. In [22], the theoreti-
cal analysis of AGM (a.k.a. the spherical test) was pro-
vided. It can be found that the essential idea behind the
eigenvalue-based detectors is in distinguishing whether the
popular covariance matrix of received signals is a scaled
identity matrix or not. This implies an assumption that
the noise variances are the same at all antennas. However,
this assumption may not be valid in some scenarios, e.g.,
the noise variances at different antennas cannot be identical
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due to uncalibrated receivers or heterogeneous surrounding
environments.

Given sufficiently high spatial correlation, the covariance
matrix based detectors work well no matter whether the
noise variances of the antennas are identical or not. In [16],
we analyzed the theoretical performance of the covariance-
absolute value (CAV) detector. In [17] and [18], two weighted
versions of the CAV were proposed. In [19], Hadamard ratio
detector (HRD) was proposed that exploits the covariance
matrix of received signals in frequency domain. However,
we will show that the correlation of the received signals from
different antennas can decrease considerably due to multi-
path propagation (leading to frequency-selective channels).
Therefore, the performance of the covariance matrix based
detectors will suffer from severe performance loss under
frequency-selective channels.

It is shown in this paper that the correlations among
the antennas is degraded significantly due to the phases
of frequency-selective channel spectra, which motivates the
design of a new detector by using only the magnitude spectra
of received signals but discarding their phase components.
Moreover, comprehensive performance analyses of the pro-
posed detector are provided, and the false-alarm probabil-
ity (Pf ) and detection probability (Pd ) are derived. Numerical
simulations are provided to validate the theoretical results
and demonstrate the superior performance of the proposed
detector.

The rest of this paper is organized as follows. After pre-
senting the signal model in Section II, we analyze the effect of
multipath propagation on the covariance matrix and propose
a new detector based on estimated magnitude spectra of
received signals in Section III. In Section IV, the theoretical
performance of the proposed detector is analyzed. Simulation
results are provided in Section V, followed by conclusions
in Section VI.

II. SIGNAL MODEL
Spectrum sensing is usually treated as a binary hypothesis
testing problem, i.e., a decision needs to be made on whether
primary signals are present or not. We use H0 and H1 to
represent the null hypothesis (absence of primary signals)
and the alternative hypothesis (presence of primary signals),
respectively. We assume that at most one primary user oper-
ates in a licensed channel and a secondary user is equipped
with M antennas. Let xt (n) ∈ CM×1, n = 0, · · · ,N − 1,
denote the discrete-time complex baseband signal vector
from the antennas at time instant n, and the mth ele-
ment of xt (n), denoted by xt,m(n), is the signal from the
mth antenna. Based on the above binary hypotheses, xt,m(n)
can be expressed as

xt,m(n) = ηht,m(n)⊗ st (n− τm)+ wt,m(n) (1)

where ⊗ denotes the convolution operator; η indicates the
presence of the primary signal st (n), i.e., η = 0 underH0 and
η = 1 under H1, respectively; ht,m(n) represents the channel
response between the primary user and themth antenna of the

secondary user; wt,m(n) denotes the noise at the mth antenna
of the SU; τm denotes the time delay from the primary user to
the mth antenna. Note that the time delays may be different
when the antennas are widely spaced to combat the shadow-
ing effect [23]. It is assumed that the channel coefficients keep
unchanged within a sensing duration but vary independently
among sensing durations, and the channel coefficients of
different taps within a sensing duration are independent of
each other. The primary signal st (n) is assumed to be wide-
sense stationary with mean zero and variance σ 2

s . The noise
wt,m(n) is also assumed to be wide-sense stationary with
mean zero and variance σ 2

w,m, and the noises from different
antennas are independent of each other. Note that we have not
made any assumption on the distributions of the noise and the
primary signal, i.e., they can be non-Gaussian.

By stacking the received signals {xt,m(n),∀m} and absorb-
ing the time delays {τm,∀m} into the channel responses, we
can obtain a received signal vector as

xt (n) = ηht (n)⊗ st (n)+ wt (n) (2)

where

ht (n) = [ht,1(n− τ1), · · · , ht,M (n− τM )]T (3)

and

wt (n) = [wt,1(n), · · · ,wt,M (n)]T (4)

with the superscript (·)T being the transpose operator. With
a sufficiently large N and by performing N point Fourier
transform on rectangularly windowed sets of N samples, the
received signal in frequency domain can be expressed as [24]

xf (k) =
N−1∑
n=0

xt (n)e−j2πnk/N

≈ ηhf (k)sf (k)+ wf (k) (5)

where xf (k), hf (k), sf (k) andwf (k) are the Fourier transforms
of xt (n), ht (n), st (n) and wt (n), respectively. Note that the
index k in xf (k) indicates the kth frequency bin, and the
coefficient hf (k) represents the vector of complex channel
coefficients for the kth frequency bin [24].

As st (n) and wt (n) are wide-sense stationary, according
to the central limit theorem (CLT), sf (k) and wf (k) approx-
imately follow Gaussian distributions. This alleviates the
requirement of Gaussian distribution of primary signals and
noises in time domain. It is not hard to show that

sf (k) ∼ CN (0,Nσ 2
s ) (6)

and

wf (k) ∼ CN (0,NRw) (7)

where

Rw = diag
{
σ 2
w,1, · · · , σ

2
w,M

}
. (8)

Hence,

hf (k)sf (k) ∼ CN
(
0,Nσ 2

s Rhf (k)
)

(9)
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where

Rhf (n) = hf (k)hHf (k) (10)

with the superscript (·)H being the conjugate transpose oper-
ator.

III. PROPOSED DETECTOR
In this section, we first investigate the effect of frequency-
selective channels on the off-diagonal elements of covariance
matrices. We will show that frequency-selective channels
make the off-diagonal elements of the covariance matri-
ces under H1 close to zero, thereby degrading the perfor-
mance of the covariance matrix based detectors significantly.
To remedy this problem, we propose a new detector by using
the magnitude spectra of the received signals.

A. EFFECT OF FREQUENCY-SELECTIVE CHANNELS
Considering the independence between the primary signal
and the noise, we can have

xf (k) ∼ CN
(
0,NRw + ηNσ 2

s Rhf (k)
)
. (11)

It can be obtained from (11) that the covariance of xf (k)
is a diagonal matrix under H0 (η = 0) but not a diagonal
matrix under H1 (η = 1). This characteristic can been used
for spectrum sensing by detecting whether the population
covariance matrix of xf (k) is a diagonal matrix or not. This
decision is usually made based on the sample covariance
matrix, i.e.,

Rxf =
1
N

N−1∑
k=0

xf (k)xHf (k). (12)

The expectation of Rxf is given by

E[Rxf ] = NRw + ησ
2
s

N−1∑
k=0

Rhf (k)

= NRw + ησ
2
s

N−1∑
k=0

hf (k)hHf (k). (13)

Under flat fading channels, i.e.,

ht,m(n) = 0, n 6= 0, (14)

the mth element of hf (n) is given by

hf ,m(k) = ht,m(0)e−j2π
k
N τm . (15)

Then, the term
∑N−1

n=0 hf (k)hHf (k) in (13) is a coherent sum-
mation if the time delays {τm,∀m} are the same, and the off-
diagonal elements of E[Rxf ] could have large values.
However, under frequency-selective channels, the term∑N−1
k=0 hf (k)hHf (k) involves non-coherent summation due to

the different phases of {hf (k),∀k}. Hence, with fixed channel
energy, the off-diagonal elements in E[Rxf ] have smaller
magnitude under frequency-selective channels than under flat
fading channels. This may make the off-diagonal elements

of the covariance matrices under H1 close to zero. Conse-
quently, the difference between the covariance matrices Rxf
underH0 andH1 is reduced in frequency-selective channels.
This will induce performance degradation of the covariance
matrix based detectors, such as the detector in [19] which
exploits spatial correlations.

This problem can be remedied by removing the phase of
hf (k) to avoid destructive summation, i.e., only the magni-
tude spectra of channels are used. This leads to a new detector.

B. PROPOSED DETECTOR
To eliminate the negative effect of the phases of hf (n) on the
summation, we propose to employ the magnitude spectra of
the received signals. Denoted by z(k) = [z1(k), · · · , zM (k)]T

an estimate of the magnitude spectra of the received signals
is given by [25], [26]

z(k) = |xf (k)|. (16)

We then use the covariance matrix of z(k) rather than xf (k)
for spectrum sensing. By considering that the mean of z(k) is
nonzero, the covariance matrix of z(k) is given by [27]

Rz =
1
N

N−1∑
k=0

(z(k)− z̄)(zT (k)− z̄T ) (17)

where

z̄ =
1
N

N−1∑
k=0

z(k). (18)

Then the well-known GLRT-based detector under the
assumption of a diagonal covariance matrix of noises can be
readily employed, which is given by [28], [29]

TGLRT =
det (Rz)

M∏
m=1

Rz(m,m)

= det (C) (19)

where

C = GRzG (20)

with

G = diag
{

1
√
Rz(1, 1)

, · · · ,
1

√
Rz(M ,M )

}
. (21)

However, the determinant operation in (19) involves a compu-
tational complexity of O(M3). To reduce the computational
complexity to O(M2), we adopt the Frobenius-norm (FN)-
based detector as

TFN = ||C||2F (22)

where || · ||F denotes the Frobenius norm. Another reason for
adopting the FN-based detector is, as shown in [30], that the
FN-based detector is approximately equivalent to the GLRT.
With a given decision threshold λ, the decision rule is given
by

TFN
H1
≷
H0

λ. (23)
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The false-alarm and detection probabilities are, respectively,
given by

Pf = Prob (TFN|H0 > λ) (24)

and

Pd = Prob (TFN|H1 > λ) (25)

where Prob(·) represents the probability of an event. It is
required that Pf ≤ 0.1 in the first wireless standard based
on cognitive radio, e.g., the IEEE 802.22 standard. Higher
Pd will decrease the interference to primary users, and in the
IEEE 802.22 standard, it is required that Pd ≥ 0.9.

C. COMPLEXITY ANALYSIS
The computational complexity of the Frobenius-norm opera-
tion is O(M2). In addition, the computational complexities
of fast Fourier transform and obtaining covariance matrix
are O(MN log10 N ) and O(MN 2), respectively. Finally,
we can obtain that the computational complexity of the pro-
posed detector is O(MN 2), which is the same as that of
eigenvalue-based and conventional covariance matrix-based
detectors.

IV. PERFORMANCE ANALYSIS
A. FALSE-ALARM PROBABILITY
UnderH0, xf (k) contains only noise components, and

xf (k)|H0 ∼ CN (0,NRw). (26)

It can be obtained that zm(k) = |xf ,m(k)| under H0 follows
Rayleigh distribution, and its mean and variance are

E [zm(k)|H0] =

√
Nπ
2

σw,m (27)

and

Var [zm(k)|H0] =
N (4− π )

4
σ 2
w,m, (28)

respectively. According to CLT, the mth element of z̄

z̄m|H0 =
1
N

N−1∑
k=0

zm(k)|H0, (29)

follows a Gaussian distribution, i.e.,

z̄m|H0 ∼ N
(√

Nπ
2

σw,m,
(4− π )

4
σ 2
w,m

)
. (30)

When
√
Nπ
2 σw,m �

(4−π )
4 σ 2

w,m (i.e., the expectation is far
larger than the variance), z̄m|H0 can be replaced with its
expectation

√
Nπ
2 σw,m [31], i.e.,

z̄m|H0 ≈

√
Nπ
2

σw,m, (31)

for a sufficiently large N . Similarly, the diagonal elements
of Rz under H0, i.e., Rz(m,m)|H0, m = 1, · · · ,M ,

can also be approximately replaced by their expectation.
Thus

Rz(m,m)|H0 ≈ E [Rz(m,m)|H0]

= E

[
1
N

N−1∑
k=0

(zm(k)− z̄m)2 |H0

]

=
1
N

N−1∑
k=0

E
[
(zm(k)− z̄m)2 |H0

]

≈
1
N

N−1∑
k=0

E

(zm(k)− √Nπ2 σw,m

)2

|H0


=

N (4− π )
4

σ 2
w,m. (32)

For the off-diagonal elements of Rz, according to CLT,
we have

Rz(p, q)|H0 =
1
N

N−1∑
k=0

(
zp(k)− z̄p

) (
zq(k)− z̄q

)
|H0

∼ N
(
0,

1
N

(
N (4− π )

4

)2

σ 2
w,pσ

2
w,q

)
(33)

where p 6= q. Thus,

C(p, q)|H0 =
Rz(p, q)|H0√

Rz(p, p)|H0
√
Rz(q, q)|H0

≈
Rz(p, q)|H0

N (4−π )
4

√
σ 2
w,pσ

2
w,q

. (34)

Combining (33) and (34) yields

C(p, q)|H0 ∼ N
(
0,

1
N

)
, p 6= q. (35)

It can be easily verified that the elements of {C(p, q),
p > q} are independent of each other under H0. In addition,
C is a symmetric matrix with all diagonal elements being one.
Therefore, the test-statistic in (22) underH0 can be rewritten
as

TFN|H0 = M +
2
N
χ2
K (36)

where K = (M2
− M )/2 and χ2

K represents a central chi-
square distribution with degree-of-freedom of K . Thus, for a
decision threshold λ, the false alarm probability Pf is given
by

Pf =
∫
+∞

(λ−M )N
2

fχ2
K
(z)dz (37)

where fχ2
K
(·) denotes the probability density function (PDF)

of χ2
K .
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B. DETECTION PROBABILITY
Proposition 1: C(p, q) underH1 for p 6= q approximately

follows a Gaussian distribution as

C(p, q)|H1 ∼ N
(
µp,q, σ

2
p,q

)
, p 6= q (38)

where µp,q and σ 2
p,q are give in (A.14) and (A.15) of

Appendix A.
Proof: See Appendix A.

With Proposition 1, the test-statistic TFN under H1 can be
approximately given by

TFN|H1 = M + 2σ̄ 2χ2
K (γ ) (39)

where

σ̄ 2
=

∑
p>q

σ 2
p,q

(M2 −M )/2
(40)

and χ2
K (γ ) denotes a noncentral chi-square distribution with

degree-of-freedom of K and

γ =
∑
p>q

(
µp,q

σp,q

)2

. (41)

Thus, for a decision threshold λ, the detection probability Pd
is given by

Pd =
∫
+∞

(λ−M )N
2

fχ2
K (λ)

(z)dz (42)

where fχ2
K (λ)

(·) denotes the PDF of χ2
K (λ).

V. SIMULATION RESULTS
In this section, we verify the theoretical analyses and evaluate
the performance of the proposed detector through numerical
simulations. In the simulations, the average channel energies
are assumed to be one, i.e.,

∑L−1
l=0 E[|hm(l)|2] = 1,∀m,

where L denotes the channel length. The channel coeffi-
cients {hm(l),∀m, l} are assumed to be complex Gaussian
distributed in the simulation, i.e., we employ the Rayleigh
channel. It should be noticed that the proposed detector also
works for other fading channels. SNR in dB is defined as

SNR = 10 log10

 σ 2
s

1
M

M∑
m=1

σ 2
w,m

. (43)

Fig. 1 shows the theoretical and Monte Carlo results for
the false-alarm and detection probabilities of the proposed
detectors, when M = 4, N = 256 and L = 40. In each
Monte Carlo trial, the noise powers σ 2

w,m,∀m, are randomly
generated from a uniform distribution before their average is
normalized. It can be observed from Fig. 1 that the analytical
result for Pf matches the corresponding Monte Carlo result
very well. Hence, it can be effectively used for setting the
decision threshold for a target Pf . In addition, the analytical
result for Pd , which can be used for evaluating the detection

FIGURE 1. Theoretical and Monte Carlo results for false-alarm and
detection probabilities when M = 4.

performance of the proposed detector, matches the corre-
sponding Monte Carlo result. By increasing M from 4 to 8,
while keeping other parameters unchanged, Fig. 2 shows
the theoretical and Monte Carlo results for the false-
alarm and detection probabilities of the proposed detector.
It again demonstrates that our theoretical results match the
Monte Carlo results.

FIGURE 2. Theoretical and Monte Carlo results for false-alarm and
detection probabilities when M = 8.

Fig. 3 shows the detection probabilities of various detectors
for different SNRs when the receiver is calibrated, i.e., the
detection probabilities are obtained when the noise powers
among antennas are identical. The other parameter settings
are M = 4, N = 256, L = 40 and Pf = 0.1. The per-
formances of ED with noise uncertainty (UN) of 0.25dB and
0.5dB are also presented. It can be observed from Fig. 3 that
the proposed detector delivers the best performance. Specif-
ically, to achieve a detection probability of 0.9, the proposed
detector requires lower SNR than the other detectors by at
least 1.4 dB.
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FIGURE 3. Pd versus SNR with calibrated receiver.

FIGURE 4. Pd versus SNR with uncalibrated receiver.

For the case without calibrating receiver (i.e., the antennas
have different noise powers), Fig. 4 shows the detection
probabilities of these detectors for different SNRs. It can be
observed that eigenvalue-based detectors (MMED, MEAM
and AGM) fail in spectrum sensing. The proposed detec-
tor still has the best performance among these detectors.
To achieve a detection probability of 0.9, the proposed
detector requires lower SNR than the other detectors by at
least 2.3 dB.
Fig. 5 shows the detection probabilities of various detectors

versus channel length L when the receiver is calibrated. The
parameter settings are M = 4, N = 256, SNR = 0 dB
and Pf = 0.1. Here, we set the channel length up to 100,
as in some practice scenarios, the channel length may be
up to hundreds of taps such as in digital television (DTV)
applications [33]. It is observed from Fig. 5 that the detection
probability of the proposed detector keeps high for different
channel lengths, while the detection probabilities of other
detectors degrade significantly with the increase of channel
length.

FIGURE 5. Pd versus channel length L with calibrated receiver.

FIGURE 6. Pd versus channel length L with uncalibrated receiver.

FIGURE 7. Pd versus SNR with calibrated receiver with different time
delays.

Fig. 6 shows the detection probabilities of various detectors
versus channel length L when the receiver is not calibrated.
The parameter settings are M = 4, N = 256, SNR = 0 dB
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FIGURE 8. Pd versus SNR with uncalibrated receiver with different time
delays.

and Pf = 0.1. It is observed from Fig. 6 that the detection
probability of the proposed detector keeps high for different
channel lengths, while the detection probabilities of other
detectors degrade significantly with the increase of channel
length. Fig. 6 shows again that the eigenvalue-based detectors
(MMED,MEAMandAGM) fail in spectrum sensing because
of the nonidentical noise powers.

In the following, we investigate the effect of time delays
τm on the performance of the detectors. We assume that
the time delays are uniformly distributed between 1 and 10.
Fig. 7 shows the detection probabilities of various detectors
for different SNRs when the receiver is calibrated, and Fig. 8
when the receiver is not calibrated. It can be observed that
the proposed detector can achieve a detection probability of
one when SNR increases, while the other detectors cannot.
This is because different time delays degrade the correlation
of received signals among antennas.

VI. CONCLUSION
In this work, we have investigated the effect of multipath
propagation on covariance matrix based spectrum sensing.
To eliminated the negative impact of the phases of channel
spectra on the covariance matrix of received signals, we have
proposed a new detector which exploits themagnitude spectra
of the received signals only. The false-alarm and detection
probabilities of the proposed detector have been derived. Sim-
ulation results have been provided, which validate the theo-
retical analyses and demonstrate the superior performance of
the proposed detector.

APPENDIX A
PROOF OF PROPOSITION 1
UnderH1, we have

xf (k)|H1 ∼ CN
(
0,NRw + Nσ 2

s Rhf (k)
)
. (A.1)

It can be obtained from (5) that the elements of xf (k)|H1 at
different k are independent of each other, as sf (n) and wf (k)
are independent for different k . It can also be obtained that
zm(k) = |xf ,m(k)| under H1 follows a Rayleigh distribution,
and its mean and variance are

E [zm(k)|H1] =

√
Nπ
2
×

√
σ 2
w,m + σ

2
s |hf ,m(k)|2

(A.2)

and

Var [zm(k)|H1] =
N (4− π )

4
×

(
σ 2
w,m + σ

2
s |hf ,m(k)|

2
)
,

(A.3)

respectively. For a sufficiently large N , we can obtain that z̄m
under H1 approximately equals to its expectation, i.e.,

z̄m|H1 ≈

√
Nπ
2
×

1
N

N−1∑
n=0

√
σ 2
w,m + σ

2
s |hf ,m(k)|2. (A.4)

Considering that, with a sufficiently large N , Rz(m,m)|H1
can be approximately replaced by its expectation [31], we
have

Rz(m,m)|H1 ≈ E [Rz(m,m)|H1]

= E

[
1
N

N−1∑
k=0

(zm(k)− z̄m)2 |H1

]

=
N (4− π )

4

(
σ 2
w,m +

σ 2
s,m

N

N−1∑
k=0

|hf ,m(k)|2
)

+
π

4

N−1∑
k=0

(√
σ 2
w,m + σ

2
s |hf ,m(k)|2

−
1
N

N−1∑
l=0

√
σ 2
w,m + σ

2
s |hf ,m(l)|2

)2

. (A.5)

In addition, for p 6= q,

Rz(p, q)|H1 =
1
N

N−1∑
k=0

(
zp(k)− z̄p

) (
zq(k)− z̄q

)
|H1

=
1
N

N−1∑
k=0

zq(k)zq(k)− z̄pz̄q|H1

=
1
N

N−1∑
k=0

|xf ,p(k)xf ,q(k)| − z̄pz̄q|H1. (A.6)

From (A.1), the correlation coefficient between xf ,p(k) and
xf ,q(k) is given by

ρp,g(k) =
σ 2
s |hf ,p(k)hf ,q(k)|√(

σ 2
w,p + σ

2
s |hf ,p(k)|2

) (
σ 2
w,q + σ

2
s |hf ,q(k)|2

) .
(A.7)
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Hence, the mean and variance of |xf ,p(k)xf ,q(k)| are respec-
tively given by [32]

E
[
|xf ,p(k)xf ,q(k)|

]
= 2Nσ 2

s |hf ,p(k)hf ,q(k)|
(
1−ρ2p,g(k)

)3
×
02(1.5)
02(0.5) 2F1(1.5, 1.5, 1, ρ2p,g(k)) (A.8)

and

Var
[
|xf ,p(k)xf ,q(k)|

]
= 4N 2σ 4

s |hf ,p(k)hf ,q(k)|
2
(
1− ρ2p,g(k)

)4 02(2)
02(0.5)

× 2F1(2, 2, 1, ρ2p,g(k))− E2 [
|xf ,p(k)xf ,q(k)|

]
(A.9)

where 0(·) denotes the Gamma function and 2F1(·, ·, ·, ·)
denotes the hypergeometric function.

Therefore, according to CLT,Rz(p, q)|H1 in (A.6) approx-
imately follows a Gaussian distribution with mean

E [Rz(p, q)|H1] =
1
N

N−1∑
k=0

E
[
|xf ,p(k)xf ,q(k)|

]
−
Nπ
4

(
1
N

N−1∑
k=0

√
σ 2
w,p + σ

2
s |hf ,p(k)|2

)

×

(
1
N

N−1∑
k=0

√
σ 2
w,q + σ

2
s |hf ,q(k)|2

)
(A.10)

and variance

Var [Rz(p, q)|H1] =
1
N 2

N−1∑
n=0

Var
[
|xf ,p(k)xf ,q(k)|

]
. (A.11)

Hence,

C(p, q)|H1 =
Rz(p, q)|H1√

Rz(p, p)|H1
√
Rz(q, q)|H1

(A.12)

follows a Gaussian distribution. Let

C(p, q)|H1 ∼ N
(
µp,q, σ

2
p,q

)
, p 6= q (A.13)

where µp,q and σ 2
p,q denote the expectation and variance of

C(p, q)|H1, respectively, i.e.,

µp,q =
E [Rz(p, q)|H1]√

Rz(p, p)|H1
√
Rz(q, q)|H1

, (A.14)

σ 2
p,q =

Var [Rz(p, q)|H1]
Rz(p, p)|H1Rz(q, q)|H1

. (A.15)
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