
University of Wollongong University of Wollongong 

Research Online Research Online 

University of Wollongong Thesis Collection 
2017+ University of Wollongong Thesis Collections 

2018 

A simulation model for truck-shovel operation A simulation model for truck-shovel operation 

Weiguo Zeng 
University of Wollongong 

Follow this and additional works at: https://ro.uow.edu.au/theses1 

University of Wollongong University of Wollongong 

Copyright Warning Copyright Warning 

You may print or download ONE copy of this document for the purpose of your own research or study. The University 

does not authorise you to copy, communicate or otherwise make available electronically to any other person any 

copyright material contained on this site. 

You are reminded of the following: This work is copyright. Apart from any use permitted under the Copyright Act 

1968, no part of this work may be reproduced by any process, nor may any other exclusive right be exercised, 

without the permission of the author. Copyright owners are entitled to take legal action against persons who infringe 

their copyright. A reproduction of material that is protected by copyright may be a copyright infringement. A court 

may impose penalties and award damages in relation to offences and infringements relating to copyright material. 

Higher penalties may apply, and higher damages may be awarded, for offences and infringements involving the 

conversion of material into digital or electronic form. 

Unless otherwise indicated, the views expressed in this thesis are those of the author and do not necessarily Unless otherwise indicated, the views expressed in this thesis are those of the author and do not necessarily 

represent the views of the University of Wollongong. represent the views of the University of Wollongong. 

Recommended Citation Recommended Citation 
Zeng, Weiguo, A simulation model for truck-shovel operation, Doctor of Philosophy thesis, School of Civil, 
Mining and Environmental Engineering, University of Wollongong, 2018. https://ro.uow.edu.au/theses1/
270 

Research Online is the open access institutional repository for the University of Wollongong. For further information 
contact the UOW Library: research-pubs@uow.edu.au 

https://ro.uow.edu.au/
https://ro.uow.edu.au/theses1
https://ro.uow.edu.au/theses1
https://ro.uow.edu.au/thesesuow
https://ro.uow.edu.au/theses1?utm_source=ro.uow.edu.au%2Ftheses1%2F270&utm_medium=PDF&utm_campaign=PDFCoverPages


 

 

 

Faculty of Engineering & Information Sciences 

School of Civil, Mining and Environmental Engineering 

 

 

 

A SIMULATION MODEL FOR TRUCK-SHOVEL OPERATION 

 

 

 

 

WEIGUO ZENG 

 

 

 

 

 

"This thesis is presented as part of the requirements 

 for the award of the Degree of Doctor of Philosophy 

 at the University of Wollongong" 

 

 

 

 

 

 

March, 2018 



 

I 

CERTIFICATION 

I, Weiguo Zeng, declare that this thesis submitted in fulfilment of the requirements 

for the award of the degree of Doctor of Philosophy, in the School of Civil, Mining 

and Environmental Engineering, University of Wollongong, is wholly my own work 

unless otherwise referenced or acknowledged. This document has not been submitted 

for qualification at any other academic institution. 

 

 

Weiguo Zeng 

24
th

 March 2018 



 

II 

PUBLICATIONS 

The following publications are the results of this thesis: 

1. ZENG, W., BAAFI, E. Y., WALKER, D. and CAI, D. A 3D discrete event 

simulation model of a truck-shovel network system. Ninth AUSIMM Open Pit 

Operators' Conference 2016, 2016 Kalgoorlie, Australia. The Australasian 

Institute of Mining and Metallurgy, 265-273. 

2. ZENG, W., BAAFI, E. Y. and WALKER, D. Using a microscopic simulation to 

study the impact of match factor in a truck-shovel mining system. The 38th 

International Symposium on the Application of Computers and Operations 

Research in the Mineral Industry (APCOM 2017), 2017, Colorado, USA. 

Colorado School of Mines, 111-118. 

3. ZENG, W., BAAFI, E. Y. and WALKER, D. 2017. A simulation model to study 

bunching effect of a truck-shovel system. International Journal of Mining, 

Reclamation and Environment, DOI: 10.1080/17480930.2017.1348284, 1-16.  

 

 

 

 

 

 

 

 

 

 

  



 

III 

ACKNOWLEDGEMENTS 

I wish to express my profound indebtedness to A/ Prof. Ernest Baafi, my primary 

supervisor, for his guidance and support throughout this study process. His wisdom, 

generosity, conscientiousness, patience and selflessness not only guided me through 

all the difficulties in this study but also inspired me and set me up to progress further 

in life.  

I am grateful to Mr. David Walker for the important insights he shared in the truck-

shovel mining operation and his arranging of mine visits. I am inspired by his 

passion for both the mining industry and education.  

I am grateful to Mr. Kevin Marston for his support on the thesis development. His 

patience and help made the completion of the thesis possible. 

I also wish to thank Dr. Dalin Cai for his advice on the software development, 

especially with respect to the FlexSim simulation. 

Thanks to my co-supervisor A/ Prof. Ian Porter for his academic assistance.  

I am grateful to the China Scholarship Council (CSC) for their financial support and 

the University of Wollongong for the International Postgraduate Tuition Award 

(IPTA). Their financial support created the opportunity for me to live and study in 

Australia. 

Thanks go to Xuwei Li, Jian Zhang, Gaofeng Wang, Mike Davey, Sulina Supava- 

deeprasit, Gokhan Yukselen, and Arthur Tamer for their friendship. 

I am also deeply indebted to my parents for their love, care and support.  

   



 

IV 

ABSTRACT 

A truck-shovel mining system is a flexible mining method commonly used in surface 

mines. Both simulation and queuing models are commonly used to model the truck-

shovel mining operation. One fundamental problem associated with these types of 

models is that most of the models handle the truck haulage system as macroscopic 

simulation models, which ignore the fact that a truck as an individual vehicle unit 

dynamically interacts not merely with other trucks in the system but also with other 

elements of the traffic network. Some important operational factors, such as the 

bunching effect and the influence of the traffic intersections, are either over 

simplified or ignored in such a macroscopic model.  

This thesis presents a developed discrete-event truck-shovel simulation model, 

referred to as TSJSim (Truck and Shovel JaamSim Simulator), based on a 

microscopic traffic and truck-allocation approach. The TSJSim simulation model 

may be used to evaluate the Key Performance Indicators (KPIs) of the truck-shovel 

mining system in an open pit mine. TSJSim considers a truck as an individual traffic 

vehicle unit that dynamically interacts with other trucks in the system as well as 

other elements of the traffic network. TSJSim accounts for the bunching of trucks on 

the haul routes, practical rules at intersections, multiple decision points along the 

haul routes as well as the influence of the truck allocation on the estimated queuing 

time. TSJSim also offers four truck-allocation modules: Fixed Truck Assignment 

(FTA), Minimising Shovel Production Requirement (MSPR), Minimising Truck 

Waiting Time (MTWT) and Minimising Truck Semi-cycle Time (MTSCT) 

including Genetic Algorithm (GA) and Frozen Dispatching Algorithm (FDA).  

The TSJSim simulation model was validated using operational data. The validated 

model was used to evaluate various practical scenarios aiming at a better under-

standing of the impacts of the match factor, the safezone traffic management, the 

decision points and the truck-allocation strategies on the system performance. The 

key simulation results based on the model studies are summarised below: 

1. As the length of the safezone increased, the utilisation of the main route fleet 

with no waiting at an intersection was significantly improved at the expense of 
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the non-main route fleet. The main route management in the safezone had a 

significant impact on the KPIs of the under-trucked fleet. 

2. In the simulated truck-shovel system with two fleets, the trends for the 

production tonnages and queuing time utilising the four truck-allocation 

strategies (MSPR, MTWT, FDA and GA) all shared similar patterns as the fleet 

size varied. As the system fleet size increased, the system production tonnes 

under these truck-allocation strategies firstly increased significantly and then 

remained stable; the queuing time under these truck-allocation strategies showed 

a positive relationship with the system fleet size. The bunching time decreased 

when the truck-allocation strategies were applied in the model.  

3. In the simulated truck-shovel network system with multiple traffic intersections, 

by assigning the trucks at the intersections, both productivity and fleet utilisation 

increased.  

The developed model provides the capability for evaluating the impacts of bunching, 

safezone and truck-allocation strategies on a surface mine truck-shovel system. The 

model can also be used to estimate the best truck fleet size for the entire truck-shovel 

network system under the influence of the truck-allocation strategies. The user 

interface for TSJSim input/output and experiment design needs future improvement. 
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CHAPTER ONE  

INTRODUCTION 

1.1 General 

Surface mining is a broad term which refers to the removal of the soil and strata over 

a mineral deposit followed by the removal of the deposit itself. This particular 

mining method can be used when the deposit is close to the surface of the ground. 

There are generally five stages in any surface mining process: (1) prospecting, (2) 

exploration, (3) development, (4) exploitation, and (5) reclamation. Decisions about 

when and how to perform the mineral extraction are made by mine planners, 

including the selection of mining equipment, the determination of the number of 

machines (Blackwell, 1999), and the allocation of mining equipment (Armacost et 

al., 2002). Operations Research (OR) techniques have been used in surface mining 

primarily for the mining development and exploitation stages; these techniques 

include determination of the mining method, estimating production capacity and 

infrastructure capital, performing detailed engineering design, and transporting the 

ore from the loading site to the waste dump/ore crusher (Newman et al., 2010). 

According to Newman et al. (2010), from the traditional pit limit design techniques 

to the advanced techniques that attempt to solve the entire mine scheduling problem, 

the OR applications relating to surface mining design and planning in literature are 

grouped into one of the following three models:  

1. Strategic ultimate pit limit design and mine layout models 

To determine the ultimate pit limit, an orebody model consisting of a grid of 

blocks and a geometric model of the deposit are established. Each of the blocks 

consists of not only a volume of material and the mineral properties but also the 

economic value determined by the extraction and processing costs. Extracting the 

blocks with spatial reference points yields the final pit boundary. There are two 

principal classical methods used in these models, one is the tractable method 

provided by Lerchs and Grossmann (1965) and the other is the floating cone 

method (Laurich, 1990). All the current commercial software packages for open-
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pit mine design (Whittle Consulting Software, 2018; Maptek Software Ltd., 2018; 

Datamine, 2018) are based on these two classical methods. In addition, improved 

algorithms have been developed, including the dynamic programming model 

(Wright, 1989), the network-flow algorithm based on the graph theoretic 

methodology (Underwood and Tolwinski, 1998), the maximum-flow, push-

relabel algorithm considering various mine characteristics, such as, ore-grade 

distribution (Hochbaum and Chen, 2000), and stochastic models (Frimpong et al., 

2002). 

2. Tactical block-sequencing models 

While based on the first group of models, the second group of models considers 

not only which blocks to remove but also the sequence in which these blocks are 

removed. Combining the spatial relationships of the blocks and the periods of 

life-of-mine allows for the consideration of resource constraints, such as, 

extraction and milling. Initially researchers assumed a fixed cut-off grade and 

tended to aggregate blocks into strata or layers (Busnach et al., 1985), and others 

ignored the block-sequencing decisions (Tan and Ramani, 1992). In the 1980s, 

sequencing decisions were made at the block level in some work using an exact 

approach, namely Lagrangian relaxation, to resolve the difficulty due to their 

model structure and size (Dagdelen and Johnson, 1986).  The dynamic 

programming method was also used to determine the ultimate pit limits and the 

production schedule sequentially or iteratively (Dowd and Onur, 1993). Recently, 

genetic algorithms combined with optimal solution strategies have been used to 

resolve large integer programs in a timely manner (Caccetta and Hill, 2003). 

3. Tactical and operational equipment-allocation models 

The third group of models provides a more detailed scheduling method utilising 

the output of the production schedule determined by the first two groups of 

models. The tactical problem is to determine the size and configuration of the 

fleet, which is dependent on mine characteristics and equipment capacities. The 

operational problem relating to equipment-allocation models consists of 

scheduling and dispatching strategies. Both queuing theory (Kappas and 
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Yegulalp, 1991) and simulation (Oraee and Asi, 2004) can be used for the 

equipment-allocation problem. Optimisation techniques, such as, integer 

programming method, are also used to determine the fleet size and allocation. 

The equipment selection problem (ESP) for surface mining was discussed by 

Burt and Caccetta (2014) where they have emphasised the importance of the 

match factor to the ESP in modelling and solution approaches. A transportation 

model combined with an integer programming model was developed to 

determine the optimal equipment schedule (Weintraub et al., 1987). In addition 

to the network model, a real-time assignment model was also developed to 

dispatch trucks for an open-pit operation (White and Olson, 1993). 

Munirathinam and Yingling (1994) classified the existing truck-dispatching 

strategies, examined their underlying mathematical formulations and discussed 

the strengths and weaknesses of these strategies, reaching the conclusion that the 

heuristic rule-based system has significant disadvantages in modelling the 

dispatching problem. 

This thesis was confined to the equipment-allocation modelling problem. 

Computerised simulation was selected as the modelling approach to investigate the 

short-term scheduling and planning in a truck-shovel haulage system of an open pit 

mine. 

A truck-shovel haulage system in an open pit is a stochastic and dynamic material 

handling system, and the states of the resources in the system continually change. 

Operational factors, for instance, lengths of queues at loading sites and dumps, 

locations and states of the shovels, the number of trucks on certain segments of the 

haul routes, assignments of the trucks to routes, breakdowns and delays in the system, 

and operators’ performance, are important variables that keep updating stochastically 

during truck cycle times (Hays, 1990). Given the nature of the truck-shovel system, 

these operational factors should all be considered comprehensively when a truck-

allocation decision is made. 

Multiple operational constraints, e.g., stripping ratio, grade control, and capacities of 

the waste dump/ore crusher, have been considered in existing truck-allocation 

models. There have been productivity improvements due to implementation of 
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certain truck-allocation strategies (Munirathinam and Yingling, 1994). However, 

according to Afrapoli and Askari-Nasab (2017), one major limitation of the current 

truck-allocation models is the weak linkage between the strategic level and 

operational level plans, and another important drawback is the proclivity to ignore 

dynamic nature of the truck-shovel system and the requirement for realistic 

modelling approach. most of the simulation models in the literature ignore the 

important dynamic aspects of a truck-shovel system, for instance, the dynamic 

relationship between queuing times and allocations of trucks to haul routes, the 

impact of the changing performance of the shovel/loader on the queuing times, the 

influence of truck bunching or traffic congestion on the haul routes, and the fleet 

interaction in the intersection area.  

1.2 Key objectives 

In order to provide a better tool for strategic mine planning, this thesis aims to 

develop a discrete-event simulator incorporating microscopic traffic modules and 

truck-allocation modules to evaluate the performance of a truck-shovel system in an 

open pit mine. The proposed simulator is expected to consider the dynamic 

variability of traffic conditions and also the trucks as individual vehicle entities in 

the system. The traffic modules provide the capability of estimating the short-term 

productivity and equipment efficiency as well as optimising the fleet size. The truck-

allocation modules investigate impacts of the multiple decision points in the network 

system on the truck-allocation efficiency as well as providing improved truck-

allocation methods. The specific objectives of this thesis include: 

1. Studying existing truck-allocation models and comparing the advantages and 

disadvantages of these models.  

2. Studying applications of available simulation software on the truck-shovel 

system to determine the most suitable simulation tool. 

3. Developing a structured framework of a truck-shovel operation that includes 

essential elements of a material handling system. 
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4. Developing haulage modules with the ability to consider a realistic traffic 

situation in a truck-shovel network system. 

5. Investigating the interaction between individual hauling trucks and further the 

interaction between multiple truck fleets in an intersection area, as well as 

influences of the fleet interactions upon the mine KPIs. 

6. Investigating the truck-allocation effect of multiple decision points in terms of 

KPIs and the relationship between the truck-allocation efficiency and various 

operational factors. 

1.3 Methodology 

An open-source simulation software package, JaamSim (JaamSim, 2018), was used 

to develop a truck-shovel haulage system simulator, hereafter referred to as the 

Truck-Shovel JaamSim Simulator (TSJSim). Using the open-source simulation 

software package, a truck-shovel system simulation model was developed for a mine; 

the developed model being validated using data collected by Shaw (2012). The 

model development includes the following phases: 

1. Model design ‒ existing truck-allocation models were reviewed to assess the 

limitations of these models. 

2. Selection of simulation tool ‒ applications of discrete-event simulation tools, i.e., 

Arena, FlexSim and JaamSim, were reviewed to assist in the selection of the 

most suitable tool for the model development.  

3. Model construction ‒ a framework of TSJSim was initially developed, followed 

by the construction of a truck-shovel system model. 

4. Model validation ‒ the truck-shovel system model developed was validated using 

field data. 

5. Experiment and analysis ‒ various scenarios were designed to investigate traffic 

operational factors and truck-allocation strategies.  
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1.4 Scope of the thesis 

This thesis consists of nine chapters which met all the research objectives. The 

outline of the thesis is as follows: 

Chapter 2 reviews the truck-shovel mining operation and the existing truck-

allocation models, including considered operational elements, underlying 

mathematical formulations and the advantages and disadvantages of these models.  

Chapter 3 reviews general simulation approaches and focuses on the application of 

two commercial discrete-event simulation tools, namely Arena and FlexSim. The 

review provides the background for determining the most suitable simulation tool for 

a truck-shovel mining system. 

Chapter 4 presents the development of TSJSim, including the development of the 

model structure and simulation model objects. 

Chapter 5 presents the user guide of how to build and set up a truck-shovel system 

model using the JaamSim objects. 

Chapter 6 describes the construction of a truck-shovel system model using the 

TSJSim objects. The truck-shovel model was validated by comparing simulation 

results with field data. The validated model was then utilised to conduct sensitivity 

analysis on truck-shovel selection options. 

Chapter 7 presents the development of a microscopic traffic module in TSJSim that 

includes a truck bunching module and an intersection traffic management module. 

The impact of intersection traffic management on KPIs is evaluated and discussed.  

Chapter 8 presents the development of a truck-allocation module in TSJSim, 

including a RoutePool module and five truck-allocation algorithm modules. Impacts 

of the developed truck-allocation modules on KPIs are evaluated and discussed. 

Chapter 9 summarises the main conclusions drawn from this thesis. The limitations 

and recommendations for future work are also discussed. 
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CHAPTER TWO  

TRUCK-SHOVEL SYSTEM AND TRUCK-

ALLOCATION MODELS 

2.1 Truck-shovel mining operation 

Surface mining is the predominant method of mining used in coal mines, and the 

practice contributes to about 65% of all coal production in Australia (Scott et al., 

2010). Truck-shovel and a combination of truck-shovel and draglines (Sargent, 1990) 

are the predominant mining operations used in surface coal mines in Australia, as 

shown in Figure 2-1. In this thesis, the term “shovel” does not only refer to a rope 

shovel but also other loaders including hydraulic excavators and front-end loaders. 

The term “truck” includes the conventional rear dump truck, the tractor-trailer truck 

and the integral bottom dump truck. In general, the truck-shovel mining method is 

the most flexible mining method utilised in geological complex deposits with 

varying overburden depths and thicknesses along with smaller deposits (Westcott, 

2004). The versatility of the system and ability to haul long distances makes the 

truck-shovel mining method preferred in nearly all mining situations (Hays, 1990).  

 

Figure 2-1 2003 open cut coal primary mining equipment used in Australia 

(Westcott, 2004)
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A truck-shovel mining system generally consists of shovels and associated truck 

fleets. Ore of different qualities and waste are loaded into trucks by shovels and 

transported from loading sites to ore crushers or waste dumps. The productivity of an 

operating truck depends on the actual truck payload and the truck cycle time. A 

single truck cycle includes spotting and loading, hauling loaded, dumping, hauling 

empty, waiting, and other operational delays (Figure 2-2).  

 

Figure 2-2 Operations in truck cycle 

The operational constraints of the truck cycle are:  

1. Spotting and loading 

Spotting is the process where the truck manoeuvres into a position for loading. 

Loading is the process of placing mined material into a truck. The gathering of 

material into the bucket and then unloading the material into the truck is called a 

pass. A number of passes is usually required to load the truck. The spotting time 

of the truck is influenced by the selected loading method. There are typically four 

loading methods: 

 Double sided loading technique 

The trucks are spotted and loaded alternately on both sides of the shovel. The 

shovel has a maximum swing of 90 , as shown in Figure 2-3. Sufficient 

working room at the rear and on both sides of the shovel should be ensured. 
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Figure 2-3 Double sided loading technique (Caterpillar Inc., 2018a) 

 Single sided loading technique 

The truck is spotted and loaded to one side of the shovel with a maximum 

swing of 90 . A second truck cannot be spotted and loaded until the first 

truck has pulled clear of the shovel, therefore compared to double sided 

loading, productivity is reduced. 

 Drive-by loading technique 

The shovel tracks are parallel with the face and the truck (tractor-trailer truck) 

drives onto one access ramp and stops adjacent to the shovel. After being 

loaded, the truck drives past the shovel. The shovel has a maximum swing of 

180 , as shown in Figure 2-4.  

 

Figure 2-4 Drive-by loading technique (Caterpillar Inc., 2018a) 
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 Modified drive-by loading technique 

The shovel tracks are parallel with the working face and when the truck 

drives under the shovel’s swing path the shovel dumps before the truck stops, 

then the truck is spotted by backing and stopping near the working face. The 

shovel has a maximum swing of 120 . 

The number of passes required for loading and the shovel work cycle time 

determine the loading time.  

Number of passes, 𝑁 , can be calculated by Equation (2.1) (Hays, 1990): 

 
𝑁  

 𝑡

       𝑠   
 (2.1) 

where 

 𝑡   truck capacity,   

    loose cubic meters bucket rated capacity,    

    loader bucket fill factor, decimal 

 𝑠   material swell factor, decimal 

   material bank bulk density,      

The shovel work cycle time is the time taken for the shovel to dig the mineral, to 

swing to the dump position, to dump the bucket, and to swing back. The work 

cycle time varies depending on the specific loader type, the operator’s experience, 

the material characteristics, and the operational conditions. 

According to Hays (1990), if spot time is less than the shovel work cycle time, 

the combined spot and load time,  𝑡 , can be calculated by Equation (2.2): 

  𝑡  𝑁      (2.2) 

where     is the shovel work cycle time in minutes. 
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If spot time is greater than the shovel work cycle time, the combined spot and 

load time,  𝑡  can be calculated by Equation (2.3): 

  𝑡   𝑁          𝑠 (2.3) 

where  𝑠 is the spot time in minutes. 

The combined spot and load time depends on the following factors: 

 Space and ground conditions, 

 Types of loading equipment,  

 Loading method,  

 Rock fragmentation, and  

 Match of shovel and trucks. 

2. Travelling 

Travelling includes hauling loaded material to the dumping site and returning 

empty to the loading site. The travelling time depends on the following 

constraints: 

 Truck rimpull,  

 The haulage route, including haulage route length, grade, rolling resistance, 

and road conditions,  

 Operating constraints such as velocity limits and bunching, and 

 Operator performance. 

Grade and rolling resistance provide resistance to truck motion. Grade resistance 

is caused by the haulage road grade. Rolling resistance is due to tyre flexing on 

the road, wheel bearing friction, tyre penetration into the ground, and air 

movement. Typical rolling resistance factors are provided in Table 2-1 (Hays, 

1990). Total resistance,      , is the sum of grade and rolling resistance. 

          (2.4) 

where  

    rolling resistance,  ;  
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    grade resistance,  . 

Table 2-1 Typical rolling resistance factors (Hays, 1990) 

Haulage Road Surface 

Rolling 

Resistance, % 

Cement, asphalt, or soil cement without tyre penetration 2 

Hard-packed gravel, cinders, or crushed rock 3 

Firm packed earth or light surfacing 3.25 

Moderately packed gravel, cinders, or crushed rock 5 

Rutted or unmaintained earth 7.5 

Loose sand and gravel 10 

Soft, muddy, rutted, and unmaintained material 10-20 

Given the total resistance and truck gross weight, there are six steps required to 

read the available rimpull and maximum hauling velocity from published 

performance and retarder curves, as shown in Figure 2-5. 

(1) Determine total resistance as a percentage, say 6%. 

(2) Beginning at point A for 6% total resistance, follow the line diagonally to 

find the intersection between the truck gross weight and the total resistance, 

i.e., point B. 

(3) Establish a horizontal line to the left from point B to point C on the rimpull 

scale. 

(4) When altitude deration is considered, the value of point C is divided by the 

percent of total horsepower available, which yields the available rimpull 

value D higher than point C. 

(5) Establish a horizontal line to the right from point D to the intersection of the 

line with a curved speed range, i.e., point E. 

(6) A vertical line down from point E determines the maximum speed, i.e., point 

F on the speed scale. 
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Figure 2-5 Read available rimpull and speed from performance curve of CAT 785C 

(Caterpillar Inc., 2018b) 

The obtained available rimpull has to adhere to the following requirement: 

                                                     (2.5) 

The usable rimpull is the pull a truck can exert before the tyres slip, and depends 

on the maximum traction,   , which is the usable driving force influenced by the 

truck tyre on the surface of the ground, and the altitude. The maximum traction is 

expressed by Equation (2.6) (Hays, 1990): 

           (2.6) 

where  

     the coefficient of traction, decimal (Table AI-1 of Appendix I)  

   weight on the drive tyres, kg  
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   grade angle of road section, degree. 

The required rimpull is the power needed to propel a truck along a haul route, 

and depends on the rolling resistance and grade (total resistance, TR), i.e., 

                        (2.7) 

where 

    gross (total) truck weight which consists of the empty truck weight and 

the        amount of material loaded from the loader, kg 

The average travelling speed,   , can be estimated by multiplying the maximum 

velocity with a speed factor, to account for the truck acceleration and braking 

along the haulage routes (Bonates, 1996), as shown in Equation (2.8).  

           (2.8) 

where  

      maximum speed read from the performance curve,       

         speed factor, decimal.  

The speed factor is an empirical adjustment factor. Table AI-2 of Appendix I 

shows a table of speed factors arranged according to the distance of a route 

section. 

3. Dumping 

This is the process where the truck empties the load at the designated dump site. 

There are three dumping methods: 

 Rear dumping, 

 Bottom dumping, and 

 Side and rear dumping. 
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According to Hays (1990), off-highway trucks can be classified into three main 

types: (1) conventional rear dump truck; (2) tractor-trailer, bottom, side, and rear 

dump truck; and (3) integral bottom dump truck (Figure 2-6).  

 

Figure 2-6 Off-highway truck types (Hays, 1990)  

Depending on the truck types, different dumping methods are used. The 

advantages and disadvantages of the three dumping methods are summarised in 

Table 2-2 (Hays, 1990).  

Table 2-2 Advantages and disadvantages of dumping methods (Hays, 1990) 

                        Types 

Properties 
Rear dump truck 

Tractor-trailer 

truck 

Integral bottom 

dump truck 

Dumping method Rear dumping 

Bottom dumping, 

side and rear 

dumping 

Bottom dumping 

Versatility 

Can haul a wide 

variety of 

materials 

Can haul a wide 

variety of materials 

depending on dump 

body types 

Material must be 

free flowing 

Gradeability Good Poor Medium 

Performance under 

poor road conditions 
Good Poor Medium 

Maneuverability 

Must stop, turn, 

and back up to 

dump 

Good for dumping 

while moving 

Good for dumping 

while moving 

Suitable for 

severe loading 

impact? 

Yes No No 
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Poor ground conditions may exist at the dump site, and equipment such as dozers 

or graders are usually required for dump site construction and maintenance. 

Maintaining the dump area can minimise traffic congestion and reduce safety 

hazards, thus decreasing dumping times.  

To summarise, dumping time depends on: 

 Truck type and size,  

 Material characteristics,  

 Dump arrangements,  

 Space available,  

 Ground conditions, and 

 Operating practices. 

4. Waiting 

When a truck reaches the loading or dumping site, the truck must wait in a queue 

if the loading or dumping site is occupied by other trucks. Generally it occurs 

when the resources (e.g., shovels and crushers) in the haulage system are not well 

matched to the allocated trucks. Some factors that may cause waiting time are as 

follows: 

 Over-trucking  

When the capacities of trucks in the system exceed loading and/or dumping 

the capacities, truck queues are formed, and the waiting times of trucks 

increase. This may happen across the entire system or at certain loading 

and/or dumping sites. The number of trucks, for instance, may exceed the 

capacities of all the shovels in the system, or the number of trucks allocated 

to one shovel may exceed the capacity of this one shovel. In the latter case, 

waiting time can be reduced by allocating trucks to other shovels that are idle. 

 Bunching  

The spacing between hauling trucks is reduced due to mixing trucks with 

varied capacities (Hays, 1990). This comes about because overtaking is not 
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allowed at most surface mines. During hauling, the phenomenon of faster 

trucks following the slower trucks results in truck bunching on route. 

 Mismatching of equipment  

This occurs when the truck-shovel system has equipment of various sizes 

with variable performance characteristics, for example, small and large trucks 

in the same fleet resulting in different truck cycle times. 

 Operator performance 

The performance of a shovel varies significantly depending on which 

operator is operating the shovel (Patnayak et al., 2008), with the operator’s 

experience causing variations in the truck cycle times. It has been estimated 

that by optimising the performance of a shovel, a mine could save as much as 

125 minutes per shovel per 20- hour day (Fiscor, 2007). 

 Weather conditions 

Weather conditions like rain or snow can result in poor equipment 

performance and operating delays. 

5. Delays  

There are two kinds of operational delays that reduce equipments productive 

output (Hays, 1990): 

 Fixed delays 

These are the delays that are planned and usually not considered in truck 

cycle time and include reasons such as shift change, equipment inspection, 

operator breaks, refuelling, and blasting.  

Shift changeover is an important factor that affects the efficiency and 

productivity within the truck-shovel system. The performance of operators 

varies between shifts. There is also a delay caused when a truck hauls to the 

parking lot for a shift operator changeover (Krause, 2006). The decision to 

assign a truck either to a shovel or to the parking lot towards the end of the 

shift can influence the shift production (Bastos, 2013). However, hot seat 
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changeovers (Burke, 2011), where a truck driver is replaced immediately 

with another worker inside the mine at the end of a shift, have become 

common practice in the mining industry to prevent production stoppages.  

 Variable delays 

These are the delays that are not predictable, and must be considered in the 

truck cycle time, including haulage road maintenance, loading area clean-up, 

driver relief stops and equipment breakdown. 

An open-pit truck-shovel system is characterised by a complex haulage system. 

According to Temeng (1997), the features of a truck-shovel haulage system are as 

follows: 

(1) The varying topography of a pit and the associated network of haul routes affect 

truck cycle times. The route length, grade and rolling resistance, route condition, 

traffic infrastructure, speed limits, traffic conditions, and the truck performance 

all influence the travelling time along a haul route. The traffic network associated 

with the haulage system may also take trucks to different destinations for 

different tasks.  

(2) The varying status of the operating equipment influences the system performance. 

The breakdowns of shovels, trucks, ore crushers or waste dumps, including 

scheduled and unscheduled breakdowns, further result in various delays in the 

system.  

(3) The capacities of shovels, ore crushers and waste dumps limit the maximum 

numbers of trucks being allocated. Delays are caused when extra trucks are 

allocated to these loading sites and/or dumping sites. 

(4) The ore quality management requires the truck-allocation to take into account the 

loading sites with varied ore quality attributes. 

2.2 Truck-allocation models 

For a truck-shovel system in an open-pit mine, the truck haulage costs have been 

reported to exceed half of the total direct operating costs (Lizotte and Bonates, 1987). 

Although efforts have been made in the past to reduce haulage costs by improving 



Chapter Two: Truck-shovel System and Truck-allocation Models 

 

19 

the capacity and operating performance of the mining equipment, the same cost 

reduction can be attained by more efficient utilisation of the haulage system (Baafi 

and Ataeepour, 1998). In general, the efficient utilisation of the truck-shovel system 

is limited by the waiting times of both trucks and shovels, and other variable delays 

in the system. The waiting times of trucks increase when the system is over-trucked, 

and the idle time for shovels increase when the haulage system is under-trucked. 

Some segments of the haul roads may be blocked due to various variable delays, 

such as haulage road maintenance. How trucks respond to the change of system 

states (e.g., shovel’s state, queue length and route blockage) influences the 

productivity and efficiency of the system. Truck dispatching strategies have been 

applied to improve productivity and/or reduce operating costs by considering 

alternative truck-shovel assignments in real time to increase utilisation of system 

resources. By allocating the optimal number of trucks to shovels, the waiting times 

of trucks in an over-trucked system as well as the idle times for shovels in an under-

trucked system can be minimised (Baafi and Ataeepour, 1998). Further, by re-

routing trucks when traffic congestion occurs, costs associated with variable delays 

can be minimised (Jaoua et al., 2012b).  

A truck dispatching system is an interactive system used by the fleet controller to 

find the most appropriate destination for a truck so as to meet the production rate. 

The primary objective of the truck dispatching system is to achieve efficient 

utilisation of the available truck resources by careful consideration of truck-shovel 

assignment alternatives and determination of assignment decisions in real time. The 

truck dispatching systems evolved from manual dispatching systems to semi-

automated dispatching systems in the early 1970s. A manual dispatching system 

depends on the judgement of a dispatcher who keeps track of the status of the 

various resources visually and/or through radio communications. In semi-automated 

dispatching systems, the status of all trucks and shovels are recorded and truck 

assignments are suggested by minicomputers with the dispatcher still in control and 

manually making assignments. Since the late 1970’s, fully-automated computer-

based dispatching systems have been applied to directly assign trucks to tasks solely 

based on computer algorithms. With modern truck dispatching systems, the term 

“dispatching” consists of two basic components: the first component is the data 
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communications between trucks hauling in a mine site and a central computer; the 

second component is the computer program that generates truck assignments based 

on the information gained through the data communications. In this thesis, only the 

applications relating to truck assignments are considered; a truck assignment model 

developed does not include the field data communications. The term “dispatching” 

that appeared in the literature, such as “dispatching strategies” or “dispatching 

points”, is used in this thesis only in terms of truck assignments/allocations. 

According to Alarie and Gamache (2002), the main forms of truck-allocation are the 

single stage and multistage systems. The single stage approach assigns trucks to 

shovels according to one or several heuristic rules, such as “minimising truck 

waiting time” and “minimising shovel idle time”, without taking into account the 

specific production targets or constraints, hence a heuristic rule-driven system. The 

multistage approach, on the other hand, consists of several stages or sub-problems 

(Afrapoli and Askari-Nasab, 2017), which can be usually reduced to an upper stage 

(a production optimisation problem) and a lower stage (a real-time dispatching 

problem). The upper stage aims to set production targets for every shovel according 

to specific operational constraints, while the lower stage assigns trucks to shovels to 

minimise the deviation from the production targets set by the upper stage. 

2.2.1 Single stage approaches 

The single stage truck dispatching strategy assigns trucks to shovels based on one or 

several criteria without considering any specific production targets or constraints. 

They are usually heuristic methods based on rules of thumb (Alarie and Gamache, 

2002). Some heuristic rules for truck dispatching are listed as follows: 

 Fixed truck assignment (Lizotte and Bonates, 1987) 

Each truck is assigned to a shovel in a fixed manner. This strategy can serve as a 

baseline by which to measure the effectiveness of other dispatching strategies. 

 Minimising truck waiting time (Kolonja et al., 1993) 

By minimising the difference between the shovel-ready-time and the truck-

ready-time, the truck is assigned to the shovel that is expected to provide the 
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least possible waiting time for the truck. The shovel-ready-time includes the 

expected loading time for the truck being loaded, the expected queuing time for 

all the waiting trucks in the queue, and the expected travelling time for the 

hauling truck. The truck-ready-time represents the expected arrival time for the 

hauling truck. This strategy may lead to underutilisation of shovels located 

further away from the location of the truck, making it difficult to fulfil the 

operational targets. 

 Minimising shovel waiting time (Kolonja et al., 1993; Lizotte and Bonates, 1987) 

By maximising the difference between the shovel-ready-time and the truck-

ready-time, the truck is assigned to the shovel that has been waiting the longest. 

In this case, some trucks may be assigned to the shovel located the furthest away 

which has waited the longest, even though there is an idle shovel nearby. 

 Maximising truck momentary productivity (Kolonja et al., 1993) 

Truck momentary productivity is defined as the ratio between truck capacity and 

truck cycle time. In the case of the trucks with homogeneous capacity, 

minimising truck cycle time results in the maximum truck momentary 

productivity. The truck assigned to a shovel that is nearby may have a lesser 

cycle time, thus greater truck momentary productivity. This strategy may lead to 

undesirable queues at the nearby shovels (Munirathinam and Yingling, 1994). 

 Minimising shovel saturation (Kolonja et al., 1993) 

The degree of shovel saturation is defined as the ratio of the actual number of 

trucks that have been assigned to the shovel compared to the desired number. 

The desired number is given by the ratio of the average travelling time compared 

to the average loading time. A truck should be assigned to a shovel with the least 

degree of saturation. 

2.2.2 Comments on single stage approaches 

According to Baafi and Ataeepour (1998), the rules aimed at minimising shovel idle 

times perform better than minimising truck waiting times in an under-trucked system. 
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However, in an over-trucked system, the rules based on minimising truck waiting 

times work better than minimising shovel idle times. In general, the above 

dispatching criteria, except for the fixed truck assignment, all have potential to 

increase the productivity but no one criterion can dominate all others (Munirathinam 

and Yingling, 1994).  

According to Munirathinam and Yingling (1994), the single stage dispatching 

methods based on heuristic rules are easy to implement since much computation is 

avoided when making dispatching decisions. The heuristic rules may serve as a 

better basis for a very large and complex mining operation. However, there are two 

major disadvantages of the above five single stage dispatching methods: 

1. The single stage dispatching rules based on heuristic rules are applied to one-

truck-at-a-time. The current and further dispatching decisions are not made 

collectively. When a truck is ready to be assigned to a shovel or route, according 

to the one-truck-at-a-time dispatching method, the destination is determined 

without considering future assignments of trucks. The possible assignments of 

these trucks are ignored when the dispatching decision for the current truck is 

made. Referring to Figure 2-7, suppose travelling time between Shovel 1 and 

Dump 1 is 5 minutes and that between Shovel 1 and Dump 2 is 6 minutes, and 

Shovel 1 is the neediest shovel at present.  

 

Figure 2-7 Dispatching trucks collectively 

Truck 2 has just completed dumping at Dump 2 and is ready to be dispatched, 

and Truck 1 will complete dumping in 30 seconds. If Truck 2 is dispatched 

without considering Truck 1, Shovel 1 would be the destination for Truck 2, and 
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Truck 2 would supposedly get loaded in 6 minutes without any delay. However, 

if Truck 1 is considered, then it is clear that Truck 1 would arrive at Shovel 1 

before Truck 2, thus causing Truck 2 to wait at Shovel 1. In this case, Shovel 2 

might be an option for Truck 2. This implies that the dispatching decision should 

be made considering other trucks that may have a future impact on the truck 

concerned. 

2. The single stage dispatching rules only consider actual system performance and 

ignore operational constraints, such as ore quality and blending requirements. 

2.2.3 Multistage approaches 

Most of the truck-shovel dispatching algorithms and models using multistage 

approaches deal with two major problems: the production optimisation problem and 

the real-time dispatching problem. 

2.2.3.1 The production optimisation problem 

The approaches used to solve the production optimisation problem in the truck-

shovel dispatching models can be divided into Linear Programming (LP) approach, 

Non-Linear Programming (NLP) approach, Goal Programming (GP) approach and 

stochastic programming approach. 

2.2.3.1.1 Linear Programming approach 

White and Olson (1986) proposed a short-term production planning system which 

consisted of two Linear Programming (LP) models. The solution to the first LP 

model determines the optimum production rate of the shovels, which is then used to 

link the first LP model with the second. The solution to the second LP model 

allocates the volumes of the haulage capacity to all available haulage routes by 

maximising production per unit of haulage resources. The allocated haulage capacity 

of all paths serving a shovel should be no less than the shovel production rate given 

by the first LP model, assuming that excess production is stockpiled. The models are 

re-solved for re-planning if there are major changes in the operation (e.g., shovel 

breakdown, changes in haulage routes, changes in blending requirement) or if a 

grade control interval is triggered. 
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The objective function of the first LP model minimises the sum of various pseudo-

costs. The pseudo-costs are judgement-based weighting factors depending on the 

relative importance determined by mine management. The first LP model presents 

the shovel’s production with the consideration of the maximum digging rate for a 

shovel, the maximum plant capacity, and the lower and upper limits of the ore 

quality. The objective of their second LP model is to maximise production by 

allocating minimum material flows along all feasible paths while satisfactorily 

serving all operating shovels. 

The advantages of the model by White and Olson (1986) can include real-time data 

to reflect the current status of the mine, and the optimum production rate of a route is 

based on the volume of material instead of the number of trucks. However, the 

model fails to consider stripping ratio, and the predefined upper and lower quality 

limits may influence the short-term plant output and input. 

Lizotte and Bonates (1987) proposed a linear programming formulation as a part of 

their semi-automated system to solve the production rates of all the shovels in order 

to reach maximum production. Their LP model is run once a shift. The objective of 

their LP model is to maximise the production rate of all shovels working in ore and 

waste taking into account the ore grade requirements and the stripping ratio. The 

model also assumes the shovels’ relative priority of working on ore faces. The major 

drawback of their model is the assumption that the shovels’ production increases 

linearly with the increasing number of trucks. In addition, stockpiling and re-

handling operations are ignored in the objective function. 

Li (1990) proposed an LP formulation to allocate the optimal number of trucks to a 

route to meet the required productivity rate. The objective of the model is to yield the 

optimum truck flows by minimising total transportation work. Transportation work 

is defined as the product of transported weight and hauled distance. This LP model 

considers all the loading points, ore discharging points, stockpiling points and waste 

disposing points as well as variables such as ore quality requirements, road length 

and resistance factor. However, this model fails to consider a heterogeneous fleet in 

the operational plan, and equipment breakdowns are ignored as well. 
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Gurgur et al. (2011) proposed a LP model which helps to minimise deviation of the 

operation from the long-term planning generated from a mixed integer programming 

(MIP) model. The MIP model determines the life of mine, production requirement in 

each period by considering economic factors. The LP model determines the truck 

allocation to shovels in each period to achive the required production, and takes into 

account the the attributes of different types of trucks and shovels and the haul route 

profiles in each period. In addition, the model considers the stochastic uncertainties 

of the input parameters including load and travel times and ore grades. The major 

advantage of their model is a multi-period optimisation model that takes into account 

the effects of current operations on the next ones. However, their model uses 

continuous variables, i.e., the flow rate of transported material, which fails to provide 

a precise value of the number of truck trips required. 

Ta et al. (2013) proposed a mixed integer linear programming (MILP) model to 

assign trucks to loading units based on the probability of the shovels’ idle time. The 

objective of their model is to minimise the total number of trucks assigned to each 

shovel by considering throughput and ore grade constraints. Based on the theory of 

finite source queues, the relationship between a shovel’s idle probability and the 

number of trucks assigned to the shovel is determined via a simple approximation 

and is incorporated into the MILP model. The model proposed by Ta et al. (2013) is 

able to consider a heterogeneous fleet in a truck-shovel system. 

Mena et al. (2013) proposed a multiple integer knapsack problem to obtain the 

maximum cumulative fleet production in a fixed time frame. The objective of their 

model is to assign available trucks to the route requesting trucks according to their 

operating performance in a truck-shovel system. The equipment availability is 

incorporated into the objective function of their model so that the stochastic 

characteristics of the equipment behaviour and environment are able to be 

considered. However, the major disadvantage of their model is that when a certain 

number of trucks are in the state of maintenance repair, the optimiser fails to find an 

optimal solution. In addition, the blending requirement of the plant is not taken into 

account in their model. 
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Change et al. (2015) proposed a MILP model that aims to maximise transportation 

revenue. A heuristic rule is implemented to solve the mode and schedule trucks over 

a shift. Their model is based on a homogenous truck fleet and does not consider the 

grade distribution and striping ratio as well as plant capacity.  

Zhang and Xia (2015) proposed an MILP model that determines the trip numbers of 

trucks hauling between loading sites and dump sites. The objective of their model is 

to achieve the production target with minimum total truck operating costs in a shift 

by taking into account of operational and ore grade constraints. A heterogeneous 

truck fleet is considered in their model. 

The above LP models generally assume that the productivity of a shovel is 

proportional to the number of trucks allocated to this shovel. However, as the 

haulage allocation level increases, waiting times increase as well due to the nature of 

haulage, loading, and dumping operations. 

2.2.3.1.2 Non-Linear Programming approach 

Soumis et al. (1990) proposed another planning formulation and dispatching method. 

Their method uses nonlinear programming to determine the haulage plan and 

considers waiting time and loading time estimates in the assignment problem. The 

entire dispatching procedure is executed over three stages, namely equipment plan, 

operational plan, and dispatching plan. The equipment plan and operational plan 

form the stationary haulage allocation plan. 

The equipment plan evaluates feasible combinations of shovel locations using a 

combinatory procedure (Soumis et al., 1990), with the number of trucks, the shovel 

locations and the ore grades at shovel locations as inputs to the plan. For a subset of 

the feasible locations, optimisation of production is performed using a mixed integer 

programming model subject to ore quality constraints. With the 10 best solutions 

displayed on the computer screen, the user chooses one solution as a good initial 

solution, and the model determines the shovel locations, and their approximate 

production rates.  
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The operational plan refines the preliminary plan to provide a more realistic 

objective for truck dispatching by shovel production and optimal truck routes, using 

shovel locations and number of trucks previously obtained as inputs. The 

optimisation procedure is based on nonlinear programming techniques and the 

objective function combines three factors: shovel production, truck cycle time and 

quality objectives. Shovel production (expressed as truck rates) is maximised by 

minimising the sum of the squares of difference between the maximum truck rate 

that the shovel can handle and computed truck rate for the shovel. The second factor 

minimises the sum of squared differences between computed truck hours and 

available truck hours. The computed truck hours include the truck waiting times, 

estimated using queuing theory, as a function of truck arrival and service rates. The 

third factor deals with quality objectives by introducing penalty functions. 

According to Munirathinam and Yingling (1994), the major advantage of NLP 

model is that the NLP method searches for the optimum solution over the entire 

feasible region instead of looking for the optimum solution on the corner of the 

feasible region. However, their model considers only a homogenous truck fleet, and 

it is assumed that the grade material in each mining face is fixed. 

2.2.3.1.3 Goal Programming approach 

Temeng (1997) proposed a non-pre-emptive goal programming model. In order to 

reflect the comparative importance of both production and ore quality in meeting 

managerial goals, deviational variables for both production and ore quality are used 

in the objective function. Production is maximised by the selection of routes with the 

shortest cycle times between each shovel and destination. When it is practically 

impossible to satisfy all the constraints in the LP model, this GP approach is able to 

find a feasible solution which violates the smallest number of constraints or those 

that are least important. 

The objective function maximises each shovel’s production and maintains ore 

quality targets by minimising the deviations from the maximum production and ore 

quality maintenance. The model considers ore quality requirement, shovel digging 

rate, dumping capacity and stripping ratio requirement, and accounts for a 
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heterogeneous truck fleet. The order of relative importance of production 

maximisation and ore quality maintenance is presented in the objective function 

using values that indicate the difference in the magnitude of priorities ranged from 0 

to 10.  

2.2.3.1.4 Stochastic programming approach 

Ta et al. (2005) proposed a truck allocation model that utilises a chance-constrained 

stochastic optimisation method to incorporate uncertain parameters including 

truckload and cycle time in a truck-shovel system. They also developed a model 

updater to update the model parameters per shift or when status of the operation is 

changed. The decision variables of the stochastic linear optimisation include the 

number and type of trucks assigned to shovels, and the integer decision variables can 

be solved by converting the stochastic linear model into a quadratic deterministic 

model to be solved with a mixed integer non-linear solver. To avoid the time 

consuming problem caused by NLP approach, Ta et al. (2005) divided the initial 

model into two sub-models which were solved to assign a discrete number of trucks 

to the shovels. 

2.2.3.2 The real-time dispatching problem 

According to Afrapoli and Askari-Nasab (2017), the approaches to solving the real-

time dispatching problem can be divided into two major approaches: the assignment 

problem approach and transportation problem approach. 

2.2.3.2.1 Assignment problem approach 

The assignment problem approach is defined as the approach to dispatch trucks as 

supply to loading or dumping units as demand. Afrapoli and Askari-Nasab (2017) 

suggested that almost all real-time truck dispatching models are based on the 

assignment problem with the objective including minimising shovel idle time, truck 

waiting time and inter-truck time. 

In the real-time haulage assignment model proposed by White and Olson (1986), 

trucks are assigned to shovels to minimise the deviation between the current path 

flowrate and the optimal path flowrate specified by the LP models. This is achieved 
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by creating two assignment lists: the first for the trucks and the second for the paths. 

The truck list contains all trucks currently dumping and on route from a shovel to a 

dump. The path list includes the allocated haulage, the time of last truck allocation, 

and the optimal flowrate as determined by the LP models. The dispatching is 

achieved by matching the “best truck” from the truck list with the “neediest path” 

from the path list. The methods they used to determine the “neediest path” and the 

“best truck” are as follows: 

A measure named “need time” is defined to find the “neediest path” which is the 

path with the minimum “need time” in the path list. The “need time” is defined as 

the expected time for the next truck requirement of each path, and is computed by 

considering the time last truck allocated a shovel, the flowrate of each path specified 

by their LP models, haulage requirements, etc. Another measure used to determine 

the “best truck” in the truck list is named “lost-tonnes” which considers the truck 

capacity, shovel digging rate, expected truck waiting time and travel time, and 

expected shovel idle time. 

The truck with the minimum “lost-tonnes” for the “neediest path” is labelled as the 

“best truck”. After assigning the “best truck” to the “neediest path”, the “neediest 

path” is moved to the bottom of the path list. The path on the top of the list now 

becomes the “neediest path” (the path list is ordered according to the “need time”), 

and the next “best truck” is chosen from those that have not been assigned using the 

lost-tonnes measure. The process is repeated until all trucks on the truck list have 

been assigned to shovels. 

Although White and Olson (1993) claim that the assignment part of their dispatching 

system is based on dynamic programming, Alarie and Gamache (2002) point out that 

the lower stage of their dispatching system is a heuristic method, a procedure which 

is based upon practical or logical operating procedures but not mathematically 

proven as being the optimal procedure. 

Elbrond and Soumis (1987) proposed a dispatching procedure that considers current 

truck positions and shovel status to solve the assignment problem. The objective 

function of the assignment problem minimises the sum of squared differences 
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between the average waiting time of trucks and shovels as calculated from the 

haulage allocation plan and the forecasted waiting times based on the current status 

of the mine operation. The expected waiting time of trucks and the expected idle 

time of shovels are calculated using constantly updated distributions of various cycle 

time elements. However, Elbrond and Soumis (1987) did not consider the possibility 

of assigning more than one truck to a shovel in one decision making step, and they 

also assumed that the truck fleet is homogeneous, which is the same problem 

identified in the formulations provided by Li (1990). 

Bonates and Lizotte  (1988) proposed the dispatching method which takes the results 

from their developed simulator and compares these with an optimal production plan 

obtained from the LP model, the dispatching criterion with the smallest deviation of 

results from the optimum production target is chosen as the optimum dispatching 

rule. The dispatching criteria include minimising truck waiting time, minimising 

shovel waiting time and a combination of the two by introducing the match factor 

which is usually defined as the ratio of truck arrival rate to loader service time (Burt 

and Caccetta, 2014). However, their developed simulator and the production plan 

generator are not a part of the dispatching method itself. Therefore their approach is 

sensitive to the drawbacks affecting the myopic dispatching approaches (Alarie and 

Gamache, 2002). 

Li (1990) proposed a truck dispatching algorithm based on the difference between 

the actual truck interval time and the optimal truck interval time on a path to a 

destination. This algorithm uses the least square of truck interval time as the criterion 

to optimally match trucks with shovels. The trucks are assigned to the destination 

where the deviation between the actual and optimal truck interval times on that path 

is maximum. This truck dispatching rule is easy to implement in real-time mining 

operations. However, an important disadvantage of this real-time dispatching model 

is that the truck waiting times at the destinations, especially at the shovels, are 

ignored. 

2.2.3.2.2 Transportation problem approach 

Temeng (1997) proposed a real-time dispatching model based on the transportation 

problem. In order to reflect the comparative importance of both production and ore 
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quality in meeting managerial goals, deviational variables for both production and 

ore quality are used in the objective function. Production is maximised by the 

selection of routes with the shortest cycle times between each shovel and destination.  

In their model, needy shovels are defined as those shovels with current cumulative 

productions below the target obtained from their goal programming model. On the 

other hand, non-needy shovels are those shovels with current cumulative productions 

equal to or above the production target. The number of truck required by each needy 

shovel is determined by comparing the tonnage for each route to maintain ore quality 

and stripping ratios with appropriate truck capacity. The demand for each shovel and 

the total demand of the operation are then determined. All trucks currently at a 

dump/crusher, and all enroute from shovels to dumps/crushers are considered 

eligible for assignment. The criterion for assigning trucks is to minimise the total 

waiting time of both shovels and trucks. 

The model proposed by Temeng (1997) assumes a heterogeneous truck fleet and 

assigns the trucks to the destinations by considering the number of available trucks, 

ore quality and striping ratio. In the situation that a shovel is far behind its target 

production, the model is able to assign more than a single truck to this shovel. One 

major drawback of this model is that the deviation of routes is determined based on 

the mean of production rate for all routes. The second major drawback is due to the 

fact that transportation costs of any unit of material are considered as independent of 

suppliers, this model is not able to account for the truck waiting time at the shovel or 

crusher that is depending on the previously allocated trucks, especially in an over-

trucked system. 

2.2.3.3 Some other approaches 

Subtil et al. (2011) proposed a multistage truck dispatching model that is used in the 

commercial package SmartMine
®

 marketed by Devex SA. A LP model is used in the 

upper stage to determine the maximum tonnage production considering the 

operational constraints. A heuristic dispatching rule combining computational 

simulation and multi-criterion techniques is used in the lower stage for truck 
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allocation. However, their model does not consider the operational constraints such 

as grade blending, desired feed to plants, etc. 

Ouelhadj and Petrovic (2009) state that using metaheuristics as an optimisation 

method for dynamic scheduling/control is more appropriate than dispatching rules 

and simple heuristics. However metaheuristic searching is not widely used in real-

time dispatching as it generally needs extensive computational time. Jaoua et al. 

(2012a) developed a metaheuristic model, using the Simulated Annealing (SA) 

algorithm to compute the near-optimal assignment in a truck-shovel dispatching 

system within the system-response time requirement (<120s). However, 

metaheuristic optimisation can only be applied during the time when the truck is 

unloading, assumed by Jaoua et al. (2012a) to be at least three minutes. 

Bissiri et al. (2014) introduced a new technique, the swarm-based intelligence 

approach, to simulate the truck dispatching system based on the behaviour of social 

insects such as ant colonies. Their model optimises the truck allocation using local 

optimisation approach to consider variations of the operation. In the model, the 

trucks and shovels adopt to operational changes to meet the operational targets under 

given constraints.  

Upadhyay and Askari-Nasab (2017) proposed a Mixed Integer Linear Goal 

Programming (MILGP) model as a shovel allocation optimiser tool to work as the 

upper stage in a multistage fleet management system. Their model aims to allocate 

shovels to mining faces with the objective of maximum production by accounting for 

the desired plant’s head grade and tonnage at the crushers and minimum shovel 

movements. 

2.2.4 Summary 

Single stage dispatching systems provide the most direct approach to computer-

based dispatching which is especially prone to random fluctuations in a stochastic 

and complex mining operation. The shortest path between shovels and destinations is 

determined, and then both the production optimisation and the real-time truck 

allocation are solved simultaneously. The limitation of the one-truck-at-a-time 

dispatching method and the lack of consideration of operational constraints, such as 
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ore quality requirements and blending constraints, are the major weaknesses of 

single stage dispatching systems. 

Multistage dispatching systems are mainly composed of two components, the first 

component attempts to specify the short-term production plan which is usually 

generated using a mathematical programming model. The objectives of the short-

term production plan vary from maximising production to minimising both operating 

costs and transportation work (i.e., the product of transported weight and hauled 

distance). The operational constraints considered usually include ore quality limits, 

stripping ratio, digging rate, capacity of dumps and crushers and ore tonnage flow at 

dumps, crushers and shovels. On the basis of the first component, the second 

component allocates trucks in real time to achieve the prescribed short-term 

production plan. The real-time dispatching models include heuristic models, 

mathematical programming models and intelligent metaheuristic models.  

According to Alarie and Gamache (2002), by solving a mathematical program that 

considers multiple operational constraints in order to improve the quality of 

assignments, the multistage dispatching systems have a great advantage over the 

single stage dispatching systems. However, Munirathinam and Yingling (1994) 

pointed out that there is no significant difference in the performance between the 

single stage dispatching strategies and the multistage dispatching strategies, although 

the multistage dispatching strategies produced better results in a more consistent 

fashion.  

As identified by Afrapoli and Askari-Nasab (2017), there are still many shortfalls in 

the existing algorithms and models. Two major limitations are how to model close to 

reality and how to determine dynamic best path. For large open-pit mines, there is a 

large fleet of heterogeneous trucks hauling on a vast network of haul roads in the 

operation area. A large fleet of trucks usually consists of various truck types with 

varied performance and different speed limits and averages, and the interaction of 

these trucks often result in truck bunching on some route segments and traffic delay 

at intersection areas. 
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There are some important haulage operational aspects that are simplified or 

inadequately covered by the above dispatching models, including: 

1. The influence of the haul route conditions (e.g., grade and rolling resistance, 

speed limit) and the truck configurations (e.g., truck model, payload, 

performance and retarder charts) on the truck travelling time.  

2. The influence of the dynamic interaction between individual trucks travelling on 

a shared haul route on mine KPIs, e.g., the bunching effect which is an important 

factor that causes the reduction in the maximum productivity (Smith, 1999) but is 

not well studied in the literature (Burt and Caccetta, 2007).  

3. The influence of the dynamic interaction between multiple truck fleets in a traffic 

network system on KPIs, e.g., the passing priority and the traffic management at 

an intersection area. 

In this thesis, in order to account for the above dynamic operational factors in the 

truck-allocation model and to improve the existing truck-allocation models, 

simulation methodology was used to develop a new truck-shovel simulation model. 

The developed model considers a truck as an individual vehicle entity that 

dynamically interacts with other trucks in the system as well as other elements of the 

traffic network, considering operational factors such as the bunching of trucks on the 

haul routes, practical rules at intersections, multiple decision points along the haul 

routes as well as the influence of the truck allocation on the estimated queuing time. 
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CHAPTER THREE  

SIMULATION OF TRUCK-SHOVEL SYSTEM 

3.1 Introduction of simulation approach 

A computer-based simulation is the representation of an industrial operation or a 

real-world process or system programmed with the aid of computer software. 

Simulation models are generally classified into the following types (Banks et al., 

2010): 

1. Static versus dynamic models. A static simulation model represents a system at a 

particular point in time, e.g., the economic demand and price model (Gargi and 

Reddy, 2014). A dynamic simulation model represents a system that changes 

over time. For instance, the simulation of a bank system from 9:00 A.M. to 5:00 

P.M. is a dynamic model.  

2. Deterministic versus stochastic models. A deterministic simulation model 

contains no random variables, e.g., a linear programming model, while a 

stochastic simulation model has one or more random variables as inputs and 

outputs, e.g., a queuing model. 

3. Discrete versus continuous models. A discrete-event simulation (DES) model 

represents a system in which the state variable(s) change only at a discrete set of 

points in time. For example, a truck-shovel system is a typical discrete system. A 

continuous simulation model represents a system in which the state variable(s) 

change continuously over time, such as a system associated with flowing fluids. 

In this thesis, the truck-shovel system simulation model is considered as a dynamic, 

stochastic and discrete model.  

According to Pegden (2010), simulation models are built using one or more “world 

views” that provide the modeller with a framework for defining the behaviour of the 

system of interest. A simulation modelling world view sets the rules for advancing 

time and changing the state of the model. Since the 1960s, there have been three very 

prevalent simulation modelling world views, these being the event-scheduling, the 

process-interaction, and the object-oriented world views. 
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1. Event-scheduling world view 

When using the event-scheduling approach, the modeller concentrates on events 

and their effect on the system state. The mechanism for the event-scheduling 

approach is based on the future event list (FEL) which arranges all events in the 

correct chronological order. The duration of a scheduled event is computed or 

drawn as a sample from a statistical distribution. As the simulation progresses, 

the length and contents of the FEL are constantly updated and the management 

of the FEL includes the removal of the imminent event, the addition of a new 

event, and occasionally the removal of some other events. When all events and 

system state changes have occurred at an instant of simulated time, the 

simulation time (CLOCK) is advanced to the time of the next imminent event on 

the FEL. The event-scheduling world view was applied by Simscript and GASP 

from the 1960s to the 1980s, then displaced by the process-interaction approach. 

However, the event-scheduling world view is used as the basic modelling 

approach in the internal logic for all discrete-event simulation models.  

2. Process-interaction world view 

In this world view, the modeller describes the simulation model in terms of 

processes.  A process is considered as the life cycle of one entity flowing through 

the system, and consists of various activities. Some activities require resources 

with limited capacities causing processes to interact. One example is a truck 

waiting for a shovel which is loading another truck. The simulation models with 

the process-interaction world view are typically defined in the form of a 

flowchart in which capacities of the resources are seized and released by the 

entities. The process-interaction approach allows the modeller to build the 

process flow in terms of high-level blocks or network constructs without having 

to deal with the development of the interaction among processes. This world 

view is widely applied in simulation models using simulation programming 

languages, such as GPSS/H and SIMAN. Figure 3-1 illustrates a GPSS/H block 

diagram for a single server queue model which is composed of GENERATE, 

QUEUE, SEIZE, DEPART, ADVANCE, RELEASE, TEST, BLET, TER and 

TERMINATE blocks (Banks et al., 2010). Exponential arrivals are specified by 
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the GENERATE block after which the system response data is collected using 

the combination of the QUEUE block and DEPART block with the name of 

SYSTIME. The queuing information is collected by the QUEUE block with a 

queue named LINE, the SEIZE block and the DEPART block with the name of 

LINE. Normally distributed processing times can be allocated to the resource 

which is represented by the ADVANCE block. Next, the customer gives up the 

use of the facility CHECKOUT with a RELEASE block. Finally the TEST, 

BLET, TER and TERMINATE block combination deals with the required output 

information. 

 

Figure 3-1 GPSS/H block diagram example (Banks et al., 2010) 

3. Object-oriented world view 

The notion of object orientation was first introduced by Simula 67 as part of a 

simulation modelling paradigm in the 1960s, and this idea completely changed 

the design and implementation of simulation software as well as many later 

programming languages, including Smalltalk, LISP, C++, Java, and C#. In the 

object-oriented world view, the system is modelled by describing the objects that 



Chapter Three: Simulation of Truck-shovel System 

 

38 

make up the system. For example, the shovels, dumps, trucks, haul routes and 

other objects that make up the truck-shovel mining system. The interaction of 

these objects represents the system behaviour. Modelling consists of construction 

of the object-oriented simulation tool that directly relates to the physical system 

instead of representing the logical process. Object-oriented simulation tools, such 

as JaamSim, FlexSim, AnyLogic and Simio, must be open and allow users to 

create new objects. Some important concepts of the object-oriented modelling 

approach include: 

 Class: a class can be defined as a template for creating different objects. It 

describes the states and behaviours of the objects. For example, in JaamSim, 

a loader class can be defined as a template for all the loader objects and 

shown in the Model Builder list. 

 Object: an object is an instance of the class. Objects have states and 

behaviours defined by the class. For instance, in JaamSim, loader objects can 

be created by dragging and dropping the “loader class” from the Model 

Builder list to the View Window. 

 Sub-class: a class that is derived from another class, and thus inherits 

attributes and behaviours from the base class or superclass. For example, in 

JaamSim, an Entity class is defined as the base class for other classes such as 

the loader, the truck and the dump classes.  

The following three categories of simulation software packages are available: 

1. General-purpose programming languages, such as C, C++, and Java.  

When using the general-purpose programming languages in simulation, the 

modeller has to explicitly program all details of the event-scheduling algorithm, 

the random-number generator, the generation of samples from specified 

probability distributions and the report generator. However, the object-oriented 

feature in a general-purpose programming language is able to support large and 

flexible model construction.  
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2. Simulation programming languages, such as GPSS/H and SIMAN. 

The simulation programming language, for instance, GPSS/H, is highly 

structured, and purposefully built for simulation, which is based on the process-

interaction approach and oriented toward queuing systems. It usually provides a 

block diagram to describe the simulated system and includes built-in routines 

supporting functionality such as block operand, debugger and random-variate 

generator. However, for the most part, the special purpose languages hide the 

details of the event scheduling algorithm.  

3. Simulation environments, such as Arena, Automod, FlexSim, Haulsim, JaamSim, 

SIMUL8 and Simio. 

The simulation environments share some common characteristics including a 

graphical user interface (GUI), animation, and output reports to measure system 

performance. Some simulation environments support warmup determination, 

design of experiments and sensitivity analyses. Model building, model 

debugging, animation and interactive running of models are generally integrated 

into most of the simulation environments. 

In a truck-shovel system, the complex and dynamic interactions between the 

variables in the haulage system dictate that analytical methods are not feasible for 

model development (Ramani, 1990). The loading time and amounts loaded vary 

according to the truck type, shovel type, material characteristics, operator’s 

performance, etc. The truck cycle time is influenced by: 

 the weight of the truck, the truck performance curves, retarder curves (Erarslan, 

2005) and the truck driver’s skill, 

 the haul routes design and road conditions such as rolling resistance, haul 

grade and road maintenance, and 

 the traffic constraints, e.g., the bunching effect, intersection passing priority and 

speed control, etc. 
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With discrete-event simulation, it is possible to evaluate the stochastic and dynamic 

elements of a truck-shovel mining system and support management when evaluating 

and comparing alternatives for decision-making (Ebrahim et al, 2015). 

The traffic control simulation models are often classified into three kinds dependent 

on the level of modelling detail, these being macroscopic, microscopic and 

mesoscopic models (Jaoua et al., 2009).  

Macroscopic models describe the traffic over time and space as flows, using a set of 

equations based on the mechanics of fluids. The most popular macroscopic traffic 

model is the Lighthill-Whitham model (Lighthill and Whitham, 1955) with the 

assumption that the traffic flow is the product of the traffic density and the average 

velocity. The main advantages of macroscopic traffic models include good 

agreement with empirical data, suitability for analytical investigations and less 

coding effort (Helbing, 2001). However, these models ignore the complex and 

interactive aspects of a dynamic transport network system (Duncan and Littlejohn, 

1997). 

Microscopic models try to capture the actions and reactions of the traffic particles as 

accurately as possible. In contrast to the macroscopic models, the microscopic 

models consider the individual vehicles moving within the traffic network and 

emulate both the interaction between individual vehicle units and the influence of the 

road infrastructure. According to Burghout (2004), the microscopic models can often 

be divided into the following models: 

 Car-following models which describe the breaking, accelerating and decelerating 

patterns due to the interaction of the leading vehicles and the vehicles following 

behind as well as road conditions (e.g., speed limits, road curvature, etc.). 

 Route-choice models which describe the route taken by drivers when travelling 

from an origin to a destination, and the influence of the traffic and route 

information along the way. 

 Lane-changing models which describe the decisions to change lanes, considering 

the driver’s preferences and the traffic situation in relevant lanes. 
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Two major embedded formulations, i.e., cellular automata (CA) (Nagel and 

Schreckenberg, 1992) and car-following (CF) (Brackstone and McDonald, 1999), are 

widely used in micro-simulator traffic software. The drawbacks to the microscopic 

approach include the large data requirements, significant development effort and 

model calibration (Jaoua et al., 2009). 

The mesoscopic model is the third class of traffic simulation models; the level of 

detail found in mesoscopic models is between that of the microscopic and 

macroscopic models. The vehicle units are usually described in a high level of detail, 

while their behaviour and interactions in a lower level of detail. The speed of 

vehicles may be determined by a speed-density function (Leonard et al., 1989), or by 

traffic control objects (Ben-Akiva, 1996) instead of using vehicle-following models. 

However, the route-choice model can be implemented due to the individual vehicles 

in the mesoscopic model. Both macroscopic and mesoscopic models are easier to 

calibrate than microscopic models, whereas the interaction between vehicles in the 

traffic system is ignored in these models.  

Simulator tools have been widely used in mining industry to evaluate and analyse 

mining operations (Afrapoli and Askari-Nasab, 2017). Askari-Nasab et al. (2007) 

developed an open-pit production simulator to represent dynamic expansion of an 

open-pit mine. Fioroni et al. (2008) developed a discrete-event simulator that works 

with an optimisation model to implement the short-term production plan. Ebrahim et 

al. (2015) used GPSS/H
®

 to develop a discrete-event system simulation for a truck-

shovel system to investigate the environmental impact taking into account mining 

haulage performance and production target. Hashemi and Sattarvand (2015) 

developed a discrete-event simulation model using Arena simulation software to 

evaluate the transportation system of a copper mine. Their model is able to monitor 

the material excavated from different operating benches and considers the ore grade 

requirement. Upadhyay and Askari-Nasab (2017) developed a simulation 

optimization tool that interacts with a GP based optimisation model to generate an 

uncertainty based short-term plan. Shishvan and Benndorf (2017) presented the 

extension of a developed simulation model from a conceptual stage to a Technology 

Readiness Level by implementing the model to two coal mines. 
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However, most previous work on simulation of a truck-shovel system (Lizotte and 

Bonates, 1987; Kolonja et al., 1993; Temeng et al., 1997; Baafi and Ataeepour, 1998; 

Hashemi and Sattarvand, 2015; Sofranko et al., 2015; Que et al., 2016) applied the 

macroscopic approach in the simulation models and failed to capture the interactions 

between the individual vehicles, and between the vehicles and traffic infrastructure. 

According to Byurckert et al. (2000) and Jaoua et al. (2009), there is a large gap 

between macroscopic models and the real world performance of the truck-allocation 

algorithms. 

3.2 Arena and FlexSim simulation software 

These two commercial simulation software packages have been widely used in both 

the mining and construction industries. Both Arena (Rockwell Automation, 2018) 

and FlexSim (FlexSim Software Products Inc., 2018) have powerful capabilities to 

model various material handling systems, supporting discrete-event simulation with 

both incorporating statistics analysis via a user-friendly GUI.  

The main differences between the functionality found in the two software packages 

are listed in Table 3-1 (Banks et al., 2010). 

Table 3-1 Functionality comparison between Arena and FlexSim 

Functionality Arena FlexSim 

Type 
Discrete and continuous 

systems 

Discrete-event, continuous, and 

agent-based systems 

Field 

Manufacturing, material-

handling and flow process 

systems 

Manufacturing, logistics and 

distribution, and transportation 
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Approach 

The core of Arena is the 

SIMAN simulation language, 

and its open architecture, 

including embedded Visual 

Basic for Application (VBA), 

enables data transfer with 

other applications as well as 

custom interface development. 

Simulation models are built 

from graphical objects called 

modules to define system 

logic. Modules are represented 

by icons plus associated data, 

and these icons are connected 

to represent Entity flow. 

Modules are organized into 

collections called templates. 

It integrates MS’s Visual C++ 

Integrated Development 

Environment (IDE) and compiler 

within a graphical 3D click-and-

drag simulation environment. It 

currently offers both Flexscript 

and C++ for modelling complex 

algorithms. A simulation model 

of any flow system or process 

can be created by using drag-

and-drop model-building 

objects. It provides the ability to 

customize objects for specific 

needs. Robust defaults allow a 

modeller to have a model up and 

running quickly. 

Animation 

2-D animations are created by 

using the built-in drawing 

tools and by incorporating clip 

art, AutoCAD, Visio, and 

other graphics. 3-D animations 

can be generated by the Arena 

3DPlayer. 

Using Open GL technology, 3D 

animation is shown as virtual 

reality, and all views can be 

shown concurrently during run 

phase. 

Input/Output 

The Input Analyser automates 

the process of selecting the 

proper distribution and its 

parameters for representing 

existing data, such as process 

and inter-arrival times. The 

Output Analyser and Process 

Analyser automate comparison 

of different design 

alternatives. 

Input parameters can be changed 

interactively during a model run 

and can come from internal or 

external sources. Outputs are 

displayed dynamically and in 

graphical and tabular format, and 

statistical analysis of output data 

with confidence intervals are 

also supported. 

Experiment 

tool 

The OptQuest optimisation 

engine is fully integrated into 

it. 

A complete environment for the 

user to define scenarios, 

determine warmup, conduct 

experimentation including 

design of experiments is 

provided. 

Other None 

FlexSim Distributed Simulation 

(DS) allows multi-user model 

collaboration to model large and 

complex systems using hundreds 

of computers linked together. 
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3.3 Modelling a simplified truck-shovel mining system with Arena and 

FlexSim 

Two different truck-shovel models (named the Arena model and the FlexSim model) 

were developed using data from the Eastern Ridge Ore Body (OB) 23/25 operation, 

which is located at the Mt Whaleback surface mine (Shaw, 2012). The pit includes 

the following active production areas: Pit 3 Western Cutback (P3WC) and Pit 4 

(P4lobe2) in conjunction with their respective haulage routes to the P3WD dump, 

WD dump and the Run Of Mine (ROM) dump. 

There are two shovels working at Pit 4 (P4lobe2) (Shovel 1) and Pit 3 Western 

Cutback (P3WC) (Shovel 2), and 13 trucks serving both these shovels. It can be 

assumed that the fleet has a homogeneous capacity, and the fixed truck-allocation 

rule is applied. The truck fleets are divided into four groups. Two trucks (Truck 

Group 1)  travel between P4lobe2 and the WD dump, four trucks (Truck Group 2) 

between P4lobe2 and the ROM dump, four trucks (Truck Group 3) between P3WC 

and the ROM dump, and three trucks (Truck Group 4) between P3WC and P3WD. A 

simplified layout of the model is shown in Figure 3-2. 

 

Figure 3-2 The simplified layout of Mt Whaleback mining operation (Shaw, 2012) 

The material flow of the model is a typical truck cycle that includes trucks waiting in 

queues and trucks being loaded by shovels. Trucks then travel loaded, dump their 

loads, and then return empty. The Mean Time Between Failure (MTBF) and Mean 

Time To Repair (MTTR) are considered in both models. 

It is assumed that the route will not be extended, i.e., the length of the haul route is 

static. The amount of the ore or waste is unlimited, so are the capacities of the dumps. 

Crew changeover and other operational delays are not considered. 
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The model input data is based on the time and motion study conducted by Shaw 

(2012), and has been modified to fit the two models. The triangular distribution 

function was used to describe the loading times and dumping times in both the Arena 

model and the FlexSim model. Hauling time in the Arena model and speed 

parameters in the FlexSim model were estimated from the haul cycle times on 

various routes provided by Shaw (2012). The shovel loading time per pass in the 

FlexSim model was also estimated based on the loading time.  

3.4 Simulation of truck-shovel system with Arena 

The framework of Arena mainly consists of blocks called flowchart modules along 

with data modules, hence the truck-shovel mining system is converted to the 

following operational components: trucks, shovels, routes and queues. The basic 

material flow mode is that the flowing Entities are considered as trucks which travel 

between the loading sites and dumps without being destroyed or leaving the system. 

The major mutually connected modules include: the Truck-allocation module, which 

is responsible for assigning trucks under a fixed truck-allocation rule, the Shovel and 

Dump modules which model loading and dumping procedures, the Route module, 

which guides trucks to loaders and dumps, the Priority module, which manages the 

intersection passing priority, and the MTBF/MTTR module, which is responsible for 

operational delays that include equipment breakdowns.  

3.4.1 Operational components of the truck-shovel system in Arena 

The operational components are the simplification of the real truck-shovel system. 

The degree of simplification depends on the constraints associated with the 

simulation tools. In the Arena model, the truck-shovel operation can be divided into 

the following operational components: 

 Trucks: travel between shovels and dumps, resulting in various forms of time    

consumption including travelling time, waiting time and dumping time. 

 Shovels, Dumps and Repair facilities: process trucks and introduce delays. 

 Routes: direct trucks to loading sites and dumps. 

 Queues: store and release trucks at shovels, dumps and repair facilities. 
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3.4.2 Available modules in Arena 

The Arena modules that can be used to simulate the operational components in a 

truck-shovel system are as follows: 

 Create module: generates Entities which represent trucks in the system. The 

Entities can represent the arriving, waiting and departing activities of trucks. 

 Process module: simulates the loading, dumping and repair processes. The 

Resources generated by the Process module are capable of representing 

processing conditions for shovels, dumps and repair facilities, and the Failure 

module can be added to the Resources module to model scheduled downtime and 

unscheduled breakdowns and repair times. 

 Sequence module: specifies the fixed truck-allocation rule for each type of Entity 

so that trucks at various loading sites are directed to desired destinations. 

 Station, Enter and Release modules: represent the travelling procedure, including 

the intersection passing priority, and the hauling time en route.  

 Queue module: the queue in front of the Process module.  

 Other modules: the Assign module assigns variables and attributes which trace 

the states of the Entities. The Decide module sends Entities to different modules 

according to certain logic conditions. The Record module records the numbers of 

cycles of each Entity, and displays them in reports. 

 Animation module: represents the animation of the logic flow. 

Arena is well suited to simulate the truck-shovel system in flowchart mode, and 

reflects major operations such as waiting, loading, routing, dumping and breakdowns 

within the framework of Arena. For example, the delay time for the loading 

procedure is specified by the Process module which contains the processes of Seize, 

Delay and Release.  

3.4.3 Logic flow in Arena 

Depending on the way Entities flow in the model, there are basically two modelling 

modes, as shown in Figure 3-3: 
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1. Entities flow through the system with these Entities being generated by the 

Create module and later destroyed by the Dispose module; 

2. Entities never exit from the system but keep circling within it. 

 

Figure 3-3 Two modes of Entities flow in a model 

The Entities can be considered as being the ore or waste, and the Transporters the 

trucks when applying the Transfer module. The Entities are carried by the 

Transporters from a shovel (using a Create and a Delay modules) to a dump (a 

Delay module). Next, the Entities are “destroyed” and the empty Transporters are 

sent back to the shovel. This method follows the principle of the first modelling 

mode in Figure 3-3 with Entities flowing through the system. However, this 

modelling method has a limitation in truck-allocation: the Transporter module can 

only be managed as an entire group of transporters instead of individual transporters 

or divided groups. In addition, the Sequence module, which specifies the fixed truck-

allocation rule, can only specify the Entities rather than the Transporter module. The 

assignments are bound with the Entities when the Entities are initiated; once the 

Entities are “destroyed” by the Dispose module, i.e., when the trucks finish dumping, 

the assignments for the Entities are “destroyed” as well. 

When the Entities are considered to be the trucks, their assignments can be specified 

for each group of Entities. After a truck fleet Resource is assigned to each group of 

Entities, these Entities are sent to the dumps and then return to certain shovels 

according to the Sequence data module. Therefore the Entities keep circling within 

the system, and the production data is generated by recording the accumulated 

circling times of the Entities in the system. Since there are four truck fleets in the 
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truck-shovel mining system, and the fixed truck-allocation strategy is applied for 

each fleet, the second modelling mode in Figure 3-3 with Entities circling in the 

system is applicable. 

3.4.4 Simulation of truck-shovel components in Arena 

The Arena model consists of five major components: Truck-allocation modules, 

Loading and Dumping modules, Route modules, Priority modules, along with the 

MTBF and MTTR modules. 

3.4.4.1 Truck-allocation modules 

In the Arena model, a Station represents the location of a shovel, dump or 

intersection.  Referring to the layout shown in Figure 3-2, six Stations are defined, 

i.e., Shovel 1 (P4lobe2), Shovel 2 (P3WC), WD, ROM, P3WD and Station C (the 

intersection between P3WC and the P3WD dump). The fixed truck assignment for 

each group of trucks is specified using the Sequence data module which allows the 

user to define an ordered list of Stations to be visited for each group of Entities. Four 

Sequences are therefore defined, i.e., Truck Group 1 Sequence, Truck Group 2 

Sequence, Truck Group 3 Sequence and Truck Group 4 Sequence. The Station lists 

for all the Sequences are as follows: 

 Truck Group 1 Sequence: {WD, Shovel 1}; 

 Truck Group 2 Sequence: {ROM, Shovel 1}; 

 Truck Group 3 Sequence: {Station C, ROM, Station C, Shovel 2}; 

 Truck Group 4 Sequence: {Station C, P3WD, Station C, Shovel 2}. 

To generate the Sequence template, first select the Sequence data module in the 

Advanced Transfer list (Figure 3-4), then enter the Sequence name for each truck 

group in the Sequence spreadsheet, for instance the Truck Group 1 Sequence, as 

shown in Figure 3-5. 
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Figure 3-4 Selecting Sequence 

 

Figure 3-5 Setting Sequence name 

Then click the Steps row and select the corresponding Stations in the Steps 

spreadsheet for each Truck Group Sequence, as shown in Figure 3-6. 

 

Figure 3-6 Setting Station name 
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To direct the generated Entities to follow this pattern of Station visitations, the 

Sequences are assigned to the four groups of Entities, respectively, as shown in 

Figure 3-7, and the “By Sequence” option in the Route module is used to transfer the 

Entity to its next destination. 

 

Figure 3-7 Assigning Sequence to four groups of Entities 

3.4.4.2 Loading and Dumping modules 

The Entities are sent to the loader by using the Process and Assign modules, which 

imitate the loading delay and change the state of trucks to either “empty” or “loaded”. 

The Dumping modules are similar to the Loading modules. The combination of the 

two modules is shown in Figure 3-8. 

 

Figure 3-8 Process and Assign modules for loading and dumping processes 
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3.4.4.3 Route modules 

The Route modules consist of Station, Enter, Leave and Decide modules, responsible 

for directing the trucks from one location to another.  In the Arena model, Entities 

are transferred from one Station to another by obtaining fleet Resources, and the fleet 

Resources must be released before the Entities are processed. The Enter modules are 

used for releasing fleet Resources before Entities are processed by the Loading or 

Dump modules, and the Leave modules are used for seizing fleet Resources before 

sending Entities to the next Station. 

When Entities are generated initially and sent to the shovels for the first time, these 

Entities have no fleet Resources. A Decide module is used to decide whether the fleet 

Resource has been assigned to the Entities (or whether the Entities are initialised). If 

the Entities own the fleet resource, then they are sent to the corresponding Enter 

module to release the fleet Resource before being processed. Otherwise, the Entities 

are sent to the Loading or Dump modules directly. The combination of Enter and 

Station modules before the loading process is shown in Figure 3-9. 

 

Figure 3-9 Enter and Station modules before loading process 

After processing, the Entities are sent to the corresponding Leave modules to be 

assigned fleet Resources. With the allocated fleet Resources, the Entities are 

transferred to the next Station, based on the Sequence set in the Truck-allocation 

module. These modules are shown in Figure 3-10. 
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Figure 3-10 Leave modules after loading process 

There is an intersection on the haul routes, i.e., Station C, which separates the Truck 

Groups 3 and 4 travelling from P3WC, and directs them to either the ROM Dump or 

Dump P3WD, respectively. The Station C modules, as shown in Figure 3-11, decide 

which Truck Group a truck belongs to before releasing the corresponding fleet 

Resource, and then depending on whether the truck is empty or not, the truck is sent 

to the shovel or dump by following the Sequence module.  

 

Figure 3-11 Station C modules 

3.4.4.4 Priority modules 

It may happen that loaded trucks take priority over empty trucks when passing 

through an intersection area. To simplify this problem, assume the intersection is a 

rectangular area with four corner points; the Station modules are used for directing 

the trucks through the intersection area shown in Figure 3-12. 
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Figure 3-12 Intersection area 

Two traffic management rules are applied within this intersection area:  

 General passing rule 

Trucks entering the intersection area have to wait outside at corner points if any 

truck travelling along the adjacent routes is within this area. As shown in Figure 

3-13, as the trucks hauling on Route 2 are passing through the intersection, the 

trucks hauling on Route 1 have to queue outside the intersection. However, as the 

mine routes in an open-pit accommodate two-way traffic, the trucks travelling 

along the same routes, in opposite direction, do not impact on each other. 

 

Figure 3-13 General passing rule 

 Priority rule 

Giving priority to a loaded truck at an intersection means that an empty truck has 

to give way to loaded trucks when it arrives at the intersection. Loaded trucks are 

allowed to enter the area whether there are empty trucks waiting or not. However, 

for the empty trucks, they are not allowed to enter the area until there are no 

loaded trucks waiting at the intersection (Figure 3-14).  
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Figure 3-14 Priority for loaded trucks 

The Priority modules consist of the Enter, Leave, Decide, Assign and Hold modules. 

The key to solving the problem of priority at an intersection is to dynamically count 

the number of trucks passing through the area as well as those in the queue, and the 

decision of entering the area depends on this value. The following six variables were 

defined to store the number of trucks in the queue and in the intersection: 

 Full 1 – the number of loaded trucks on Route 1, including both the loaded 

trucks travelling through the intersection and those loaded trucks waiting in the 

queue. 

 Full 1 After – the number of loaded trucks travelling through the intersection area 

on Route 1. 

 Full 2 – the number of loaded trucks on Route 2, including both the loaded 

trucks travelling through the intersection and those loaded trucks waiting in the 

queue. 

 Full 2 After - the number of loaded trucks travelling through the intersection area 

on Route 2. 

 Empty 1 – the number of empty trucks travelling through the intersection area on 

Route 1. 

 Empty 2 - the number of empty trucks travelling through the intersection area on 

Route 2. 

When one loaded truck arrives at the intersection, Full 1 or Full 2 (depending on its 

route) is increased by 1 using the Assign module. The two conditions for the loaded 

truck to enter the intersection (including both the general passing rule and the 

priority rule) are: 
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1. For the loaded truck hauling on Route 1, if Full 2 After > 0 or Empty 2 > 0, then 

the loaded truck has to wait. 

2. For the loaded truck hauling on Route 2, if Full 1 After > 0 or Empty 1 > 0, then 

the loaded truck has to wait. 

After the loaded truck has entered the intersection area, either Full 1 After or Full 2 

After is increased by 1, and after the loaded truck has finally left the area, either Full 

1 or Full 2 and either Full 1 After or Full 2 After is decreased by 1, using the Assign 

module (Figure 3-15).  

 

Figure 3-15 Hold modules for loaded trucks priority 

For the entrance of empty trucks, the variables to be examined are Full 1 and Empty 

1, or Full 2 and Empty 2. The two conditions are: 

1. For the empty truck hauling on Route 1, if Full 2 > 0 or Empty 2 > 0, then the 

empty truck has to wait. 

2. For the empty truck hauling on Route 2, if Full 1 > 0 or Empty 1 > 0, then the 

empty truck has to wait. 

Either Empty 1 or Empty 2 is increased by 1 when the empty truck is ready to enter 

the intersection. The modules are shown in Figure 3-16. 

 

Figure 3-16 Hold modules for empty trucks priority 
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The complete Priority modules for the four corner points (Stations) at the 

intersection are shown in Figure 3-17. 

 

Figure 3-17 Modules of intersection priority 

3.4.4.5 MTBF and MTTR modules 

A Failure data module for general MTBF and MTTR function can be directly 

applied to the Resource modules including shovels, dumps and repair facilities.  

To generate the Failure template, select the Failure data module in the Advanced 

Process list (Figure 3-18), and specify the failure information, e.g., named Shovel 1 

Failure, in the Failure spreadsheet, as shown in Figure 3-19. The type of the failure 

is set to time-based; the UP TIME is set to uniform(600000 s, 720000 s) and the 

DOWN TIME uniform (1500 s, 1800 s).  
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Figure 3-18 Selecting Failure  

 

Figure 3-19 Failure spreadsheet 

Next, select Shovel 1 from the Resource spreadsheet, click the Failure row (Figure 

3-20), in the Failures spreadsheet, as shown in Figure 3-21, select Shovel 1 Failure 

as the Failure Name input value for Shovel 1, and select Wait as the Failure Rule 

input value. The Wait option is considered if the operating time is larger than the 

duration of the failure. 

 

Figure 3-20 Resource spreadsheet 
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Figure 3-21 Selecting Failure template 

In the Arena model, since trucks are modelled using Entities that keep circling 

within the system, and the failure of the Entity cannot be specified using the Failure 

data module, a Process module is used to determine the delay of repair time, and a 

variable, Last Failure Time, is used to record the last failure time. The interval 

between the accumulated travelling time and the last failure time is calculated to 

check whether or not the trucks should be repaired, using the Decide, Process and 

Assign modules, as shown in Figure 3-22. 

 

Figure 3-22 Repair modules 

3.4.5 Animation in Arena 

The animation in the Arena model is a reflection of the logic defined by the modules 

flowchart which consists of Stations, Routes, Resources, Entities and Queues. To 

start the animation, click the Go button   in the Standard toolbar; to end the 

animation, click the End button  . The screenshot of the animation is shown in 

Figure 3-23. The Entities (trucks) travel along the haul routes and queue before the 

Resource modules (shovels or dumps). When a shovel or dump is busy, it is 

represented by a red box, if idle it is then represented by a green box.  
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Figure 3-23 Animation of the truck-shovel system in Arena 

3.4.6 Inputs and outputs in Arena 

The main data inputs include the processing times for shovels and dumps, and 

hauling times from one Station to another. The running results are generated in the 

form of reports and can be viewed from the Reports list.  

The statistical data report includes outputs of the Entity, Process, Queue, Resource 

and user specified modules in terms of average, minimum and maximum values. The 

output performance measures of the report include the Value-added (VA) time per 

Entity, waiting time per Entity, total time per Entity, waiting time in each queue, 

number of Entities waiting in each queue, utilisation of each Resource, loads of each 

Entity as well as the total loads. Most of the outputs, apart from the loads for each 

truck, are based on the Resources, namely shovels and dumps, but not on the Entities, 

namely trucks. The details of the inputs and outputs are shown in the following 

sections. 

3.4.6.1 Arena model inputs 

The loading time, dumping time and hauling time inputs are shown in Tables 3-2 

through 3-4. 

Table 3-2 Arena loading time inputs  

Shovel  Loading time (s) 

P3WC Triangular(112, 121, 136) 

P4lobe2 Triangular(161, 181, 201) 
 

Table 3-3 Arena dumping time inputs 

Dump Dumping time (s) 

WD Triangular(26, 42, 62) 

P3WD Triangular(26, 42, 62) 

ROM Triangular(26, 42,62) 
 



Chapter Three: Simulation of Truck-shovel System 

 

60 

Table 3-4 Arena hauling time inputs 

Route Hauling time (s) Truck No. 

Shovel P4lobe2 - Dump WD Triangular(312, 347, 371) 1,2 

Shovel P4lobe2 - Dump ROM Triangular(455.5, 491.5, 514.5) 3,4,5,6 

Shovel P3WC - Station C Triangular(37, 41, 43.5) 
7,8,9,10 

Station C - Dump ROM Triangular(334.5, 370.5, 394) 

Shovel P3WC - Station C Triangular(30.5, 34, 36.5) 
11,12,13 

Station C - Dump P3WD Triangular(276.5, 308, 329.5) 

3.4.6.2 Arena model outputs 

The Arena simulation model was run for 8 hours representing one shift with 100 

replications. Tables 3-5 shows the average number of trucks that enter and leave the 

loading and dump sites, i.e., the number of trucks that have been processed by 

shovels and/or dumps. 

Table 3-5 Number in and out of shovels and dumps 

Location Average number in Average number out 

Shovel P3WC  208.4 207.1 

Shovel P4lobe2  149.8 148.4 

Dump P3WD  93.2 93.2 

Dump ROM  198.7 198.3 

Dump WD  58.5 58.3 

Table 3-6 shows the accumulated loading times and dumping times as well as the 

accumulated waiting times at loading and dump sites. 

Table 3-6 Accumulated process time and wait time (s) 

Location  Average process time Average wait time 

Shovel P3WC  25470 13490 

Shovel P4lobe2  26859 13757 

Dump P3WD  4039 0 

Dump ROM  8587 610 

Dump WD  2536 0 
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By dividing the accumulated values (Table 3-6) by the number of processed Entities 

(Table 3-5), the average processing time and waiting time per Entity (truck) is 

obtained, as shown in Table 3-7. The ratio of the processing time to the waiting time 

per truck at Shovel P3WC is about 1.8, and the ratio of the processing time to the 

waiting time per truck at Shovel P4lobe2 is about 2.0, reflecting the allocation rule 

where more trucks have been assigned to Shovel P3WC. The utilisation of both the 

shovels and dumps is provided in Table AI-3 of Appendix I. The number of truck 

trips for each truck fleet are provided in Table AI-4 of Appendix I. 

Table 3-7 Process time and wait time per Entity (s) 

Location 

Process time per Entity Wait time per Entity 

Average 

Min 

value 

Max 

value Average 

Min 

value 

Max 

value 

Shovel 

P3WC  
123 112 136 65 0 762 

Shovel 

P4lobe2  
181 161 201 93 0 941 

Dump P3WD  43 26 62 0 0 0 

Dump ROM  43 26 62 3 0 59 

Dump WD  44 26 62 0 0 0 

3.5 Simulation of the truck-shovel system with FlexSim 

FlexSim is also a discrete-event simulation software package developed by FlexSim 

Software Products, Inc. (FlexSim, 2017), which provides an object-oriented 

environment for model development. Different types of resources in the simulation 

can be modelled using FlexSim objects. By dragging and dropping the FlexSim 

objects from the object library, the users can layout, connect and functionalise the 

model. All the data and information regarding objects is organised in a hierarchical 

tree structure where the users can customise the objects using both the FlexSim 

Script (FlexScript) and the C++ high level programming language.  

3.5.1 Operational components of the truck-shovel system in FlexSim 

The modelling of a truck-shovel operation using FlexSim consists of the following 

operational components: 
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 Ore or waste: the material handled in the system. 

 Dispatcher: responsible for truck-allocation. 

 Trucks: transport materials between shovels and dumps. 

 Shovels: load the materials into the trucks. 

 Loading and dumping zones: trucks queue outside those areas then follow 

specific spotting methods, such as alternating backing and stopping near the face.  

 Routes: include the distance, level, grade and speed limits of haul routes, and 

represent the layout of the traffic. 

3.5.2 Available objects and functionalities in FlexSim 

The FlexSim objects and functionalities that can be used to simulate the operational 

components in a truck-shovel system are: 

 Flowitems: the objects that move through the model, i.e., the ore and/or waste. 

The Flowitems are generated by a Source object and disposed of/recycled by a 

Sink object. 

 Labels: information such as truck cycle time, loading time, dumping time and 

other operational data can be stored with the Labels functionality. Labels can be 

dynamically altered during the running of the simulation. 

 Ports: an object communicates with other objects through the Ports functionality 

which include Input, Output and Central Ports. If an Output Port of an object 

(object a) is connected with an Input Port of another object (object b), the 

Flowitems will be sent to the object b through the Output Port of the object a. 

The Central Ports are used to create references between two objects, for example, 

a Dispatcher object must be connected to the Central Ports of other Dispatcher 

objects to transfer tasks. 

 Kinematics: the Kinematics functionality allows the users to have an object 

perform travel operations, and each travel operation can have its own 

acceleration, deceleration, startspeed, endspeed, and maximum speed properties. 

The Kinematics functionality can be used to simulate the loading and dumping 

activities by having the shovel and truck components perform the travel 

operations in sequence.  
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 Basic Task Executer (TE): Task Executer objects are used to execute Task 

Sequences which are defined as a series of tasks to be executed in sequential 

order. The Task Executer objects include Operators, Transporters, Cranes, 

Automatic Storage/Retrieval Systems (ASRS) vehicles, Robots and Elevators. A 

Basic TE object is a Task Executer object that can be customised using either the 

FlexSim Script or the C++ high level programming language. The Basic TE 

objects can be used not only to develop trucks that transport Flowitems between 

shovels and dump sites but also to form components of a shovel to execute the 

loading activities. 

 Dispatcher: Task Sequences are sent to the Dispatcher from an object and the 

Dispatcher transfers the Task Sequences to the Task Executer objects that are 

connected to the Dispatcher’s Output Ports or to other Dispatchers through the 

Central Ports. A Dispatcher is a super-class of all Task Executers, thus all Task 

Executers can also act as Dispatchers.  

 Networknodes: the Networknode objects are used to define a network of paths 

that the Basic TE objects follow. The trucks can follow the Networknode paths to 

perform operations including hauling, queuing and spotting. 

 Visual Tool: the Visual Tool object can be used as a container for hierarchically 

organising other objects in a model.  

 MTBF/MTTR: the MTBF/MTTR objects are used to set random breakdown and 

recovery times for groups of objects in the model.  

 Sink: the Flowitems that have passed through the model are sent to a Sink object 

to be disposed of/recycled. 

Since the available objects have the capabilities to perform the movements at a more 

integrated logic level, the truck-shovel system can be represented in a more detailed 

way. The motions such as digging, rotating, loading, unloading and spotting can all 

be captured and represented in 3D animation in FlexSim. Beside the objects 

provided by FlexSim, the FlexSim Script allows the users to develop user-defined 

objects that meet specific needs.  
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3.5.3 Logic flow in FlexSim 

FlexSim is suitable for the modelling method that allows the Flowitems to flow 

through the system. The Flowitems are generated at the loading faces and disposed 

of at the dump sites. The main process is to transport the Flowitems (ore and/or 

waste) with trucks from the loading sites to the dump sites, then send the empty 

trucks back to the loading sites to repeat the cycle, as shown in Figure 3-24. Within 

the cycle, the operational processes such as queuing, spotting and dumping can also 

be simulated. 

 

Figure 3-24 Logic flow of the FlexSim model 

3.5.4 Simulation of truck-shovel components in FlexSim 

Based on the functionality, the truck-shovel simulation model in FlexSim includes 

the following components: Truck Dispatcher, Truck, Loading Zone, Dump Zone and 

States Recording objects.  

Figure 3-25 shows the Task Sequences assignment for the truck operational 

procedures.  
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Figure 3-25 Truck task allocation mode 
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These procedures can be described as follows:  

 Travelling empty procedure 

The Truck Dispatcher object transfers the hauling task to an empty Truck object 

to direct it to a Loading Zone via the Networknodes. 

 Loading procedure 

When the Truck arrives at the Loading Zone, the Loading Zone receives the 

loading task from the Truck Dispatcher to generate Flowitems and to initiate the 

Loader object to operate when the Truck enters the loading area by following the 

spotting routes. 

 Travelling loaded procedure 

After loading, The Truck Dispatcher transfers the hauling task to the loaded 

Truck object to direct it to a Dump Zone via the Networknodes. 

 Dumping procedure 

When the Truck arrives at the Dump Zone, the Truck Dispatcher transfers the 

dumping task to the Dump Zone to control the dumping procedure that includes 

spotting, dumping and leaving the dump area.  

3.5.4.1 Truck Dispatcher 

The Truck Dispatcher object manages the Task Sequences of allocating Trucks to 

Loading Zones, initiating the Loading Zones to execute the loading task, allocating 

the Trucks to Dump Zones, initiating the Dump Zones to execute the dumping task, 

and then re-allocating the Trucks to Loading Zones (see Figure 3-26).  
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Assigning trucks to specific loaders

Passing tasks to Loading objects for 
loading procedure

Assigning trucks to specific dumps

Passing tasks to Dumping objects 
for dumping procedure

 

Figure 3-26 Logic flow of Truck Dispatcher  

To execute the inner logic of the truck-allocation task, the Truck Dispatcher must be 

linked with the Truck, Loading Zone and Dump Zone objects through Ports to allow 

reference data transfers between the Truck Dispatcher and the other objects. The 

Trucks are all connected to the Truck Dispatcher via Output Ports, and both the 

Loading Zones and Dump Zones are linked via Central Ports. These objects can be 

referenced by the indices of the Ports.  

All the task implementation procedures within the Truck Dispatcher were coded 

using the Task Commands in FlexSim Scripts, as shown in Appendix A. 

3.5.4.2 Loading Zone 

The loading procedure is a coordinated operation that involves waiting, spotting, 

loading and exiting. It is executed by a group of hierarchical objects, including the 

Visual Tools, Dispatchers and Basic TEs. The tree structure of a Loading Zone 

object is shown in Figure 3-27 and the 3D view of a working face is shown in Figure 

3-28.  
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Figure 3-27 Tree structure of Working face P4lobe2 

 

Figure 3-28 3D view of Working face P4lobe2 

The Working face P4lobe2 is a Visual Tool object which contains other objects in a 

group to perform the coordinated operations and also links the Loading Zone with 

the Truck Dispatcher. The Working face P4lobe2 is the “parent-node” of the 

following objects:  

 the load zone P4lobe2, which is a Dispatcher object;  

 the Front Shovel P4lobe2, which is a Basic TE object and contains six sub-Basic 

TE objects including Body, Center, Boom, Stick, Dozer, and Clam objects 

(Figure 3-27);  
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 the load spot1 and load spot2, which are Basic TE objects. The Front Shovel 

P4lobe2 object executes the double sided loading operation at the two load spots.  

The main tasks of the above objects are discussed as follows: 

The load zone P4lobe2 receives the Task Sequences from the Truck Dispatcher and 

sends the loading tasks to other objects in the group, i.e., the Front Shovel P4lobe2, 

the load spot1 and the load spot2, and the Truck objects. The load zone P4lobe2 is 

the “control centre” which manages the loading tasks such that the other objects in 

the group execute the respective sub-tasks to accomplish the loading procedure. The 

loading tasks include the following sub-tasks:  

(1) creating Flowitems;  

(2) having the loader (the Front Shovel P4lobe2 object) pick up the first load;  

(3) having the Truck travel to either the load spot1 or load spot2;  

(4) having the loader load the Truck; and  

(5) having the Truck exit from the Load Zone.  

The logic flow of the loading tasks is shown in Figure 3-29. The codes that 

implement these processes are provided in Appendix B. 

Create Flowitems

 Shovel picks up the first 
load

Truck travels to the load 
spot

Shovel loads required passes

Truck exits from load zone

 

Figure 3-29 Logic flow of load zone P4lobe2 
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The Front Shovel P4lobe2 object is responsible for the loading activities. The 

loading activities include the digging, swinging and dumping motions; these motions 

can be simulated by performing the travel operations of the Body, Center, Boom, 

Stick, Dozer and Clam objects using the Kinematics functionality. Once the Front 

Shovel P4lobe2 object receives the loading tasks from the load zone P4lobe2 object, 

the loading operations are executed. The complete codes that specify the loading 

motion are provided in Appendix C. 

The load spot 1 and load spot 2 objects direct the Trucks to the loading spots by 

following the spotting routes, as shown in Figure 3-30.  

 

Figure 3-30 Spotting routes at loading face 

The two loading spots at the loading face, i.e., load spot 1 and load spot 2, are 

occupied by Truck 1 and Truck 11, respectively. Truck 9, 12 and 10 are queuing at 

the node NN42. The route for spotting at load spot 1 is from NN42 to NN43, then to 

load spot 1, and the route for spotting at load spot 2 is from NN42 to NN45, then to 

NN46, then to load spot 2. When the loading is finished, the loaded truck at load spot 

1 exits from the loading area by travelling from load spot 1 to NN43, then onto NN48 

while the truck at load spot 2 goes straight from load spot 2 to NN48, NN49 to 

unload. When Truck 1 finishes loading, the Loader begins to load Truck 11 at load 

spot 2. After Truck 1 leaves the loading area, Truck 9 is allocated to the load spot 1 

for loading, and when Truck 11 finishes loading and leaves the loading area, the load 

spot 2 is occupied by Truck 12. The loading spots being occupied by the queuing 
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Trucks in an alternate way is executed using the command line “insertproxytask 

(TASKTYPE_CALL SUBTASKS, current object …)”. This command initiates the 

linked objects, i.e., the load spot 1 and load spot 2 objects, dynamically depending 

on which one is available. Once a particular load spot object is initiated, the Truck 

can be directed to that load spot. 

3.5.4.3 Dump Zone 

The dumping procedure includes the waiting, dumping and exiting operations. This 

is similar to the loading procedure except that the dumping operation is 

accomplished by the Truck. The Dumping Site ROM object contains three Basic TE 

objects including the Dump Zone ROM, dump spot 1 and dump spot 2 objects, as 

shown in Figure 3-31. 

Dumping Site 
ROM

Dump Zone 
ROM

dump spot 1

dump spot 2

 

Figure 3-31 Tree structure of Dumping Site ROM 

The Dumping Site ROM object is a Visual Tool object used to locate the dump and 

organise the group of the Dump Zone ROM, dump spot 1 and dump spot 2 objects. 

The Dump Zone ROM object, as a “child-node” in the tree, acts as the “control centre” 

which allocates the dumping tasks including: 

(1) having the dump spot 1 and dump spot 2 objects to direct Trucks to enter and exit 

from the dump area, and 

(2) having Trucks perform the dumping operation.  
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The dump spot 1 and dump spot 2 objects receive the entrance tasks and direct the 

Trucks to the dumping spots, and then the Trucks objects receive the dumping tasks 

and execute the dumping operation; after that, the dump spot 1 and dump spot 2 

objects direct the Trucks to exit from the dump area. By specifying the travel 

operations of the Truck components, the dumping activities including lifting and 

lowering the truck bed can be simulated with the Kinematics functionality. The 

unloaded Flowitems (ore/waste) end up in the Sink object. The FlexSim Scripts for 

the dumping procedure are provided in Appendix D. 

3.5.4.4 States Recording 

FlexSim is able to model systems which change their state at the time discrete events 

occur. Common states in FlexSim can be classified as idle, busy, blocked, or down. 

In the truck-shovel system, the state parameters for Trucks are: 

 MINING_STATE_TRAVEL_TO_LOADZONE 

 MINING_STATE_TRAVEL_TO_DUMPZONE 

 MINING_STATE_QUEUE_AT_LOADZONE 

 MINING_STATE_QUEUE_AT_DUMPZONE 

 MINING_STATE_SPOT_AT_LOADZONE 

 MINING_STATE_SPOT_AT_DUMPZONE 

 MINING_STATE_WAIT_FOR_LOAD 

 MINING_STATE_LOADING 

 MINING_STATE_DUMPING 

 MINING_STATE_EXIT_LOADZONE 

 MINING_STATE_EXIT_DUMPZONE 

 BREAKDOWNS 

The state parameters for Loaders are: 

 MINING_LOADER_IDLE  

 MINING_LOADER_LOADING  

 BREAKDOWNS 
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The states of the Trucks and Loaders are assigned to the Label items while the 

simulation is running. Each state has two variables which are associated with the 

simulation time clock, one for the beginning time of a particular state and the other 

for the end time of that state. The difference between the two time variables is the 

duration of this state, and is added to the corresponding state Label. For example, 

when a Truck arrives at a Loading Zone and begins to queue, the simulation time is 

captured by one variable within the Truck state, i.e., MINING_STATE_QUEUE_AT 

_LOADZONE, and when the Truck finishes queuing, the simulation time is captured 

by the other variable with the difference between the two variables calculated and 

then added to the Label called MINING_STATE_QUEUE_AT_ LOADZONE in this 

Truck object. The states generated by BREAKDOWNS via the MTBF/MTTR object 

are also recorded in Labels. 

3.5.5 Animation in FlexSim 

Figure 3-32 shows an example of the 3D animation of the loading operation in 

FlexSim.  

 

Figure 3-32 3D view of loading 

The 3D files of the Truck and Loader objects were from the FlexSim Community 

Forum (Peterson, 2008). The 3D animation and the logic behind the animation are 

integrated in FlexSim. For the loading procedure, the motions of Loaders, including 
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digging, lifting, rotating, lowering and dumping, are demonstrated; the motions for 

the truck dumping procedure are also demonstrated in this case.  

3.5.6 Inputs and outputs in FlexSim 

The main input parameters contain the dig time of each loader (for one truck load), 

loading frequency, dump delay, speed of empty truck and loaded truck, speed at load 

zone and dump zone. The simulation results are recorded in the state Labels in each 

object. The information for each truck includes the travel time to load zone, waiting 

time at load zone, spot time at load zone, loading time, exit time at load zone, travel 

time to dump zone, waiting time at dump zone, spot time at dump zone, dumping 

time and exit time at dump zone. The information for loaders includes the idle time 

and loading time. The details of inputs and outputs are shown in the following 

sections. 

3.5.6.1 FlexSim model inputs 

To have similar input specifications as the Arena model, the loading frequency is set 

to 3, and the value of the digging time is one third of the loading time in the Arena 

model, as shown in Table 3-8. 

Table 3-8 Shovel digging inputs 

Parameters Value 

Digging time of Shovel P3WC (s) Triangular(37.3, 40.3, 43.5) 

Digging time of Shovel P4lobe2 (s) Triangular(53.7, 60.3, 67) 

Passes per Truck  3 

Input parameters for truck hauling speed are estimated by dividing route distances by 

respective travelling times in the Arena model. Since there are four routes, including 

P4lobe2 - WD, P4lobe2 - ROM, P3WC - ROM, P3WC - P3WD, the speed 

parameters are separated into four groups, as shown in Table 3-9. 
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Table 3-9 Truck speed inputs 

Route Truck State Speed (m/s) 

Shovel P4lobe2 - Dump 

WD 

Empty 1.56 

Loaded 1.41 

Shovel P4lobe2 - Dump 

ROM 

Empty 4.01 

Loaded 3.72 

Shovel P3WC - Dump 

ROM 

Empty 5.1 

Loaded 4.6 

Shovel P3WC - Dump 

P3WD 

Empty 3.98 

Loaded 3.57 

Other assumed input data are as follows: 

Speed at load zone/dump zone = 1 m/s; 

Dumping time = Triangular (26, 42, 62) s; 

3.5.6.2 FlexSim model outputs 

The FlexSim simulation model was run for 8 hours representing one shift and each 

run was implemented with 30 replications. Table 3-10 shows the results of the 

accumulated travelling time, waiting time, loading time and dumping time of all the 

trucks. Table 3-11 shows the accumulated loading time and idle time of shovels. The 

times of each operation for all the trucks per shift are provided in Table AI-5 of 

Appendix I. The total trips of each truck are provided in Table AI-6 of Appendix I. 

Table 3-10 Accumulated truck operational time (s) 

Route 
Truck 

No. 

Travel 

time 

Waiting 

time 

Loading 

time 

Dumping 

time 

P4lobe2 – 

WD 

1 18519 55 5182 5005 

8 18589 353 4984 4751 

P4lobe2 – 

ROM 

9 19188 1633 4095 3590 

10 18801 2236 4042 3525 

11 19282 1390 4255 3606 

12 18907 1981 4027 3613 
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P3WC – 

ROM 

2 17949 1118 4709 4664 

3 17890 1487 4533 4684 

4 18149 1252 4653 4686 

13 18241 915 4731 4733 

P3WC – 

P3WD 

5 17602 333 5793 4864 

6 17520 655 5583 4897 

7 17345 934 5476 4849 

Table 3-11 Accumulated shovel operational time (s) 

Shovel No. 
Idle 

time 

Loading 

time 

Parking 

time 

Shovel P4lobe2 7705 20285 742 

Shovel P3WC 5894 22226 591 

3.6 Comparison between the Arena and FlexSim modelling methods 

The differences as well as the advantages and disadvantages of the two modelling 

methods are discussed below: 

1. Material flowing mode 

In the Arena model, trucks circling around the system are represented by the 

Entities, and there is no ore or waste in the system, the production of the 

materials is determined by the trips of the Entities, which means the amount of 

each load is fixed in the model. In the FlexSim model, the modelling level is 

more detailed. The ore (waste) is represented by the Flowitems which are loaded 

by the loaders and transported by the trucks. This modelling approach reflects the 

actual material handling process. Not only can the amount of each load be 

simulated in a random manner but also the dumping time can be reflected in a 

more accurate way depending on the size of the load in the truck beds. 

2. 3D environment 

In the Arena model, the logic model is limited to a 2D environment. Even though 

a 3D view is available in more recent versions, while based on the logic of the 
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2D model, this 3D view is actually a 2D model with a 3D appearance. The 2D 

model also limits modelling the motions of the shovels and trucks in Arena. In 

the FlexSim model, both the animation and the modelling are integrated in the 

3D environment. Thus it is a true 3D model. The spatial coordinates are easy to 

build in FlexSim and the motions of the loaders and trucks can be simulated. 

3. Model unit 

In the Arena model, modules are the basic logic units, existing at the most 

fundamental logic level. These modules are able to perform the elementary 

simulation processes such as delaying, deciding, recording and creating, rather 

than the integrated material handling processes. On the other hand, the modelling 

units in the FlexSim model, i.e., objects, are more like functional units integrated 

with the basic logic to perform the common material handling operations, for 

instance, loading, unloading and transporting.  

4. Model connection and communication 

In the Arena model, the connections between modules are maintained by 

connection lines which are the flow paths of Entities in the logic, but there is no 

data connection between the modules. Though the variables or sets can be used 

in some modules, the references to the modules are not available. In the FlexSim 

model, the connections between the objects are similar to that in Arena. However, 

the Ports allow the object to refer to other objects so that the data can be shared 

by other objects that are connected by the Ports. The Dispatcher and Basic 

Transport Entity are capable of assigning tasks to make coordinated task 

sequences that allow complex behaviours, such as the loading, unloading motion 

and spotting process, to be simulated in FlexSim. 

5. Information storage 

In the Arena model, the information can be stored in many forms, such as 

variables, sets, entity attributes and so on, but not all the data storages can be 

referenced. In the FlexSim model, the information is mainly stored in a Label 

which is actually a tree structure of an object. The information stored in the 
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Labels in different levels is easily referenced. Therefore in FlexSim it is much 

easier to record the states of each object when compared to Arena. 

6. Truck-allocation method 

In the Arena model, the truck-allocation sequences are set in the Sequence 

module prior to model execution, thus only the fixed truck-allocation rule can be 

directly applied in the Arena model. When the Entities are transported, they 

follow certain routes set in the Sequence data module. In the FlexSim model, the 

truck-allocation strategies are set in the Dispatcher object by Task Sequence 

commands. It is possible to modify the truck-allocation strategies in the Task 

Sequence according to the tasks allocated by other objects.  

7. MTBF/MTTR 

In the Arena model, the MTBF/MTTR can be applied to the Resources by using 

the Failure modules, but the MTBF/MTTR is not available for the Entities in the 

model, meaning that configuration of truck breakdowns has to be indirect. In the 

FlexSim model, there is a MTBF and MTTR object that can be directly applied to 

all the objects in the model. 

8. Model inputs and outputs 

In the Arena model, the shovel loading time and truck dumping time are set, 

respectively, in the Shovel and Dump modules as stochastic distributions. The 

truck travelling times are set as stochastic distributions of truck hauling times on 

various haul routes. Thus the trucks hauling on the same route share the same 

travelling time parameters. However, in the FlexSim model, the loading 

frequency for each truck is specified and the loading time input is for one load. 

The truck hauling speeds are set for truck hauling inputs, including speeds for 

empty and loaded trucks to travel along haul routes and within load zones and 

dump zones. 

Although the Arena model provides reports with statistical analysis relating to 

the performance of the truck-shovel system, those results are limited in the 

Resources like queues, shovels and dumps, and the detail of the performance of 
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trucks is not accessible. It is difficult to estimate the impact of detailed 

operational procedures on productivity. However, the results generated by the 

FlexSim model are based on the states of each object; the data about the detailed 

operational procedures is recorded and accessible so that it is possible to analyse 

the influence of operational variables on the system performance. 

3.7 Summary 

When comparing the two modelling approaches, i.e., the process-interaction and the 

object-oriented approaches, it is clear that Arena and FlexSim both provide some 

advantages, such as integrated model units, MTBF/MTTR, experiment designs, and 

friendly GUIs. While this functionality is convenient for modelling general and 

standardised material handling processes within the framework of the simulation 

software. A truck-shovel mining system involves more highly interactive and 

stochastic operational variables due to its specific operational constraints. This is an 

environment quite different from general manufacturing or warehousing systems. 

The object-oriented modelling approach is considered more suitable for the 

development of a truck-shovel mining system. However, there are some significant 

disadvantages in using either of the two simulation software for modelling a truck-

shovel mining system:  

Both Arena and FlexSim are not designed exclusively for the truck-shovel mining 

operation, thus the modelling of operational components in the truck-shovel mining 

system, for instance, shovel, dump and truck, are significantly limited in the 

functional framework of the model units provided by Arena and FlexSim. First of all, 

the model input/output fundamentally restrains the modelling pattern. In both Arena 

and FlexSim, the input for truck configuration determines the truck hauling speed, 

and the truck speed or hauling time is set directly by users. However, the actual truck 

performance is dynamically influenced by both the truck configuration and haul 

route conditions. The truck speed or hauling time is determined by the inputs of 

truck configurations, such as, truck capacity, truck performance and retarder curves, 

loading amount, and route parameters, such as, grade, rolling resistance, and the 

dynamic traffic conditions that include traffic intersection management and route 

section speed control. Therefore, a more detailed model that considers the actual 
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operational constraints in the truck-shovel mining system is difficult, if not 

impossible, to build using only the given model units. Furthermore, there are 

significant limitations for data communication among model units in both Arena and 

FlexSim. The data communication depends on the connection between the model 

units, for example, in FlexSim, the information can only be shared between the two 

objects if they are connected via Ports. However, access to information for all the 

operating units and the entire traffic environment is necessary for a highly interactive 

and dynamic truck-shovel mining system, especially when used for the purpose of 

truck-allocation.
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CHAPTER FOUR  

DEVELOPMENT OF JAAMSIM SIMULATION 

MODEL 

4.1 Why JaamSim? 

Most commercial simulation software packages, such as Arena and FlexSim, are not 

designed exclusively for truck-shovel earth-moving or mining system. It is difficult 

for such commercial simulation software to capture the specific and dynamic 

operational features and constraints of a truck-shovel mining system, especially 

when the modelling needs to be detailed enough to represent microscopic traffic 

movements. Some commercial simulation software packages that are designed 

exclusively for a truck-shovel mining system are still not sophisticated enough for 

the modelling of the dynamic and interactive aspects of a truck-shovel haulage 

network system. For instance, TALPAC (RPMGlobal Holdings Ltd., 2018a) can only 

model one single loading unit at any one time; Caterpillar’s Fleet Production and 

Cost Analysis (FPC) simulator supports only mean value inputs for the loading and 

dumping times. RPMGlobal’s HAULSIM (RPMGlobal Holdings Ltd., 2018b) 

integrates both the TALPAC equipment database and the discrete-event simulation 

engine from FlexSim. HAULSIM includes multi-loader and truck analysis, full 

network travel time determination, modelling of congestion and queuing, display of 

dashboard results and 3D visualisation. However, HAULSIM is a closed source 

commercial simulation software which does not allow users to create their own 

modelling objects. 

According to King and Harrison (2013), there are two types of modelling objects in 

simulation software designated as either low-level objects or high-level objects. 

Low-level objects have a broad application, such as for queues and servers. On the 

other hand, high-level objects have a more specific application, for example the 

Processor, Combiner, Separator, Transporter, Elevator and Crane objects in FlexSim. 

In practice, complex models can be built more easily using high-level objects. 
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JaamSim (Java Animation Modelling and Simulation), as a free open source 

discrete-event simulation software developed by Ausenco (JaamSim, 2018), allows 

users to create their own palettes of high-level objects for new applications. This is 

the key feature that distinguishes JaamSim from commercial off-the-shelf simulation 

software packages. Although some commercial simulation software packages 

provide a programming interface for creating new objects, the embedded 

programming environment is not able to provide the necessary programming and 

debugging tools for object-oriented programming languages, especially when 

thousands of lines of computer programming code are required to capture the details 

of a complex system. However, JaamSim provides the capability of developing new 

objects in the standard Java programming language with Eclipse, which is currently 

the most widely used Java integrated development environment (IDE) with features 

that include easy navigation, error debugging, auto completion and refactoring. New 

objects can be programmed with 3D graphics and the Input Editor and Output 

Viewer, and can be dragged-and-dropped for direct usage. 

JaamSim offers a highly effective simulation engine and allows users to establish 

their own high-level modelling objects for complex operating systems. Therefore, 

with the aid of JaamSim, the special functionality of the model objects that are based 

on the actual truck-shovel operational elements and conditions can be developed, and 

a flexible and customised truck-shovel mining system model can be built using these 

objects. The loader, truck, dump, and the traffic environment, such as haul routes, 

traffic intersections, can all be developed as model objects involving all the 

necessary operational constraints. The interactions between the objects, for example, 

the interaction between the individual trucks and the interaction between the hauling 

trucks and the traffic environment, can be specified in detail. 

4.2 Features of JaamSim 

A basic knowledge of the JaamSim architecture and the development environment is 

required to build a truck-shovel mining system using the JaamSim software. This 

section introduces the basic features of JaamSim mainly from the aspect of the GUI, 

3D graphics and discrete-event simulation. 
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4.2.1 GUI 

Figure 4-1shows the six windows that make up JaamSim’s GUI: 

Control Panel ‒ controls the execution of models and provides access to other GUI 

components. 

View Window ‒ shows 3D views of the model. 

Model Builder ‒ holds a library of model components. 

Object Selector ‒ provides access to each object in the model. 

Input Editor ‒ allows for the editable inputs of the selected object. 

Output Viewer ‒ displays the outputs to the selected object. 

 

Figure 4-1 JaamSim GUI 
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4.2.1.1 Control Panel 

The Control Panel (Figure 4-2) controls the progress of a simulation run and 

displays output to the monitor. The panel can be divided into the menu bar, tool bar, 

and status bar. The menu bar includes file management, tools display, views control, 

options and help. The tool bar contains controls for manipulating the simulation run, 

i.e., starting, pausing, resetting a simulation model and controlling the execution 

speed and the 3D view for the View Window. The status bar displays the progress 

and status of a simulation run. 

 

Figure 4-2 JaamSim Control Panel 

4.2.1.2 View Window 

The View Window displays a graphical representation of a simulation. Multiple View 

Windows can be used to depict different aspects of a model. Some graphical objects 

shown in the default View Window, e.g., XY-Grid, XYZ-Axis, Logo, Title, and Clock, 

can be modified through the Input Editor. 

4.2.1.3 Model Builder 

The Model Builder provides a list of objects that can be dragged and dropped to 

develop a new model or modify an existing one. Once an object has been created, its 

parameters are entered using the Input Editor. Six different types of model objects 

are provided by JaamSim, as shown in Figure 4-3: 

Graphics Objects ‒ creates 3D objects, pictures, text, graphs, arrows, and other 

visual components needed to visualise and monitor a simulation. 

Probability Distributions ‒ provides a selection of theoretical statistical distributions 

including uniform, triangular, normal, exponential, erlang, gamma, beta, weibull, 

lognormal and log-logistics distributions as well as user-defined distributions. 
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Basic Objects and Process Flow ‒ contains a number of simple objects that can be 

used to create process flow simulation, similar to the objects provided by 

commercial simulation software packages such as Arena and Simio. These objects 

include SimEntity, ReporterGenerator, EntityLogger, EntityGenerator, Server, 

EntitySink, EntityConveyor, EntityDelay, Assign, Queue, Seize, Release, Resource, 

Branch, Pack and Unpack. 

Calculation Objects ‒ contains mathematical calculation formulas to calculate values 

from simulation results. 

Fluid Objects ‒ provide objects for fluid simulation. 

 

Figure 4-3 JaamSim Model Builder 

4.2.1.4 Object Selector 

The Object Selector, as shown in Figure 4-4, contains all the objects that have been 

created for the current model and are organised in a tree format. The objects created 

in the model can be selected either by clicking its node in the Object Selector or by 

clicking the object in a View Window. Operations such as renaming and deleting 

objects can be executed from the Object Selector. 
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Figure 4-4 JaamSim Object Selector 

4.2.1.5 Input Editor 

Figure 4-5 shows the Input Editor which allows the user to modify and assign 

parameters for objects in the model. When an object is selected, its parameters are 

shown in the Input Editor window, grouped under a number of tabs. The input table 

contains Keyword, Default and Value columns. The Keyword includes the names of 

parameters, for example, Position, Alignment, Size, etc. The default values for each 

parameter are pre-set in the Default column. Assigned value can be modified by 

clicking on the Value column and entering a new value. 

 

Figure 4-5 JaamSim Input Editor 
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4.2.1.6 Output Viewer 

The Output Viewer shows the updated outputs for the selected object continuously as 

the simulation progresses. The Output Viewer contains Output and Value columns. 

Users can define their own Attributes in the Output Viewer. The Output Viewer, as 

shown in Figure 4-6, is the basis for all model graphics and reports. 

 

Figure 4-6 JaamSim Output Viewer 

4.2.2 3D graphics 

JaamSim offers 3D graphics through a built-in rendering system that uses the JOGL2 

implementation of OpenGL graphics for Java (King and Harrison, 2013). Each 

object is displayed in 3D graphics in real time and is fully interactive. Complex 

graphical models created using Autodesk 3ds Max, Maya or AutoCad can be 

converted to Collada files (.dae) and imported into Jaamsim. The JaamSim rendering 

system was designed to operate independently from the simulation logic with the 

aim of improving execution speed. The 3D rendering sub-programme runs on a 

separate thread and interacts with the simulation only at the start of each rendering 

cycle gathering the relevant simulation information. 
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4.2.3 Discrete-event simulation approach 

JaamSim contains a number of objects and functions

 to implement simulated time 

and to coordinate multiple simultaneous processes with convenient tools that are 

fully-integrated with the underlying Java programming language. Using common 

basic discrete-event simulation logic, JaamSim maintains two master lists:  

 Future Events. A list of future events sorted in order of increasing event time and 

priority. 

 Conditional Events. A list of conditional events sorted in order; the first 

conditional event on top of the list is tested first. 

The execution follows the steps below: 

1. Start the simulation run. 

2. Pull the events whose event time is equal to the current time from the Future 

Event List and execute them one by one. 

3. Test each conditional event on the Conditional Event List one by one. If the 

condition is satisfied, the event is pulled from the list and is executed. 

4. Advance the current time for the next event on the Future Event List. If this time 

does not correspond with the end of run time, return to step 2; otherwise continue 

to step 5. 

5. End of the simulation run. 

Table 4-1 lists the Entity functions that start and maintain new processes (functions 

or methods). 

  

                                                 
 In the Java programming language, a method is the same as a function in other high level programming languages. 
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Table 4-1 Creating a process (a function or method) 

Function/Method Description 

startProcess (function, arg1, 

arg2, … ) 

A new process created allows the function 

to be executed in parallel to the original 

function, rather than in series. 

scheduleProcess (dur, function, 

arg1, arg2, … ) 

The given function is called after the 

specified delay. 

getSimTime () Returns the current simulation time. 

simWait ( dur, pri ) 
Stops the execution of the current function 

for the given duration of simulation. 

While ( condition) { 

    waitUntil (); 

} 

waitUntilEnded () 

Stops execution of the current function until 

the given condition is FALSE. 

simWaitLas () 
Stops execution of the current function until 

all other events have been executed. 

getProcess () 
Returns the active process executing the 

function. 

interruptProcess (process) 
Interrupts the given process and causes its 

next event to be executed immediately. 

killProcess (process) Terminates the given process. 

JaamSim provides the following basic simulation object classes to implement the 

discrete-event simulation logic: 

 EventManager: maintains simulated time and the list of future and conditional 

events. 

 Entity: the basic object for the simulation. 

 Process: a sub-class of a thread that allows for the simultaneous executions of 

functions of the Entities. 
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4.3 Development of truck-shovel system model 

The truck-shovel mining system is a highly interactive and dynamic material 

handling system. The basic operational elements in the truck-shovel system include 

loading units (shovels), dump sites/stockpiles, trucks, haul routes and a dispatcher. 

Figure 4-7 shows the mutual interactions between operational units.  

 

Figure 4-7 Interactions between operational units 

A truck interacts with the shovel, the dump/stockpile, the route, the dispatcher and 

other trucks in the system, resulting in queuing, bunching and operational delays 

under certain traffic conditions. The loading time and loading amount are stochastic 

variables which are usually affected by truck type, shovel type, material 

characteristics, and the operator’s skill. The truck travelling times are dynamically 

influenced by both truck parameters, such as the performance curve and truck gross 

weight, and the haul routes design and conditions. Furthermore, the traffic 

constraints, including the bunching and the intersection traffic management, also 

have an impact on the truck performance.  

In order to correctly capture the dynamic and interactive nature of a truck-shovel 

mining system, new objects were exclusively designed for such a system using the 

Java programming language. In this thesis, a flexible Truck-Shovel JaamSim 

Simulator (TSJSim) was developed for estimating the impact of operational elements 

on the performance of the truck-shovel system. TSJSim considers the stochastic, 

dynamic and interactive features of a truck-shovel network system. Twelve new 

objects shown in Figure 4-8 were developed for modelling a typical truck-shovel 

mining network system. The main simulation model objects are: OreGenerator, 

OreSink, OreEntity, Truck, Loader, Dump, Queue, Route, RouteIntersection, Route-

SafeZone, Truck-allocationStrategy and LoaderOperator.  
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The main functionality of each of these model objects is summarised in Table 4-2. 

 

Figure 4-8 TSJSim model objects 

Table 4-2 Functionality of TSJSim model objects 

Model objects Description Functionality 

OreEntity 

Flows through the system 

as the material 

transported by the Truck. 

Properties such as shape, weight, can 

be assigned. 

OreGenerator 
Generates the OreEntity 

consistently. 

The first/inter arrival time and the 

maximum amount of the OreEntity 

can be set. 

OreSink Dispose of the OreEntity. 
 

Queue 

Works as a storage area 

for the Truck at the 

loading site or dump 

when the Loader or the 

Dump is busy. 

Collects the information about the 

queuing trucks including the number 

of queuing trucks and waiting times. 

Loader 

Receives the OreEntity 

from the OreGenerator, 

processes it and sends it 

to the Truck when the 

Truck is ready. 

1. The loading time and loading 

amount can be specified according to 

the capacity of the truck, the bucket 

capacity of the shovel, the truck 

spotting time, fill factor, swell factor, 

material density, and the shovel 

working cycle time. 

2. Operators with different skills can 

be assigned to the Loader to reflect 

the varied performance of the 

Loader. 
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LoaderOperator 

Influences the 

performance of the 

Loader. 

Working cycle time and working 

hours for each LoaderOperator can 

be set. 

Dump 
Receives the OreEntity 

from the Truck. 

Dumping time varies according to 

the size of the Truck and the weight 

assigned to the OreEntity. 

Truck 

Transports the OreEntity 

between the Loader and 

the Dump on the Route. 

1. The speed of the Truck is set by 

considering the Truck's 

configurations, such as dimension, 

weight, capacity, performance and 

retarder curves, and the Route's 

condition including rolling resistance 

and grade. 

2. The mutual influence of the Truck 

has been considered. The bunching 

effect resulting from mixed 

equipment with varied capacities has 

been considered. 

Route 
The track on which the 

Truck is hauling. 

The spatial coordinates of the Route, 

the rolling resistance and the 

coefficient of traction for each 

segment can be specified. 

RouteIntersection 
The intersection of the 

routes 

By combining the RouteIntersection 

and the Route, the traffic network 

forms. 

RouteSafeZone 

The abstract area that 

implements the traffic 

management rules. 

1. The priority of the Route, namely 

the main road for production, can be 

set, so that the trucks hauling on the 

main road have higher priority for 

passing through the RouteSafeZone 

area. 

2. The traffic rules for trucks to pass 

through the intersection area can also 

be specified, for instance, the priority 

for heavy truck. 

Truck-allocation 

Strategy 

Assigns the Truck under 

certain truck-allocation 

rules. 

The truck-allocation rules are: 

1.Fixed truck assignment; 

2.Minimising truck waiting time; 

3.Minimising truck semi-cycle time; 

4.Minimising shovel production 

requirement. 

4.4 Structure of TSJSim framework 

TSJSim contains three levels of class hierarchy: the first level is the basic simulation 

object Entity. All the newly created model objects in TSJSim are subclasses of the 
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Entity class, which encapsulates the functions and data needed to create a simulation 

object and to achieve a discrete event simulation. The second level is the 

TLinkedComponent which is based on the Entity class to form a chain of components 

that process all the simulation objects passing through the system. It functions as an 

abstract class that receives the specified Entity from an upstream component and 

sends the Entity to the next component downstream. The third level is the subclasses 

of TLinkedComponent, referred to as the TDisplayEntity, which includes the basic 

truck-shovel simulation objects for the TSJSim model, i.e., OreGenerator, OreSink, 

OreEntity, Truck, Loader, LoaderOperator, Dump, Route, RouteIntersection and 

RouteSafezone. Figure 4-9 shows the three-level model structure of TSJSim. 

 

Figure 4-9 Three-level model structure of TSJSim 

From a modelling point of view, the truck-shovel mining system was considered as a 

material handling system in which the material mined (Entity) flows through the 

system, with the trucks hauling this material in the system (between loaders and 

dumps). The basic logic flow of the truck-shovel system model in TSJSim is shown 

in Figure 4-10.  

 

Figure 4-10 Flow process chart of the truck-shovel system model in TSJSim 

The OreEntity object (material mined) is generated by the OreGenerator object, and 

processed at the Loader object, and then transported by the Truck object from the 

Loader object to the Dump object through the Route object. The travelling speed of 
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the Truck object is influenced by both the condition of the haul routes and the 

operational factors of the truck. When the Truck object arrives at the Dump object, 

the OreEntity object is sent to the OreSink object to be disposed of, and the empty 

Truck object is sent back to the Loader object, completing a single truck cycle.  

In this process, firstly the OreEntity is processed by the Loader as the loading 

procedure, then sent to the Truck to be processed as the hauling procedure, finally 

sent to the Dump to be processed as the dumping procedure. The Truck not only 

processes the OreEntity but is also being processed when the empty Truck returns 

from the Dump. The Route object, including the RouteLoaded (the route for the 

loaded hauling truck) and the RouteEmpty (the route for the empty hauling truck), is 

not a processor but only provides the route parameters that influence the hauling 

time of the Truck.  

4.4.1 TLinkedComponent object 

The TLinkedComponent object provides the basic functionality of connecting the 

objects, namely sending one object to another. According to the logic of the material 

handling process, the following three types of functions are required for the 

TLinkedComponent object: 

1. Sending an OreEntity to a Loader, Dump or OreSink object 

The Java code is as follows: 

// For transporter to send entity to next component input from upstream. 
sendToNextComponent(DisplayEntity ent, TLinkedComponent nextcom) { 

  nextcom.addDisplayEntity(ent); 

 } 

The sendToNextComponent(DisplayEntity, TLinkedComponent) function is 

implemented under the following situations: 

 When the OreEntity is sent from an OreGenerator to a Loader. 

 When the OreEntity is sent from a Truck to a Dump. 

 When the OreEntity is sent from a Dump to an OreSink. 
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Parameter ent refers to OreEntity and parameter nextcom refers to the component 

to receive the OreEntity. The addDisplayEntity(DisplayEntity) function adds the 

OreEntity to the specified objects including the Loader, Dump and OreSink.  

2. Sending a Truck to a Loader or Dump object 

The Java code is as follows: 

// For loader to send transporter to 'itself'(not to route). 
sendTransToNextComponent(TTransporter trans, TLinkedComponent nextcom){ 

 nextcom.addTTransporter(trans); 

} 

The sendTransToNextComponent(TTransporter, TLinkedComponent) function is 

executed when a Truck arrives at either a Loader or a Dump. The add-

TTransporter(trans) function sends the Truck to either the Loader or Dump 

object. When the Loader or Dump receives a Truck, the Truck is added to the 

Queue for Trucks.  

3. Sending an OreEntity to a Truck 

The Java code is as follows: 

// For loader to send entity to transporter. 
sendEntityToTrans(DisplayEntity ent, TLinkedComponent trans, 
TLinkedComponent nextcom, TRoute route){ 

  trans.addDisplayEntity(ent, nextcom); 

 } 

The sendEntityToTrans(DisplayEntity, TLinkedComponent, TLinkedComponent, 

TRoute) function is called to send an OreEntity to the Truck when a Truck arrives 

at a Loader and is ready to be loaded, i.e., there is no other Trucks in front of this 

Truck in the Queue for Trucks. The destination of the OreEntity, i.e., parameter 

nextcom, and the haul route, i.e., parameter route, are also assigned to the Truck 

for further use. 
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4.4.2 OreGenerator object 

The OreGenerator object creates a sequence of OreEntities at arrival intervals 

defined by the user. The key input parameters to the OreEntity sub-programme are: 

1. NextComponent: the next object to which the processed OreEntity is passed, i.e., 

a Loader object. 

2. FirstArrivalTime: the arrival time for the first generated Entity. The time can 

have a constant value or a value sampled from a user-defined statistical 

distribution, or a Time series object defined by the user. 

3. InterArrivalTime: the inter-arrival time between generated Entities. The time can 

have a constant value or a value sampled from a user-defined statistical 

distribution, or a Time series object defined by the user. 

4. PrototypeEntity: the prototype for Entities to be generated. The generated 

Entities would be duplicates of the Entity. 

5. MaxNumber: the maximum number of Entities to be generated. Default is no 

limit. 

Figure 4-11 shows the process logic for generating OreEntities. If there is no 

OreEntity in the system, i.e., the variable numberGenerated equals 0, then the 

FirstArrivalTime is used as the delay time for generating the first OreEntity; 

otherwise, the InterArrivalTime is used. When an OreEntity is created, the 

numberGenerated is increased by 1. If there are more than two OreEntities blocked 

at the OreGenerator, the OreGenerator will stop generating OreEntities. Otherwise, 

the OreGenerator will send the generated OreEntity to a Loader and keep generating 

OreEntities until the simulation is terminated. 
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Figure 4-11 Flowchart for generating OreEntities 

4.4.3 Loader object 

The Loader object receives the OreEntity object from the OreGenerator object, 

processes it and then sends it to the Truck object. The key input parameters to the 

loading sub-programme are: 

1. NextComponent: the next object for a Loader which is a Dump object. 

2. Transporter: the truck(s) assigned to the Loader. Multiple Truck objects can be 

selected. 

3. ServiceTime: the service time required to process an OreEntity. The service time 

can have a constant value or a value sampled from a user-defined statistical 

distribution, or a Time series object defined by the user. The loading time is 

determined by this input data only if the Operator’s input is left blank. 

4. Operator: the loader operators assigned to the Loader object. Multiple Operator 

objects can be selected and once selected, the loading time is determined by the 

work cycle time of the operators. 
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5. QueueforOreEntity: the queue in which the OreEntity is placed. 

6. QueueforTruck: the queue in which the Truck is placed. 

7. BucketCapacity: the capacity of the loader bucket. 

8. FillFactor: the fill factor of the loader bucket.  

9. SwellFactor: the material swell factor. 

10. Density: the material density. 

11. PredefinedProduction: the amount of production target allocated to the loader. 

The main outputs include:  

1. TotalProduction: the production of the loader or the tonnage of the OreEntities 

processed by the loader during the simulation time. 

2. Busytime: the time duration in which the loader is busy loading a truck. 

The loader starts the loading procedure only if there is a truck in the queue. In the 

TSJSim model, the loading procedure consists of two functions: the 

ProcessQueuedEntity and the RemoveDisplayEntity functions. As shown in Figure 

4-12, firstly the ProcessQueuedEntity function checks whether there are any 

available trucks in the queue ready for the loading procedure. If not, the loading 

process is delayed until there is a truck in the queue; otherwise, three sub-processes 

are implemented to determine the loading time, apply shift change and collect 

simulation data such as queuing time. After the loading time delay, the 

RemoveDispayEntity function is called to send the OreEntity to the Truck as well as 

sending the Truck to a Dump object via the haul route for the hauling process. Then 

the sub-programme returns to the ProcessQueuedEntity function to start another 

loading procedure. 
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Figure 4-12 Flowchart for loading sub-programme  

The following three sub-processes in the ProcessQueuedEntity function are 

responsible for the loading process, shift change and simulation information 

collection: 

1. Loading time delay 

The loading time can be obtained either directly from the ServiceTime input data 

or calculated based on the work cycle time of the loader operator according to 

Equations (2.2) and (2.3) discussed in Chapter 2. Figure 4-13 shows how the 

loading time is determined. If the ServiceTime input is left blank (i.e., 

ServiceTime is null), then the loading time,  , is determined from the number of 

loads,  , the operator’s work cycle time, and/or the truck spot time (on the 

condition that the truck spot time is less than the work cycle time).  
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Figure 4-13 Flowchart for loading time calculation process  

2. Shift change 

The shift change sub-programme changes the shovel’s operator at the end of a 

shift. The ScheduleProcess function (refer to Table 4-1) is used to set the shift 

duration and call the ChangeOperator function at the end of the shift, as shown 

in Figure 4-14. If the Boolean variable, shiftflag, is FALSE, the ScheduleProcess 

function is executed, i.e., the ChangeOperator function will be called after a shift 

duration, and the shiftflag is set to TRUE so that the ScheduleProcess is called 

only once per shift. When the ChangeOperator function is called, the next loader 

operator in the Operator input list is selected to replace the current operator, and 

the shiftflag is set back to FALSE so that the next shift change can be 
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Figure 4-14 Flowchart for changing operator sub-programme  

3. Simulation information 

The simulation data collected during each loading procedure includes the 

loading amount assigned to each OreEntity, the queueing time and the 

loading time of the Truck. Other relevant simulation data, such as the truck 

production, the shovel production, the busy time of the shovel, the number of 

trucks processed by the shovel, the truck cycle time and cycle count, and the 

average speeds for each truck hauling loaded and empty, are collected at the 

end of the shift. 

4.4.4 Dump object 

The Dump object receives the Truck and OreEntity objects, and sends the OreEntity 

to the OreSink object to be disposed of. The key input parameters to the dumping 

sub-programme are: 

1. NextComponent: the next object for the Dump, i.e., an OreSink object. 

2. ServiceTime: the time required for dumping. The service time can have a 

constant value or a value sampled from a user-defined statistical distribution, or a 
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Time series object defined by the user. The dumping times for various truck 

types can be input. 

3. QueueforOreEntity: the queue in which the OreEntity is placed. 

4. QueueforTruck: the queue in which the Truck object is placed. 

The Dump object outputs TotalProduction, i.e., the tonnage of OreEntities processed 

during the simulation time. 

The dumping sub-programme, as shown in Figure 4-15, is similar to the loading sub-

programme which consists of the ProcessQueuedEntity and the 

RemoveDisplayEntity functions. If there is a truck in the queue, then the ServiceTime 

input value is set as the dumping delay; otherwise, the dumping procedure is 

suspended until there is a truck at the dump. After the dumping delay, the 

RemoveDisplayEntity function sends the Entity object to the OreSink object and the 

empty truck back to a shovel via the haul route. The sub-programme then repeats the 

ProcessQueuedEntity function for another dumping procedure. The simulation data 

collected during the dumping procedure is the queuing time at the dump and the 

dumping time. 

 

Figure 4-15 Flowchart for dumping sub-programme 
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4.4.5 Route and RouteIntersection 

Most surface mines use trucks that operate to the left side of the roadway (Karmis, 

2001) and most haul routes are two-way routes that allow trucks to travel in both 

directions. The route along which the loaded trucks travel to the dumps is referred to 

as the loaded route, and the route along which the empty trucks return to the loading 

sites is referred to as the empty route. The Route objects in TSJSim are connected by 

the RouteIntersection object which consists of haul route intersections and provides 

information about the crossing routes. In this way, a traffic network is formed, 

allowing trucks to shift from one route to another. As shown in Figure 4-16, the 

RouteIntersection object is defined by the points A-B-C-D. A and C are the turning 

points (or decision points for the truck-allocation strategy) for the truck hauling 

loaded and the truck hauling empty, respectively.  

 

Figure 4-16 Simplified traffic network 

The key input parameters for the Route object are: 

1. Points: a list of Cartesian coordinates defining the route segments that make up 

the haul route. 

2. RollingResistance: the rolling resistance parameter for each route segment. 

3. CoefficientofTraction: the coefficient of traction parameter for each route 

segment. 
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4. LoadingSite: the Loader object from which the haul route starts. 

5. DumpingSite: the Dump object to which the haul route ends. 

The key input parameters for the RouteIntersection object are: 

1. Points: a list of Cartesian coordinates forming the intersection. 

2. Routes: both the loaded routes and the empty routes that form the intersection. 

As the RouteIntersection object contains multiple Route objects, the decision points 

can be identified and added to a DP list in the RouteIntersection object and a DPR 

list in the Route object, which is discussed as follows: 

1. Adding decision points to the DP list in the RouteIntersection object 

Figure 4-17 shows the developed algorithm structure.  

 

Figure 4-17 Flowchart for searching for decision points at an intersection 
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routes, a nested loop structure was developed to loop through and compare all the 

get route i

get point j

get route i 

get point j 

If point j = 

point j ?

add point j to 

DP list

Break loop

Y

N



Chapter Four: Development of JaamSim Simulation Model 

 

104 

points on different routes until the intersection is found. After the decision points 

are found, their coordinates are added to the DP list in the RouteIntersection 

object. 

2. Adding decision points to the DPR list in the Route object 

Figure 4-18 shows the nested loop algorithm developed for this process. The 

points on the route are compared with the decision points in the DP list of the 

RouteIntersection object, which is stored in the Intersection list, and if the point 

on the route equals the decision point, i.e., they have the same coordinates, this 

point would be marked as the decision point by assigning a non-zero number to 

the ID of the point as a mark, and then the coordinates of the point are added to 

the DPR list in the Route object. 

  

Figure 4-18 Flowchart for obtaining decision points in Route object 
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the RouteSafezone object is referred to as the “safezone” in this thesis. The trucks 

without production priority have to give way to the trucks with priority when they 

are hauling in the area defined as the safezone. As shown in Figure 4-19, the 

RouteSafezone object is defined by the points A-B-C-D-E-F-G-H-A, these points 

being the “safezone points”. The RouteIntersection object included in the 

RouteSafezone is defined by the intersections B-I-F-J.  

A main route is defined as the haul route that connects the active loading units and 

dumps or crushers with the high priority, and all other haul routes without this 

priority are named non-main routes. A truck on the main road has priority to pass 

through the safezone area before a truck on the non-main road. The truck on the non-

main road must wait outside the safezone while the truck on the main road is hauling 

within the safezone. Further details about the main road and non-main road traffic 

management in the safezone area are discussed in Chapter 7. This section deals with 

the sub-programme identifying and marking the safezone points. 

 

Figure 4-19 Safezone area 

The main key inputs for the RouteSafezone object specification are: 

1. SafezonePoints: a list of Cartesian coordinates defining the safezone area. 

2. Routes: both the loaded routes and the empty routes that form the safezone area. 

3. RouteIntersection: the RouteIntersection object included in the RouteSafezone 

object. 
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As the RouteSafezone object contains Routes input, the safezone points can be 

identified and added to a list in the Route objects, named the SD list. Figure 4-20 

shows how to add the safezone points to the SD list. All the points on each route in 

the Routes input are looped through, and by comparing the points on the routes with 

the SafezonePoints input of the RouteSafezone, the safezone points are identified and 

added to the SD list for each Route object; a non-zero number is assigned to each 

such point as an identity to mark the safezone point.  

 

Figure 4-20 Flowchart for searching for safezone points 

4.4.7 Truck object 

The Truck object interacts with the Loader, Dump and Route objects. It receives the 

OreEntity from the Loader and transports it from the loading site to the dump site as 

the hauling loaded process, and after the dumping process, the empty truck returns 

from the dump site to the loading site.  

At a mine site, overtaking operating dump trucks is not permitted. Overtaking other 

vehicles, e.g., dozers, graders, drill rigs, etc., is only permitted on the condition that  
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 radio contact with the machine operator is established and approval for 

overtaking is given; 

 adequate visibility of the road ahead is ensured; and 

 there is no oncoming traffic (Karara Hematite Project, 2013).  

The model developments to handle the bunching effect and how the traffic in the 

intersection area is managed are discussed in Chapters 7 and 8. 

The required data for the Truck object are listed below: 

1. Size: the size of the truck defined by Cartesian coordinates. 

2. DisplayModel: the graphic representation of an object. 

3. TruckWeight: the weight of an empty truck. 

4. TruckCapacity: the maximum truck capacity. 

5. TruckType: the truck model type. 

6. HaulingRouteLoaded: the routes on which the loaded truck hauls. 

7. HaulingRouteEmpty: the routes on which the empty truck hauls. 

8. Bunching: whether the bunching effect is to be considered or not in a simulation. 

9. BunchingDistance: the safe travelling distance between the bunched trucks. 

10. Loader: the initial loader assigned to a truck. 

11. Dump: the initial dump assigned to a truck. 

12. DispatchingMode: the truck-allocation method applied to a truck. Different 

truck-allocation method can be selected as the Truck-allocation Strategy object. 

13. SpotTime: the time duration for a truck to spot before the loading process. The 

time can have a constant value or a value sampled from a user-defined statistical 

distribution, or a Time series object defined by the user. 
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14. RetarderCalibrateFactor: the factor used to calibrate the velocity generated from 

the retarder chart. This factor is ranged between 0 and 1. 

The main outputs from the Truck object include: 

1. The statistics generated for the truck cycle time, queuing time at loader, loading 

time, hauling time loaded, queuing time at dump, dumping time, hauling time 

empty and total cycle count. 

2. Bunching time: although the faster trucks are not permitted to overtake slower 

trucks when they are hauling along the route, the “bunching effect” still may be 

reduced or prevented by applying the truck-allocation strategy. For example, the 

slower truck that may cause congestion along a haul route can be assigned to 

another route or destination to prevent the possible “bunching effect”. In this 

thesis, a theoretical variable, named bunching time, is used to measure the 

“bunching effect” on hauling time. The bunching time is defined as the increased 

hauling time due to bunching and equals the difference between the hauling time 

with the “bunching effect” and the hauling time without the “bunching effect”. 

3. The increased waiting time due to bunching: another variable used to measure 

the “bunching effect” on the truck waiting time, which equals the difference 

between the waiting time with the “bunching effect” and the waiting time 

without the “bunching effect”. 

4. Truck production. 

4.4.7.1 Determination of average hauling velocity 

A truck can move on the haul road only if the following condition is satisfied: 

                                                      (4.1) 

The usable rimpull is the maximum force that can be transferred from drive tyres to 

road surface which is equal to the product of the coefficient of traction and the 

weight on the drive tyres. The required rimpull is the resistance to movement which 



Chapter Four: Development of JaamSim Simulation Model 

 

109 

is equal to the product of the total resistance and the gross truck weight (Hays, 1990). 

The available rimpull is the truck rimpull force which can be obtained from the truck 

performance and retarder charts. The performance chart is used when the total 

(effective) resistance is positive, indicating the maximum truck velocity when the 

available rimpull is equal to the required rimpull; the retarder chart is employed 

when the total resistance is negative, showing the safest truck velocity that the truck 

is hauling on a downgrade route. The relationship between the available rimpull and 

the maximum speed can be established in the form of piece-wise functions using a 

linear regression method. Appendix E shows the process of transforming the 

performance and retarder curves into mathematical functions for CAT 789C truck to 

calculate the average hauling velocity. 

In the TSJSim model, a sub-programme was developed to examine the condition for 

a truck (either loaded or empty) hauling on routes. In the case of poor traction, the 

rolling resistance factors should be reduced by improving the road condition to 

ensure that the hauling condition is satisfied. The flowchart for the sub-programme is 

shown in Figure 4-21. 

 

Figure 4-21 Flowchart for examining truck hauling condition 
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When a truck finishes loading or dumping, all the haul routes are looped through and 

the condition for the truck to haul on each route section is examined. If the total 

resistance of route section j (   ) is negative, meaning the truck is going downhill, 

then the retarder chart is used to determine the safest speed on route section j; 

otherwise, Equation (4.2) is used to examine the condition for truck hauling: 

                       (4.2) 

where 

       coefficient of traction of route section j, decimal 

      empty weight of an empty truck or gross vehicle weight of a loaded truck, kg 

     distribution of weight, % 

     available rimpull from the performance chart, kg 

     total resistance of route section j, % 

If Equation (4.2) is satisfied, then the performance chart is used to determine the 

maximum speed on route section j; otherwise, the condition of the road must be 

imrpoved.  

In TSJSim, the speed determination sub-programme contains three functions, the 

getVelocityFromPerformanceChart, getVelocityFromRetarderChart and 

getAverage- Velocity functions. The getVelocityFromPerformanceChart function 

uses three input parameters, i.e., the gross truck weight, the total resistance and the 

truck model type, to determine the maximum velocity from the performance chart. 

The getVelocity-FromRetarderChart function has the same input parameters as the 

getVelocityFrom- PerformanceChart function and returns the velocity from the 

retarder chart. 

The getAverageVelocity function is used to calculate the average velocity based on 

the speed from either the performance chart or retarder chart. Figure 4-22 illustrates 
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the flowchart for the getAverageVelocity function. If the speed is indicated by the 

performance chart (     ), the hauling state of a truck is firstly checked; if the truck 

is hauling, the speed factors (sf) for a truck in motion when entering a route section 

are selected depending on the length of the section (l); otherwise, the speed factors 

for a truck starting from a section are selected to calculate the average velocity. If the 

speed is from the retarder chart (  ), then Equation (AE.4) of Appendix E is used to 

calculate the average velocity. Next, the speed limitation constrained by the grade 

resistance of the route segment (g) is compared with the average speed value. The 

resulting minimum value is the final average velocity for the truck to haul on the 

route section.  

 

Figure 4-22 Flowchart for calculating average velocity 
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4.4.7.3 Hauling information object 

Since the haul route consists of numerous segments with varied route conditions and 

parameters, the hauling velocity for a truck travelling along the haul routes changes 

dynamically, i.e., a truck travels at various speeds on different route segments. As 

shown in Figure 4-23, the average hauling velocity for a truck to haul on each of 

route segments a to k, is pre-determined before the truck leaves a loading site or 

dump site. These pre-determined hauling velocities associated with route segments 

are stored in the lists of a hauling information object, named DRoute object.  

There are four types of information included in the DRoute object: 

1. Point: a collection of the coordinate points on the selected path. 

2. Index: a collection of the indices of route segments, in the form of (r, s), meaning 

segment s on route r. 

3. Length: a collection of the lengths of route segments. 

4. Velocity: a collection of the average velocities of the trucks hauling on the 

respective route segments. 

As both the hauling speed corresponding to the route segment and the length of each 

route segment are known, the hauling time that is required for the truck to travel 

through each route segment can be estimated. 

 

Figure 4-23 A truck hauling on route segments 
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Although the hauling information for all the route segments in the entire traffic 

network can be specified once the truck is ready for the hauling process, it is more 

effective from the perspective of running the programme to prepare hauling 

information for part of the haul route and then update the information when required.  

The truck follows the route information provided by the DRoute object until it 

arrives at a decision point, either to change from one route to another or to remain 

hauling on the same route. After a new truck assignment is generated based on a 

truck-allocation strategy, the related hauling information including the coordinate 

points, the indices and the lengths of the haul route segments along with the required 

hauling velocities, are obtained and stored in the DRoute object to guide the truck to 

the next decision point. For instance, in Figure 4-23, before the loaded truck hauling 

on Route 1 reaches decision point A, which is the intersection of Route 1 and Route 2, 

the DRoute object contains only the hauling information of the route section a, b and 

c. When the truck arrives at decision point A, and if the dispatcher decides to assign 

the truck to Route 2, the hauling information of the route segment f and g on Route 2 

is added to the DRoute object. After the truck arrives at decision point B and if the 

truck chooses to haul straight into the intersection area instead of turning to Route 3, 

only segment h and other segments on Route 2 are added to the DRoute object. 

The sub-programme to establish the hauling velocity list consists of two main tasks. 

The first task is to update the DRoute object with the route, including the points and 

the indices of the route segments. This is accomplished by the truck-allocation sub-

programme which assigns a path to the truck on the basis of a truck-allocation 

strategy. Using the Point list and the Index list, the second task involves calculating 

and adding the length of each segment as well as the respective hauling velocity to 

the Length list and the Velocity list, respectively. Figure 4-24 shows the velocity 

calculation process task. Looping through all the points in the Point list, the lengths 

for all the segments can be added into the Length list, and based on the total 

resistance of each segment, the hauling velocity of each route segment can be 

obtained and added into the Velocity list. 
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Figure 4-24 Flowchart for velocity list determination 

4.4.7.4 Hauling process sub-programme 

The TSJSim hauling model consists of Loader, Route, RouteSafezone, Route 

Intersection and Dump objects; these five objects form the basis of the truck-shovel 

system. Figure 4-25 shows the components of the hauling process in this truck-

shovel system.  

Component A: queuing at loader, loading procedure and truck-allocation 

management after loading is applied; 

Component B: hauling outside safezone; 

Component C: hauling inside safezone, traffic management for truck priority is 

applied; 
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Component D: hauling inside intersection, truck-allocation and truck turning process 

is applied; 

Component E: queuing at dump, dumping procedure and truck-allocation 

management after dumping is applied. 

 

Figure 4-25 Components of hauling process 

Figure 4-26 shows the logic of the entire hauling process.  

 

Figure 4-26 Logic of hauling process 
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After the loading procedure, a dump site for the truck is decided upon by the truck-

allocation process. The truck then hauls on the route outside the safezone. When the 

truck arrives at a safezone, depending on the traffic condition at the safezone and 

whether the requirement for passing the safezone is satisfied or not, the truck either 

waits at the safezone or enters the safezone. 

While the truck is travelling through the safezone, the traffic conditions within the 

safezone are updated dynamically to determine when other waiting truck(s) at the 

safezone, if any, are allowed to enter the safezone. When the truck arrives at an 

intersection, a new truck assignment is generated based on the current system state. 

The truck may either change direction or remain hauling in the same direction to the 

dump site. After dumping, the truck is assigned at the dump site to a new hauling 

route. The empty truck then repeats the hauling process with the truck and route 

parameters having been updated.  

Based on the logic of the hauling process, 15 interrelated major functions were 

developed to manage the truck hauling process, as shown in Table 4-3. A global 

variable, n, was defined to signify the index of the route segment on which the truck 

is hauling. It is increased by 1 as soon as the truck enters a route segment. When the 

truck arrives at the beginning point of the segment, the hauling time for the truck to 

travel through this segment, named hauling delay, is determined and the value of this 

delay is set in the scheduleProcess function (Table 4-1). The truck may stop and wait 

at the safezone if the passing requirement is not satisfied. The waiting time depends 

on how the traffic of the safezone area is managed. 

Table 4-3 Hauling process functions 

Function  Description 

addDisplayEntity 

Directs the truck to the hauling process after the 

loading process and initiates the hauling 

information, such as the velocity list. 

travelOutSafezone 

Following the addDisplayEntity function, deals 

with the hauling process outside the safezone, 

collecting the hauling time information. 

arriveAtInterval 

Following the travelOutSafezone function, decides 

whether the truck is going to arrive at a dump site 

or a safezone, or leave a safezone.  
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removeDisplayEntity 

Following the arriveAtInterval function, deals with 

the hauling process on the last segment of a route 

before the truck starts the dumping process. 

removeTransporter 

The sub-function of the removeDisplayEntity 

function. Sends the Truck object to the Dump 

object. 

removeOreEntity 

The sub-function of the removeDisplayEntity 

function. Sends the OreEntity object to the Dump 

object. 

travelInSafezone 

Following the arriveAtInterval function, works as 

either the entrance or exit of a safezone, depending 

on the value of SafezoneFlag. 

exitFromSafezone 

Following the travelInSafezone function, deals 

with the hauling process on the last segment within 

a safezone, decreases the number of trucks within 

the safezone, resets the SafezoneFlag, and 

accumulates the segment index.  

arriveAtSafezone 

Following the travelInSafezone function, manages 

the queuing process at a safezone based on the 

passing priority and the traffic condition within the 

safezone. 

enterSafezone 

Following the arriveAtSafezone function, sends the 

truck into a safezone and updates the truck status 

as well as the traffic condition within the safezone. 

arriveAtIntervalInSafezone 

Following the enterSafezone function, decides 

whether the truck is going to travel outside an 

intersection, or enter the intersection, or leave a 

safezone. 

travelOutIntersectionInSafezone 

Following the arriveAtIntervalInSafezone 

function, deals with the hauling process within a 

safezone but outside an intersection. 

travelInIntersection 

Following the arriveAtIntervalInSafezone 

function, calls the truck-allocation sub-programme 

to generate a new truck assignment, and decides 

whether the truck is going to cross an intersection 

or make a turn at the intersection. 

enterIntersection 

Following the travelInIntersection function, deals 

with the hauling process when the truck is crossing 

an intersection. 

exitFromIntersection 

Following the enterIntersection function, sends the 

truck out of an intersection, and updates the truck 

status and the traffic condition within the 

intersection. 
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Figure 4-27 shows the flowchart of the truck hauling sub-programme. The sub-

programme starts with the addDisplayEntity function which is called at the end of 

the loading process to direct the truck to the haul route for the hauling process. The 

main task of addDisplayEntity is to initiate the hauling information, especially the 

velocity list for the truck to haul outside the intersection (e.g., segments a-b-c-d-e in 

Figure 4-25), and to increase n by 1.  

 

Figure 4-27 Flowchart of truck hauling sub-programme 

The travelOutSafezone function deals with the hauling process when the truck is 

travelling outside the safezone(s). General information, such as the simulation time 

of entering and leaving the segment and the travelling time through a segment, is 

collected in this function. When the hauling delay occurs due to the implementation 

of the scheduleProcess function, the animation sub-programme is called to show the 

truck hauling on the route segment.  
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Before the truck enters the next route segment after exiting from the previous haul 

segment, the arriveAtInterval function decides the next destination of the truck. 

There are three cases considered: 

1. If the next segment is the last segment of a route, meaning the truck is going to 

leave the haul route and start the dumping process, the removeDisplayEntity 

function, which contains two sub-functions, removeTransporter and 

removeOreEntity, is called to assign the Truck and the OreEntity to the Dump 

object, separately.  

2. If the next segment is part of a safezone (e.g., segment bc in Figure 4-25), the 

travelInSafezone function is called, which works as either the “entrance” or the 

“exit” of a safezone. The travelInSafezone function deals with the hauling 

process either in the segment right before the safezone (e.g., segment bc in 

Figure 4-25) or in the last segment within the safezone (e.g., segment ef in Figure 

4-25). A flag (named SafezoneFlag) is defined to signify whether the truck is 

either entering or leaving a safezone:  

 
             {

                                        
                                   

 (4.3) 

Depending on the value of the flag, either the arriveAtSafezone function or the 

exitFromSafezone function is implemented. When the exitFromSafezone function 

is implemented, the number of trucks within the safezone is decreased by 1, the 

SafezoneFlag value set to 0, and the index of the route segment for the truck is 

increased by 1. Then the arriveAtInterval function is called again for deciding 

the next destination. 

3. If the next segment is the last segment within a safezone, meaning the truck is 

leaving the safezone, then the travelOutSafezone function is called for the 

hauling process outside the safezone.  

When the truck is entering a safezone, the sub-programmes for hauling through the 

safezone and the intersection are implemented. The arriveAtSafezone function 
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manages the queuing process at the safezone based on the passing priority applied 

and the traffic condition within the safezone. When the passing requirement is 

attained, the enterSafezone function is implemented to update the truck status and the 

safezone condition. After that, the arriveAtIntervalInSafezone function is called to 

evaluate the following three cases: 

1. If there is more than one route segment before reaching the intersection, the 

travelOutIntersectionInSafezone function is then called to deal with the hauling 

process on the segment that is within the safezone but outside the intersection. 

The main task of this function is to determine the duration for the truck to travel 

through the segment. After that, the arriveAtIntervalInSafezone function is called 

again. 

2. If there is only one segment before an intersection (e.g., segment de in Figure 4-

25), the travelInIntersection function is executed to 

(i) call the truck-allocation sub-programme to generate a new hauling path and 

store the hauling information in the DRoute object if the last point of this 

segment is a decision point, and  

(ii) call the enterIntersection function if the truck is proceeding on the same route 

when entering the intersection (e.g., segment ef in Figure 4-25), or call the 

arriveAtIntervalInSafezone function if the truck is going to shift from one 

route to another at the intersection. 

When the truck leaves an intersection, the exitFromIntersection function is called 

to update the truck status and the traffic condition at the intersection area, and 

then the arriveAtIntervalInSafezone function is called again. 

3. If the segment is the last one in the safezone, the travelInSafezone function is 

called. 
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4.4.7.5 Animation for hauling process 

JaamSim provides a 3D rendering system programmed in Java and integrated with 

the JaamSim code for fully-interactive, high-performance graphic presentations. The 

graphics functions provided by JaamSim are listed in Table 4-4. 

Table 4-4 JaamSim functions for animation 

Function Description 

updateGraphics(simTime) 

The renderer interface functions for DispalyEntity. The position, 

size, alignment, and orientation based on the objects' status at 

the given simulation time are set. This function updates the 

graphics constantly to manifest smooth motion. 

setPosition(pos) Sets the position to the given coordinates. 

setOrientation(euler) Sets the orientation Euler angles to the given values. 

The animation for the general hauling process was developed based on the JaamSim 

animation functions. The basic logic is to set the positions and orientations for the 

Truck and the OreEntity objects at the given simulation time. Since the parameter for 

updateGraphics is the current simulation time, the position and orientation for the 

truck hauling in a route segment can be determined according to the velocity and the 

entry time of the segment. The hauling sub-programme collects the necessary 

hauling information for the animation, including index of route segment, velocity, 

starting time (when the truck enters a segment), arrival time (when the truck arrives 

at the end of a segment) and entry time at safezone (when the truck is estimated to 

enter a safezone). The length and the orientation of each route segment are also 

available in the Route object. Figure 4-28 shows the logic of the hauling animation. 

If a truck is hauling on a regular route segment (SafezoneFlag = 0), the distance from 

the starting point of the segment can be determined by Equation (4.4): 

                            (4.4) 

where 

                distance from the starting point of the segment, m 
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           current simulation time, s 

           time when the truck enters a segment, s 

                   velocity in the segment, m/s. 

 

Figure 4-28 Logic of hauling animation 

Once the distance is determined, the truck position and orientation can be obtained. 

If the truck is hauling in a safezone, the waiting process at the safezone is considered 

in the animation. The waiting duration is the difference between the entry time into 

the safezone and the arrival time at the safezone. Thus when the current simulation 

time is less than the arrival time, meaning the truck has not yet reached the safezone, 

the distance, truck position and orientation can be obtained as in the regular haul 

route section. However, if the simulation time is between the arrival time and the 

entry time, i.e., the truck is waiting, then the distance of the truck should remain 

static until the truck enters the safezone, and the value of the distance is given by 

Equation (4.5): 

                                (4.5) 

where 
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             time when the truck arrives at the end point of a segment, s. 
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CHAPTER FIVE  

DEVELOPING A TRUCK-SHOVEL MODEL 

USING JAAMSIM OBJECTS 

5.1 Introduction of TSJSim set-up 

Using the developed TSJSim objects and functions discussed in Chapter 4 as well as 

the JaamSim built-in objects, a truck-shovel network system simulation was 

developed. The TSJSim objects and functions are shown in italics; the JaamSim 

built-in objects and functions are shown in bold italics. The model 

components/objects are: OreEntity, OreGenerator, OreSink, Queue, Probability 

Distribution, Loader-Operator, Dispatcher (Truck-allocation object), Loader, Dump, 

Route, Route-Intersection, RouteSafeZone and Truck. Figure 5-1 shows the major 

TSJSim simulation components for a truck-shovel network system displayed in the 

View Window. These simulation objects can be dragged and dropped from the 

JaamSim Model Builder; the input parameters are specified using the Input Editor 

for each object. The simulation results can be shown in the Output Viewer or saved 

as a text file.  

 

Figure 5-1 TSJSim model components
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5.2 OreEntity set-up 

The OreEntity represents the material that flows through the system. It is generated 

by the OreGenerator, processed by the Loader, then transported and dumped by the 

Truck and finally disposed of by the OreSink. An OreEntity object can be created by 

dragging and dropping it from the Model Builder. This creates an OreEntity object 

with a default name or ID (OreEntity1 in Figure 5-2). The object’s name can be 

edited from the Object Selector. There is only one keyword under the Key Inputs tab 

of the OreEntity, i.e., Description for describing the object, as shown in Figure 5-2, 

the default value of Description is empty, shown as {}, and the assigned value is 

“Material mined”. 

 

Figure 5-2 OreEntity input interface 

Figure 5-3 shows the keywords under the Basic Graphics tab which is also the 

template for all the visualised objects in JaamSim.  

 

Figure 5-3 Basic Graphics interface 
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Table 5-1 explains the information required for the Basic Graphics inputs. As an 

example, in Figure 5-3, for visual purposes, the width, length and height of an 

OreEntity are set to 5, 6 and 3 m, respectively, to approximately fit in with a CAT 

785C truck with a length of 11.02 m, a width of 6.64 m and a height of 4.98 m 

(Caterpillar Inc., 2018b). A cube shape is selected as the shape of the OreEntity from 

a list of user-defined shapes. Once the OreEntity is set up, OreEntities of the same 

size and shape can be generated by the OreGenerator. 

Table 5-1 Basic Graphics inputs 

Input Description 

Position The location of the object in spatial coordinates. 

Alignment 
The point within the object that is located at the coordinates of 

its Position input. 

Size The size of the object in spatial coordinates. 

Orientation Euler angles defining the rotation of the object. 

Region 

If a Region is specified, the Position and Orientation inputs for 

the object are relative to the Position and Orientation for the 

specified Region. 

RelativeEntity 
If an object is specified, the Position input for the object is 

relative to the Position input for the specified object.  

DisplayModel The graphic representation of the object.  

Active If TRUE, the object is active in simulation runs. 

Show If TRUE, the object is shown in the View windows. 

Movable If TRUE, the object can be positioned with the mouse. 

5.3 Probability Distributions set-up 

JaamSim provides a selection of standard theoretical probability distributions as well 

as user-defined probability distributions which can be created by dragging and 

dropping the Probability Distribution objects from the Model Builder, as shown in 

Figure 5-4. The Probability Distribution objects include uniform, triangular, normal, 

exponential, erlang, gamma, beta, weibull, lognormal and log-logistics distributions.  



Chapter Five: Developing a Truck-shovel Model Using JaamSim Objects 

 

127 

 

Figure 5-4 Probability distributions library 

Figure 5-5 shows the set-up of a normal distribution, N(35.7 s, 11.0 s), with a mean 

of 35.7 s, a standard deviation of 11.0 s, a minimum value of 18 s and a maximum 

value of 67 s. The UnitType is set by selecting the TimeUnit from a drop-down list 

which includes the angle unit, cost unit, volume unit, density unit, dimensionless unit 

and other common units. 

 

Figure 5-5 Normal distribution inputs 
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5.4 OreGenerator and OreSink set-up 

The OreGenerator  generates a series of OreEntities and should be located at a 

loading site. The data input interface of the OreGenerator object is shown in Figure 

5-6. The input descriptions are provided in Table 5-2. 

 

Figure 5-6 OreGenerator input interface 

Table 5-2 OreGenerator inputs 

Input Description 

Description A free form string describing the object. 

NextComponent 
The next object to which a generated OreEntity is 

passed. 

FirstArrivalTime 

The arrival time for the first generated OreEntity. The 

time can have a constant value or a value sampled 

from a user-defined statistical distribution, or a 

TimeSeries object defined by the user. 

InterArrivalTime 

The inter-arrival time between one generated 

OreEntity and the next. The time can have a constant 

value or a value sampled from a user-defined 

statistical distribution, or a TimeSeries object defined 

by the user. 

PrototypeEntity The prototype for OreEntities to be generated. 

MaxNumber The maximum number of OreEntities to be generated. 

As an example, in Figure 5-7, the NextComponent input value is set to a Loader 

object by selecting the Loader object from a drop-down list containing all the 
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available objects, the OreEntity generated is then sent to this Loader object directly. 

The FirstArrivalTime and the InterArrivalTime input values are set to the default 

values, 0 and 1 s, respectively. The OreEntity object (OreEntity1) is set as the 

PrototypeEntity of the OreGenerator, and the default empty value ({}) of the 

MaxNumber input has no limit (Figure 5-6). 

 

Figure 5-7 Selecting Loader object for NextComponent input 

The OreSink  should be located at a dump site for destroying the OreEntities that 

have flowed through the system. No input data is required for the OreSink object. 

5.5 Queue set-up 

The Queues, shown as a triangle  in JaamSim, are assigned to specific Loaders or 

Dumps, and can be classified as the Queue for OreEntities and the Queue for Trucks 

(depending on the inputs of the Loader or Dump objects). The data input interface of 

the Queue object (name TQueue3) is shown in Figure 5-8. Table 5-3 provides the 

input descriptions of the Queue object. 
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Figure 5-8 Queue input interface 

Table 5-3 Queue inputs 

Input Description 

Description A free form string describing the object. 

Spacing 
The amount of graphical space between objects in the 

Queue. 

MaxPerLine Maximum number of objects in each row of the Queue. 

Visibility If TRUE, the Queue is visible in the View windows. 

5.6 LoaderOperator set-up 

The shovel work cycle time or loading time and the working hours of one loader 

operator can be specified using the LoaderOperator. Multiple LoaderOperators can 

be assigned to one Loader to reflect the varied performance of the loader due to shift 

change. The LoaderOperator, , can be dragged and dropped from the Model 

Builder. The LoaderOperator’s data input interface is shown in Figure 5-9. Table 5-

4 explains the information required for the LoaderOperator inputs. 

  

Figure 5-9 LoaderOperator input interface 
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Table 5-4 LoaderOperator inputs 

Input Description 

Description A free form string describing the object. 

ServiceTime 

The loading time for one truck (with multiple loads). 

The time can have a constant value or a value sampled 

from a user-defined statistical distribution, or a 

TimeSeries object defined by the user. 

CycleTime 

The shovel work cycle time for one load. The time can 

have a constant value or a value sampled from a user-

defined statistical distribution, or a TimeSeries object 

defined by the user. 

WorkingHour The shift length for the LoaderOperator. 

As an example, in Figure 5-10, the ServiceTime is set to a normal distribution by 

selecting the Probability Distribution object from the multiple checkbox containing 

all the available Probability Distribution objects, and the WorkingHour value is set 

to 11 hours. The CycleTime is left blank, thus the loading time for the Loader object 

is determined by the ServiceTime instead of the CycleTime. 

 

Figure 5-10 Selecting Probability Distributions for ServiceTime 

5.7 Truck-allocation Strategy set-up 

Four truck-allocation strategies, namely fixed truck-allocation (the FixedDispatching 

object in Figure 5-11), minimum truck waiting time (the MinTruckWaiting object), 

minimum semi-cycle time (the MinSemiCycleTime object) and minimum production 

requirement (the MinPreProductionErr object) can be selected from the Truck-

allocationStrategy list in the Model Builder. The principles behind each of these 
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truck-allocation strategies are summarised in Table 5-5. Once a Truck object selects 

a truck-allocation strategy, the Truck will implement this specific truck-allocation 

strategy during the simulation run. Further information about the development of 

these truck-allocation objects is provided in Chapter 8. 

 

Figure 5-11 Truck-allocationStrategy objects in library 

Table 5-5 Principles of truck-allocation strategies 

Truck-allocation strategy Principle 

Fixed truck-allocation 

Each truck is assigned to a fixed loader. This 

strategy serves as a baseline from which the effect 

of other truck-allocation strategies is measured. 

Minimum truck waiting time 
The truck is assigned to the loader that is expected 

to provide the least waiting time for the truck. 

Minimum production 

requirement 

The loaders have pre-defined production targets and 

the trucks are assigned to the loader with the largest 

shortfall, maximum difference between the planned 

production and the actual production.  

Minimum semi-cycle time 

The truck semi-cycle time is defined as the sum of 

the time duration for a truck to travel from an 

origin, i.e., a loader, dump or intersection, to a final 

destination, i.e., a dump or loader, and the time 

duration for queuing and loading or dumping. The 

objective of this truck-allocation algorithm is to 

obtain the assignment with the minimum estimated 

truck semi-cycle time. 

5.8 Loader set-up 

The Loader object receives the OreEntities generated by the OreGenerator, 

following the loading process, then passes the OreEntities on to the Truck. The data 

input interface for the Loader object is shown in Figure 5-12. The input descriptions 

of the Loader object are provided in Table 5-6. 
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Figure 5-12 Loader inputs interface 

Table 5-6 Loader inputs 

Input Description 

Description A free form string describing the object. 

Transport 

The Truck objects that transport the processed 

OreEntity from a Loader object to a Dump object, 

depending on the truck-allocation strategy applied. If 

the fixed truck-allocation rule is applied, the specified 

Trucks are always assigned to this Loader object, 

otherwise, this is the initial assignment at the beginning 

of the simulation.  

TOperator 
The loading time depends on the specified 

LoaderOperator objects.  

WaitTQueue The Queue object in which OreEntities are placed.  

WaitTQueueForLoadingT

Transporter 

The Queue object in which Truck objects are placed. 

The set-up is the same as the WaitTQueue input. 

BucketCapacity The capacity of the loader bucket, (  ). 

FillFactor The fill factor of the loader bucket, (in decimal). 

SwellFactor The material swell factor, (in decimal). 

Density The material density, (    ⁄ ). 

PredefinedProduction 
The required production tonnage if the minimum 

production requirement truck-allocation is applied. 

For the Transport input, the Truck objects can be selected from the multiple 

checkbox which contains all the available Truck objects, as shown in Figure 5-13. 
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Figure 5-13 Selecting Truck objects 

For the TOperator input, the LoaderOperator objects can be selected from the 

multiple checkbox which contains all the available LoaderOperator objects, as 

shown in Figure 5-14. 

 

Figure 5-14 Selecting TOperator objects 

For the WaitTQueue input, a Queue object can be selected from a drop-down list 

containing all the available Queue objects, as shown in Figure 5-15. 
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Figure 5-15 Selecting TQueue objects 

The size and shape of the Loader object can be set in the Basic Graphics tab of the 

Input Editor. A 3D file, i.e., a Collada file generated with SketchUp 3D Builder 

software (Trimble Inc., 2018), can be imported into the TSJSim model. This file can 

be selected from the drop-down list in the DisplayModel input. The length, width 

and height of the Loader can be specified in the Size input under the Basic Graphics 

tab. Figure 5-16 shows the size specification for a CAT 997K wheel loader and 

Figure 5-17 shows the 3D image of the Loader object. 

 

Figure 5-16 Size specification for a loader 
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Figure 5-17 A 3D loader 

5.9 Dump set-up 

The Dump object receives and processes both the OreEntities and the Truck objects, 

and passes the OreEntities on to the OreSink object. The size and shape set-up for 

the Dump object is similar to that of the Loader. Figure 5-18 shows the data input 

interface of the Dump object. Table 5-7 provides the input descriptions of the Dump 

object.  

 

Figure 5-18 Dump inputs interface 
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Table 5-7 Dump inputs 

Input Description 

Description A free form string describing the object. 

NextComponent 
The OreSink object on to which the OreEntity is 

passed. 

ServiceTime 

The truck dumping time. The time can have a 

constant value or a value sampled from a user-

defined statistical distribution, or a TimeSeries 

object defined by the user. Multiple dumping 

times for various truck model types can be set. 

WaitTQueue 
The Queue object in which OreEntities are 

placed. 

WaitTQueueForUnloading

TTransporter 

The Queue object in which Truck objects are 

placed. 

5.10 Route set-up 

The Route objects, including the routes for loaded trucks (TRouteLoaded) and the 

routes for empty trucks (TRouteEmpty), connect the loading sites with the dump sites. 

The Route object consists of spatial coordinate points, as shown in Figure 5-19. The 

data input interface of the Route object is shown in Figure 5-20. Table 5-8 provides 

the input descriptions of the Route object. 

 

Figure 5-19 Routes consisting of coordinate points 



Chapter Five: Developing a Truck-shovel Model Using JaamSim Objects 

 

138 

 

Figure 5-20 Route input interface 

Table 5-8 Route inputs 

Input Description 

Points 

A list of coordinates defining the line 

segments that make up the haul route. The 

input format is {        } {        } 

{        } … 

RollingResistance 

A list of rolling resistance parameters 

corresponding to the list of route segments, 

(%). 

CoefficientofTraction 

A list of coefficient of traction parameters 

corresponding to the list of route segments, 

(in decimal). 

LoadingSite, DumpingSite 
The Loader and the Dump objects that are 

connected by the Route.  

MainRoad 
If TRUE, the Route is defined as a main road, 

otherwise it is defined as a non-main road. 

RestrictedVelocity Speed limits for certain route segments. 

NumberForRestrictedVelocity 
The order number of the route segment with 

the speed limit. 

For the LoadingSite, DumpingSite inputs, the Loader or Dump objects can be 

selected from the drop-down list showing all the available Loader or Dump objects, 

as shown in Figure 5-21. 
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Figure 5-21 Selecting Loader objects 

Another way of setting up the speed limits on the haul route is to set the hauling 

velocity using Java programming code. An example of the code is provided below: 

//g is the grade resistance; v is the velocity 
 if(g < 6 && g >= 0) 

{v = Math.min(v, 60);} 
 else if(g < 8) 

{v = Math.min(v, 30);} 
 else if(g < 10) 

{v = Math.min(v, 25);} 
 else if(g < 12) 

{v = Math.min(v, 20);} 
 else 

{v = Math.min(v, 15);} 

If the grade resistance on a route segment is within a certain range, for instance, [0, 

6%], then the speed limit is set to 60 km/h using the Java intrinsic function min( ). 

5.11 RouteIntersection set-up 

The RouteIntersection objects are used to connect the Route objects to form a traffic 

network so that the Trucks can move from one route to another (Figure 5-22). The 

data input interface of the RouteIntersection object is shown in Figure 5-23. Similar 

to the Route object, the RouteIntersection object consists of a series of coordinates 

assigned to the Points keyword; the points on the RouteIntersection must be the 

common points of the crossing Routes. The crossing Route objects also need to be 

assigned to the TRouteLoaded (for loaded routes) and the TRouteEmpty (for empty 
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routes) keywords by selecting the available Route objects from the multiple 

checkbox, as shown in Figure 5-24. 

 

Figure 5-22 RouteIntersection connecting routes 

 

Figure 5-23 RouteIntersection input interface 

 

Figure 5-24 Selecting Route objects 
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5.12 RouteSafezone set-up 

Similar to the RouteIntersection object, the RouteSafezone object also consists of a 

series of coordinates. Apart from the Points and Route inputs, the RouteIntersection 

object within the RouteSafezone object should be assigned to the TRouteIntersection 

keyword by selecting the available RouteIntersection objects from the drop-down list, 

as shown in Figure 5-25. 

 

Figure 5-25 RouteSafezone input interface 

5.13 Truck set-up 

The data input requirement of the size and shape of a Truck object is similar to those 

of the Loader object. The 3D Truck objects are shown in Figure 5-26. The input 

interface of the Truck object is shown in Figure 5-27. Table 5-9 provides the input 

descriptions of the Truck object. 
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Figure 5-26 3D Truck objects 

 

Figure 5-27 Truck input interface 
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Table 5-9 Truck inputs 

Input Description 

SpotTime 

The truck spot time. The time can have a constant 

value or a value sampled from a user-defined 

statistical distribution, or a TimeSeries object 

defined by the user. 

WeightofTrucks The weight of the truck (kg). 

CapacityofTrucks The capacity of the truck (kg). 

TypeofTrucks 

In the TSJSim model, three types of trucks have 

initially been defined: the CAT 785C (type 1), the 

CAT 789C (type 2) and the Komatsu 860E (type 

3). For instance, for the truck model CAT789C, a 

value of 2 is entered. 

Bunching 
If TRUE, the bunching effect is to be considered. 

Otherwise, it is not considered.  

BunchingDistance 
The distance between two hauling trucks if 

bunching takes place.  

RetarderCalibrateFactor 

The factor used to calibrate the velocity generated 

from the retarder chart. This factor is ranged 

between 0 and 1 (in decimal). 

TRouteLoaded, 

TRouteEmpty All the Routes along which the Truck travels. 

Tloader, Tdump 
All the Loaders and Dumps to which the Truck 

can be assigned.  

Dispatching 
The truck-allocation strategy applied to the Truck 

object.  

5.14 Simulation output 

The simulation results can be viewed in the Output Viewer. The main outputs for the 

Loader (Figure 5-28) include: 

1. NumberAdded. The number of OreEntities received from OreGenerator. 

2. NumberProcessed. The number of OreEntities processed by the Loader. 

3. ProcessingRate. The number of OreEntities processed per unit of time by the 

Loader. 
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4. LoadsProcessed. The weight of OreEntities processed by the Loader. 

5. BusytimeForShovel. The busy time for the Loader during the simulation time. 

 

Figure 5-28 Loader output viewer 

The simulation results for the Truck object include: 

1. The truck cycle time, cycle counts and the elements of the cycle time including 

the queuing time for loading, loading time, loaded travelling time, queuing time 

for dumping, dumping time, empty travelling time, as shown in Figure 5-29. 

2. Truck production. 

3. Average truck velocity. 

4. Bunching time on the haul route and increased queuing time due to bunching. 

 

Figure 5-29 Truck output viewer 
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CHAPTER SIX  

TSJSIM MODEL VALIDATION 

6.1 Easter Ridge OB23/25 operation 

The developed TSJSim model was validated using field data collected by Shaw 

(2012) at a truck-shovel mining operation in Western Australia. The mining 

operation known as Easter Ridge OB23/25 consists of four loading sites, namely 

S4C, P3WC, P3EC and P4, and four dumping sites, named P1ED, P3WD, P4WD 

and ROM Dump. The S4C site is a low grade ore stockpile which produces low 

grade material transported to dump P1ED. The other loading sites produce both high 

grade ore and waste which is hauled to P3WD, P4WD and the ROM Dump. The 

Vulcan 3D surface topography model of the Easter Ridge OB23/25 operation with 

the haul route layout and route nodes is shown in Figure 6-1.  

 

Figure 6-1 Route layout of Easter Ridge OB23/25 operation (Shaw, 2012) 

The spatial data of the route system including the length and grade of each haul route 

segment is provided in Appendix F. The active haul routes from which the data was 

collected during a time and motion study are shown in Figure 6-2 and they are also 

listed below: 
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 Pit 3 Western Cutback to Pit 3 Waste Dump (P3WC-P3WD). 

 Pit 3 Western Cutback to ROM (P3WC-ROM). 

 Pit 3 Eastern Cutback to Pit 3 Waste Dump (via lobe 2) (P3EC-P3WD lobe 2). 

 Pit 3 Eastern Cutback to ROM (via lobe 2) (P3EC-ROM lobe2). 

 Pit 4 to ROM (via lobe 2) (P4-ROM lobe 2). 

 Pit 4 to Pit 4 Waste Dump (via lobe 2) (P4-P4WD lobe 2). 

 S4C Low Grade Stockpile to Pit 1 East (S4C-P1E). 

 

Figure 6-2 Active haul routes of Easter Ridge OB23/25 operation 

The mining equipment available for this truck-shovel mining operation is listed in 

Table 6-1. The mining equipment was not assigned to the loading sites or haul routes 

permanently, but allocated according to mine planning requirements. In reviewing 

the mine production data, there were no more than three active mining areas during 

the period investigated (from December 2011 to March 2012) with all the excavators 

working in these three active mining areas with wheel loaders utilised as ancillary 

equipment.  
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Table 6-1 Mining equipment at Easter Ridge OB23/25 operation 

Model Class Fleet Size 

Liebherr 9250 Excavator 1 

Hitachi 1900BE Excavator 2 

CAT 993 Wheel Loader 1 

CAT 992G Wheel Loader 1 

CAT 785B Haul Truck 2 

CAT 785C Haul Truck 11 

CAT 789C Haul Truck 5 

6.2 Data collection 

Shaw (2012) conducted a time and motion study to gather operational cycle time 

data at the Easter Ridge OB23/25 operation, and developed an Excel template 

utilising the Visual Basic Application (VBA) for observers sitting in haul trucks to 

record the required data. The collected data comprised: 

1. Truck cycle durations that included queuing, spotting at loader, loading, hauling 

loaded, spotting at dump, dumping and returning empty; 

2. Truck cycle times were recorded for each active haul route namely: 

 P3WC-ROM cycle times for CAT 785 

 P4-ROM via lobe 2 cycle times for CAT 785 

 P4-P4WD via lobe 2 cycle times for CAT 785 

 P3EC-P3WD cycle times for CAT 785 

 S4C-P1E cycle times for CAT 789 

All of these cycle times are provided in Appendix G. Any cycle times less than 

10 records were ignored. 

3. Data captured by the observers located in the loading units also included loading 

times for the: 
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 Liebherr 9250 loading CAT 785 

 Hitachi 1900BE loading CAT 785 

 Hitachi 1900BE loading CAT 789 

 CAT 993 Wheel Loader loading CAT 785 

The probability distribution fits for the loading times analysed using the JMP 

software are given in Table 6-2. 

Table 6-2 Distributions of loading times  

Loader type Distribution 

Liebherr 9250 Normal(122.35 s, 18.08 s) 

Hitachi 1900BE (loading 785C) LogNormal(5.19 s, 0.16 s) 

Hitachi 1900BE (loading 789C) Normal(250.6 s, 33.14 s) 

CAT 993 Wheel Loader (loading 785C) LogNormal(5.73 s, 0.12 s) 

4. The probability distribution fits for the CAT 785 and CAT 789 dumping times 

collected are provided in Table 6-3. 

Table 6-3 Distributions of dumping times 

Truck type Distribution 

CAT 785C Normal(35.77 s, 11.02 s) 

CAT 789C Normal(46.88 s, 11.97 s) 

6.3 Model input data 

The Easter Ridge OB23/25 truck-shovel network, as shown in Figure 6-3, was 

modelled using the developed TSJSim model and the field data collected by Shaw 

(2012). The initial rolling resistance for each route section was set according to the 

following rules: 

 Within 50 m of the loading site, rolling resistance is around 12%; 

 Outside the loading area and within 200 m of the loading site, rolling resistance 

is around 5%; 
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 Within 100 m of the dump site, rolling resistance is around 12%; 

 All other routes are maintained at a 4% rolling resistance. 

 

Figure 6-3 Model layout 

In the TSJSim model, the loaders were assigned to the fixed loading sites and the 

trucks were allocated to the haul routes according to the fixed truck-allocation rule. 

The Liebherr 9250 works at P3WC, two Hitachi 1900BEs work at S4C and P3EC, 

and the CAT 993 works at P4. Four trucks (CAT 785C) are assigned to route P3WC 

– ROM Dump; four trucks (CAT 789C) to route S4C – P1ED; four trucks (CAT 

785C) to route P3EC – P3WD; one truck (CAT 785C) to route P4 – ROM Dump and 

one truck (CAT 785C) to P4 – P4WD.  

The main input parameters for trucks are provided in Table 6-4. 

Table 6-4 Truck inputs for CAT 785C and 789C 

Truck 

type 

Empty 

weight(kg) 
Capacity(kg) Length(m) Width(m) Height(m) 

CAT 

785C 
102 150 147 330 11.02 6.64 4.98 

CAT 

789C 
135 670 181 845 12.13 7.97 5.69 
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The loading times of the four shovels and the dumping times of the trucks are 

summarised in Tables 6-2 and 6-3, respectively. The bucket capacity of the Liebherr 

9250 is 15 m
3
 and the capacity of the Hitachi 1900BE and the CAT 993 is 12 m

3
. 

The assumptions for the model implementation were: 

 Each truck is assigned to a fixed route (fixed truck-allocation mode). 

 The bunching effect is considered. 

 The simulation model runs for 11 hours representing one shift during the 

simulation run. 

 The experiment comprises 100 simulation replications. 

6.4 Development of the Easter Ridge OB23/25 truck-shovel model 

The process of developing the Easter Ridge OB23/25 truck-shovel model using the 

TSJSim model objects consists of two main steps. The first step is to create the main 

model objects and to set up the layout of the truck-shovel network; the second step is 

to set up the keywords of the model objects (the TSJSim objects and inputs/outputs 

are shown in italics; the JaamSim built-in objects and the provided inputs/outputs 

functionalities are shown in bold italics). 

6.4.1 Model layout 

The default GUI window is shown in Figure 6-4. 
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Figure 6-4 Default GUI window 

Clicking on the “+” icon of the Basic Objects in the Model Builder expands the list 

for the Basic Objects (Figure 6-5).  

 

Figure 6-5 Opening the Basic Objects library 

Clicking on the OreEntity icon in the Basic Objects list and dragging and dropping it 

to the View window (Figure 6-6) creates the material that will flow through the 

system. The default ID of this object is OreEntity1. Figure 6-7 shows the Input 

Editor for OreEntity1. Set the Description input value to “OreEntity flowing through 

the system”. Click on the Basic Graphics tab of the Input Editor, set the Size input 

value to {5 6 3 m} to approximately match the CAT 785C truck size for visual 

purposes, and select Cube as the shape of OreEntity1 (Figure 6-8). Figure 6-9 shows 

the modified shape of OreEntity1. 
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Figure 6-6 Creating OreEntity object 

 

Figure 6-7 OreEntity1 input 

 

Figure 6-8 Setting size and shape of OreEntity1 
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Figure 6-9 3D shape of OreEntity1 

To generate the OreEntities at the four loading sites, i.e., P3WC, S4C, P3EC and P4, 

TEntityGenerator1, TEntityGenerator2, TEntityGenerator3 and TEntityGenerator4 

are dragged from the Model Builder, as shown in Figure 6-10. TEntityGenerator1 is 

set as the OreGenerator at P3WC, TEntityGenerator2 as the OreGenerator at S4C, 

TEntityGenerator3 as the OreGenerator at P3EC and finally TEntityGenerator4 as 

the OreGenerator at P4. 

 

Figure 6-10 Creating OreGenerator objects 

The OreEntity generated by the OreGenerator will be sent to the Loader object. 

Four Loader objects (named Tloader in the Model Builder) are next created (i.e., 

Tloader1, Tloader2, Tloader3, Tloader4) to work at the four loading sites, as shown 
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in Figure 6-11. Tloader1 will be set as the shovel at P3WC, Tloader2 as the shovel at 

S4C, Tloader3 as the shovel at P3EC and Tloader4 as the shovel at P4. For visual 

purposes, the CAT 997K wheel loader is used as the model for all the Tloaders. To 

specify the size and shape of these Tloaders, select the Basic Graphics tab of each 

Tloader, set the Size input value to {15.3 6.3 5.5 m} and select the Loader shape as 

the DispalyModel input value (Figure 6-12). Figure 6-13 shows the modified shape 

of the Tloaders.  

 

Figure 6-11 Creating Loader objects 

 

Figure 6-12 Setting size and shape of Tloader 
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Figure 6-13 Modified shape of Tloaders 

The OreEntities processed by the Loader objects are transported from the loading 

sites to the four dump sites, i.e., ROM, P3WD, P1ED and P4WD dumps. Tdump1, 

Tdump2, Tdump3 and Tdump4 are dragged from the Model Builder, as shown in 

Figure 6-14. Tdump1 will be set as the ROM Dump, Tdump2 as the P3WD dump, 

Tdump3 as the P1ED dump and Tdump4 as the P4WD dump.  

 

Figure 6-14 Creating Dump objects 

After the dumping process, the OreEntity will be destroyed by the OreSink object. 

TEntitySink1, TEntitySink2, TEntitySink3 and TEntitySink4 are next created by 
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dragging and dropping them from the Model Builder, as shown in Figure 6-15. 

TEntitySink1 is the OreSink for the ROM Dump, TEntitySink2 for the P3WD dump, 

TEntitySink3 for the P1ED dump and TEntitySink4 for the P4WD dump. 

 

Figure 6-15 Creating TEntitySinks 

To transport the OreEntity from the loading sites to the dump sites, Truck objects are 

created by dragging and dropping the TTransporter from the Model Builder to the 

View window. There are 14 trucks in total required in the Easter Ridge OB23/25 

truck-shovel network (10 CAT 785C trucks and 4 CAT 789C trucks), as shown in 

Figure 6-16. For the CAT 785C, the Size input value under the Basic Graphics tab is 

set to {11.02 6.64 4.98 m} and a CAT model is selected as the DisplayModel input 

value (Figure 6-17); under the Key Inputs tab, the WeightofTrucks input value is set 

to 102 150 kg, the CapacityofTrucks input value is set to 147 330 kg, and the 

TypeofTrucks input value is set to 1 for the CAT 785C (Figure 6-18). For the CAT 

789C, the Size input value under the Basic Graphics tab is set to {12.13 7.97 5.69 m} 

and a CAT model is selected as the DisplayModel input value (Figure 6-19); under 

the Key Inputs tab, the WeightofTrucks input value is set to 135 670 kg, the 

CapacityofTrucks input value is set to 181 845 kg, and the TypeofTrucks input value 

is set to 2 for the CAT 789C (Figure 6-20). 
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Figure 6-16 14 TTransporters 

 

Figure 6-17 Size of CAT 785C 

 

Figure 6-18 Weight, capacity and type of CAT 785C 
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Figure 6-19 Size of CAT 789C 

 

Figure 6-20 Weight, capacity and type of CAT 789C 

The loading and dump sites are connected by haul routes. In the Model Builder, the 

TRoute object is the route on which the loaded trucks haul and the TRouteEmpty is 

the route on which the empty trucks haul. The created TRoute object contains only 

two points, as shown in Figure 6-21.  



Chapter Six: TSJSim Model Validation 

 

159 

 

Figure 6-21 Creating TRoute 

Based on the spatial data of the route system provided in Appendix F, the length and 

grade of each haul route segment can be converted into a series of coordinates and 

assigned to the Points input of the TRoute and TRouteEmpty objects. For example, 

TRoute1 is used as the haul route between the P3WC loading site (with Tloader1) 

and the ROM dump (with Tdump1); the information for this haul route, as shown in 

Table 6-5, can be converted into the coordinates for all the nodes along the haul 

route, assuming node P3WC is the reference point with coordinate, (0, 0, 0), as 

shown in Table 6-6. 

Table 6-5 Route information from P3WC to ROM Dump 

Haul section Distance (m) Grade (%) 

P3WC to WC1  57.9 0.6 

WC1 to WC2  47.7 9.8 

WC2 to WC3  38.4 10.5 

WC3 to WC4  109.3 2.8 

WC4 to ROM1  294.1 -0.7 

ROM1 to ROM2  86.5 0.7 

ROM2 to ROM3  457.2 0.9 

ROM3 to ROM4  178.5 6.5 

ROM4 to ROM5  320.2 1.2 

ROM5 to ROM Dump  303.7 -0.2 
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Table 6-6 Coordinates of the nodes on TRoute1 between P3WC to ROM Dump 

Node Coordinate (m) 

P3WC  {0,  0,  0} 

WC1  {0,  -57.9,  0.3474} 

WC2  {0,  -105.6,  5.022} 

WC3  {0,  -144,  9.054} 

WC4  {0,  -253.3,  12.1144} 

ROM1  {0,  -547.4,  10.0557} 

ROM2  {0,  -633.9,  10.6612} 

ROM3  {0,  -1091.1,  14.776} 

ROM4  {0,  -1269.6,  26.3785} 

ROM5 {0,  -1589.8,  30.2209} 

ROM Dump  {0,  -1893.5,  29.6135} 

The Points input value of TRoute1 can be entered using Table 6-6; Tloader1, which 

is at the P3WC loading site, is selected as the LoadingSite input value and Tdump1, 

which is at the ROM dump, as the DumpingSite input value. The rolling resistance 

and the coefficient of traction factors of each route section are also assigned to the 

RollingResistance and CoefficientofTraction keywords, respectively, as shown in 

Figure 6-22.  

 

Figure 6-22 Key Inputs for TRoute1 

For a two-way traffic haul route, the minimum road width is usually set to 3-3.5 

truck widths (Holman, 2006). In the TSJSim model, the maximum truck width is 
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about 8 m (CAT 789C), thus the road width is set to 28 m for safety reasons. The 

coordinates of the nodes on TRouteEmpty1 are provided in Table 6-7. 

Table 6-7 Coordinates of the nodes on TRouteEmpty1 between P3WC and ROM  

Node Coordinate (m) 

P3WC  {-28,  0,  0} 

WC1  {-28,  -57.9,  0.3474} 

WC2  {-28,  -105.6,  5.022} 

WC3  {-28,  -144,  9.054} 

WC4  {-28,  -253.3,  12.1144} 

ROM1  {-28,  -547.4,  10.0557} 

ROM2  {-28,  -633.9,  10.6612} 

ROM3  {-28,  -1091.1,  14.776} 

ROM4  {-28,  -1269.6,  26.3785} 

ROM5 {-28,  -1589.8,  30.2209} 

ROM Dump  {-28,  -1893.5,  29.6135} 

The remaining haul routes are set up similar to TRoute1 and TRouteEmpty1. Figure 

6-23 shows the layout of the haul route system in the TSJSim model. Table 6-8 

shows the final model objects assigned to both the loading sites and dump sites. 

 

Figure 6-23 Haul route network layout 
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Table 6-8 Model objects in the layout 

Location TEntityGenerator Tloader Tdump TEntitySink 

P3WC loading site TEntityGenerator1 Tloader1 - - 

S4C loading site TEntityGenerator2 Tloader2 - - 

P3EC loading site TEntityGenerator3 Tloader3 - - 

P4 loading site TEntityGenerator4 Tloader4 - - 

ROM dump - - Tdump1 TEntitySink1 

P3WD dump - - Tdump2 TEntitySink2 

P1ED dump - - Tdump3 TEntitySink3 

P4WD dump - - Tdump4 TEntitySink4 

To connect the haul routes so that the hauling trucks can shift from one route to 

another, five RouteIntersection objects are used, i.e., TRouteIntersection1, TRoute 

Intersection2, TRouteIntersection3, TRouteIntersection4 and TRouteIntersection5. 

The intersections of the haul routes are entered as the Points input value of the 

TRouteIntersection. The crossing TRoutes and TRouteEmptys are selected as the 

input values for the TRouteLoaded and the TRouteEmpty keywords, respectively. For 

example, TRouteIntersection3 links TRoute1 and TRoute2 as well as TRouteEmpty1 

and TRouteEmpty2, as shown in Figure 6-24. The input parameters for 

TRouteIntersection3 are shown in Figure 6-25.  

 

Figure 6-24 TRouteIntersection3 
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Figure 6-25 Key Inputs for TRouteIntersection3 

6.4.2 Key Inputs configuration 

After setting up the model layout, the Key Inputs for each object can be specified in 

the following sections:  

6.4.2.1 TEntityGenerator 

Select a TEntityGenerator in the View window (Figure 6-26). The NextComponent 

input value should be the Loader object working at the loading site. For instance, the 

NextComponent for the TEntityGenerator1 is Tloader1 at the P3WC loading site, as 

shown in Figure 6-27. The FirstArrivalTime and InterArrivalTime input values for 

each TEntityGenerator are set to the default values, i.e., 0 and 1 s, respectively. 

OreEntity1 is selected as the PrototypeEntity for all the TEntityGenerators. The 

value of the Maxnumber input is left blank, so there is no limit to the maximum 

number of OreEntities being generated. All the TEnityGenerators, i.e., 

TEntityGenerator1, TEntityGenerator2, TEntityGenerator3 and TEntityGenerator4, 

have the same FirstArrivalTime, InterArrivalTime, PrototypeEntity and Maxnumber 

input values but different NextComponent input values. Table 6-9 shows the 

NextComponent input values for all the TEntityGenerators. 
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Figure 6-26 Selecting TEntityGenerator in the View window 

 

Figure 6-27 Key Inputs of TEntityGenerator1 

Table 6-9 NextComponent inputs for TEntityGenerators 

Object ID NextComponent Description 

TEntityGenerator1 Tloader1 OreGenerator at P3WC 

TEntityGenerator2 Tloader2 OreGenerator at S4C 

TEntityGenerator3 Tloader3 OreGenerator at P3EC 

TEntityGenerator4 Tloader4 OreGenerator at P4 
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6.4.2.2 Tloader 

A Tloader is selected from the View window, e.g., Tloader1 at P3WC. Figure 6-28 

shows the Input Editor of Tloader1.  

 

Figure 6-28 Key Inputs of Tloader1 

The Key Inputs are specified as follows: 

Description: enter “Loader at P3WC” as the description for Tloader1. 

Transport: select the trucks assigned to the Tloader. In Figure 6-28, four trucks 

(CAT 785C) are assigned to Tloader1, i.e., TTransporter5, TTransporter6, 

TTransporter7 and TTransporter8. Table 6-10 shows the Transport input values as 

well as the associated truck types for all the Tloaders. 

Table 6-10 TTransporters for all the Tloaders 

Object ID Description Transport Truck type 

Tloader1 Loader at P3WC TTransporter5,6,7,8 CAT 785C 

Tloader2 Loader at S4C TTransporter1,2,3,4 CAT 789C 

Tloader3 Loader at P3EC TTransporter9,10,11,12 CAT 785C 

Tloader4 Loader at P4 TTransporter13,14 CAT 785C 

TOperator: the loading time of a Tloader is determined by the TOperator assigned to 

the Tloader. Six Probability Distribution objects, including NormalDistribution1, 

NormalDistribution2, NormalDistribution3, NormalDistribution4, LogNormal-
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Distribution1 and LogNormalDistribution2, are used to specify the loading time and 

dumping time, as shown in Figure 6-29.  

 

Figure 6-29 Probability Distribution objects assigned to Tloader and Tdump 

The specifications for these Probability Distributions are shown in Table 6-11.  

Table 6-11 Specifications of Probability Distributions 

Object ID 

Probability 

distribution Description 

NormalDistribution1 

Normal(35.77 s, 

11.02 s) Dumping time for CAT 785C 

NormalDistribution2 

Normal(46.88 s, 

11.97 s) Dumping time for CAT 789C 

NormalDistribution3 

Normal(250.6 s, 

33.14 s) 

Loading time of Tloader2 at 

S4C 

NormalDistribution4 

Normal(122.35 s, 

18.08 s) 

Loading time of Tloader1 at 

P3WC 

LogNormalDistribution1 

LogNormal(5.19 s, 

0.16 s) 

Loading time of Tloader3 at 

P3EC 

LogNormalDistribution2 

LogNormal(5.73 s, 

0.12 s) Loading time of Tloader4 at P4 

Next four TOperators, i.e., TOperator1, TOperator2, TOperator3 and TOperator4, 

are created, as shown in Figure 6-30. For example, TOperator1 is assigned to 

Tloader1 at P3WC, thus NormalDistribution4 is set as the ServiceTime input value.  
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Figure 6-30 Creating TOperators 

Table 6-12 provides the ServiceTime input parameters for all the TOperators. 

Table 6-12 Specifications of TOperators 

Object ID Description ServiceTime 

TOperator1 Assigned to Tloader1 at P3WC NormalDistribution4 

TOperator2 Assigned to Tloader2 at S4C NormalDistribution3 

TOperator3 Assigned to Tloader3 at P3EC LogNormalDistribution1 

TOperator4 Assigned to Tloader4 at P4 LogNormalDistribution2 

WaitTQueue and WaitTQueueForLoadingTTransporter: TQueue objects can be 

dragged and dropped from the Model Builder (Figure 6-31) and next assigned to 

each loading site and dump site. For instance, TQueue1 is assigned as the 

WaitTQueue input value and TQueue2 as the WaitTQueueForLoadingTTransporter 

input value for Tloader1 (Figure 6-28). 

 

Figure 6-31 Creating TQueues 
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6.4.2.3 Tdump 

A Tdump object is selected at a dump site, e.g., Tdump1 at the ROM dump, as shown 

in Figure 6-32. As an example, the Key Inputs values for Tdump1 are shown in 

Figure 6-33. The TEntitySink at the dump site is selected as the NextComponent 

input value. Both NormalDistribution1 and NormalDistribution2 are selected as the 

ServiceTime input values for the dumping times of the CAT 785C and CAT 789C 

trucks. TQueue13 is selected as the WaitTQueue input value and TQueue14 as the 

WaitTQueueFor-UnloadingTTransporter input value.  

 

Figure 6-32 Selecting Tdump 

 

Figure 6-33 Key Inputs of Tdump1 
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6.4.2.4 TTransporters 

The Key Inputs of all the TTransporters (TTransporter1 through TTransporter14) 

are required to be specified. Select a TTransporter from the View window, for 

example, TTransporter1 (CAT 789C), as shown in Figure 6-34. The following Key 

Inputs (Figure 6-35) are required: 

 Bunching: TRUE. 

 BunchingDistance: 20 m. 

 TRouteLoaded and TRouteEmpty: select all the available TRoute and 

TRouteEmpty objects, so that the TTransporter can haul on the respective routes. 

 Tloader and Tdump: select the Tloader and Tdump assigned to the TTransporter. 

Table 6-13 provides the Tloader and Tdump input values for all the 

TTransporters. 

 Dispatching: select FixedDispatching as the truck-allocation method applied to 

the TTransporter. 

 

Figure 6-34 Selecting TTransporter1 
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Figure 6-35 Key Inputs for TTransporter1 

Table 6-13 Tloader and Tdump input values for TTransporters 

TTransporter ID Tloader Tdump 

1,2,3,4 Tloader2 (at S4C) Tdump3 (at P1ED dump) 

5,6,7,8 Tloader1 (at P3WC) Tdump1 (at ROM dump) 

9,10,11,12 Tloader3 (at P3EC) Tdump2 (at P3WD dump) 

13,14 Tloader4 (at P4) Tdump4 (at P4WD dump) 

The screenshots for the simulation animation are shown in Figures 6-36 through 6-

38. 

 

Figure 6-36 TSJSim simulation screenshot a 
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Figure 6-37 TSJSim simulation screenshot b 

 

Figure 6-38 TSJSim simulation screenshot c 

6.5 Model validation 

The TSJSim model was run using the above data for 11 hours and each run was 

implemented with 100 replications. The simulation results were compared with the 

field data collected by Shaw (2012) for the model validation. The average truck 

cycle times on all the haul routes, including P3WC – ROM Dump (CAT 785C), S4C 

– P1ED (CAT 789C), P3EC – P3WD (CAT 785C), P4 – ROM (CAT 785C) and P4 

– P4WD (CAT 785C), generated by running the TSJSim model were compared to 

the actual cycle times observed during the time and motion study using the JMP data 

analysis. The cycle times of the simulation results are provided in Appendix H. 
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Formally, a statistical test of the null hypothesis:     𝑠    𝑟      

Alternative hypothesis:     𝑠    𝑟      

where 

 𝑠    Average cycle time calculated from simulation results. 

 𝑟     Average cycle time derived from field data. 

If    is not rejected, then it is not sufficient to consider the model invalid. If    is 

rejected, then the current version of the model is rejected. 

The testing of the hypothesis was implemented using the JMP statistical software 

(Carver, 2010). In the JMP data analysis, the null hypothesis is assumed to be true at 

the level of significance    0.05. 

6.5.1 Comparison of cycle times on route P3WC – ROM Dump  

As an example, Figure 6-39 shows the comparison of the distributions of the cycle 

times on route P3WC-ROM using both the field data and the simulation results.  

  

Figure 6-39 Distribution comparison on P3WC-ROM 
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The mean value for the cycle time derived from the field data  𝑟    is 831 s. The 

mean value for the cycle time from the simulation results  𝑠   is 829 s. At 95% 

confidence, the half-width is 4 s and the estimate value is in the range of [825 s, 833 

s]. The estimate error is -0.3%. 

In the case of the t significance test for the comparison of cycle times on route 

P3WC-ROM, as shown in Figure 6-40, the p-values marked by the red square prove 

that for route P3WC-ROM, there is no significant difference between the mean cycle 

time from the field data and the mean cycle time from the simulation results. 

 

Figure 6-40 t-test results for P3WC-ROM 

6.5.2 Model validation summary 

The summary statistics taken from the comparison of the actual cycle times and the 

simulation results are provided in Figure 6-41 and Table 6-14. The maximum 

prediction error for all the output is 0.5% and the p-values for all the cycle times are 

significantly greater than 0.05. It is sufficient to assume that the TSJSim model is 

valid. 

Table 6-14 Simulation model validation 

Haul routes Actual cycle time (s) Simulated cycle time (s) Error p-value  

P3WC-ROM 831 829 -0.30% 0.24 

P4-ROM 953 958 0.50% 0.41 

P4-P4WD 684 683 -0.20% 0.92 

S4C-P1E(789) 1432 1432 0% 0.96 

P3EC-P3WD 1452 1453 0% 0.93 
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Figure 6-41 Summary statistics of actual data and simulation results 

6.6 Model application for optimum fleet size 

The match factor (MF) has been widely used in the mining industry for selecting the 

optimum fleet for a truck-shovel system  (Morgan and Peterson, 1968): 
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 𝑀  
 𝑁                 𝐿                 

 𝑁                                   
 (6.1) 

A MF of 1.0 represents a balance point which indicates that the arriving rate of the 

trucks equals the shovel serving rate. If the ratio exceeds 1.0, then the arriving rate of 

the trucks exceeds the shovels’ serving rate, resulting in trucks queuing at the 

shovels. If the ratio is below 1.0, then the shovels’ serving rate exceeds the arriving 

rate of the trucks, resulting in the shovels waiting for trucks to arrive. 

The validated TSJSim model was used to optimise the Eastern Ridge OB 23/25 

operation using a fleet “sub-optimisation” method suggested by  Ataeepour and 

Baafi (1999). Two trucks are assigned to each shovel initially. The “optimum” 

number of trucks for the first shovel can be obtained by following the steps: 

1. Increase the number of trucks for the first shovel while keeping the number of 

trucks for the remaining shovels at two;  

2. Evaluate the shovel production, equipment utilization, etc. to find out the 

optimum number of trucks for the first shovel. 

Then the “optimum” number of trucks for the second shovel can be obtained by 

following the steps: 

1. Increase the number of trucks for the second shovel but using the “optimum” 

fleet size so far obtained; 

2. Evaluate the shovel production, equipment utilization, etc. to find out the 

optimum number of trucks for the second shovel. 

By repeating the above “sub-optimisation” method for all the shovels, the “optimum” 

number of trucks for all the shovels in the network was obtained. The sequence of 

the “sub-optimisation” was as follows:  

1. Shovel 1 (P3WC loading site with Liebherr 9250), 

2. Shovel 2 (S4C loading site with Hitachi 1900BE), 

3. Shovel 3 (P3EC loading site with Hitachi 1900BE), 
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4. Shovel 4 (P4 loading site with Hitachi 1900BE). 

The outputs include the truck queuing time for one truck cycle, the truck cycle time, 

the shovel utilisation, the shovel production and the match factor (MF).  

According to Smith (1999), the system productivity is dependent on the shovel 

utilisation. The higher the shovel utilisation, the greater the system production. 

However, the efficiency of the entire system is significantly influenced by the truck 

utilisation which is defined by Equation (6.2): 

 
                  

                                   

                
 

(6.2) 

In an over trucked system, i.e. a MF > 1, too many trucks in the system cause low 

truck utilisation. Although high system productivity may be maintained, the system 

efficiency is reduced and the operating expenses (OPEX) increases. On the contrary, 

in an under trucked system, i.e. a MF < 1, the truck utilisation is improved with a 

loss of system productivity. The OPEX is reduced and the truck fleet size shrinks, 

thus the capital expenditure (CAPEX) decreases (Hays, 1990). 

Case 1: Over trucking to maximise production at the expense of OPEX 

If the KPI for the entire truck-shovel network system is tonnes of materials moved, 

the focus for the operation is to maximise total production across the entire fleet of 

shovels and trucks. The following two production constraints can be set: 

1. The utilisation of each shovel above 95%; 

2. The truck utilisation in the range of 90% to 95%. 

Table 6-15 shows the truck fleets configuration and the associated performance 

parameters for the entire truck-shovel network system using such production 

constraints. There are 28 trucks serving the system in which 7 trucks are allocated to 

Shovel 1, 8 trucks to Shovel 2, 8 trucks to Shovel 3 and 5 trucks to Shovel 4. The 

match factor for each fleet is close to 1, the balance point which implies that the 
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shovel and the associated trucks are well matched. The production of each shovel in 

the system is maximised as indicated by the full utilisation of the shovel and also the 

truck utilisation is controlled. The system production per shift (11 h) is 154 433 t. 

Table 6-15 Case 1 Truck-shovel network shift simulation results 

Loader 
Fleet 

size 

Ave 

waiting 

time (s) 

Ave cycle 

time (s) 

Truck 

utilisation 

Shovel 

utilisation 

Shovel 

production (t) 
MF 

Shovel 1 7 51 867 94% 99% 51 656 1.04 

Shovel 2 8 119 1492 92% 99% 36 253 1.07 

Shovel 3 8 103 1455 93% 99% 34 005 1.08 

Shovel 4 5 87 918 91% 99% 32 519 1.08 

Assuming that the cost for a mining dump truck to operate is AU$ 400 per hour and 

an excavator AU$ 800 per hour (Nel et al., 2012). The total queuing time for all the 

trucks is 83381 s, 23.16 hrs, and the total idle time for all the loaders is 1430 s, 

nearly 0.40 hrs. Then the total OPEX caused by truck queuing and loader waiting is 

AU$ 9582 per shift and approximately 6 cents per tonne. 

Case 2: Slightly under trucking to reduce OPEX savings at the cost of production 

If the KPI for the truck-shovel network system is to maximise truck utilisation and 

also the focus of operational planning is to reduce OPEX by slightly under trucking, 

then the following two production constraints can be imposed: 

1. The utilisation of each shovel at around 90%; 

2. The truck utilisation above 95%. 

Table 6-16 shows the simulation results. In this case, the truck fleet size is 24. 6 

trucks are assigned to Shovel 1, 7 trucks to Shovel 2, 7 trucks to Shovel 3, and 4 

trucks to Shovel 4. As the shovel utilisation decreases, the total shift production is 

reduced to 138 498 t.  
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Table 6-16 Case 2 Truck-shovel network shift simulation results 

Loader 
Fleet 

size 

Ave 

waiting 

time (s) 

Ave 

cycle 

time (s) 

Truck 

utilisation 

Shovel 

utilisation 

Shovel 

production 

(t) 

MF 

Shovel 1 6 19 835 98% 88% 46 041 0.89 

Shovel 2 7 40 1417 97% 92% 33 386 0.93 

Shovel 3 7 45 1398 97% 92% 31 068 0.94 

Shovel 4 4 24 859 97% 85% 28 003 0.86 

The total queuing time for all the trucks is reduced to 26758 s, 7.43 hrs, but the total 

idle time for all the loaders increases to 17144 s, 4.76 hrs. The total OPEX caused by 

truck queuing and loader waiting is AU$ 6783 per shift and approximately 5 cents 

per tonne. Compared with Case 1, AU$ 2799 per shift (1.3 cent per tonne) is saved 

from OPEX. In Case 2, the fleet size is reduced to 24. Suppose the capital cost of 

each saved truck is approximately AU$ 1 650 000 (Machinery Trader, 2016) and the 

serving time of the truck fleet is 20 years, without considering depreciation, the cost 

saved from CAPEX is AU$ 414 per shift, approximately 0.3 cent per tonne. 

Therefore, the total cost saved from OPEX and CAPEX, compared with Case 1, is 

AU$ 3214 per shift, 1.6 cent per tonne. 

In a real truck-shovel mining network system, a single shovel may be critical to 

ensure a dragline or coal fleet is not delayed and therefore would have a higher 

priority than other shovels which may have a lower priority and therefore can absorb 

a lower productivity. The TSJSim model provides the capability of estimating the 

equipment performance for not only a single truck fleet but also for multiple truck 

fleets in the entire truck-shovel network system. The best truck fleet combination can 

be determined by varying shovel priorities. This capability offers a management a 

tool to evaluate the performance of the entire truck-shovel network system of a mine. 
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CHAPTER SEVEN  

MICROSCOPIC SIMULATION WITH TSJSIM 

7.1 Microscopic simulation approach 

There are two approaches commonly used to model an Intelligent Transportation 

System (ITS), i.e., the macroscopic and microscopic modelling approaches. The 

macroscopic approach describes the traffic process via low level detailed traffic 

objects such as the traffic flow or traffic density. The microscopic is known as a 

higher level detailed modelling approach, considering the traffic elements, for 

instance, individual vehicle units, haul routes, the interaction between the vehicle 

units and the influence of the traffic network on the vehicle units. Previous work by 

Liu et al. (1996), Larry et al. (2000) and Ben-Akiva et al. (2003) proved that the 

macroscopic approach fails to reproduce the individual vehicle movement and also 

to capture the dynamic interaction on traffic networks. Furthermore, Jaoua (2009) 

pointed out that when traffic interaction on haul route networks is ignored, the 

macroscopic simulation results are biased significantly.  

The developed TSJSim model considers a microscopic discrete-event simulation 

option that can be used to evaluate the true KPIs of a truck-loader transportation 

system as it considers the dynamic interaction between the trucks and the traffic 

environment. More specifically, the impact of the truck bunching effect and the 

traffic management in the intersection areas are studied in this Chapter. 

7.2 Bunching effect  

According to Smith (1999), an important factor that reduces the productivity of the 

truck-loader system is bunching which is the phenomenon where a truck following a 

slower truck catches up and then slows itself behind the slower truck. Bunching 

occurs when the trucks are not evenly spaced and the distance between the trucks is 

reduced due to the mixing of trucks with varied performances. In general, for safety 

reason, when bunching occurs, overtaking is not permitted unless positive 

communication is established and acknowledgement from the machine operator is 
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obtained, and the condition for safe overtaking is ensured (Karara Hematite Project, 

2013). 

Generally speaking, the bunching effect prolongs the hauling time of a truck, 

resulting in the variations in truck cycle times and non-synchronisation in the 

haulage system (Hays, 1990), thus lowering the truck utilisation and productivity. 

Morgan and Peterson (1968) examined the bunching effect on productive efficiency 

by using a stochastic simulation and changing the cycle time variation of the hauling 

trucks. Their simulation results show that the maximum reduction in efficiency due 

to bunching, i.e., the bunching correction in Figure 7-1, occurs at the perfect match 

point and the correction for bunching diminishes as the mismatch increases. Morgan 

and Peterson (1968) proposed that a correction factor between the minimum and 

maximum bunching correction factors can be used to correct the efficiency. This 

method of correction is easier than a stochastic simulation (Douglas, 1964; Smith et 

al., 2000) and is used in practice, for example, Caterpillar’s Fleet Production and 

Cost Analysis (FPC) simulator uses a bunching factor to reflect minimal, average 

and maximum levels of bunching influence. Most of the previous truck-allocation 

models (Lizotte and Bonates, 1987; Kolonja et al., 1993; Temeng et al., 1997; Baafi 

and Ataeepour, 1998; Alarie and Gamache, 2002; Hashemi and Sattarvand, 2015; 

Sofranko et al., 2015; Que et al., 2016) using the macroscopic modelling approach 

simplify or ignore the bunching effect in a truck-shovel system. Burt and Caccetta 

(2007) pointed out that further modelling of the bunching effect is still needed for a 

better estimation of the performance of the truck-loader system. 
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Figure 7-1 Effect of mismatch and bunching (Morgan and Peterson, 1968) 

7.2.1 A truck bunching model 

In TSJSim, the Route object is divided into various segments depending on the 

combination of route variables which include grade, rolling resistance and traffic 

infrastructure. Trucks travel along these segments of the hauling route with different 

mean travelling speeds dependant on the particular segment. As shown in Figure 7-2, 

when a truck is travelling within Segment A, the speed of the truck is   ; when the 

truck is hauling within Segment B, the speed is   , and when it reaches point B, the 

speed changes from    to   . When bunching occurs, depending on which of the 

segment(s) both the truck ahead (the slower truck) and the truck behind (the faster 

truck) are within, there are three bunching possibilities: the three-stage bunching 

possibility, the two-stage bunching possibility and the safe correction distance 

possibility.  

 

Figure 7-2 Trucks hauling on route segments with different mean speeds 
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 Three-stage bunching possibility 

When bunching occurs (Figure 7-3), if both trucks are still within the same route 

segment, the speed change for the truck following to travel through this route 

segment can be considered in three stages:  

(1) hauling at its own speed on the current segment,  

(2) bunching with the speed of the truck ahead on the current segment, and  

(3) bunching with the speed of the truck ahead on the next segment.  

As shown in Figure 7-3, in Stage 1, after reaching point A and before bunching 

occurs, Truck 2 travels with    , the designated speed for Truck 2 to haul in 

Segment B; after bunching occurs and before Truck 1 arrives at point B, in Stage 

2, the bunching speed of Truck 2 is equal to the speed of Truck 1,    , the speed 

for Truck 1 to haul in Segment B. When Truck 1 arrives at point B and Truck 2 

is still on Segment B, in Stage 3, the bunching speed of Truck 2 is    , the 

designated speed for Truck 1 to haul on Segment C. Therefore the sequent 

hauling speeds for Truck 2 to travel through Segment B include    ,     and    . 

 

Figure 7-3 Three-stage bunching process 

 Two-stage bunching possibility 

When bunching occurs (Figure 7-4), if the truck ahead is on Segment C whereas 

the following truck is still on Segment B, the speed change for the truck 

following to travel through Segment B can be considered in two stages:  
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(1) hauling at its own speed on the current segment, and then 

(2) bunching with the speed of the truck ahead on the next segment.  

As shown in Figure 7-4, in Stage 1, before the bunching occurs, Truck 2 travels 

at    , the designated speed for Truck 2 to haul in Segment B; in Stage 2, after 

bunching occurs, although Truck 2 is still on Segment B, as Truck 1 is already on 

Segment C or other trucks causing Truck 1 to follow behind are already on 

Segment C, the speed of Truck 2 changes to    , the speed for Truck 1 to haul on 

Segment C. Thus the sequent speeds for Truck 2 to travel on Segment B include 

    and    . 

 

Figure 7-4 Two-stage bunching process 

 Safe correction distance possibility 

It may happen that the initial distance between the two trucks is shorter than the 

required safety bunching distance. In this case, the truck following has to slow 

down to increase the distance between itself and the truck ahead to the required 

safety bunching distance. As shown in Figure 7-5, the reduced speed of the truck 

following (Truck 2), which ensures that the safety bunching distance can be 

obtained before the truck ahead (Truck 1) leaves the segment (Segment B), can 

be calculated by Equation (7.1): 

                       (7.1) 

where 

    initial distance between Truck 1 and Truck 2, m 
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     hauling speed for Truck 1 on Segment B, m/s 

     time for Truck 1 to reach point B, s 

      modified hauling speed for Truck 2 increasing the bunching distance, m/s 

      safety bunching distance, m 

Therefore the reduced speed    should satisfy the following condition: 

 
     

              

   
 (7.2) 

 

Figure 7-5 Safe correction distance process 

7.2.2 Bunching module development 

When bunching occurs, if there are more than two trucks in the bunch, the behaviour 

of the bunched trucks is influenced by the (first) leading truck in the bunch. 

Bunching may also disappear when trucks enter a traffic intersection. In the 

developed TSJSim simulation model, the information for the bunched trucks is 

stored in a list which keeps updating according to the status of each individual truck 

in the bunch. 

The bunching algorithm for trucks to travel on a route is summarised in Figure 7-6.  



Chapter Seven: Microscopic Simulation Study With TSJSim 

 

185 

 

Figure 7-6 Bunching algorithm for trucks to haul on route 

When a truck enters a route segment, the model checks if there are any other trucks 

on this segment. If not, the truck travels without bunching; otherwise, the three 

bunching possibilities are considered. The conditions are determined from the first 

stage, namely the time duration for the truck to reach the truck ahead,  , which 

equals the ratio of the distance between the two trucks to the difference between the 

velocities, as given by Equation (7.3). The safety correction distance sub-programme 

is implemented if the distance of the two trucks is shorter than the safety bunching 

distance.  

 
   

 

  
 (7.3) 

where  

      time duration for the faster truck to reach the slower truck, s 

     distance between the two trucks, m 

    difference between the speed of the faster truck and that of the slower truck, 

m/s. 
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The chasing time for the three-stage bunching is different from that for the two-stage 

bunching, as the value of    is different. Therefore the condition for applying the 

three-stage bunching process is 

            𝑢𝑟𝑟  𝑡    𝑠                𝑟𝑠𝑡 (7.4) 

The condition for applying the two-stage bunching process is 

            𝑢𝑟𝑟  𝑡    𝑠                𝑟𝑠𝑡 (7.5) 

where 

           𝑢𝑟𝑟  𝑡   time for the current truck to enter the segment, s 

                𝑟𝑠𝑡   time for the leading truck in the bunch to arrive at the next  

   point on the route, s 

    𝑠   time duration for the truck following to reach the truck ahead 

  in the three-stage bunching process, s 

    𝑠   time duration for the truck following to reach the truck ahead 

  in the two-stage bunching process, s 

If the conditions for three-stage bunching and two-stage bunching are not satisfied, 

indicating that the truck following is not fast enough to bunch behind the truck ahead, 

then the truck following travels at its designated speed. 

For a simplified truck-shovel model with one shovel, consider two loaded trucks 

travelling from the same shovel, Truck 1 hauling within a route segment and Truck 2 

ready to enter the segment, as shown in Figure 7-7.  
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Figure 7-7 Two trucks hauling through one segment 

The average velocities for Truck 1 and Truck 2 to travel through this segment are     

and    (m/s), respectively, and       . If bunching occurs, the following condition 

must be satisfied: 

                   (7.6) 

where  

        the entry time of Truck 2, i.e., the time of which Truck 2 enters the 

segment,        s 

              the time duration for Truck 2 to reach Truck 1, s  

         the time when Truck 1 leaves the segment, s  

In addition, the following equations are given: 

 

{
  
 

  
 

                   

  
 

     

                    

      
 

  

 (7.7) 

where 

         the loading time for Truck 2, which equals the difference between the  

      entry time of Truck 2 and that of Truck 1, s 
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        the entry time of Truck 1, i.e., the time for Truck 1 to enter the segment, s 

            the distance between Truck 1 and Truck 2, m 

         the hauling time for Truck 1 to travel through the segment, s 

             the length of the segment, m 

Thus, the following formula can be derived from the above equations: 

 
          

 

  
 

 

  
  (7.8) 

This implies that in the truck-shovel system with one shovel, if bunching occurs on a 

haul segment, the loading time for the truck behind must be less than a certain value 

which is determined by both the length of the segment and the velocities of the lead 

truck and the truck behind. 

The sub-programmes responsible for the bunching process were setup similar to the 

hauling process discussed in Section 4.4.7.4 of Chapter 4. The entityOvertaking 

Schedule function for loaded hauling trucks and the transOvertakingSchedule 

function for empty hauling trucks were developed to implement the bunching 

algorithm on routes. When a truck enters a haul segment, either the 

entityOvertakingSchedule function or the transOvertakingSchedule function is called 

to check if bunching will occur on the segment, and if so, either the three-stage 

bunching process or the two-stage bunching process is to be implemented, as shown 

in Figure 7-8. 
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Figure 7-8 Flowchart for bunching sub-programme 

The time durations that the bunched truck spends at each bunching stage are stored 

in variables durFirst (Stage 1 bunching), durSecond (Stage 2 bunching) and 

durThird (Stage 3 bunching), which are determined as follows:  

 Variable durFirst (Stage 1 bunching)  

Both for the three-stage bunching and two-stage bunching, variable durFirst is 

the time duration taken for the truck following to reach the truck ahead during 

the first stage, i.e.,   𝑠 in Equation (7.4) and   𝑠 in Equation (7.5), respectively.  

 Variable durSecond (Stage 2 bunching)  

For the three-stage bunching process, variable durSecond is the time that the 

truck following spends bunched with the truck ahead which is hauling on the 

same route segment. According to Figure 7-3, variable durSecond in the three-

stage bunching process can be given by Equation (7.9): 

              𝐿     𝑠             (7.9) 

where 

If 3-stage-

bunching is 

satisfied?

If 2-stage-

bunching is 

satisfied?

durFirst

durSecond

durThird

durFirst

durSecond

secondStageTargetInThreeStages

thirdStageTargetInThreeStages

secondStageTargetInTwoStages

Y

N N

Y

arriveAtInterval
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    𝐿   length of the segment, m 

    𝑠   duration for the truck behind to reach the truck ahead in the three-stage 

         bunching process, s 

      speed for Truck 2 (  ) to haul on Segment B in Figure 7-3 Stage 1, m/s 

        distance between Truck 2 (  ) and Truck 1 (  ) in Figure 7-3 Stage 2, m 

       speed for Truck 1 (  ) to haul on Segment B in Figure 7-3 Stage 2, m/s 

 

Figure 7-3 Three-stage bunching process 

For the two-stage bunching process, variable durSecond is the time duration that 

the truck following spends bunched with the truck ahead which is hauling on the 

next route segment. Referring to Figure 7-4, variable durSecond in the two-stage 

bunching process can be given by Equation (7.10): 

                  (7.10) 

where 

      distance between Truck 2 (  ) and Truck 1 (  ) in Figure 7-4 Stage 2, m 

     speed for Truck 1 (  ) to haul on Segment C in Figure 7-4 Stage 2, m/s 
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Figure 7-4 Two-stage bunching process 

 Variable durThird (Stage 3 bunching) 

The third stage of the three-stage bunching process is similar to the second stage 

of the two-stage bunching process. Variable durThird is the time duration taken 

by the following truck to follow along behind the truck ahead which is hauling in 

the next route segment at the third stage of the three-stage bunching process. 

Referring to Figure 7-3, variable durThird can be given by Equation (7.11): 

                (7.11) 

where 

      distance between Truck 2 (  ) and Truck 1 (  ) in Figure 7-3 Stage 3, m 

     speed for Truck 1 (  ) to haul on Segment C in Figure 7-3 Stage 3, m/s 

Once the time duration for each bunching stage is determined, the total delay time 

can be set in the scheduleProcess function by calling the three functions 

secondStage-TargetInThreeStages, thirdStageTargetInThreeStages and secondStage 

TargetInTwo-Stages. For the three-stage bunching process, durSecond is the total 

delay time for the secondStageTargetInThreeStages function and durThird the total 

delay time for the thirdStageTargetInThreeStages function. For the two-stage 

bunching process, durSecond is the total delay time for the secondStageTarget-

InTwoStages function. 
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After the bunching delay on the current haul segment has been determined, the truck 

leaves the current segment for the next segment. The arriveAtInterval function is 

then called again. 

7.2.3 Assessing the bunching effect on mine production 

For a truck-shovel system with only one shovel and one truck, there is neither 

queuing nor bunching in the system and both the truck utilisation and the truck 

productivity are 100%, although the shovel productivity may be low. As more trucks 

are added to the system, a queue is formed at the shovel and there is a potential for 

bunching; both the utilisation and productivity of each truck is then decreased.  

Consider two trucks hauling the same distance on the same haul route, Truck 1 (in 

front) with average velocity    and Truck 2 (behind Truck 1) with average velocity 

  ,      ; the travelling time for Truck 1 is     and that for Truck 2 is    , 

obviously,      . If bunching happens, Truck 2 continues to follow Truck 1 with 

speed of   , the increased hauling time caused by bunching,         , is defined 

as the bunching time. Since            , the lost time due to bunching (or the 

bunching time) can be written as: 

 
   

          

  
 (7.12) 

For a truck-shovel system model with no bunching effect considered, the production 

is reduced due to truck queuing. However, if the bunching effect is considered in the 

model, the reduced production can be the combined result of truck bunching and 

queuing. To estimate the bunching effect, the bunching time and the increased 

queuing time due to bunching are required. A factor, bunching effect on production 

(BEP, tonnes per unit time), defines the changing rate of production caused by 

bunching which can be expressed by Equation (7.13). This factor shows the 

production change for every lost unit time caused by bunching (includes the 

bunching time and increased queuing time due to bunching). For instance, if the BEP 

of a truck is x tonne/min, it indicates that shovel production change is x tonne for 

every minute the truck bunches and queues due to bunching. 
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7.3 Traffic control in safezone 

The bunching process discussed above is the traffic situation where those trucks that 

interact with each other are hauling on the same route and travelling in the same 

direction. In other words, it only covers the truck interaction that occurs on one 

single route, namely the bunching phenomenon on the route. However, in open-pit 

mining, a traffic network is usually formed by haul routes and intersections 

connected to each other, and the trucks hauling on one route often interact with the 

trucks hauling on another route at the roadway intersections.  

7.3.1 Main-route traffic management 

A main route is defined as the haul route that connects the active loading units and 

dumps or crushers with a high priority; other haul routes without this priority are 

referred to as non-main routes. Since the traffic flow on the main route has priority 

over the traffic flow on the non-main routes, the non-main route trucks have to give 

way to the main route trucks at the roadway intersection. When a non-main route 

truck reaches an intersection area and is ready to travel through the intersection or 

make a turn, and a main route truck arrives at the same time or is within the safe 

distance (m) from the intersection, the non-main route truck has to wait until the 

main route truck has left the intersection. Figure 7-9 highlights the use of a safezone 

at an intersection. Trucks on the non-main route have to wait at the safezone until 

there is no main route truck in the safezone. The behaviours of the non-main route 

trucks, i.e., waiting, moving forward and entering the safezone, are highly influenced 

by the dynamic traffic conditions in the safezone. The number of trucks already in 

the area, their hauling speeds and the number of trucks entering the area all impact 

on the overall truck delays at the intersection. 
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Figure 7-9 Safezone and intersection 

7.3.2 Truck turning management at an intersection 

When a truck arrives at an intersection, there are always two options available for the 

truck. The first option is to travel through the intersection; the second option is to 

turn, either through the intersection or away from the intersection. For example, in 

Figure 7-9, Truck 2 may travel straight through the intersection or turn left (away 

from the intersection) and Truck 1 may travel straight or turn right (through the 

intersection). Figure 7-10 shows two Cases of a truck turning at a four-way 

intersection, i.e., main-route loaded trucks hauling from right to left and from left to 

right.  

 

Figure 7-10 Truck turning situations 

In Case 1, Truck 2 and Truck 3 may travel through or turn inside the intersection, 

while Truck 1 has to wait at the safezone. However, Truck 4 has no impact on Truck 

1 because, as a non-main route truck, it can only turn away from the intersection. In 

Case 2, Truck 2 and Truck 3 may travel through or turn away from the intersection. 

Whether Truck 1 waits at the safezone depends on the turning decisions of Truck 2, 
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Truck 3 and Truck 4. If either Truck 2 or Truck 3 is travelling through the safezone, 

Truck 1 has to wait; if both Truck 2 and Truck 3 are turning, Truck 1 does not have 

to wait; if Truck 4 is turning at the intersection, then Truck 1 also has to wait at the 

safezone. 

7.3.3 Safezone traffic model development 

The traffic management options available in the TSJSim model for the trucks hauling 

through the safezone can be summarised as follows: 

1. If the truck is a main route truck, then it travels through the safezone without 

delay. 

2. If the truck is a non-main route truck, then it has to wait at the safezone if a main 

route truck is either travelling straight through the safezone or turning inside the 

intersection, or if another non-main route truck from the opposite direction enters 

and turns inside the intersection. 

The information for all the trucks in the safezone is stored and updated in a list 

named entityInSafezone in the Safezone object. When a truck enters the safezone, the 

information for this truck is added to the entityInSafezone list, and when the truck 

exits from the safezone, its information is removed from the list. The information in 

the entityInSafezone list mainly includes:  

 Truck object, 

 Route object, the route that the truck is hauling on, 

 StartTime, the time when the truck enters the safezone,  

 ExitTime, the time when the truck leaves the safezone. 

Traffic management conditions to be considered at an intersection are: 

1. whether the truck is hauling on the main route, and 
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2. whether the truck is hauling straight through or turning inside the intersection or 

turning away from the intersection. 

A Boolean variable, MainRoadInput, is used to specify whether the route is a main 

route or not. The route is set as a main route if the value of the MainRoadInput is 

TRUE. Similarly, two Boolean variables, turnIn and turnOut, are used to decide if 

the truck is hauling straight through or turning inside or turning away from an 

intersection. The value of turnIn is TRUE if the truck is turning inside the 

intersection, the value of turnOut is TRUE if the truck is turning away from the 

intersection, and both the values are FALSE when the truck is hauling straight 

through the intersection. The direction that a truck takes depends on the route 

generated by the Truck-allocation Strategy sub-programme. 

The flowchart of the algorithm for the safezone traffic sub-programme is shown in 

Figure 7-11.  

 

Figure 7-11 Flowchart for safezone management 
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As a truck (Truck a) arrives at a safezone, it is checked if Truck a is a main route 

truck. If so, then there is no delay for Truck a to travel through the safezone. 

Otherwise, the sub-programme checks whether Truck a will wait at the safezone or 

not. Firstly, whether the entityInSafezone list is empty or not it is checked. If there is 

no element in the list, meaning the safezone is empty, then Truck a can enter the area 

without delay; otherwise, if there are some trucks within the safezone, then these 

trucks are looped through (Truck i represents one of these trucks) to obtain the value 

of maxExitTime which is the estimated time for the last truck to exit from the 

safezone. The following conditions determine whether Truck a should give way to 

Truck i: 

 Condition 1 determines whether Truck i is a non-main route truck travelling on 

the same route as Truck a but from the opposite direction, and whether Truck i is 

turning inside the intersection, e.g., Truck 4 in Figure 7-10 Case 2. If Condition 1 

is satisfied, then the exitTime of Truck i is set as the maxExitTime. Otherwise, 

meaning Truck i is a main route truck, e.g., Trucks 2 and 3 in Figure 7-10, and  

 Condition 2 is used to decide whether Truck i is turning away from the 

intersection. If Condition 2 is satisfied, then the waiting time of Truck a is set to 

zero. Otherwise,  

 Condition 3 is considered to identify whether Truck i is travelling straight 

through or turning inside the intersection. If Condition 3 is satisfied, all the 

trucks in the entityInSafezone list would be looped through to obtain the 

maxExitTime for Truck a. Otherwise, the waiting time is set to zero. 

After waiting, Truck a enters the safezone, i.e., the enterSafezone function is called. 

If there is any truck in the safezone, the arriveAtSafezone function would be 

executed again to check the traffic condition in the safezone.  

7.4 Bunching animation 

The animation for the bunching process is similar to the animation for the hauling 

process, which uses the velocity and time duration to obtain the hauling distance on a 

haul route. The position and orientation of the hauling truck can be obtained using 
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the setPosition and setOrientation functions. The animation codes were integrated in 

the animation function updateGraphics. 

7.4.1 Bunching animation on haul route 

A Boolean variable, moving, defines the status of a truck to signify whether a truck is 

moving or not. Three variables, including startTime, durFirst and durSecond in the 

three-stage bunching and two-stage bunching processes, are used in the bunching 

animation. The startTime variable refers to the time when the truck enters a route 

segment; the durFirst variable is the time duration for the truck behind to reach the 

truck ahead at the first stage of bunching; the durSecond variable is the time period 

where the truck behind follows the truck ahead which is hauling on the current route 

segment. Two variables, overtakingTime and midTime, defined by Equations (7.14) 

and (7.15), respectively, are used in the bunching animation: 

                                   (7.14) 

                                  (7.15) 

where 

                start time point of the second stage of bunching, s 

                      end time point of the second stage of bunching, s 

The algorithm of the bunching animation is shown in Figure 7-12.  
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Figure 7-12 Algorithm of bunching animation 

If a truck is waiting at a safezone, i.e., variable moving is FALSE, then the bunching 

animation at safezone sub-programme is called. Otherwise, the bunching animation 

on haul route sub-programme is executed.  

Each stage of the bunching animation on a haul route is considered as follows: 

When the truck is in the first bunching stage, i.e.,                          

              , the hauling distance is obtained by using Equation (7.16): 

         𝐿                             (7.16) 

where  

                   distance that the truck has travelled. 

   𝐿       sum of the lengths of the segments that the truck has travelled 

through. 

              current simulation time. 

                     hauling velocity in the first bunching stage. 
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When the truck is in the second bunching stage, i.e.,                

               , the hauling distance can be calculated using Equation 

(7.17): 

        𝐿                                   

                             (7.17) 

where  

    hauling velocity in the second bunching stage. 

In the third bunching stage, if any, i.e.,                , Equation 

(7.18) is used to calculate the hauling distance. 

        𝐿                                   

                            

                      
(7.18) 

where  

    hauling velocity in the third bunching stage. 

After the distance is determined, the position and orientation of the truck can be 

specified. 

7.4.2 Bunching animation at safezone 

When a truck is waiting at a safezone, other trucks behind the truck may bunch and 

also queue at the safezone. Both the queuing and bunching processes at the safezone 

are considered in the animation algorithm. The waiting process can only happen in 

the second and third stages of the bunching process, in other words, the truck behind 

waits after it reaches the truck ahead that is waiting at the safezone. The waitTime 

variable is used to accumulate the waiting duration while the truck is waiting at the 
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safezone, and the waitStartTime variable is used to store the time the truck starts to 

wait. 

The three stages of the bunching process were also considered in the animation 

algorithm. In the first bunching stage, current simulation time should be less than 

overtakingTime, and Equation (7.16) is used to calculate the hauling distance. 

However, in the second stage and third stage, it is possible for the truck to queue at 

the safezone, thus the possible waiting time should also be used in the calculation. In 

the second stage, if the truck ahead is hauling, then Equation (7.19) is used to 

calculate the hauling distance; otherwise Equation (7.20) is used. 

        𝐿                                   

                                      (7.19) 

        𝐿                                   

                                        

    
(7.20) 

In the third stage, if the truck ahead is hauling, then Equation (7.21) is used to 

calculate the hauling distance; otherwise Equation (7.22) is used. 

        𝐿                                   

                                     

                      
(7.21) 
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        𝐿                                   

                            

                                     
(7.22) 

7.5 Managing main route trucks through the safezone 

The TSJSim simulation model was used to study the impacts of the following three 

truck and shovel configurations for the haul route between the P3WC loading site 

(with Shovel 1), the S4C loading site (with Shovel 2) and the ROM dump (Figure 6-

2): 

1. Both shovels were under trucked, with five trucks (CAT 785C) assigned to 

Shovel 1 and five trucks (Komatsu 860E) assigned to Shovel 2; 

2. Both shovels were over trucked, with eleven trucks (CAT 785C) assigned to 

Shovel 1 and nine trucks (Komatsu 860E) assigned to Shovel 2; 

3. One shovel was under trucked and the other over trucked, with five trucks (CAT 

785C) assigned to Shovel 1 and nine trucks (Komatsu 860E) assigned to Shovel 

2. 

The haul route between the P3WC loading site and the ROM dump is selected as the 

main route. Various safe distances or lengths of the safezone (Figure 7-9) were 

considered, including 0 m (no safe zone), 50 m, 100 m, 150 m and 200 m. 

The main operational data are provided in Table 7-1. 

Table 7-1 Safezone traffic model input parameters 

Parameter Value 

CAT 785C empty weight (kg) 102 150 

CAT 785C capacity (kg) 147 330 

Komatsu 860E empty weight (kg) 200 351 

Komatsu 860E capacity (kg) 254 363 
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Shovel service time for CAT 785C (s) Normal(122, 18) 

Shovel service time for Komatsu 860E (s) Normal(208, 21) 

Dumping time for CAT 785C (s) Normal(35, 11) 

Dumping time for Komatsu 860E (s) Normal(46, 12) 

The simulation results include shovel shift production, total bunching time, total 

queuing time at shovel, and total queuing time at safezone. 

Case 1: Both shovels under trucked 

Figure 7-13 illustrates the trends of the KPIs with the safe distance changes in Case 1.  

 

Figure 7-13 KPIs of the under trucked system for fleet 1 and fleet 2 

As the safe distance increased from 0 to 150 m, the shift production of Shovel 1 

increased from 36159 t to 36704 t. Then the value dropped to 36528 t when the safe 

distance is 200 m. The total queuing time of fleet 1 decreased significantly from 83.4 

min to 20.0 min and the total bunching time of fleet 1 also decreased from 13.3 min 

to 1.0 min. The utilisation of the main route truck fleet improved with the increase in 

the safe distance. 

However, the production of Shovel 2 showed a negative relationship with the 

increasing safe distance, ranging from 61182 t to 59725 t, and the total queuing time 

increasing from 21.7 min to 48.9 min. Although the total bunching time for fleet 2 

was insignificant, the total queuing time at the safezone increased from 0.5 min to 
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46.3 min. Thus, for the truck-shovel mining system with both shovels under-trucked, 

the safezone has a significant influence on both the main route fleet and the non-

main route fleet. As the length of the safezone increases, the production of the main 

route fleet increases, and both the queuing time and the bunching time of the main 

route fleet decrease significantly. However, both the utilisation of the non-main route 

fleet and the shovel production were reduced with the increase in the safe distance.  

Case 2: Both shovels over trucked 

Figure 7-14 shows the trends of the KPIs with the changing safe distance in Case 2.  

 

Figure 7-14 KPIs of the over trucked system for fleet 1 and fleet 2 

As the safe distance increased, the respective production of Shovels 1 and 2 

remained stable. For the truck fleet assigned to Shovel 1 (main route fleet), even 

though the bunching time decreased, there was no significant change in the queuing 

time at Shovel 1. For the truck fleet assigned to Shovel 2 (non-main route fleet), 

although the queuing time at Shovel 2 decreased, the truck utilisation did not 

improve due to the increase in queuing time at the safezone. Therefore in an over-

trucked system, the impact of the safezone on the system productivity and fleet 

utilisation is relatively insignificant compared to an under-trucked system. 
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Case 3: One shovel under trucked and the other over trucked 

Figure 7-15 shows the trends of the KPIs with the safe distance in Case 3.  

 

Figure 7-15 KPIs of the mix trucked system for fleet 1 and fleet 2 

When Shovel 1 was under trucked and Shovel 2 was over trucked, the production of 

Shovel 1 increased and the bunching time and queuing time decreased with the 

increase in the safe distance, while the production of Shovel 2 with the associated 

fleet utilisation showed no significant change. The results show that the safezone has 

a significant impact on the utilisation of the under trucked fleet; it has positive 

impact on the main route fleet utilisation and negative impact on the non-main route 

fleet utilisation.  

Based on the simulation results, it can be concluded that as the safe distance 

increased, the utilisation of the main route fleet improved at the expense the non-

main route fleet. Therefore the safezone and main route management are necessary 

in optimising the productivity of a truck-shovel system. 
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CHAPTER EIGHT  

TRUCK-ALLOCATION MODEL  

8.1 TSJSim truck-allocation approach  

In an active surface mine, a truck-allocation decision point is defined as the time or 

the spatial position at which a truck driver needs to make a decision as to what route 

to select so as get to a particular destination. This decision may occur before and 

after loading, before and after dumping, or when a truck arrives at an intersection. 

According to Munirathinam and Yingling (1994), most of the previous simulation 

models assume one or two decision points in one truck cycle, either at the loading 

site or at the dump site or at both. For example, in DISPATCH (White and Olson, 

1993), the trucks in the real-time dispatching list are those that have completed or 

about to complete dumping; Hauck (1973) assumed the unloading point to be the 

decision point for real-time truck dispatching; Jaoua et al. (2012a) used a specified 

regular time interval (the control horizon) to manage the time for dispatching instead 

of using a decision point.  

Ouelhadj and Petrovic (2009) suggested the intelligent metaheuristic searching 

methods, including the Genetic algorithm, Tabu Search and Simulated Annealing, as 

those methods are more powerful and appropriate for complex system 

scheduling/control optimisation than the simple heuristic rules. Pfeiffer et al. (2007) 

also demonstrated the performance improvement using a dynamic scheduling 

method based on a Genetic algorithm. Jaoua et al. (2012a) proposed a metaheuristic 

model, using the Simulated Annealing (SA) algorithm to compute the near-optimal 

assignment in a truck-shovel dispatching system. 

In the TSJSim simulation model, multiple decision points in the haulage network 

system within a one truck cycle were considered to handle the complexity of the 

traffic network and the dynamic operational variables of a surface mine. The Route-

Intersection object handles the assignment of the Truck on Route objects. Referring 

to a typical truck-shovel network system shown in Figure 8-1, when a loaded Truck 

completes dumping at Dump 2, and depending on the system status at this very 
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moment, e.g., the traffic conditions on the various Routes, the availabilities of the 

Shovels, the lengths of the Queues at the loading sites and the performance of the 

LoaderOperators, an assignment is generated by the Truck-allocation Strategy 

object to send the Truck to a loading site. After hauling for a period of time, the 

Truck arrives at RouteIntersection a, which provides an opportunity for the Truck to 

make a decision either to turn left for Shovel 1 or to turn right to other Shovels 

{            }. The system status when the Truck arrives at RouteIntersection a 

may be different from when the Truck was leaving Dump 2. If the Truck-allocation 

Strategy object regenerates a new truck-allocation solution at that moment, the 

assignment for the Truck may be different from but could be more productive than 

the assignment when the Truck was leaving Dump 2. After hauling from 

RouteIntersection a to b, the Truck then makes a further choice between Shovel 2 or 

Shovel 3 and Shovel 4 or Shovel 5. A similar decision is made when the Truck arrives 

at RouteIntersection c which is the last intersection on the haul route. Thus it is clear 

that in a truck-shovel network system where the operational variables change 

continuously, the truck assignment decisions could be made at the decision points on 

the haulage network to optimise productivity. 

 

Figure 8-1 Decision points at intersections in a truck-shovel network system 

In the TSJSim simulation model, the truck-allocation approach is implemented 

mainly by two objects: the RouteIntersection object and the Truck-allocation 

Strategy object. The RouteIntersection object specifies all the decision points on 

Routes as well as the associated possible truck-allocation paths at each decision point. 

The Truck-allocation Strategy object assigns a Truck object to a destination based on 

the specified truck-allocation strategy.  
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8.2 Truck-allocation paths development 

The total possible truck-allocation paths for the trucks to travel from the traffic 

intersections to all the loading sites or dump sites are specified and stored in a list 

referred to as the RoutePool list in the RouteIntersection object. For instance, Figure 

8-2 shows an ideal truck-shovel haulage network layout with the decision points for 

the loaded trucks and the possible paths at the RouteIntersection objects.  

 

Figure 8-2 RoutePool and decision points 

The RoutePool list at decision point D has two possible truck-allocation paths, i.e., D 

– Dump 3 and D – Dump 4; the RoutePool list at decision point C contains three 

possible paths, i.e., C – Dump 2, C – D – Dump 3 and C – D – Dump 4; the 

RoutePool list at decision point B includes four possible paths, i.e., B – Dump 1, B – 

C – Dump 2, B – C – D – Dump 3 and B – C – D – Dump 4; the RoutePool list at 

decision point A has six possible paths, i.e., A – B – Dump 1, A – B – C – Dump 2, A 

– B – C – D – Dump 3, A – B – C – D – Dump 4, A – D – Dump 3 and A – D – 

Dump 4. To determine all the possible paths at each RouteIntersection, the route 

network is considered to be tree structure that consists of the decision points and the 
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destinations being the tree nodes, as shown in Figure 8-3. The decision points at the 

lowest level provide the direct routes to the destinations, e.g., the decision point D is 

connected with Dump 3 and Dump 4. The decision points at the upper levels provide 

the routes to both other decision points and the final destinations. For instance, the 

decision point C is connected with Dump 2 and another decision point, i.e., D; the 

decision point B is connected with Dump 1 and another decision point, i.e., C; the 

decision point A is connected with other decision points, namely B and D. 

 

Figure 8-3 Tree structure of decision points on haul routes 

In TSJSim, the decision points are located with the spatial points on the Route 

objects, with each decision point at the RouteIntersection having its own RoutePool 

list. A recursive algorithm which consists of three embedded for-loops and one 

defined function was developed for generating all the possible truck-allocation paths 

at the various decision points. The function, named MethodofRoutePool, with the 

three input parameters calls itself recursively to determine the RoutePool lists. 

𝑀                                                         (8.1) 

where 

          RouteIntersection object which contains the intersecting Route objects; 

         Route object which consists of various spatial points; 

        truck-allocation path to which the Truck is assigned, consisting of various 

        spatial points. The starting point of the path is at the RouteIntersection, 
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        and the ending point is at the Loader or the Dump or the next Route-   

        Intersection. 

Figure 8-4 illustrates the flowchart for the algorithm. The main aim is to check all 

the nodes and the associated Route objects of the tree structure from the top to the 

bottom. 

 

Figure 8-4 RoutePool algorithm flowchart 

The outermost for-loop function loops through all the RouteIntersection objects in 

the truck-shovel network system. For the i
th

 RouteIntersection object, i.e., inter (i), 

the MethodofRoutePool (inter, route, droute) is implemented to determine 

RoutePool (i), which is the RoutePool list at inter (i). The parameter route 

temporarily saves the Route object that was passed from the previous 

MethodofRoutePool function (if any), and the parameter droute temporarily saves 

the paths already generated by all the previous MethodofRoutePool functions (if 
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any). For example, in Figure 8-2, to determine the RoutePool list at 

RouteIntersection A, suppose the MethodofRoutePool function is being implemented 

for RouteIntersection C, the current route parameter would be Route 2 and the 

current droute parameter would be the path A-B-C (Figure 8-3). The initial values of 

route and droute are set to null, as the starting point of the truck-allocation path at 

the RouteIntersection contains no previous Route objects or paths (e.g., Node A in 

Figure 8-3). The MethodofRoutePool (inter, route, droute) has an inner for-loop 

function which loops through all the Route objects at inter (i), i.e., all the intersecting 

routes at the intersection. Within this for-loop, route (j) is compared with route to 

check for new branches at the intersection. If route (j) and the route input parameter 

are two different Route objects, then a new truck-allocation path, i.e., droute (j), is 

initiated and replaced by droute. After that, the third for-loop function loops through 

all the points on route (j) to check whether to add point (n) to droute (j) or to 

implement another MethodofRoutePool for inter (i+1) (the next intersection). 

Depending on the location of point (n) on route (j), the following three conditional 

statements are executed to control the recursion: 

(1) If the decision point at inter (i) is connected with a destination, and point (n) is 

located between inter (i) and the destination, then point (n) is added to droute (j);  

(2) If the decision point at inter (i) is connected with another decision point, and 

point (n) is located between inter (i) and inter (i+1) on route (j), then point (n) is 

added to droute (j);  

(3) If point (n) is the decision point at inter (i+1) on route (j), then the 

MethodofRoutePool is implemented with inter (i+1), route (j) and droute (j) as 

the input parameters. 

In the case where multiple decision points exist in the system, the spatial points 

between inter (i) and inter (i+1) are first added to droute (j) at inter (i), then the 

second MethodofRoutePool for the next decision point at inter (i+1) is implemented. 

This process continues until the last MethodofRoutePool function is implemented for 

the last decision point at the bottom of the tree structure. In the implementation of 

this last MethodofRoutePool, if the spatial points of the droute (j) are between the 
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last decision point and the final destination, then the droute (j) for the Route object at 

inter (size of inters -1), i.e., the last RouteIntersection object, is added to RoutePool 

(i). After that, the algorithm sub-programme executes the second last 

MethodofRoutePool for inter (size of inters -2), i.e., the second last RouteIntersection 

object, and adds the droute (j)s for all the Route objects at inter (size of inters -2) to 

RoutePool (i). This process continues until the sub-programme executes the first 

MethodofRoutePool, thus solving RoutePool (i) at inter (i) by examining all the 

decision points from the top to the bottom of the tree structure. By following the 

above recursive process, all the RoutePool lists at all the RouteIntersection objects 

are generated. 

8.3 Truck-allocation Strategy  

According to Munirathinam and Yingling (1994), in the one-truck-at-a-time truck-

allocation model, the current and further assignment decisions are not made 

collectively. When a truck is ready to be assigned to a destination, the destination is 

determined without considering other trucks that could be assigned later and this 

could lead to sub-optimum truck-allocation. In TSJSim, the truck-allocation decision 

is made by applying the multi-trucks-at-a-time approach, i.e., the trucks close to the 

decision points at the loading sites, dump sites and traffic intersections are all 

considered in the truck-allocation process. For modelling purposes, the truck-shovel 

haulage system is divided into the following three areas: 

(1) Load Area, an area near the loader. The empty trucks hauling towards the loader 

within this area, the trucks queuing at the loader as well as those trucks being 

loaded are all considered and added to a truckInLoadzone list. 

(2) Dump Area, an area near the dump. The loaded trucks hauling towards the dump 

within this area, the queuing trucks at the dump and the trucks dumping are all 

considered and added to a truckInDumpzone list. 

(3) Intersection Area, an area near the intersection. The trucks hauling inside an 

intersection area and those trucks waiting outside the safezone area are all 

considered and added to a truckInSafezone list. 
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As an example, in Figure 8-5, when Truck 1 finishes loading and is ready for an 

assignment, in Load Area 1, Truck 2 is waiting and Truck 3 is hauling empty to 

Loader 1. In Load Area 2, Truck 4 is also hauling empty to Loader 2. In the 

Intersection Area, Truck 5 is hauling loaded to Dump 1 and Truck 6 is waiting 

outside the safezone area due to the passing priority rule (Zeng et al., 2017). Those 

trucks are all close to the decision points, thus Truck 2, 3, 4, 5 and 6 as well as other 

trucks that have already been assigned to the respective dumps could potentially 

influence the assignment of Truck 1 to a dump.  

 

Figure 8-5 Load, Dump and Intersection Areas 

Four truck-allocation strategies developed as part of TSJSim model are: 

 Fixed truck assignment (FTA),  

 Minimising truck waiting time (MTWT),  

 Minimising shovel production requirement (MSPR), and  
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 Minimising truck semi-cycle time (MTSCT). Two truck-allocation methods 

which are the genetic algorithm (GA) and the frozen dispatching algorithm 

(FDA), were developed to implement MTSCT. 

8.3.1 Fixed truck assignment (FTA) 

Under the FTA rule, each truck is assigned to a fixed shovel and dump at all times. 

Although this truck-allocation rule fails to dynamically change the production 

resource in a truck-shovel system, it serves well as a baseline for comparing and 

evaluating the effectiveness of other truck-allocation strategies. The match factor for 

each shovel can only be obtained using the fixed truck-allocation strategy.  

In the TSJSim model, FTA is set as the default truck-allocation rule. The default 

destinations that the truck travels between are set in the Loader and Dump inputs in 

the Truck object. If the user only enters one loader in the Loader input and one dump 

in the Dump input, then it is assumed that the FTA is applied in the model. The 

flowchart for the FTA sub-programme is shown in Figure 8-6. The RoutePool list is 

looped through and the route in the RoutePool with the same destination as the input 

is selected as the hauling route and stored in an object, DR (dispatching route). 

 

Figure 8-6 Flowchart for FTA sub-programme 
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8.3.2 Minimising truck waiting time (MTWT) 

Using the MTWT truck-allocation method, the truck is assigned to the shovel that is 

expected to generate the least amount of truck waiting time. The truck being loaded 

and the trucks in the queue at the loader are considered when estimating the total 

expected loading time of the loader. The loader with the minimum total expected 

loading time is selected as the destination for the empty truck that is waiting for a 

truck assignment. If the truck concerned is a loaded truck, then the total expected 

dumping time at the dumps is estimated. This process considers the trucks that are 

dumping as well as those waiting in the queue at the dumps. The dump with the 

minimum total expected dumping time is selected as the best destination for the 

loaded truck waiting for a truck assignment. Thus, MTWT is a one-truck-at-a-time 

truck-allocation approach which ignores the trucks that are close to the decision 

points, other than those in the queues or those being loaded or dumping. Trucks that 

have already been assigned to the loader and are currently hauling on routes are not 

considered when determining the expected loading times and/or dumping times. 

The logic used to determine MTWT is as follows: Firstly all the available 

destinations based on the current status and position of the truck to be allocated are 

determined. Secondly the expected loading times at all the available loaders or the 

expected dumping times at all the available dumps are estimated. The truck is then 

assigned to the destination with the minimum time value. 

Figure 8-7 shows the flowchart for determining the loader list (Llist) or dump list 

(Dlist).  
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Figure 8-7 Flowchart for determining destination list in MTWT 

If the truck to be allocated is at a loading site, all the available Dump objects 

assigned in the Dump input parameter are added to the dump list. If the truck is at a 

dump site, all the available Loader objects assigned in the Loader input parameter 

are added to the loader list. If the truck is hauling in an intersection area, its 

destination depends on the truck status (hauling either loaded or empty) and the 

RoutePool at the intersection, i.e., the final destinations from the intersection. For a 

hauling empty truck (i.e., isLoaded=FALSE), the corresponding Loaders for all the 

routes in the RoutePool are obtained and then added to the loader list; for a hauling 

loaded truck (i.e., isLoaded=TRUE), the corresponding Dumps for all the routes in 

the RoutePool are obtained and added to the dump list. 

Figure 8-8 shows the flowchart for determining the expected loading times at all the 

available loaders or the expected dumping times at all the available dumps. If the 

truck is hauling empty, the loader list is considered, otherwise the dump list is 

considered. To determine the expected loading time, all the trucks at the loader, 

including the trucks in the queue, are considered. Detailed calculations of the 

expected loading time were discussed in Section 4.4.3 of Chapter 4. The loader with 

the minimum expected loading time is selected as the destination for the truck being 

considered. A similar process is used to determine the minimum expected dumping 

time among all the available dumps. 
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Figure 8-8 Flowchart for searching for optimum destination in MTWT 

8.3.3 Minimising shovel production requirement (MSPR) 

With the MSPR truck-allocation strategy, the shovels have predefined production 

targets and the trucks are assigned to the shovel with the maximum difference, 

shortfall, between the planned production and the ongoing simulated production. 

This strategy focuses on the production requirement of shovels, instead of the 

utilisation of the truck fleet as in MTWT. However, for the trucks at the loading sites 

and for those hauling loaded towards the dumps, MTWT is still used to determine 

the optimum dump with the minimum expected dumping time. This implies MSPR 

is utilised for the trucks at dumps and hauling empty back to the loading sites. 

The planned production for a shovel can be the Loader object input data. A variable, 

diffProduct, was defined to record the difference between the planned production 

and the ongoing simulated production. The MSPR model object searches for the 
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loader with the maximum value of diffProduct and assigns the truck to this loader 

when the truck is at a dump or hauling empty at an intersection area. 

8.3.4 Minimising truck semi-cycle time (MTSCT) 

One of the measures of the productivity and efficiency of a truck-shovel mining 

system is the truck cycle time. In a complete truck cycle, the truck departs from a 

loader towards a dump and then returns from the dump back to a loader.  The 

complete truck cycle time includes the loading time, hauling time from the loader to 

a dump site, queuing time at the dump site, dumping time, hauling time from the 

dump site either to the same loading site or to another one, and queuing time at the 

loading site. It is clear that one complete truck cycle includes two destinations: 

(1) The departure destination, is the planned destination of a truck when departing. If 

a truck is leaving a dump site, then a loading site would be the departure 

destination for the truck; if a truck is leaving a loading site, then a dump site 

would be the departure destination. 

(2) The returning destination, which is the destination that a truck will return to after 

arriving at the departure destination. If a truck is leaving a dump site, then a 

dump site would be the returning destination for the truck; if a truck is leaving a 

loading site, then a loading site would be the returning destination. 

Due to the influence of ongoing truck allocations within the entire system, the further 

the truck travels, the more time the truck will spend on the route, and the more 

difficult it is to estimate the complete truck cycle time. The estimated queuing times 

at the returning destinations are more variable than those at the departure 

destinations. If the complete truck cycle time is considered, the variable estimated 

queuing times at the returning destinations could bias the truck-allocation decision 

making process for the departure destination.  

In the TSJSim simulation model, a truck semi-cycle time is defined as the sum of the 

time durations for a truck travelling from the origin, i.e., a loader, dump or 

intersection, to the departure destination, i.e., a dump or loader, plus the time 

duration for queuing and loading or dumping at the departure destination. The 
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influence of the returning destination is not included in the truck semi-cycle time. 

The objective of the truck-allocation algorithm is to obtain the assignment with the 

minimum estimated truck semi-cycle time. 

8.3.4.1 Components of the truck semi-cycle time 

The estimated semi-cycle time for a truck at the decision point is expressed as: 

    𝑏    ℎ𝑏    𝑞𝑏    𝑝𝑏 (8.2) 

where 

   𝑏   estimated semi-cycle time for a truck to travel from origin  , i.e., a loader, 

   dump or intersection, to destination  , i.e., a dump or loader;  

  ℎ𝑏   estimated hauling time to arrive at destination  ; 

  𝑞𝑏   estimated initial queuing time at destination  ; 

  𝑝𝑏   estimated processing time (loading time or dumping time) at destination  . 

For the “potential truck” close to a decision point, which is hauling to or waiting at a 

loader, dump or intersection, the estimated semi-cycle time is: 

   𝑏    ℎ    𝑞    𝑝    ℎ𝑏    𝑞𝑏    𝑝𝑏                       (8.3) 

where 

  ℎ   estimated hauling time to arrive at origin  , if the truck is still hauling; 

  𝑞   estimated initial queuing time at origin  , if the truck needs to queue; 

  𝑝   estimated processing time (loading time or dumping time) at origin  . 

Suppose one truck just finishes dumping and is ready to be assigned to a loader. 

There could be n shovels in the network system, i.e., {  ,   ,   , … ,   } and m 

trucks that need to be allocated in this assignment, i.e., {  ,   ,   , … ,   }. The 
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estimated semi-cycle time for each truck to reach the next decision point at a loader, 

i.e., when the truck finishes loading, can be expressed by Equation (8.4): 

   

[
 
 
 
 
 
 
 

  𝑠1𝑡1      𝑠2𝑡1       𝑠3𝑡1    …      𝑠𝑗𝑡1     …       𝑠𝑛𝑡1

  𝑠1𝑡2      𝑠2𝑡2       𝑠3𝑡2    …      𝑠𝑗𝑡2     …        𝑠𝑛𝑡2

  𝑠1𝑡3      𝑠2𝑡3       𝑠3𝑡3   …      𝑠𝑗𝑡3     …       𝑠𝑛𝑡3

⋮               ⋮               ⋮         ⋱           ⋮          ⋱             ⋮  
  𝑠1𝑡𝑖       𝑠2𝑡𝑖       𝑠3𝑡𝑖    …      𝑠𝑗𝑡𝑖     …       𝑠𝑛𝑡𝑖

⋮               ⋮               ⋮         ⋱           ⋮         ⋱              ⋮ 
  𝑠1𝑡𝑚       𝑠2𝑡𝑚      𝑠3𝑡𝑚    …      𝑠𝑗𝑡𝑚     …       𝑠𝑛𝑡𝑚]

 
 
 
 
 
 
 

                (8.4) 

where 

        matrix of estimated semi-cycle times for assigning m trucks to n shovels. 

  𝑠𝑗𝑡𝑖   estimated semi-cycle time for truck    to arrive at shovel    and to finish   

    loading. 

If the estimated semi-cycle time of each truck is independent of all others, then the 

solution for    equals the minimum estimated semi-cycle time in {  𝑠1𝑡𝑖    𝑠2𝑡𝑖    𝑠3𝑡𝑖  

…    𝑠𝑛𝑡𝑖
} , i.e.,    {  𝑠1𝑡𝑖    𝑠2𝑡𝑖    𝑠3𝑡𝑖  …    𝑠𝑛𝑡𝑖

} . However, the estimated semi-

cycle times are not independent of one other because the trucks interact with each 

other in the truck-shovel mining network system. The interaction between the trucks 

includes the bunching effect on the haul route, the passing priority in the safezone, 

and most importantly, the queuing at the loader or dump.  

The estimated queuing time expressed in Equations (8.2) and (8.3) is an initial value 

which is the combined result of the present queue length at a loader or dump and the 

estimated hauling time. However, the actual estimated queuing time not only is 

influenced by the queue length but also varies according to the truck-allocation. In 

TSJSim, truck-allocation methods were designed to change the estimated queuing 

time to reflect the influence of truck-allocation decisions. As more trucks are 

assigned to the same loader or dump, the estimated queuing time increases, and the 

resultant increase in the estimated semi-cycle time is considered in the truck-

assignment.  



Chapter Eight: Truck-allocation Model 

 

221 

8.3.4.2 Truck-allocation methods for searching for the optimum destination 

with MTSCT 

In order to solve the problem of the mutual influence of possible queuing times and 

truck-allocation using MTSCT, two truck-allocation modules were developed: The 

Genetic Algorithm (GA) and the Frozen Dispatching Algorithm (FDA). 

8.3.4.2.1 Genetic Algorithm (GA) 

The GA is a popular meta-heuristic optimisation method that has been applied 

extensively in the industry with a good deal of success (Gosavi, 2015). In TSJSim, 

the decision variables (Trucks) are stored in a list named truckListDV, {  ,   ,   , … , 

  }, and their values (destinations, i.e., shovels or dumps) are stored in a list named 

DVV, {  ,   ,   , … ,   }. The size of the solutionList is set to the number of 

destinations in the system, { 𝐿   𝐿   𝐿  …   𝐿  …   𝐿 }. A solution,  𝐿 , consists 

of m elements for all the decision variables; the element value is the estimated truck 

semi-cycle time:  

 𝐿  {  𝑠𝑗𝑡1    𝑠𝑗𝑡2    𝑠𝑗𝑡3  …    𝑠𝑗𝑡𝑖  …    𝑠𝑗𝑡𝑚  }                           (8.5) 

where 

    𝐿   𝑗th
 solution, 𝑗 ∈ [   ]; 

  𝑠𝑗𝑡𝑖   estimated truck semi-cycle time    to destination point   ,  ∈ [   ]. 

Let   denote the iteration number of the algorithm and      the maximum number of 

iterations to be performed. Set     and       a constant value depending on the 

size of the model. There is no rule to determine an optimal iteration number and it is 

usually set by the permissible amount of computer time. The GA steps are as 

follows: 

1. Calculate the function value for each solution, i.e.,    𝐿  , which is the 

accumulated estimated semi-cycle times for all the trucks. The steps for 

calculating    𝐿   are as follows: 
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(i) Rank   𝑠𝑗𝑡𝑖  in  𝐿  in ascending order. In the new  𝐿 ,    will be the first truck 

to arrive at destination   ,    the second truck, and    the i
th

 truck. 

(ii) Modify the estimated queuing time of each semi-cycle time element. When    

arrives at   , if the shovel is still loading   − , i.e., the expected arrival time of 

   is less than the expected departure time of   − , then the queuing time is 

added to   𝑠𝑗𝑡𝑖 . 

(iii)Sum up all the modified semi-cycle time elements in  𝐿 , namely, 

  ( 𝐿 )    𝑠𝑗𝑡1     𝑠𝑗𝑡2    𝑠𝑗𝑡3  ⋯   𝑠𝑗𝑡𝑚  (8.6) 

2. Compare and rank  𝐿  in solutionList according to    𝐿  . Denote the minimum 

by  𝐿    and the maximum by  𝐿   . Randomly select a neighbour of  𝐿   , 

and call it  𝐿  𝑤, i.e.,                         {    }. Replace  𝐿    

by  𝐿  𝑤 ,  in other words,  𝐿     𝐿  𝑤 . Referring to Figure 8-9, suppose 

 𝐿     is  𝐿  and  𝐿    is  𝐿4. Initiate  𝐿  𝑤 by reproducing  𝐿   , and then 

replace all the elements in  𝐿  𝑤 with the elements in the neighbouring solution 

list, for instance, the replacement for   𝑠2𝑡1  can be either   𝑠1𝑡1  or   𝑠3𝑡1 , 

depending on the generated random number. 

3. Increment   by 1. If        , return  𝐿    as the optimum solution and STOP. 

Otherwise, go back to step 1. 

 

Figure 8-9 GA method 
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8.3.4.2.2 Frozen Dispatching Algorithm (FDA) 

The FDA module was originally designed for the TSJSim model based on the actual 

behaviour of a truck-shovel mining system. The FDA’s basic steps are summarised 

below: 

1. Select the element with a minimum value (minimum element) in list   𝑡𝑖
= 

{  𝑠1𝑡𝑖    𝑠2𝑡𝑖    𝑠3𝑡𝑖 …   𝑠𝑛𝑡𝑖
},  ∈ [   ], and store the element(s) of which the 

destination is    in list   𝑠𝑗, 𝑗 ∈ [   ]; for an example, as shown in Figure 8-10, 

suppose   𝑠1𝑡1  is the minimum element in   𝑡1  ={  𝑠1𝑡1    𝑠2𝑡1    𝑠3𝑡1 …   𝑠𝑛𝑡1}, 

and   𝑠1𝑡2 is the minimum element in   𝑡2={  𝑠1𝑡2    𝑠2𝑡2    𝑠3𝑡2 …   𝑠𝑛𝑡2}, then 

  𝑠1𝑡1  and   𝑠1𝑡2are stored in   𝑠1 . Suppose   𝑠3𝑡3  is the minimum element in 

  𝑡3= {  𝑠1𝑡3    𝑠2𝑡3    𝑠3𝑡3 …   𝑠𝑛𝑡3}, then   𝑠3𝑡3 is stored in   𝑠3. 

 

Figure 8-10 FDA method 

2. Compare and rank the elements stored in   𝑠𝑗 , 𝑗 ∈ [   ] . If the minimum 

element in   𝑠𝑗
, 𝑗 ∈ [   ], is   𝑠𝑗𝑡𝑥, meaning the truck    is supposed to be the 

first truck to arrive at    and there will be no increase in queuing time for    at   , 

then the value of   𝑠𝑗𝑡𝑥 will not be changed, and this assignment is “frozen”, i.e., 

   will be assigned to   . As an example, in Figure 8-10, compare and rank of the 

two elements,   𝑠1𝑡1 and   𝑠1𝑡2 in   𝑠1; suppose   𝑠1𝑡2 is the minimum element, 

then   𝑠1𝑡2 is “frozen” (in the shadow) and    will be assigned to   .   𝑠3 only 

contains one element,   𝑠3𝑡3, therefore   𝑠3𝑡3 is “frozen” (in the shadow) and    

will be assigned to   . 
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3. Consider the elements in   𝑠𝑗, 𝑗 ∈ [   ], that are not “frozen”. The truck with 

the minimum estimated time duration is supposed to arrive at the destination first 

and cause other “unfrozen” trucks in   𝑠𝑗  to wait on the condition that they 

arrive at the destination before the already assigned truck finishes loading or 

dumping. Therefore the expected queuing time is added to other elements in 

  𝑠𝑗 . To add the queuing time: first add the queuing time to the second minimum 

element, e.g.,   𝑠1𝑡1 in Figure 8-10, and then repeat steps 1 and 2. If   𝑠1𝑡1 is still 

the minimum element in   𝑡1, this element would be “frozen”; if   𝑠2𝑡1  is the 

minimum element in   𝑡1 , since it is the only element in   𝑠2 , it would be 

“frozen”; if   𝑠3𝑡1 is the minimum element in   𝑡1, it would be compared with 

other “unfrozen” elements in   𝑠3 to decide whether it is the second minimum 

element in   𝑠3 . After the second minimum element is “frozen”, the third 

minimum element in   𝑠𝑗  is considered. This process continues until all the 

elements in   𝑠𝑗
 are all “frozen”. 

8.3.4.3 Development of MTSCT 

A function, dispatchingMethod (trans, isLoaded, in), was developed to implement 

the MTSCT truck-allocation algorithm. It contains three parameters:  

(1) trans, a Truck object to be assigned,  

(2) isLoaded, a Boolean variable, if TRUE, the truck is loaded, otherwise, the truck 

is empty, and  

(3) in, a RouteIntersection object.  

The returned value is the destination (a loader or dump) with the minimum estimated 

truck semi-cycle time. The function consists of two components: the first component 

is to determine the initial estimated semi-cycle time list; the second component is the 

execution of GA and FDA.  
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8.3.4.3.1 Determination of initial semi-cycle time list 

When a truck is to be allocated, all the initial semi-cycle times of the trucks in the 

Load Area, Dump Area and Intersection Area must be determined before executing 

the truck-allocation algorithm. An ArrayList object referred to as ECList (estimated 

cycle time list) is used to store the initial estimated semi-cycle times. ECList’s 

element, ECT (estimated cycle time), saves initial estimated semi-cycle time, varied 

estimated semi-cycle time, etc. Each Truck object has an ECList object to store the 

initial estimated semi-cycle times to all the available destinations. Table 8-1 provides 

the descriptions of the variables and sub-objects of the ECT object. 

Table 8-1 Variables and sub-objects of ECT  

Type Name Description 

Double c Initial estimated semi-cycle time 

Double vc 

Estimated semi-cycle time to be varied for truck-

allocation algorithm  

Loader object s Shovel destination 

Dump object d Dump destination 

Truck object t The truck to be allocated  

For a truck to be allocated, Equation (8.2) is used to determine its initial estimated 

semi-cycle times to all the available destinations. For the “potential trucks” in the 

Load Area, Dump Area and Intersection Area, Equation (8.3) is used. Once all the 

“potential trucks” are determined, their initial estimated semi-cycle times are added 

to the ECList. 

The flowchart for determining ECList is shown in Figure 8-11.  
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Figure 8-11 Flowchart for ECList determination 

To determine the ECList, the following four conditions are considered: 

1. If the truck to be allocated is at a loading site, then all the trucks in the 

truckInLoadzone list and all the loaded trucks in the truckInSafezone list are 

added to the ECList.  

2. If the truck to be allocated is at a dump site, then all the trucks in the 

truckInDumpzone list and all the empty trucks in the truckInSafezone list are 

added to the ECList.  

3. If the truck to be allocated is hauling empty at a safezone, then all the empty 

trucks in the truckInSafezone list and all the trucks in the truckInDumpzone list 

are added to the ECList.  

4. If the truck to be allocated is loaded hauling at a safezone, then all the loaded 

trucks in the truckInSafezone list and all the trucks in the truckInLoadzone list 

are added to the ECList.  
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1. trucks in truckInDumpzone

2. empty trucks in truckInSafezone

Add to ECList

Y

Y

N

If loc = 

atIntersection ?
If isLoaded=false ?

N

Truck semi-cycle time estimation:

1. empty trucks in truckInSafezone

2. trucks in truckInDumpzone

Add to ECList

Truck semi-cycle time estimation:

1. loaded trucks in truckInSafezone

2. trucks in truckInLoadzone

Add to ECList

Y Y

N

Start

End

N
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8.3.4.3.2 Development of GA method 

The GA method sub-programme consists of the following two components:  

(1) The determination of the truckListDV and the solutionList.  

(2) The execution of the GA algorithm.  

The two components are discussed in the following sections. 

8.3.4.3.2.1 Determination of truckListDV and solutionList 

Both the truckListDV and the solutionList are ArrayList objects. The truckListDV 

stores the Truck objects considered in the truck-allocation and the solutionList stores 

the estimated semi-cycle time information (the ECT objects in Table 8-1) of these 

Truck objects. Table 8-2 provides the element descriptions of the truckListDV and 

the solutionList.  

Table 8-2 Information of truckListDV and solutionList 

Name 

ArrayList 

Element Description 

truckListDV Truck object All the Truck objects considered in the truck allocation. 

solutionList 
Solution 

object 

The Solution object contains the following three sub-

objects to store the estimated semi-cycle time 

information: 

1. an ArrayList object, named soList, which stores ECT 

objects (Table 8-1); 

2. an Arraylist object, named soInList, which stores the 

indices of the ECT objects in the soList; 

3. a Double variable, named AET, which stores the value 

of the accumulated estimated semi-cycle times of the 

Solution object, namely the function value of each 

solution,    𝐿 . 

Similar to the determination of the ECList, depending on the location and the status 

of the truck to be allocated, the Truck objects listed in the trucksInLoadzone, 

trucksInDumpzone and trucksInSafezone lists are added to the truckListDV. The 

trucks’ corresponding estimated semi-cycle times listed in the ECList are added to 

the solutionList as well.  
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Figure 8-12 shows the flowchart for determining the solutionList when the truck to 

be allocated is at a loading site. 

 

Figure 8-12 Flowchart for solutionList determination 

All the dumps in the dump list (DList) are looped through. For each dump, a new 

Solution object is initialised. The index of the Solution equals the index of the dump. 

For each Solution, all the Truck objects listed in the truckListDV are looped through; 

the element of ECList for each Truck is added to the Solution with the same dump 

index. For the truck at a dump or safezone, the solutionList is determined in a similar 

way except that the destination list and the trucklistDV are changed.  

8.3.4.3.2.2 Execution of GA algorithm 

The GA computation sub-programme contains the following four steps:  

1. Obtaining the accumulated estimated semi-cycle times (AET) for each Solution.  

Y

N

Get dump i

Initiate a new Solution, s

Get truck j

Add dump i index to soInList

Get ECT k

Add dump i index to soInList

truck j = truck of ECT k and 

dump i = dump of ECT k?

Add ECT k to soList

Add s to solutionList

k = k+1
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2. Determining the Solutions with the minimal and maximum AET from the 

solutionList.  

3. Implementation of the mutation process. 

4. Setting the destination for the truck.  

Each of the above steps is discussed below: 

1. Obtaining the AET of each Solution 

Figure 8-13 shows the flowchart for obtaining the AET for each Solution in the 

solutionList.  

 

Figure 8-13 Flowchart for obtaining AET 

For Solution i in the solutionList, all the Truck objects in the soList are sorted in 

ascending order according to their initial estimated semi-cycle times; this implies 

that the Truck object of soList (0) has the minimum estimated semi-cycle time 

and is the first truck to arrive at the destination. Then the varied estimated semi-

Get solution i,

Sort the soList in solution i in ascending order

Set AET = 0;

arriTime = solution(i).soList(0).vc

Get soList j, j+1

arriTime+processingTime<

solution(i).soList(j+1).vc?

arriTime=solution(i).soList(j+1).vc solution(i).soList(j+1).vc=

arriTime+processingTime;

arriTime=arriTime+processingTime

AET=AET+solution(i).soList(j+1).vc

Solution(i).AET=AET

Y

N
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cycle time (vc) of the second truck, i.e., the Truck of soList (1), is determined 

based on the second truck’s arrival time which is stored in the arriTime variable. 

It is expected that when the second truck arrives at the destination, if the previous 

truck is still being processed (the processing time for the previous truck is stored 

in the processingTime variable), i.e., arriTime + processingTime   the initial 

estimated semi-cycle time of the second truck, then the second truck is expected 

to wait, its estimated truck semi-cycle time is changed to arriTime plus 

processingTime, and the processingTime of the previous truck is added to the 

arriTime for the evaluation for the next truck. This process is repeated until all 

the Truck objects in the soList are examined to obtain the AET of Solution i. 

Finally all the Solutions in the solutionList are looped through to obtain the 

values of the AETs for all the Solutions. 

2. Finding the Solutions with the minimal and maximum AETs in the solutionList 

The Java code that implements this process is provided below. The indices of the 

Solutions with the minimum and maximum AETs are saved in the variables min 

and max, respectively.  

double fmin = solutionList.get(0).aet; 

int min = 0; 

double fmax = solutionList.get(0).aet; 

int max = 0; 

for(int i = 0; i < solutionList.size(); i++){ 

  if(fmin > solutionList.get(i).aet){ 

   fmin = solutionList.get(i).aet; 

   min = i; 

  } 

} 

minout = min; 

for(int i = 0; i < solutionList.size(); i++){ 

  if(fmax < solutionList.get(i).aet){ 

   fmax = solutionList.get(i).aet; 

   max = i; 

  } 

} 

3. Mutation process 

Each Solution object contains a soList object for the estimated semi-cycle times 

(ECT objects) and a soInList object for the indices of the estimated semi-cycle 

times (ECT objects). The mutation process sub-programme modifies the soInList 
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of the Solution with maximum AET (maximum Solution), and uses the modified 

soInList to reproduce a new Solution which is then used to replace the maximum 

Solution.  

Figure 8-14 shows the flowchart for modifying indices of the maximum Solution. 

Firstly, all the elements of the maximum Solution are looped through. A random 

integer number ranging from [-1, 1] is generated to obtain the neighbouring 

index of each element of the minimum Solution which are stored in variable 

newIndex. If the newIndex variable is less than 0 or exceeds the size of the 

solutionList, a new random number is generated. Finally each element of the 

soInList of the maximum Solution is replaced with the newIndex variable. 

 

Figure 8-14 Flowchart for varing indices of maximum Solution elements 

4. Setting the destinations for the trucks 

The final step is to loop through all the trucks of the minimum Solution, and to 

set the destinations of the Truck objects of the trucklistDV to the destination 

variables of the minimum Solution. 

8.3.4.3.3 Development of Frozen Dispatching Algorithm (FDA)  

The implementation of the FDA method algorithm involved the following two steps:  

Get minIndex i from min Solution

newIndex i=minIndex i + random

newIndex i < 0 or 

> solutionList size ?

index i of soInList = 

newIndex i

Y

N

Get index i of soInList



Chapter Eight: Truck-allocation Model 

 

232 

In the first step, similarly with the determination of the truckListDV in GA method, 

trucks are selected from the trucksInLoadzone, trucksInDumpzone and 

trucksInSafezone lists depending on the location and status of the truck to be 

allocated, and the initial estimated semi-cycle times are added to the ECLists of these 

trucks. The ECList objects are also initialised in both Dump and Loader objects. For 

a loader or dump, the truck with the minimum initial estimated semi-cycle time is 

added to the loader or dump’s ECList.  

The second step of the sub-programme executes the second and third steps in the 

FDA algorithm. A function, named FDAEngine, with three parameters Truck, Dump 

and Loader objects, was developed (Figure 8-15). Firstly, the function determines 

the ECT with the minimum estimated semi-cycle time for a loader or dump. Next, 

the condition for ending the search is evaluated. If the destination remains 

unchanged and/or there is only one ECList in the dump or loader, then the truck is 

“frozen” and is assigned to the destination, otherwise the estimated semi-cycle time 

is modified and stored in the vc variable of the truck’s ECT object, and the function 

calls itself to execute another loop. The process for calculating the modified 

estimated semi-cycle time is similar to the GA method. 

 

Figure 8-15 Flowchart for the second step of FDA sub-programme 

Get the min ET,

Set dump=ET.d or

loader=ET.s

If d=dump or

l=loader?

Set d or l as the 

destination for t

If size of dump 

or loader=1?

vc=modified 

semi-cycle time

Return

Y Y

N N
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8.4 Comparison of truck-allocation strategies  

The following two sensitivity analyses were evaluated using the TSJSim model: 

1. The influence of the truck-allocation strategies on the KPIs in the case where the 

truck-shovel matches varied. 

2. The influence of multiple truck-allocation decision points on the KPIs of the 

truck-shovel system. 

8.4.1 Truck-allocation strategies where the truck-shovel matches change 

A simplified simulation model was established using the validated TSJSim model. 

The routes between P3WC, S4C and the ROM dump were selected (Figure 6-2). The 

fleet in the system is comprised of Shovel 1 working at P3WC with associated trucks 

(named fleet 1, made up of CAT 785Cs) and Shovel 2 serving S4C with associated 

trucks (named fleet 2, made up of Komatsu 860Es). The main operational inputs are 

shown in Table 8-3. 

Table 8-3 Operational input parameters for truck-allocation evaluation 

Parameter Value 

Material density (kg/m
3
) 2788 

Material swell factor 1.05 

Shovel bucket fill factor 0.9 

Shovel bucket capacity (m
3
) 15 

Shovel operator work cycle time (s) Normal(25, 10) 

Shift duration (h) 8 

Truck type CAT 785C, Komatsu 860E 

Safe bunching distance (m) 25 

Dumping time (s) 

Normal(35, 11) for CAT 785C, 

Normal(46, 12) for Komatsu 860E 

Five truck-allocation strategies, i.e., Fixed Truck Assignment (FTA), Minimising 

Shovel Production Requirement (MSPR), Minimising Truck Waiting Time (MTWT) 

and Minimising Truck Semi-cycle Time (MTSCT) including GA and FDA method, 
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were considered in this exercise. The simulation results included system production, 

truck queuing time and bunching time.  

The total fleet size varied from 10 to 19 so that the truck-shovel match changed from 

Case 1, both shovels under-trucked, to Case 2, one shovel under-trucked and the 

other over-trucked, and then to Case 3, both shovels over-trucked. The total fleet size 

varied from 10 to 14 as the number of Komatsu 860Es in fleet 2 increased from 4 to 

8; the total fleet size continued to increase from 14 to 19 as the number of CAT 

785Cs in fleet 1 increased from 6 to 10. The fleet size and MFs for the three Cases 

are shown in Table 8-4. 

Table 8-4 MFs under FTA 

Truck-shovel 

match 

Total 

fleet size 

Fleet 

(Shovel) no. 

Fleet 

size 
MF 

Case 1 

10 
1 6 0.70 

2 4 0.75 

11 
1 6 0.69 

2 5 0.93 

Case 2 

12 
1 6 0.69 

2 6 1.12 

13 
1 6 0.69 

2 7 1.31 

14 
1 6 0.69 

2 8 1.50 

15 
1 7 0.81 

2 8 1.50 

16 
1 8 0.92 

2 8 1.50 

Case 3 

17 
1 9 1.03 

2 8 1.50 

18 
1 10 1.15 

2 8 1.50 

19 
1 11 1.27 

2 8 1.50 
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The simulation results are as follows: 

 System production tonnes  

Figure 8-16 shows the relationship between the system shift production tonnes and 

the system fleet size using the four truck-allocation rules, i.e., MSPR, MTWT, GA 

and FDA.  

 

Figure 8-16 Relationship between production tonnes and fleet size with truck-

allocation rules 

The MSPR, MTWT, GA and FDA rules demonstrated similar increasing trends in 

shift production tonnages. Production using FDA remained relatively higher when 

compared with other rules. The trends can be divided into the following stages: 

(1)            ∈ [     ]: When both Shovel 1 and Shovel 2 were under-trucked, as 

the fleet size increased, the shift production tonnages increased.  

(2)            ∈ [    6]: When Shovel 1 was under-trucked and Shovel 2 was 

over-trucked, as the fleet size increased from 12 to 14, the shift production 

tonnages continued to increase. When the total fleet size exceeded 14, i.e., six 

CAT 785Cs and eight Komatsu 860Es in the system, the shift production 

tonnages remained stable.  

(3)            ∈ [    9]: When both Shovel 1 and Shovel 2 were over-trucked, all 

the shift production tonnages remained stable as the total fleet size increased.  
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 Queuing time  

Figure 8-17 shows the trends of total queuing time (both queuing times at shovel and 

dump) versus the system fleet size using the truck-allocation rules. The MSPR, 

MTWT, GA and FDA rules all had similar trends with respect to the queuing times. 

The queuing times had a stable increasing trend as the fleet size increased. When the 

fleet size increased from 12 to 16 (Shovel 1 under-trucked and Shovel 2 over-

trucked), the queuing times had similar increasing rates as with the queuing times 

when the fleet size increased from 17 to 19 (both shovels over-trucked). The queuing 

time using the FDA rule remained relatively lower than queuing times generated 

using other rules. 

 

Figure 8-17 Relationship between queuing time and fleet size with truck-allocation 

rules 

 Bunching time  

Figure 8-18 illustrates the trends of bunching times versus the fleet size using the 

five truck-allocation rules, i.e., FTA, MSPR, MTWT, GA and FDA. It is clear that 

the bunching times using the MSPR, MTWT, GA and FDA rules were all relatively 

less than the bunching time when using the FTA rule, meaning that the bunching 

effect in the model was reduced when the truck-allocation rules were applied. 
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Figure 8-18 Relationship between bunching time and fleet size under truck-

allocation rules 

8.4.2 Multiple decision points effect 

A truck-shovel haulage network system with multiple traffic intersections was 

constructed. Figure 8-19 illustrates the model layout which consists of three loading 

areas, three dumps, four traffic intersections along with the associated routes. There 

are 21 trucks (11 CAT 785Cs and 10 Komatsu 860Es) and three shovels of the same 

type in the system. The main operational inputs are shown in Table 8-3. 

 

Figure 8-19 Multiple decision points model layout 

Two cases were considered in the sensitivity analysis: 
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 Trucks were also assigned at the decision points located at traffic intersections 

only. 

The Minimising Shovel Production Requirement (MSPR), the Minimising Truck 

Waiting Time (MTWT) and the Frozen Dispatching Algorithm (FDA) were 

considered. The simulation outputs included the system shift production tonnes and 

the total lost time, i.e., the sum of total queuing time and total bunching time. 

The simulation results are discussed below: 

Figure 8-20 illustrates the system shift production tonnes using the MSPR, MTWT 

and FDA rules. If the decision points at the intersections were not considered, the 

system shift production tonnes using the MSPR, MTWT and FDA rules were 63114 

t, 79684 t and 80577 t, respectively. If the decision points at the intersections were 

considered, the system shift production tonnes using the MSPR, MTWT and FDA 

rules increased to 70196 t, 82090 t and 85940 t, respectively. 

 

Figure 8-20 System shift production tonnes with and without decision points 

Figure 8-21 illustrates the total lost times using the MSPR, MTWT and FDA rules. If 

the decision points at the intersections were not considered, the total lost time using 

the MSPR, MTWT and FDA rules was 3271 min, 2147 min and 1679 min, 

respectively. If the decision points at the intersections were considered, the total lost 
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time using the MSPR, MTWT and FDA rules decreased to 2781 min, 1513 min and 

1168 min, respectively. 

 

Figure 8-21 Total lost times with and without decision points 

It is clear that by considering the decision points at the intersections in the simulation 

model, both the system productivity and the fleet utilisation significantly improve. 

Therefore, the intersection decision points should be considered in the truck-

allocation decision making. 

8.5 Conclusions 

A realistic discrete-event truck-shovel JaamSim simulator (TSJSim) integrated with 

the microscopic traffic module and the truck-allocation module was developed. The 

truck-allocation module considers multi-trucks-at-a-time and multiple decision-

points in the truck-allocation strategy. The Frozen Dispatching Algorithm and 

Genetic Algorithm were developed for the truck-allocation method. The sensitivity 

analyses based on the TSJSim simulation model were designed and implemented. 

The observations drawn from the truck-allocation evaluation models are summarised 

below: 

1. In the simulated truck-shovel system with two fleets, the changing trends for the 
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MTWT, FDA and GA) all demonstrated similar patterns as the fleet size varied. 

As the system fleet size increased, the system production tonnes under these 

truck-allocation strategies firstly increased significantly and then remained 

stable; the queuing time under these truck-allocation strategies showed a positive 

relationship with the system fleet size. The bunching time decreased when the 

truck-allocation strategies were applied in the model.  

2. In the simulated truck-shovel network system with multiple traffic intersections, 

by assigning the trucks at the intersections, both productivity and fleet utilisation 

increased. Thus, the multiple decision points along the haul routes should be 

considered in the truck-allocation decision making process. 

Generally the optimum fleet size for a truck-shovel system can be determined using 

the MF(s) of the loader(s). However, when truck-allocation strategies are applied, the 

number of trucks assigned to the loaders, the loader cycle times as well as the truck 

cycle times may vary due to the flexible truck assignments. Such a problem can be 

solved by TSJSim which provides the capability of evaluating the influence of the 

truck-allocation strategies on KPIs when the system fleet size is changed.
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CHAPTER NINE  

SUMMARY AND CONCLUSIONS 

9.1 Summary 

Both simulation and queuing models are commonly used to model truck-shovel 

mining operation systems. One basic problem associated with these two truck-

allocation modelling techniques is the fact that most of these models handle the truck 

haulage system as macroscopic simulation models and ignore the fact that a truck is 

an individual vehicle unit dynamically interacting not merely with other trucks in the 

system but also with other elements of the traffic network. Some important 

operational factors, such as the bunching effect and the influence of the traffic 

intersection area, are either simplified or ignored in these macroscopic models. The 

simulation results obtained from such macroscopic traffic model tend to be 

unrealistic.  

This thesis focuses on capturing the truck-shovel system interaction and dynamics 

using the microscopic modelling approach. Two commercial discrete-event 

simulation software packages, Arena and FlexSim, were used to model a truck-

shovel system; both Arena and FlexSim are ideal for developing macroscopic truck-

shovel simulation models. In this thesis, a microscopic truck-shovel simulation 

model, TSJSim (Truck and Shovel JaamSim Simulator), was developed using a 

freely available and open source discrete-event simulation software package, 

JaamSim. JaamSim’s features include a drag-and-drop user interface, interactive 3D 

graphics, input and output editors, and model development tools. JaamSim provides 

the modeller with the ability to build a customised model with high-level objects, 

which perfectly matches the objective of a microscopic traffic modelling approach 

and satisfies the requirement for modelling truck-allocation algorithms. 

Using the JaamSim simulation engine and its animation rendering techniques, the 

truck-shovel microscopic traffic simulator, TSJSim, was developed. TSJSim 

considers a truck as an individual vehicle unit that dynamically interacts with other 

trucks in the system as well as other elements of the traffic network. TSJSim 
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accounts for the bunching of trucks on the haul routes as well as the practical rules at 

the traffic intersection areas. 

9.2 Conclusions 

The significant features of TSJSim are summarised as follows: 

1. A complete material handling operation framework was developed which 

includes all the necessary operational elements of such a system, i.e., entity, 

generator, processor, transporter, sink, and the associated operations, such as 

loading, transporting and unloading.  

2. Various types of input and output parameters relating to the truck-shovel model 

objects can be set by the user, including different stochastic distributions, 

deterministic values and model objects.  

3. A haul route network system can be constructed using the RouteIntersection 

objects to connect different Route objects. The multiple truck fleets assigned to 

various loaders use the same network of haul routes, and the influence of the 

interaction between the trucks hauling along different routes can be modelled and 

evaluated. 

4. The interaction between the hauling trucks and the impact of the route conditions 

on the truck’s speed is considered. The hauling velocity is determined by both 

the truck configurations and the haul route conditions. TSJSim allows for 

bunching of trucks while hauling.  

5. TSJSim can handle the traffic management of trucks with a priority allocation at 

haul route intersection areas.  

6. The loading time can be specified by either the total loading time input data or 

the task cycle time input of the shovel operator. 

7. TSJSim offers four truck-allocation strategies, i.e., Fixed Truck Assignment 

(FTA), Minimising Shovel Production Requirement (MSPR), Minimising Truck 

Waiting Time (MTWT) and Minimising Truck Semi-cycle Time (MTSCT) 

including the Genetic Algorithm (GA) method and the Frozen Dispatching 

Algorithm (FDA) method rules. Multiple decision points along the haul routes 

and at all the “potential trucks” close to the decision points were included in the 

truck-allocation model. In a truck-shovel network system, these decision points 
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allow new truck-allocation solutions to be generated based on the continuously 

changing operational conditions. For example, when a truck arrives at the 

intersection, the new assignment for a truck could be more productive than that 

of the existing assignment.  

Using TSJSim, a truck-shovel network model was constructed based on the field 

data of the Eastern Ridge OB23/25 surface mining operation. The average truck 

cycle times on all the haul routes generated from the TSJSim model were compared 

to the actual cycle times from the field data for model validation. 

With the validated TSJSim model, the influence of traffic management within the 

intersection area was evaluated with respect to KPIs including shift production and 

queuing time. Sensitivity analyses were also designed and implemented using the 

truck-allocation model to evaluate the influence of the truck-allocation method and 

decision points on these KPIs. The simulation results are summarised below: 

1. As the length of the safezone increased, the utilisation of the main route fleet 

with no waiting at an intersection was significantly improved at the expense of 

the non-main route fleet. The main route management in the safezone had a 

significant impact on the KPIs of the under-trucked fleet; this factor should be 

considered as an important operational factor that significantly influences the 

efficiency of the system. 

2. In the simulated truck-shovel system with two fleets, the trends for the 

production tonnes and queuing time utilising the four truck-allocation strategies 

(MSPR, MTWT, FDA and GA) all demonstrated similar patterns as the fleet size 

varied. As the system fleet size increased, the system production tonnes under 

these truck-allocation strategies firstly increased significantly and then remained 

stable; the queuing time under these truck-allocation strategies showed a positive 

relationship with the system fleet size. The bunching time decreased when the 

truck-allocation strategies were applied in the model.  

3. In the simulated truck-shovel network system with multiple traffic intersections, 

by assigning the trucks at the intersections, both productivity and fleet utilisation 
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increased. Thus, the multiple decision points along the haul routes should be 

considered in the truck-allocation decision making process at operational level. 

9.3 Limitations of TSJSim 

The major limitations of the developed TSJSim simulation model are summarised as 

follows: 

1. Only short-term planning was considered. Generally long-term planning requires 

models developed utilising the macroscopic modelling approach, and software 

such as HAULSIM and TALPAC. TSJSim was developed as a microscopic 

model which mainly focused on more detailed traffic behaviour in the truck-

shovel system. In TSJSim, the time frame for the simulation to run was set to 

short term/operational periods; the positions of the loaders and dumps were fixed, 

and the lengths of the routes in the model also remained static. However, in a real 

situation, the lengths of the haul routes extend as mining is progressed and the 

loaders are likely to be assigned to various locations according to the mining 

schedule. 

2. TSJSim is a simulator developed for truck allocation required for mine 

scheduling but not for real-time dispatching control. TSJSim is only able to 

evaluate the effectiveness of the truck-allocation strategies.  

3. Operational constraints such as quality parameters and stripping ratio have yet to 

be incorporated in the TSJSim truck-allocation model.  

4. The input/output interface is not user-friendly, and the simulation experiments 

with a large number of repetitions are laborious to implement. 

9.4 Future work 

Future work is listed below: 

1. Long-term planning should be incorporated in TSJSim.  

2. The lengths of the haul routes should be extendable as mining is progressing with 

loaders being assigned to various loading sites during the simulation run.  
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3. Operational constraints including quality parameters and stripping ratio should 

also be included when long-term planning is considered.  

4. The user interface for the model input /output and experiment design needs 

improvement.  

5. There is an opportunity to incorporate a real-time dispatching controller with the 

truck-allocation simulator.  

6. The modules for equipment breakdowns and repair times should be included in 

TSJSim. 

7. The influence of moisture on tonnage production should be taken into account. 
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APPENDIX A  

FlexSim Scripts: Task Sending of Dispatcher 

/**Create a task sequence*/ 

treenodecurrent = ownerobject(c); 

treenode truck = msgsendingobject; 

int loadzone_port; 

int dumpzone_port; 

loadzone_port = getlabelnum(truck,6); 

dumpzone_port = getlabelnum(truck,7); 

treenode loadzone = centerobject(current, loadzone_port);// Randomly pick a zone for the load zone 

treenode dump = centerobject(current, dumpzone_port);// Respectively pick a zone for the dump 

loadzone = first(loadzone);// Set the loadzone to the load zone dispatcher 

dump = first(dump);// Set the dump to the dump zone dispatcher 

treenode newts = createemptytasksequence(truck,0,0);// Create a new task sequence 

inserttask(newts, TASKTYPE_SENDMESSAGE, truck, truck, 99, 

MINING_STATE_TRAVEL_TO_LOADZONE, 0);// Send a message to the truck to change its state 

inserttask(newts, TASKTYPE_TRAVEL, centerobject(loadzone, 1), NULL, 0, 0);// Travel to the shovel queue 

inserttask(newts, TASKTYPE_CALLSUBTASKS, loadzone, NULL, 1, 0, 0);// Call sub tasks to load the truck 

inserttask(newts, TASKTYPE_SENDMESSAGE, truck, truck, 99, 

MINING_STATE_TRAVEL_TO_DUMPZONE, 0);// Send a message to the truck to change its state 

inserttask(newts, TASKTYPE_TRAVEL, centerobject(dump, 1), NULL, 0, 0); // Travel to the dump 

inserttask(newts, TASKTYPE_CALLSUBTASKS, dump, NULL, 1, 0, 0);// Call sub tasks to dump the truck 

inserttask(newts, TASKTYPE_SENDMESSAGE, current, truck, 0, 0, 0);// Send a message to do this loop again 

dispatchtasksequence(newts);// Dispatch the task sequence 
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APPENDIX B 

FlexSim Scripts: Loading Procedure 

/**Create a coordinated task sequence based on msgparam(1)*/ 

treenodecurrent = ownerobject(c); 

treenode TDisp = node("/Truck Dispatcher", model()); 

treenode truck = msgsendingobject; 

treenode shovel = centerobject(current, 3); 

int index; 

switch(msgparam(1)) 

{ 

 case0: 

 { 

  int loads = executefsnode(label(shovel, "PassesPerTruck"), shovel, truck, 1);// This is the 

number of passes to fill the truck 

  treenode newts = createemptytasksequence(truck,0,0);// Create the task sequence 

  inserttask(newts, TASKTYPE_SENDMESSAGE, truck, truck, 99, 

MINING_STATE_QUEUE_AT_LOADZONE, 0);// Send a message to the truck to change its state 

 inserttask(newts, TASKTYPE_CALLSUBTASKS, truck, NULL, 102, 1, tonum(current)); // 

Call the subtasks on the truck to possibly breakdown 

  returntonum(newts);  

 } 

 case1: 

 { 

  int loads = executefsnode(label(shovel, "PassesPerTruck"), shovel, truck, 1);  

  // This is the number of passes to fill the truck 

  treenode newts = createemptytasksequence(truck,0,0);// Create the task sequence 

  inserttask(newts, TASKTYPE_SENDMESSAGE, truck, truck, 99, 

MINING_STATE_QUEUE_AT_LOADZONE, 0);// Send a message to the truck to change its state 

  inserttask(newts, TASKTYPE_CALLSUBTASKS, truck, NULL, 101, 1, tonum(current));

  // Call the subtasks on the truck to possibly breakdown 

  returntonum(newts);  

 } 

 case2: 

 { 

  int loads = executefsnode(label(shovel, "PassesPerTruck"), shovel, truck, 1);  

  // This is the number of passes to fill the truck 

  treenode newts = createcoordinatedtasksequence(truck); 

//Create the coordinated task sequence 

  int traveler = insertallocatetask(newts, truck, 0, 0);// Allocate the truck 

  insertproxytask(newts, traveler, TASKTYPE_SENDMESSAGE, truck, truck, 99, 

MINING_STATE_QUEUE_AT_LOADZONE, 0);// Send a message to the truck to change its state 

  if(loads >0)// If we have loads to load 

  { 

   for(index = 1; index <= loads; index++)// Create the loads 

   {  

    createcopy(node("/1/FlowItemBin/10/1", model()), current);  

// Create a load for this truck 

    setloc(last(current), xsize(current) / 2, -ysize(current) / 2 + 

ysize(last(current)) / 2, 0);  // Set the location of the load 

   }  

   int loadspot = insertallocatetask(newts, current, 0, 0);// Allocate the load spot 

   int loader = insertallocatetask(newts, shovel, 0, 0, 1); // Allocate the shovel 

   //int loadspot1=insertallocatetask(newts, outobject(current,1), 0, 0);   

   insertproxytask(newts, loader, TASKTYPE_SENDMESSAGE, loader, loader, 99, 

MINING_SHOVEL_LOADING, 0);// Send a message to the shovel to change its state 

   insertproxytask(newts, loader, TASKTYPE_SENDMESSAGE, loader, loadspot, 0, 

0, 0);// Using the shovel send a message to the shovel from the loader 

   int sync0 = insertproxytask(newts, loader, TASKTYPE_LOAD, rank(current, 

content(current)), current, 0, 0);// Have the shovel pick up the 1st load 



Appendices 

 

249 

   int sync1 = insertproxytask(newts, traveler, TASKTYPE_CALLSUBTASKS, 

loadspot, NULL, 0, 0, 0);// Have the truck travel to the load spot 

   insertsynctask(newts, sync0);      

   // Sync 

   insertsynctask(newts, sync1);      

   // Sync 

   insertproxytask(newts, traveler, TASKTYPE_SENDMESSAGE, truck, truck, 99, 

MINING_STATE_LOADING, 0);// Send a message to the truck to change its state 

   int sync2 = insertproxytask(newts, loader, TASKTYPE_UNLOAD, rank(current, 

content(current)), first(truck), 0, 0);// Dump the load in the truck 

   for(index = 1; index < loads; index++) 

   { 

    insertproxytask(newts, loader, TASKTYPE_LOAD, rank(current, 

content(current) - index), current, 0, 0); // Pick up the load 

    sync2 = insertproxytask(newts, loader, TASKTYPE_UNLOAD, 

rank(current, content(current) - index), first(truck), 0, 0);// Dump the load in the truck 

   } 

   insertsynctask(newts, sync2);      

   // Sync 

   insertproxytask(newts, traveler, TASKTYPE_SENDMESSAGE, loader, loader, 1, 

0, 0);// Send a message to the loader to possibly park 

   insertdeallocatetask(newts, loader);// Deallocate the Shovel 

   insertproxytask(newts, traveler, TASKTYPE_SENDMESSAGE, truck, truck, 99, 

MINING_STATE_EXIT_LOADZONE, 0);// Send a message to the truck to change its state 

   int sync3 = insertproxytask(newts, traveler, TASKTYPE_TRAVEL, 

centerobject(current, 2), NULL, 0, 0);// Travel to the load zone exit 

   insertsynctask(newts, sync3);      

   // Sync  

   insertdeallocatetask(newts, loadspot);// Deallocate the Load Spot 

   insertdeallocatetask(newts, traveler);// Deallocate the Truck 

  } 

  else 
  { 

   insertproxytask(newts, traveler, TASKTYPE_SENDMESSAGE, truck, truck, 99, 

MINING_STATE_EXIT_LOADZONE, 0);// Send a message to the truck to change its state 

   int sync1 = insertproxytask(newts, traveler, TASKTYPE_TRAVEL, 

centerobject(current, 2), NULL, 0, 0);// Travel to the load zone exit 

   insertsynctask(newts, sync1);      

   // Sync  

   insertdeallocatetask(newts, traveler);// Deallocate the Truck 

  } 

  returntonum(newts);// Dispatch the task sequence 

 } 

} 
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APPENDIX C 

FlexSim Scripts: Loading Motion 

/**Rotate the Excavator*/ 

treenodecurrent = ownerobject(c); 

// the following x, y, and z values are requested x, y, and z offsets from this object's x/y center and z base. 

double x = parval(1); 

double y = parval(2); 

double z = parval(3); 

treenodeitem = parnode(4); 

double endspeed = parval(5); 

double maxspeed = parval(6); 

double acceleration = parval(7); 

double deceleration = parval(8); 

double lastupdatedspeed = parval(9); 

double rotatewhiletraveling = parval(10); 

treenode kinematicnode = parnode(11); 

 

treenode body = first(current); 

treenode arm1 = first(first(body)); 

treenode arm2 = first(arm1); 

treenode dozer = first(arm2); 

treenode clam = first(dozer); 

double yr; 

double zr = zrot(current); 

//Set the z rotation of the excavator to within 0 and 360 

if(zr >360 || zr <0) //If we need to adjust the zrot of the excavator 

{ 

 while(zr <0) zr += 360;//If the zrot is less than 0 then increase it by 360 

 while(zr >360) zr -= 360;//If the zrot is greater than 360 then reduce it by 360 

 setrot(current, xrot(current), yrot(current), zr);//Set the zrot of the excavator to the new zr 

} 

//Init the Kinematics 

treenode bodykinlabel = label(current, "fs_body_kinematics");//Get a pointer to the Kinematics label for the 

body 

if(!objectexists(bodykinlabel))//Check to see if the body Kinematics label doesn't exist 

{ 

 addlabel(current, "fs_body_kinematics");//Add the Kinematics label 

 bodykinlabel = label(current, "fs_body_kinematics");//Get a pointer to the Kinematics label 

} 

initkinematics(bodykinlabel, body, 0,0);//Init the body Kinematics 

treenode arm1kinlabel = label(current, "fs_arm1_kinematics");//Get a pointer to the Kinematics label for the 

arm1 

if(!objectexists(arm1kinlabel))//Check to see if the arm1 Kinematics label doesn't exist 

{ 

 addlabel(current, "fs_arm1_kinematics");//Add the Kinematics label 

 arm1kinlabel = label(current, "fs_arm1_kinematics");//Get a pointer to the Kinematics label 

} 

initkinematics(arm1kinlabel, arm1, 0,0);//Init the arm1 Kinematics 

treenode arm2kinlabel = label(current, "fs_arm2_kinematics");//Get a pointer to the Kinematics label for the 

arm2 

if(!objectexists(arm2kinlabel))//Check to see if the arm2 Kinematics label doesn't exist 

{ 

 addlabel(current, "fs_arm2_kinematics");//Add the Kinematics label 

 arm2kinlabel = label(current, "fs_arm2_kinematics");//Get a pointer to the Kinematics label 

} 

initkinematics(arm2kinlabel, arm2, 0,0);//Init the arm2 Kinematics 

treenode dozerkinlabel = label(current, "fs_dozer_kinematics");//Get a pointer to the Kinematics label for the 

dozer 

if(!objectexists(dozerkinlabel))//Check to see if the dozer Kinematics label doesn't exist 

{ 
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 addlabel(current, "fs_dozer_kinematics");//Add the Kinematics label 

 dozerkinlabel = label(current, "fs_dozer_kinematics");//Get a pointer to the Kinematics label 

} 

initkinematics(dozerkinlabel, dozer, 0,0);//Init the dozer Kinematics 

treenode clamkinlabel = label(current, "fs_clam_kinematics");//Get a pointer to the Kinematics label for the 

clam 

if(!objectexists(clamkinlabel))//Check to see if the clam Kinematics label doesn't exist 

{ 

 addlabel(current, "fs_clam_kinematics");//Add the Kinematics label 

 dozerkinlabel = label(current, "fs_clam_kinematics");//Get a pointer to the Kinematics label 

} 

initkinematics(clamkinlabel, clam, 0,0); //Init the clam Kinematics 

int digtype = getlabelnum(current, "DigType"); //1 is by dig time and 2 is by speeds 

if(endspeed >= 0)//Our end speed is negative when we want to park and 0+ when we are loading and unloading 

{ 

 if(content(current) == 1)//We need to load into a truck 

 { 

  //Calculate the required z rotation of the excavator 

  double dzr = radianstodegrees(atan2(y, x));//Calculate a preliminary z rotation for the item 

  double loadzr;//Create variable to hold our loaded rotation 

  if(y <0) 

  { 

   dzr = 360 + dzr;//If the y is negative then we need to add it to 360 to get the 

rotation in positive values 

  } 

  loadzr = dzr;//Save the loading position 

  dzr = dzr - (zrot(body) + zr); //Calulate the difference between our current zrot and the 

required zrot 

  if(digtype == 1)//We are going based on a given time 

  { 

   //Get the basic parameters needed 

   double digtime = executefsnode(label(current, "DigTime"), current, NULL, 

1);//This is the time it will take to make one pass 

   double timetodig = getlabelnum(current, "DigPercent") * digtime; 

//This is the time that will be used in the digging motion 

   double timetodump = getlabelnum(current, "DumpPercent") * digtime; 

   //This is the time that will be used in the dumping motion 

   double traveltime = (digtime - (timetodig + timetodump)) / 2;  

   //This is the time that we have to swing each way 

   double timetotravelto = traveltime; 

//This is one of the travel times we need to include in loading 

   double halftravel = traveltime / 2; 

   setlabelnum(current, "fs_TravelTime", traveltime);   

//Set the fs_TravelTime label so that we know how long to dravel for the dump 

   setlabelnum(current, "fs_DumpTime", timetodump);   

   //Set the fs_DumpTime label so that we know how long to dump for 

   //Rotate the excavator towards the load and move the arms and dozer into the 

digging position 

   addkinematic(bodykinlabel, 0, 0, dzr, fabs(dzr) / traveltime, 0, 0, 0, 0, time(), 

KINEMATIC_ROTATE); 

   yr = getlabelnum(arm1, 4) - yrot(arm1); 

   addkinematic(arm1kinlabel, 0, yr, 0, fabs(yr) / halftravel, 0, 0, 0, 0, time() + 

halftravel, KINEMATIC_ROTATE); 

   yr = getlabelnum(arm2, 4) - yrot(arm2); 

   addkinematic(arm2kinlabel, 0, yr, 0, fabs(yr) / halftravel, 0, 0, 0, 0, time() + 

halftravel, KINEMATIC_ROTATE); 

   yr = getlabelnum(dozer, 4) - yrot(dozer); 

   addkinematic(dozerkinlabel, 0, yr, 0, fabs(yr) / halftravel, 0, 0, 0, 0, time() + 

halftravel, KINEMATIC_ROTATE); 

   yr = getlabelnum(clam, 4) - yrot(clam); 

   addkinematic(clamkinlabel, 0, yr, 0, fabs(yr) / halftravel, 0, 0, 0, 0, time() + 

halftravel, KINEMATIC_ROTATE); 

    

   //Rotate the excavator through the digging motion 

   yr = getlabelnum(arm1, 5) - getlabelnum(arm1, 4); 
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   addkinematic(arm1kinlabel, 0, yr, 0, fabs(yr) / timetodig, 0, 0, 0, 0, time() + 

traveltime, KINEMATIC_ROTATE); 

   yr = getlabelnum(arm2, 5) - getlabelnum(arm2, 4); 

   addkinematic(arm2kinlabel, 0, yr, 0, fabs(yr) / timetodig, 0, 0, 0, 0, time() + 

traveltime, KINEMATIC_ROTATE); 

   yr = getlabelnum(dozer, 5) - getlabelnum(dozer, 4); 

   addkinematic(dozerkinlabel, 0, yr, 0, fabs(yr) / timetodig, 0, 0, 0, 0, time() + 

traveltime, KINEMATIC_ROTATE); 

   yr = getlabelnum(clam, 5) - getlabelnum(clam, 4); 

   addkinematic(clamkinlabel, 0, yr, 0, fabs(yr) / timetodig, 0, 0, 0, 0, time() + 

traveltime, KINEMATIC_ROTATE); 

   senddelayedmessage(current, traveltime + (timetodig / 2), current, 2, 0, 0);//Send a 

message to set the DrawDirt label to 1 

   //Get the dump position 

   treenode dumpspot = tonode(getlabelnum(current, "fs_DumpSpot")); 

   x = vectorprojectx(dumpspot, 0, 0, 0, up(current)) - 

vectorprojectx(first(first(current)), 0, 0, 0, up(current)); 

   y = vectorprojecty(dumpspot, 0, 0, 0, up(current)) - 

vectorprojecty(first(first(current)), 0, 0, 0, up(current)); 

   dzr = radianstodegrees(atan2(y, x));//Calculate a preliminary z rotation for the item 

   if(y <0) 

   { 

    dzr = 360 + dzr;      

    //If the y is negative then we need to add it to 360 to get the rotation in 

positive values 

   } 

   dzr = dzr - loadzr;       

   //Calulate the difference between our current zrot and the required zrot 

   //Rotate the excavator towards the dump position 

   addkinematic(bodykinlabel, 0, 0, dzr, fabs(dzr) / traveltime, 0, 0, 0, 0, time() + 

traveltime + timetodig, KINEMATIC_ROTATE); 

   yr = getlabelnum(arm1, 6) - getlabelnum(arm1, 5); 

   addkinematic(arm1kinlabel, 0, yr, 0, fabs(yr) / halftravel, 0, 0, 0, 0, time() + 

traveltime + timetodig, KINEMATIC_ROTATE); 

   yr = getlabelnum(arm2, 6) - getlabelnum(arm2, 5); 

   addkinematic(arm2kinlabel, 0, yr, 0, fabs(yr) / halftravel, 0, 0, 0, 0, time() + 

traveltime + timetodig, KINEMATIC_ROTATE); 

   yr = getlabelnum(dozer, 6) - getlabelnum(dozer, 5); 

   addkinematic(dozerkinlabel, 0, yr, 0, fabs(yr) / halftravel, 0, 0, 0, 0, time() + 

traveltime + timetodig, KINEMATIC_ROTATE); 

   yr = getlabelnum(clam, 6) - getlabelnum(clam, 5); 

   addkinematic(clamkinlabel, 0, yr, 0, fabs(yr) / halftravel, 0, 0, 0, 0, time() + 

traveltime + timetodig, KINEMATIC_ROTATE); 

   return traveltime * 2 + timetodig;     

   //Return the amount of time it will take to complete the process 

  } 

  else         
  //We are going based on the rotation speeds 

  { 

   //Setup the variables 

   double timetodig; 

   double temptimetodig; 

   double timetotravel; 

   double temptimetotravel; 

   double traveltime; 

   double halftravel; 

   //Rotate the excavator towards the load and move the arms and dozer into the 

digging position 

   traveltime = addkinematic(bodykinlabel, 0, 0, dzr, getlabelnum(body, 1), 

getlabelnum(body, 2), getlabelnum(body, 3), 0, 0, time(), KINEMATIC_ROTATE); 

   halftravel = (traveltime - time()) / 2; 

   yr = getlabelnum(arm1, 4) - yrot(arm1); 

   temptimetotravel = addkinematic(arm1kinlabel, 0, yr, 0, getlabelnum(arm1, 1), 

getlabelnum(arm1, 2), getlabelnum(arm1, 3), 0, 0, time() + halftravel, KINEMATIC_ROTATE); 

   timetotravel = max(traveltime - time(), temptimetotravel - time()); 
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   yr = getlabelnum(arm2, 4) - yrot(arm2); 

   temptimetotravel = addkinematic(arm2kinlabel, 0, yr, 0, getlabelnum(arm2, 1), 

getlabelnum(arm2, 2), getlabelnum(arm2, 3), 0, 0, time() + halftravel, KINEMATIC_ROTATE); 

   timetotravel = max(timetotravel, temptimetotravel - time()); 

   yr = getlabelnum(dozer, 4) - yrot(dozer); 

   temptimetotravel = addkinematic(dozerkinlabel, 0, yr, 0, getlabelnum(dozer, 1), 

getlabelnum(dozer, 2), getlabelnum(dozer, 3), 0, 0, time() + halftravel, KINEMATIC_ROTATE); 

   timetotravel = max(timetotravel, temptimetotravel - time()); 

   yr = getlabelnum(clam, 4) - yrot(clam); 

   temptimetotravel = addkinematic(clamkinlabel, 0, yr, 0, getlabelnum(clam, 1), 

getlabelnum(clam, 2), getlabelnum(clam, 3), 0, 0, time() + halftravel, KINEMATIC_ROTATE); 

   timetotravel = max(timetotravel, temptimetotravel - time()); 

    

   //Rotate the excavator through the digging motion 

   yr = getlabelnum(arm1, 5) - getlabelnum(arm1, 4); 

   timetodig = addkinematic(arm1kinlabel, 0, yr, 0, getlabelnum(arm1, 1), 

getlabelnum(arm1, 2), getlabelnum(arm1, 3), 0, 0, time() + timetotravel, KINEMATIC_ROTATE); 

   yr = getlabelnum(arm2, 5) - getlabelnum(arm2, 4); 

   temptimetodig = addkinematic(arm2kinlabel, 0, yr, 0, getlabelnum(arm2, 1), 

getlabelnum(arm2, 2), getlabelnum(arm2, 3), 0, 0, time() + timetotravel, KINEMATIC_ROTATE); 

   timetodig = max(timetodig - time(), temptimetodig - time()); 

   yr = getlabelnum(dozer, 5) - getlabelnum(dozer, 4); 

   temptimetodig = addkinematic(dozerkinlabel, 0, yr, 0, getlabelnum(dozer, 1), 

getlabelnum(dozer, 2), getlabelnum(dozer, 3), 0, 0, time() + timetotravel, KINEMATIC_ROTATE); 

   timetodig = max(timetodig - time(), temptimetodig - time()); 

   yr = getlabelnum(clam, 5) - getlabelnum(clam, 4); 

   temptimetodig = addkinematic(clamkinlabel, 0, yr, 0, getlabelnum(clam, 1), 

getlabelnum(clam, 2), getlabelnum(clam, 3), 0, 0, time() + timetotravel, KINEMATIC_ROTATE); 

   timetodig = max(timetodig, temptimetodig - time()); 

   double timetotravelto = timetotravel;     

   //Store the first travel time 

   senddelayedmessage(current, timetotravelto + (timetodig / 2), current, 2, 0, 

0);//Send a message to set the DrawDirt label to 1 

   //Get the dump position 

   treenode dumpspot = tonode(getlabelnum(current, "fs_DumpSpot")); 

   x = vectorprojectx(dumpspot, 0, 0, 0, up(current)) - 

vectorprojectx(first(first(current)), 0, 0, 0, up(current)); 

   y = vectorprojecty(dumpspot, 0, 0, 0, up(current)) - 

vectorprojecty(first(first(current)), 0, 0, 0, up(current)); 

   dzr = radianstodegrees(atan2(y, x));     

   //Calculate a preliminary z rotation for the item 

   if(y <0) 

   { 

    dzr = 360 + dzr;      

    //If the y is negative then we need to add it to 360 to get the rotation in 

positive values 

   } 

   dzr = dzr - loadzr;       

   //Calulate the difference between our current zrot and the required zrot 

   //Rotate the excavator towards the dump position 

   traveltime = addkinematic(bodykinlabel, 0, 0, dzr, getlabelnum(body, 1), 

getlabelnum(body, 2), getlabelnum(body, 3), 0, 0, time() + timetotravelto + timetodig, KINEMATIC_ROTATE); 

   yr = getlabelnum(arm1, 6) - yrot(arm1); 

   temptimetotravel = addkinematic(arm1kinlabel, 0, yr, 0, getlabelnum(arm1, 1), 

getlabelnum(arm1, 2), getlabelnum(arm1, 3), 0, 0, time() + timetotravelto + timetodig, KINEMATIC_ROTATE); 

   timetotravel = max(traveltime - time(), temptimetotravel - time()); 

   yr = getlabelnum(arm2, 6) - yrot(arm2); 

   temptimetotravel = addkinematic(arm2kinlabel, 0, yr, 0, getlabelnum(arm2, 1), 

getlabelnum(arm2, 2), getlabelnum(arm2, 3), 0, 0, time() + timetotravelto + timetodig, KINEMATIC_ROTATE); 

   timetotravel = max(timetotravel, temptimetotravel - time()); 

   yr = getlabelnum(dozer, 6) - yrot(dozer); 

   temptimetotravel = addkinematic(dozerkinlabel, 0, yr, 0, getlabelnum(dozer, 1), 

getlabelnum(dozer, 2), getlabelnum(dozer, 3), 0, 0, time() + timetotravelto + timetodig, 

KINEMATIC_ROTATE); 

   timetotravel = max(timetotravel, temptimetotravel - time()); 
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   yr = getlabelnum(clam, 6) - yrot(clam); 

   temptimetotravel = addkinematic(clamkinlabel, 0, yr, 0, getlabelnum(clam, 1), 

getlabelnum(clam, 2), getlabelnum(clam, 3), 0, 0, time() + timetotravelto + timetodig, KINEMATIC_ROTATE); 

   timetotravel = max(timetotravel, temptimetotravel - time()); 

 

   return timetotravelto + timetotravel + timetodig;    

   //Return the amount of time it will take to complete the process 

  } 

 } 

 else          
 //We are dumping into a truck 

 { 

  if(digtype == 1)        

  //We are going based on a given time 

  { 

   //Get the basic parameters needed 

   double timetodump = getlabelnum(current, "fs_DumpTime");  

   //This is the time that will be used in the dumping motion 

   double traveltime = getlabelnum(current, "fs_TravelTime");  

   //This is the time that we have to swing each way 

   double halftravel = traveltime / 2; 

   //Rotate the excavator through the dumping motion 

   yr = getlabelnum(arm1, 7) - getlabelnum(arm1, 6); 

   addkinematic(arm1kinlabel, 0, yr, 0, fabs(yr) / timetodump, 0, 0, 0, 0, time(), 

KINEMATIC_ROTATE); 

   yr = getlabelnum(arm2, 7) - getlabelnum(arm2, 6); 

   addkinematic(arm2kinlabel, 0, yr, 0, fabs(yr) / timetodump, 0, 0, 0, 0, time(), 

KINEMATIC_ROTATE); 

   yr = getlabelnum(dozer, 7) - getlabelnum(dozer, 6); 

   addkinematic(dozerkinlabel, 0, yr, 0, fabs(yr) / timetodump, 0, 0, 0, 0, time(), 

KINEMATIC_ROTATE); 

   yr = getlabelnum(clam, 7) - getlabelnum(clam, 6); 

   addkinematic(clamkinlabel, 0, yr, 0, fabs(yr) / timetodump, 0, 0, 0, 0, time(), 

KINEMATIC_ROTATE); 

   senddelayedmessage(current, timetodump / 2, current, 3, 0, 0);  

   //Send a message to set the DrawDirt label to 0 

   return timetodump;//Return the amount of time it will take to complete the process 

  } 

  else         
  //We are going based on the rotation speeds 

  { 

   //Setup the variables 

   double timetodump; 

   double temptimetodump; 

   double timetotravel; 

   double temptimetotravel; 

   double traveltime; 

   double halftravel; 

   //Rotate the excavator through the dumping motion 

   yr = getlabelnum(arm1, 7) - getlabelnum(arm1, 6); 

   timetodump = addkinematic(arm1kinlabel, 0, yr, 0, getlabelnum(arm1, 1), 

getlabelnum(arm1, 2), getlabelnum(arm1, 3), 0, 0, time(), KINEMATIC_ROTATE); 

   yr = getlabelnum(arm2, 7) - getlabelnum(arm2, 6); 

   temptimetodump = addkinematic(arm2kinlabel, 0, yr, 0, getlabelnum(arm2, 1), 

getlabelnum(arm2, 2), getlabelnum(arm2, 3), 0, 0, time(), KINEMATIC_ROTATE); 

   timetodump = max(timetodump - time(), temptimetodump - time()); 

   yr = getlabelnum(dozer, 7) - getlabelnum(dozer, 6); 

   temptimetodump = addkinematic(dozerkinlabel, 0, yr, 0, getlabelnum(dozer, 1), 

getlabelnum(dozer, 2), getlabelnum(dozer, 3), 0, 0, time(), KINEMATIC_ROTATE); 

   timetodump = max(timetodump - time(), temptimetodump - time()); 

   yr = getlabelnum(clam, 7) - getlabelnum(clam, 6); 

   temptimetodump = addkinematic(clamkinlabel, 0, yr, 0, getlabelnum(clam, 1), 

getlabelnum(clam, 2), getlabelnum(clam, 3), 0, 0, time(), KINEMATIC_ROTATE); 

   timetodump = max(timetodump, temptimetodump - time()); 
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   senddelayedmessage(current, timetodump / 2, current, 3, 0, 0);  

   //Send a message to set the DrawDirt label to 0 

   return timetodump;      

   //Return the amount of time it will take to complete the process 

  } 

 } 

} 

else          
//We need to park 

{ 

 //Calculate the required z rotation of the excavator 

 double dzr = radianstodegrees(atan2(y, x));      

 //Calculate a preliminary z rotation for the item 

 double loadzr;         

 //Create variable to hold our loaded rotation 

 if(y <0) 

 { 

  dzr = 360 + dzr;        

 //If the y is negative then we need to add it to 360 to get the rotation in positive values 

 } 

 loadzr = dzr;         

 //Save the loading position 

 dzr = dzr - (zrot(body) + zr);        

 //Calulate the difference between our current zrot and the required zrot 

 if(digtype == 1)         

 //We are going based on a given time 

 { 

  //Get the basic parameters needed 

  double digtime = executefsnode(label(current, "DigTime"), current, NULL, 1); //This is the 

time it will take to make one pass 

  double timetodig = getlabelnum(current, "DigPercent") * digtime;   

  //This is the time that will be used in the digging motion 

  double timetodump = getlabelnum(current, "DumpPercent") * digtime;  

  //This is the time that will be used in the dumping motion 

  double traveltime = (digtime - (timetodig + timetodump)) / 2;   

  //This is the time that we have to swing each way 

  double timetotravelto = traveltime;      

  //This is one of the travel times we need to include in loading 

  double halftravel = traveltime / 2; 

  setlabelnum(current, "fs_TravelTime", traveltime);    

  //Set the fs_TravelTime label so that we know how long to dravel for the dump 

  setlabelnum(current, "fs_DumpTime", timetodump);    

  //Set the fs_DumpTime label so that we know how long to dump for 

  //Rotate the excavator towards the load and move the arms and dozer into the digging 

position 

  addkinematic(bodykinlabel, 0, 0, dzr, fabs(dzr) / traveltime, 0, 0, 0, 0, time(), 

KINEMATIC_ROTATE); 

  yr = getlabelnum(arm1, 8) - yrot(arm1); 

  addkinematic(arm1kinlabel, 0, yr, 0, fabs(yr) / halftravel, 0, 0, 0, 0, time() + halftravel, 

KINEMATIC_ROTATE); 

  yr = getlabelnum(arm2, 8) - yrot(arm2); 

  addkinematic(arm2kinlabel, 0, yr, 0, fabs(yr) / halftravel, 0, 0, 0, 0, time() + halftravel, 

KINEMATIC_ROTATE); 

  yr = getlabelnum(dozer, 8) - yrot(dozer); 

  addkinematic(dozerkinlabel, 0, yr, 0, fabs(yr) / halftravel, 0, 0, 0, 0, time() + halftravel, 

KINEMATIC_ROTATE); 

  yr = getlabelnum(clam, 8) - yrot(clam); 

  addkinematic(clamkinlabel, 0, yr, 0, fabs(yr) / halftravel, 0, 0, 0, 0, time() + halftravel, 

KINEMATIC_ROTATE); 

   

  return traveltime;        

  //Return the amount of time it will take to complete the process 

 } 

 else          
 //We are going based on the rotation speeds 
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 { 

  //Setup the variables 

  double timetodig; 

  double temptimetodig; 

  double timetotravel; 

  double temptimetotravel; 

  double traveltime; 

  double halftravel; 

  //Rotate the excavator towards the load and move the arms and dozer into the digging 

position 

  traveltime = addkinematic(bodykinlabel, 0, 0, dzr, getlabelnum(body, 1), getlabelnum(body, 

2), getlabelnum(body, 3), 0, 0, time(), KINEMATIC_ROTATE); 

  halftravel = (traveltime - time()) / 2; 

  yr = getlabelnum(arm1, 8) - yrot(arm1); 

  temptimetotravel = addkinematic(arm1kinlabel, 0, yr, 0, getlabelnum(arm1, 1), 

getlabelnum(arm1, 2), getlabelnum(arm1, 3), 0, 0, time() + halftravel, KINEMATIC_ROTATE); 

  timetotravel = max(traveltime - time(), temptimetotravel - time()); 

  yr = getlabelnum(arm2, 8) - yrot(arm2); 

  temptimetotravel = addkinematic(arm2kinlabel, 0, yr, 0, getlabelnum(arm2, 1), 

getlabelnum(arm2, 2), getlabelnum(arm2, 3), 0, 0, time() + halftravel, KINEMATIC_ROTATE); 

  timetotravel = max(timetotravel, temptimetotravel - time()); 

  yr = getlabelnum(dozer, 8) - yrot(dozer); 

  temptimetotravel = addkinematic(dozerkinlabel, 0, yr, 0, getlabelnum(dozer, 1), 

getlabelnum(dozer, 2), getlabelnum(dozer, 3), 0, 0, time() + halftravel, KINEMATIC_ROTATE); 

  timetotravel = max(timetotravel, temptimetotravel - time()); 

  yr = getlabelnum(clam, 8) - yrot(clam); 

  temptimetotravel = addkinematic(clamkinlabel, 0, yr, 0, getlabelnum(clam, 1), 

getlabelnum(clam, 2), getlabelnum(clam, 3), 0, 0, time() + halftravel, KINEMATIC_ROTATE); 

  timetotravel = max(timetotravel, temptimetotravel - time()); 

 

  return timetotravel;       

  //Return the amount of time it will take to complete the process 

 } 

} 
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APPENDIX D 

FlexSim Scripts: Dumping Procedure 

/**Create a coordinated task sequence*/ 

treenodecurrent = ownerobject(c); 

treenode TDisp = node("/Truck Dispatcher", model()); 

treenode sink = node("/Sink", model()); 

treenode truck = msgsendingobject; 

double dumptime = uniform(20, 30); 

double dumpdelay = (dumptime * .66) / content(first(truck)); 

int dumpstate = 8; // releasing 

int index; 

treenode newts = createcoordinatedtasksequence(current); // Create the coordinated task sequence 

int traveler = insertallocatetask(newts, truck, 0, 0);// Allocate the truck 

insertproxytask(newts, traveler, TASKTYPE_SENDMESSAGE, truck, truck, 99, 

MINING_STATE_QUEUE_AT_DUMPZONE, 0);// Send a message to the truck to change its state 

int dumpspot = insertallocatetask(newts, current, 0, 0);// Allocate the dump 

int sync0task = insertproxytask(newts, traveler, TASKTYPE_CALLSUBTASKS, dumpspot, NULL, 0, 0, 0);           

// Allow the Break to requirement on the dump spot to tell the truck how to dump 

insertsynctask(newts, sync0task);// Sync 

insertproxytask(newts, traveler, TASKTYPE_SENDMESSAGE, truck, truck, 99, MINING_STATE_DUMPING, 

0);// Send a message to the truck to change its state 

insertproxytask(newts, traveler, TASKTYPE_SENDMESSAGE, truck, truck, 3, dumptime, 0);   

// Send a message to the truck to do the dumping action 

for(index = 1; index <= content(first(truck)); index++)       

// For each load in the truck 

{ 

 insertproxytask(newts, traveler, TASKTYPE_DELAY, NULL, NULL, dumpdelay, dumpstate); 

 // Delay for the dump time 

 insertproxytask(newts, traveler, TASKTYPE_UNLOAD, rank(first(truck), index), sink, 0); 

 // Unlaod the loads 

} 

insertproxytask(newts, traveler, TASKTYPE_DELAY, NULL, NULL, dumptime * .34, dumpstate);  

// Delay for the dump time 

insertproxytask(newts, traveler, TASKTYPE_SENDMESSAGE, truck, truck, 99, 

MINING_STATE_EXIT_DUMPZONE, 0);// Send a message to the truck to change its state 

int sync1task = insertproxytask(newts, traveler, TASKTYPE_TRAVEL, centerobject(current, 2), NULL, 0, 0); 

// Travel to the dump exit 

insertsynctask(newts, sync1task);         

// Sync 

insertdeallocatetask(newts, dumpspot);         

// Deallocate the Dump 

insertdeallocatetask(newts, traveler);         

// Deallocate the Truck 

returntonum(newts);          

// Dispatch the task sequence 
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APPENDIX E 

Determining Average Speed of CAT789C 

Both the performance chart and the retarder chart for the CAT 789C are provided in 

Figure AE-1 and AE-2, respectively. 

 

Figure AE-1 Performance chart for CAT 789C 
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Figure AE-2 Retarder chart for CAT 789C 

The performance curve for the CAT 789C is transformed into the following piece-

wise function: 
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where 

       maximum velocity from the performance chart, km/h 

The average speed is calculated by multiplying the maximum speed taken from the 

performance chart by a speed factor: 

            (AE.2) 

where 

     average velocity, km/h 

    speed factor, determined by experience, shows the influence of the truck 

acceleration and deceleration by considering the distance of the haul section. The 

speed factor used in the TSJSim model is derived from Table AI-2 of Appendix I. 

The retarder curve for CAT 789C can be transformed into the following piece-wise 

function: 
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where 

       maximum velocity from the retarder chart, km/h 
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Based on Equation (AE.3), the CAT 789C retarder curve can be summarised in 

Table AE-1. 

Table AE-1 Rimpull, gear and maximum velocity for CAT 789C retarder curve 

Rimpull range(kg) Gear Maximum velocity (km/h) 

-12000 < RP 6
th

 gear 56.0 

-16000  RP   -12000 5
th

 gear 41.0 

-22000   RP   -16000 4
th

 gear 31.0 

-28800   RP   -22000 3
rd

 gear 23.2 

-36000   RP   -28800 2
nd

 gear 18.4 

RP   -36000 1
st
 gear 13.8 

According to Hays (1990), as the retarder curve indicates the maximum retarding 

capability, a truck is usually operated at one gear lower than indicated by the retarder 

chart. Thus the velocities from the CAT 789C retarder curve are shown in Table AE-

2. 

Table AE-2 Rimpull, gear and velocity for CAT 789C retarder curve 

Rimpull range(kg) Gear Velocity (km/h) 

-12000 < RP 5
th

 gear 41.0 

-16000  RP   -12000 4
th

 gear 31.0 

-22000   RP   -16000 3
rd

 gear 23.2 

-28800   RP   -22000 2
nd

 gear 18.4 

RP   -28800 1
st
 gear 13.8 

In TSJSim, an input parameter, RetarderCalibrateFactor, is used to account for the 

acceleration and deceleration when the retarder chart is used. The average speed for 

a truck hauling on a downgrade route is based on the retarder chart and can be 

adjusted with the RetarderCalibrateFactor input, as given by Equation (AE.4):  

    𝑤       𝑏   𝑟          (AE.4) 

where 
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     𝑤   average velocity when hauling on a downgrade route section, km/h 

           velocity indicated by the retarder chart, km/h 

 𝑏   𝑟   velocity before the truck enters the downgrade route section, km/h 

         retarder calibrate factor, ranged between 0 and 1, decimal 

The actual truck hauling speed is also limited by the speed limitation for each route 

section. The speed limitation varies according to the grade of the route section, as 

shown in Table AE-3. 

Table AE-3 Speed limitation table (Hays, 1990) 

Grade 

resistance, % 

Speed 

limitation, km/h 

0-6 60 

6-8 30 

8-10 25 

10-12 20 

12- 15 
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APPENDIX F 

Route Information of Easter Ridge OB23/25 

Haul section Distance(m) Grade(%) Haul section Distance(m) Grade(%) 

P3WCB to WC1  57.9 0.6 P3EC to EC1  50.8 -10.2 

WC1 to WC2  47.7 9.8 EC1 to EC2  117.7 -9.9 

WC2 to WC3  38.4 10.5 EC2 to EC3  65 -2.2 

WC3 to WC4  109.3 2.8 EC3 to EC4  199.2 -0.7 

WC4 to WC5  89.5 7.8 EC4 to EC5  226.8 0.4 

WC5 to WC6  209.5 9.5 EC5 to EC6  111.6 0.1 

WC6 to WC7  169 1.4 EC6 to EC7  66.9 0.3 

WC7 to WC8  170.3 10 EC7 to EC8  127.6 0.6 

WC8 to INT1  41.8 0.2 EC8 to EC9  182 0.8 

INT1 to WC9  181.1 1.3 EC9 to EC10  124.2 0.7 

WC9 to P3WD  106.5 0.6 EC10 to EC11  153 1.7 

WC4 to ROM1  294.1 -0.7 EC11 to EC12  122 1.3 

ROM1 to ROM2  86.5 0.7 EC12 to S4C5  46.6 -2 

ROM2 to ROM3  457.2 0.9 S4C5 to WC3  125.7 1.7 

ROM3 to ROM4  178.5 6.5 P4 to P41  100.2 -10.4 

ROM4 to ROM5  320.2 1.2 P41 to INT2  133.2 -7.9 

ROM5 to ROMdump  303.7 -0.2 INT2 to LGD1  121.1 3.1 

P4lobe2 to P4L1  184.8 -10.5 LGD1 to LGDdump  133.9 -1 

P4L1 to WD  303.3 -0.9 INT2 to P42  115.8 -3.3 

WD to P45  241.5 0.3 P42 to P43  213.7 -1.3 

P45 to P44  122.4 -10.2 P43 to ROMdump  514.9 -2.1 

P44 to INT2  132.3 0.7 P3EC-2 to P3EC2.1  182.6 -9.9 

INT1 to P1E1  207.2 9.5 P3EC2.1 to P3EC2.2  87.8 -0.2 

P1E1 to P1E2  89.7 1.3 P3EC2.2 to EC5  142.7 0.4 

P1E2 to P1E3  293 6.7       

P1E3 to P1E4  390.1 0.4       

P1E4 to P1E5  309.7 -6.8       

P1E5 to P1E6  17.5 -1.2       

P1E6 to P1E7  161.2 2.4       

P1E7 to P1E8  59.1 -6.8       

P1E8 to P1Edump  136.7 -8.3       
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APPENDIX G 

Truck Cycle Times from Time & Motion Study (s) 

Cycle 

No. 

P3WC-

ROM 

P4-

ROM 

P4-

P4WD 

S4C-

P1E(785) 

S4C-

P1E(789) 

P3EC-

P3WD 

1 750 831 1023 1557 1213 1468 

2 775 896 629 1637 1232 1575 

3 1157 795 670 1294 1622 1482 

4 749 824 745 1276 1802 1321 

5 862 962 634 1381 1324 1352 

6 1618 892 651 1248 1401 1443 

7 913 867 704 1157 1741 1249 

8 1511 864 1157 1115 1439 1807 

9 865 816 792   1338 1917 

10 810 1097 661   1413 1365 

11 716 790 671   1300 1342 

12 712 788 823   1246 1830 

13 875 876 549   1245 1315 

14 857 792     1336 1367 

15 935 1302     1279 2197 

16 661 901     1383 1494 

17   872     1399 1275 

18   938     1382 1544 

19   999     1432 1105 

20   1098     2108 1185 

21   1096       1105 

22   929       1216 

23   1127         

24   1049         

25   942         

26   1056         

27   1023         

28   1132         

29   948         

30   1032         

31   1014         

32   957         
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APPENDIX H 

Truck Cycle Times from Simulation Results (s) 

Experiment 

No. 

P3WC-

ROM P4-ROM P4-P4WD 

S4C-

P1E(789) 

P3EC-

P3WD 

1 815 1047 541 1435 1418 

2 856 901 873 1406 1486 

3 832 894 707 1457 1445 

4 825 1031 608 1460 1431 

5 806 1017 515 1418 1406 

6 829 986 647 1394 1440 

7 849 889 845 1458 1475 

8 831 919 652 1429 1434 

9 837 870 710 1361 1457 

10 839 881 749 1408 1460 

11 841 875 749 1406 1459 

12 836 928 634 1454 1436 

13 844 891 841 1424 1470 

14 818 1043 548 1373 1421 

15 851 884 852 1410 1482 

16 824 1004 575 1389 1515 

17 843 879 828 1424 1466 

18 823 976 571 1467 1429 

19 859 900 892 1430 1497 

20 818 1014 539 1459 1415 

21 827 953 671 1430 1439 

22 802 989 501 1426 1396 

23 849 914 803 1350 1460 

24 799 983 498 1392 1394 

25 827 919 921 1414 1510 

26 834 953 698 1459 1440 

27 838 880 793 1444 1452 

28 808 1026 519 1390 1405 

29 851 899 861 1462 1474 

30 833 885 780 1438 1447 

31 813 1040 527 1400 1408 

32 856 894 875 1344 1477 

33 809 1032 522 1440 1409 

34 815 1050 554 1419 1417 

35 856 899 901 1416 1489 

36 805 1012 512 1406 1411 

37 795 976 493 1393 1391 
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38 825 941 670 1406 1431 

39 833 925 733 1402 1441 

40 864 904 906 1370 1500 

41 821 1031 585 1416 1424 

42 800 998 504 1389 1396 

43 826 1034 602 1412 1429 

44 831 947 691 1434 1443 

45 846 900 843 1451 1472 

46 810 1032 529 1390 1409 

47 824 1015 618 1406 1435 

48 805 1019 516 1398 1405 

49 827 996 635 1426 1435 

50 847 865 851 1443 1453 

51 861 912 914 1493 1503 

52 837 918 760 1374 1445 

53 853 896 877 1446 1475 

54 822 988 618 1419 1426 

55 820 1041 582 1402 1427 

56 839 910 784 1445 1454 

57 821 1036 579 1387 1516 

58 806 1023 516 1396 1406 

59 819 1024 571 1412 1420 

60 831 944 696 1433 1445 

61 845 886 848 1457 1466 

62 820 1029 575 1416 1425 

63 840 898 806 1445 1454 

64 860 897 898 1459 1487 

65 846 865 847 1401 1455 

66 844 889 816 1449 1457 

67 853 904 865 1335 1473 

68 832 897 745 1390 1438 

69 821 1044 584 1423 1432 

70 812 1053 533 1438 1411 

71 810 1025 526 1430 1409 

72 795 1043 535 1380 1389 

73 855 878 859 1461 1470 

74 810 1015 521 1404 1404 

75 838 895 772 1436 1446 

76 826 929 685 1414 1434 

77 819 1020 586 1403 1422 

78 812 1017 551 1405 1417 

79 805 1012 512 1383 1400 

80 818 1067 548 1407 1418 
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81 811 1044 536 1398 1410 

82 809 1037 532 1393 1412 

83 852 899 860 1447 1477 

84 857 893 895 1440 1484 

85 834 908 747 1440 1449 

86 853 888 889 1371 1484 

87 798 976 494 1393 1391 

88 832 935 714 1432 1440 

89 806 1017 515 1489 1402 

90 861 909 912 1373 1503 

91 848 884 886 1369 1478 

92 820 1027 590 1415 1423 

93 848 914 820 1369 1464 

94 801 992 508 1415 1396 

95 830 961 679 1408 1439 

96 807 1022 517 1358 1511 

97 842 891 818 1382 1464 

98 840 910 768 1387 1451 

99 825 1012 616 1421 1430 

100 808 1030 521 1383 1408 

 

 

  



Appendices 

 

268 

APPENDIX I 

Parameter tables and Arena/FlexSim simulation results  

Table AI-1 Coefficient of traction for various haulage road surface (Hays, 1990) 

Haulage Road Surface 

Coefficient of traction 

(Rubber tyres) 

Concrete, new 0.80-1.00 

Concrete, old 0.60-0.80 

Concrete, wet 0.45-0.80 

Asphalt, new 0.80-1.00 

Asphalt, old 0.60-0.80 

Asphalt, wet 0.30-0.80 

Gravel, packed and oiled 0.55-0.85 

Gravel, loose 0.35-0.70 

Gravel, wet 0.35-0.80 

Rock, crushed 0.55-0.75 

Rock, wet 0.55-0.75 

Cinders, packed 0.50-0.70 

Cinders, wet 0.65-0.75 

Earth, firm 0.55-0.70 

Earth, loose 0.45 

Sand, dry 0.2 

Sand, wet 0.4 

Snow, packed 0.20-0.55 

Snow, loose 0.10-0.25 

Snow, wet 0.30-0.60 

Ice, smooth 0.10-0.25 

Ice, wet 0.05-0.10 

Coal, stockpiled 0.45 
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Table AI-2 Speed factor table (Bishop, 1972) 

Distance of each 

route section, m 

When making a 

start 

When running 

into each section 

0-100 0.25-0.50 0.50-0.70 

100-250 0.35-0.60 0.60-0.75 

250-500 0.50-0.65 0.70-0.80 

500-750 0.60-0.70 0.75-0.80 

750-1000 0.65-0.75 0.80-0.85 

1000- 0.70-0.85 0.80-0.90 

Table AI-3 Utilisation of shovels and trucks in Arena simulation model 

Location 
Average 

utilisation (%) 

Shovel P3WC 89 

Shovel P4lobe2 94 

Dump P3WD 14 

Dump ROM 30 

Dump WD 9 

Table AI-4 Truck trips of fleets in Arena simulation model 

Route 
Truck 

No. 

Average 

trips 

Shovel P4lobe2 - 

Dump WD 

1 29.3 

2 29 

Shovel P4lobe2 - 

Dump ROM 

3 22 

4 22 

5 22 

6 21.4 

Shovel P3WC - 

Dump ROM 

7 28 

8 28 

9 27.8 

10 27.1 

Shovel P3WC - 

Dump P3WD 

11 31.4 

12 31.0 

13 31.0 

Total loads   349.8 
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Table AI-5 Accumulated operational time (s) in FlexSim simulation model 

  

Route 
Truck 

No. 

Travel to 

Loadzone 

Travel to 

Dumpzone 

Queue at 

Loadzone 

Queue at 

Dumpzone 

Spot at 

Loadzone 

Spot at 

Dumpzone 

P4lobe2 

- WD 

1 9499 9019 2 0 1426 2703 

8 9601 8988 155 0 1309 2561 

P4lobe2 

- ROM 

9 9964 9223 288 220 1106 1469 

10 9778 9022 429 586 1066 1455 

11 10018 9264 70 206 1110 1468 

12 9622 9284 224 491 1064 1462 

P3WC - 

ROM 

2 8980 8968 232 261 1332 1846 

3 8922 8968 384 436 1301 1848 

4 9181 8968 208 365 1390 1837 

13 8903 9338 137 142 1383 1869 

P3WC - 

P3WD 

5 8223 9378 17 29 1994 1997 

6 8091 9429 203 170 1753 2023 

7 7966 9378 336 320 1555 2019 

Route 
Truck 

No. 

Wait for 

Load 
Loading Dumping 

Exit 

Loadzone 

Exit 

Dumpzone 

P4lobe2 

- WD 

1 53 2668 787 1086 1513 

8 198 2561 756 1113 1434 

P4lobe2 

- ROM 

9 1124 2169 672 819 1448 

10 1220 2156 652 818 1416 

11 1114 2264 684 880 1453 

12 1265 2161 675 801 1475 

P3WC - 

ROM 

2 624 1994 874 1382 1944 

3 665 1914 883 1317 1952 

4 678 1963 885 1299 1964 

13 635 2001 893 1346 1970 

P3WC - 

P3WD 

5 286 2313 1043 1485 1824 

6 282 2279 1045 1550 1829 

7 277 2269 1035 1650 1794 
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Table AI-6 Trips of trucks in FlexSim simulation model 

Route 
Truck 

No. 
Mean trips 

P4lobe2 - 

WD 

1 58.2 

8 56 

P4lobe2 - 

ROM 

9 47.6 

10 46.4 

11 48.4 

12 47.2 

P3WC - 

ROM 

2 57 

3 56.2 

4 56.6 

13 58.2 

P3WC - 

P3WD 

5 60.8 

6 61 

7 60.2 

Total loads 713.8 
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