
University of Wollongong University of Wollongong

Research Online Research Online

University of Wollongong Thesis Collection
2017+ University of Wollongong Thesis Collections

2018

A simulation model for truck-shovel operation A simulation model for truck-shovel operation

Weiguo Zeng
University of Wollongong

Follow this and additional works at: https://ro.uow.edu.au/theses1

University of Wollongong University of Wollongong

Copyright Warning Copyright Warning

You may print or download ONE copy of this document for the purpose of your own research or study. The University

does not authorise you to copy, communicate or otherwise make available electronically to any other person any

copyright material contained on this site.

You are reminded of the following: This work is copyright. Apart from any use permitted under the Copyright Act

1968, no part of this work may be reproduced by any process, nor may any other exclusive right be exercised,

without the permission of the author. Copyright owners are entitled to take legal action against persons who infringe

their copyright. A reproduction of material that is protected by copyright may be a copyright infringement. A court

may impose penalties and award damages in relation to offences and infringements relating to copyright material.

Higher penalties may apply, and higher damages may be awarded, for offences and infringements involving the

conversion of material into digital or electronic form.

Unless otherwise indicated, the views expressed in this thesis are those of the author and do not necessarily Unless otherwise indicated, the views expressed in this thesis are those of the author and do not necessarily

represent the views of the University of Wollongong. represent the views of the University of Wollongong.

Recommended Citation Recommended Citation
Zeng, Weiguo, A simulation model for truck-shovel operation, Doctor of Philosophy thesis, School of Civil,
Mining and Environmental Engineering, University of Wollongong, 2018. https://ro.uow.edu.au/theses1/
270

Research Online is the open access institutional repository for the University of Wollongong. For further information
contact the UOW Library: research-pubs@uow.edu.au

https://ro.uow.edu.au/
https://ro.uow.edu.au/theses1
https://ro.uow.edu.au/theses1
https://ro.uow.edu.au/thesesuow
https://ro.uow.edu.au/theses1?utm_source=ro.uow.edu.au%2Ftheses1%2F270&utm_medium=PDF&utm_campaign=PDFCoverPages

Faculty of Engineering & Information Sciences

School of Civil, Mining and Environmental Engineering

A SIMULATION MODEL FOR TRUCK-SHOVEL OPERATION

WEIGUO ZENG

"This thesis is presented as part of the requirements

 for the award of the Degree of Doctor of Philosophy

 at the University of Wollongong"

March, 2018

I

CERTIFICATION

I, Weiguo Zeng, declare that this thesis submitted in fulfilment of the requirements

for the award of the degree of Doctor of Philosophy, in the School of Civil, Mining

and Environmental Engineering, University of Wollongong, is wholly my own work

unless otherwise referenced or acknowledged. This document has not been submitted

for qualification at any other academic institution.

Weiguo Zeng

24
th

 March 2018

II

PUBLICATIONS

The following publications are the results of this thesis:

1. ZENG, W., BAAFI, E. Y., WALKER, D. and CAI, D. A 3D discrete event

simulation model of a truck-shovel network system. Ninth AUSIMM Open Pit

Operators' Conference 2016, 2016 Kalgoorlie, Australia. The Australasian

Institute of Mining and Metallurgy, 265-273.

2. ZENG, W., BAAFI, E. Y. and WALKER, D. Using a microscopic simulation to

study the impact of match factor in a truck-shovel mining system. The 38th

International Symposium on the Application of Computers and Operations

Research in the Mineral Industry (APCOM 2017), 2017, Colorado, USA.

Colorado School of Mines, 111-118.

3. ZENG, W., BAAFI, E. Y. and WALKER, D. 2017. A simulation model to study

bunching effect of a truck-shovel system. International Journal of Mining,

Reclamation and Environment, DOI: 10.1080/17480930.2017.1348284, 1-16.

III

ACKNOWLEDGEMENTS

I wish to express my profound indebtedness to A/ Prof. Ernest Baafi, my primary

supervisor, for his guidance and support throughout this study process. His wisdom,

generosity, conscientiousness, patience and selflessness not only guided me through

all the difficulties in this study but also inspired me and set me up to progress further

in life.

I am grateful to Mr. David Walker for the important insights he shared in the truck-

shovel mining operation and his arranging of mine visits. I am inspired by his

passion for both the mining industry and education.

I am grateful to Mr. Kevin Marston for his support on the thesis development. His

patience and help made the completion of the thesis possible.

I also wish to thank Dr. Dalin Cai for his advice on the software development,

especially with respect to the FlexSim simulation.

Thanks to my co-supervisor A/ Prof. Ian Porter for his academic assistance.

I am grateful to the China Scholarship Council (CSC) for their financial support and

the University of Wollongong for the International Postgraduate Tuition Award

(IPTA). Their financial support created the opportunity for me to live and study in

Australia.

Thanks go to Xuwei Li, Jian Zhang, Gaofeng Wang, Mike Davey, Sulina Supava-

deeprasit, Gokhan Yukselen, and Arthur Tamer for their friendship.

I am also deeply indebted to my parents for their love, care and support.

IV

ABSTRACT

A truck-shovel mining system is a flexible mining method commonly used in surface

mines. Both simulation and queuing models are commonly used to model the truck-

shovel mining operation. One fundamental problem associated with these types of

models is that most of the models handle the truck haulage system as macroscopic

simulation models, which ignore the fact that a truck as an individual vehicle unit

dynamically interacts not merely with other trucks in the system but also with other

elements of the traffic network. Some important operational factors, such as the

bunching effect and the influence of the traffic intersections, are either over

simplified or ignored in such a macroscopic model.

This thesis presents a developed discrete-event truck-shovel simulation model,

referred to as TSJSim (Truck and Shovel JaamSim Simulator), based on a

microscopic traffic and truck-allocation approach. The TSJSim simulation model

may be used to evaluate the Key Performance Indicators (KPIs) of the truck-shovel

mining system in an open pit mine. TSJSim considers a truck as an individual traffic

vehicle unit that dynamically interacts with other trucks in the system as well as

other elements of the traffic network. TSJSim accounts for the bunching of trucks on

the haul routes, practical rules at intersections, multiple decision points along the

haul routes as well as the influence of the truck allocation on the estimated queuing

time. TSJSim also offers four truck-allocation modules: Fixed Truck Assignment

(FTA), Minimising Shovel Production Requirement (MSPR), Minimising Truck

Waiting Time (MTWT) and Minimising Truck Semi-cycle Time (MTSCT)

including Genetic Algorithm (GA) and Frozen Dispatching Algorithm (FDA).

The TSJSim simulation model was validated using operational data. The validated

model was used to evaluate various practical scenarios aiming at a better under-

standing of the impacts of the match factor, the safezone traffic management, the

decision points and the truck-allocation strategies on the system performance. The

key simulation results based on the model studies are summarised below:

1. As the length of the safezone increased, the utilisation of the main route fleet

with no waiting at an intersection was significantly improved at the expense of

V

the non-main route fleet. The main route management in the safezone had a

significant impact on the KPIs of the under-trucked fleet.

2. In the simulated truck-shovel system with two fleets, the trends for the

production tonnages and queuing time utilising the four truck-allocation

strategies (MSPR, MTWT, FDA and GA) all shared similar patterns as the fleet

size varied. As the system fleet size increased, the system production tonnes

under these truck-allocation strategies firstly increased significantly and then

remained stable; the queuing time under these truck-allocation strategies showed

a positive relationship with the system fleet size. The bunching time decreased

when the truck-allocation strategies were applied in the model.

3. In the simulated truck-shovel network system with multiple traffic intersections,

by assigning the trucks at the intersections, both productivity and fleet utilisation

increased.

The developed model provides the capability for evaluating the impacts of bunching,

safezone and truck-allocation strategies on a surface mine truck-shovel system. The

model can also be used to estimate the best truck fleet size for the entire truck-shovel

network system under the influence of the truck-allocation strategies. The user

interface for TSJSim input/output and experiment design needs future improvement.

VI

TABLE OF CONTENTS

CERTIFICATION ... I

PUBLICATIONS .. II

ACKNOWLEDGEMENTS ... III

ABSTRACT…. .. IV

LIST OF FIGURES ... XII

LIST OF TABLES .. XXI

LIST OF ABBREVIATIONS .. XXIV

Chapter One INTRODUCTION .. 1

1.1 General ... 1

1.2 Key objectives .. 4

1.3 Methodology .. 5

1.4 Scope of the thesis .. 6

Chapter Two TRUCK-SHOVEL SYSTEM AND TRUCK-ALLOCATION

MODELS…….. ... 7

2.1 Truck-shovel mining operation .. 7

2.2 Truck-allocation models... 18

2.2.1 Single stage approaches .. 20

2.2.2 Comments on single stage approaches .. 21

2.2.3 Multistage approaches ... 23

2.2.4 Summary ... 32

Chapter Three SIMULATION OF TRUCK-SHOVEL SYSTEM 35

VII

3.1 Introduction of simulation approach .. 35

3.2 Arena and FlexSim simulation software .. 42

3.3 Modelling a simplified truck-shovel mining system with Arena and FlexSim 44

3.4 Simulation of truck-shovel system with Arena .. 45

3.4.1 Operational components of the truck-shovel system in Arena 45

3.4.2 Available modules in Arena .. 46

3.4.3 Logic flow in Arena .. 46

3.4.4 Simulation of truck-shovel components in Arena 48

3.4.5 Animation in Arena ... 58

3.4.6 Inputs and outputs in Arena .. 59

3.5 Simulation of the truck-shovel system with FlexSim 61

3.5.1 Operational components of the truck-shovel system in FlexSim.............. 61

3.5.2 Available objects and functionalities in FlexSim...................................... 62

3.5.3 Logic flow in FlexSim .. 64

3.5.4 Simulation of truck-shovel components in FlexSim 64

3.5.5 Animation in FlexSim ... 72

3.5.6 Inputs and outputs in FlexSim .. 73

3.6 Comparison between the Arena and FlexSim modelling methods 75

3.7 Summary .. 78

Chapter Four DEVELOPMENT OF JAAMSIM SIMULATION MODEL 80

4.1 Why JaamSim?... 80

VIII

4.2 Features of JaamSim .. 81

4.2.1 GUI .. 82

4.2.2 3D graphics ... 86

4.2.3 Discrete-event simulation approach .. 87

4.3 Development of truck-shovel system model .. 89

4.4 Structure of TSJSim framework .. 91

4.4.1 TLinkedComponent object .. 93

4.4.2 OreGenerator object ... 95

4.4.3 Loader object .. 96

4.4.4 Dump object .. 100

4.4.5 Route and RouteIntersection ... 102

4.4.6 RouteSafezone object .. 104

4.4.7 Truck object ... 106

Chapter Five DEVELOPING A TRUCK-SHOVEL MODEL USING JAAMSIM

OBJECTS……. .. 124

5.1 Introduction of TSJSim set-up ... 124

5.2 OreEntity set-up ... 125

5.3 Probability Distributions set-up ... 126

5.4 OreGenerator and OreSink set-up ... 128

5.5 Queue set-up... 129

5.6 LoaderOperator set-up .. 130

5.7 Truck-allocation Strategy set-up .. 131

IX

5.8 Loader set-up ... 132

5.9 Dump set-up ... 136

5.10 Route set-up .. 137

5.11 RouteIntersection set-up... 139

5.12 RouteSafezone set-up ... 141

5.13 Truck set-up .. 141

5.14 Simulation output ... 143

Chapter Six TSJSIM MODEL VALIDATION .. 145

6.1 Easter Ridge OB23/25 operation ... 145

6.2 Data collection ... 147

6.3 Model input data .. 148

6.4 Development of the Easter Ridge OB23/25 truck-shovel model 150

6.4.1 Model layout ... 150

6.4.2 Key Inputs configuration ... 163

6.5 Model validation .. 171

6.5.1 Comparison of cycle times on route P3WC – ROM Dump 172

6.5.2 Model validation summary ... 173

6.6 Model application for optimum fleet size .. 174

Chapter Seven MICROSCOPIC SIMULATION WITH TSJSIM 179

7.1 Microscopic simulation approach .. 179

7.2 Bunching effect .. 179

X

7.2.1 A truck bunching model .. 181

7.2.2 Bunching module development .. 184

7.2.3 Assessing the bunching effect on mine production 192

7.3 Traffic control in safezone ... 193

7.3.1 Main-route traffic management... 193

7.3.2 Truck turning management at an intersection ... 194

7.3.3 Safezone traffic model development ... 195

7.4 Bunching animation ... 197

7.4.1 Bunching animation on haul route .. 198

7.4.2 Bunching animation at safezone ... 200

7.5 Managing main route trucks through the safezone .. 202

Chapter Eight TRUCK-ALLOCATION MODEL .. 206

8.1 TSJSim truck-allocation approach ... 206

8.2 Truck-allocation paths development .. 208

8.3 Truck-allocation Strategy .. 212

8.3.1 Fixed truck assignment (FTA) .. 214

8.3.2 Minimising truck waiting time (MTWT) .. 215

8.3.3 Minimising shovel production requirement (MSPR) 217

8.3.4 Minimising truck semi-cycle time (MTSCT) ... 218

8.4 Comparison of truck-allocation strategies ... 233

8.4.1 Truck-allocation strategies where the truck-shovel matches change 233

XI

8.4.2 Multiple decision points effect .. 237

8.5 Conclusions .. 239

Chapter Nine SUMMARY AND CONCLUSIONS ... 241

9.1 Summary .. 241

9.2 Conclusions .. 242

9.3 Limitations of TSJSim ... 244

9.4 Future work .. 244

Appendices……. .. 246

Appendix A…… .. 247

Appendix B…… .. 248

Appendix C…… .. 250

Appendix D…… .. 257

Appendix E…… .. 258

Appendix F…… ... 263

Appendix G…… .. 264

Appendix H…… .. 265

Appendix I……. ... 268

REFERENCES…….. .. 272

XII

LIST OF FIGURES

Figure 2-1 2003 open cut coal primary mining equipment used in Australia

(Westcott, 2004) ... 7

Figure 2-2 Operations in truck cycle .. 8

Figure 2-3 Double sided loading technique (Caterpillar Inc., 2018a).......................... 9

Figure 2-4 Drive-by loading technique (Caterpillar Inc., 2018a) 9

Figure 2-5 Read available rimpull and speed from performance curve of CAT 785C

(Caterpillar Inc., 2018b) ... 13

Figure 2-6 Off-highway truck types (Hays, 1990) ... 15

Figure 2-7 Dispatching trucks collectively .. 22

Figure 3-1 GPSS/H block diagram example (Banks et al., 2010) 37

Figure 3-2 The simplified layout of Mt Whaleback mining operation (Shaw, 2012) 44

Figure 3-3 Two modes of Entities flow in a model ... 47

Figure 3-4 Selecting Sequence ... 49

Figure 3-5 Setting Sequence name ... 49

Figure 3-6 Setting Station name ... 49

Figure 3-7 Assigning Sequence to four groups of Entities .. 50

Figure 3-8 Process and Assign modules for loading and dumping processes 50

Figure 3-9 Enter and Station modules before loading process 51

Figure 3-10 Leave modules after loading process.. 52

Figure 3-11 Station C modules .. 52

Figure 3-12 Intersection area ... 53

XIII

Figure 3-13 General passing rule ... 53

Figure 3-14 Priority for loaded trucks .. 54

Figure 3-15 Hold modules for loaded trucks priority .. 55

Figure 3-16 Hold modules for empty trucks priority ... 55

Figure 3-17 Modules of intersection priority ... 56

Figure 3-18 Selecting Failure .. 57

Figure 3-19 Failure spreadsheet .. 57

Figure 3-20 Resource spreadsheet ... 57

Figure 3-21 Selecting Failure template ... 58

Figure 3-22 Repair modules... 58

Figure 3-23 Animation of the truck-shovel system in Arena 59

Figure 3-24 Logic flow of the FlexSim model... 64

Figure 3-25 Truck task allocation mode... 64

Figure 3-26 Logic flow of Truck Dispatcher ... 66

Figure 3-27 Tree structure of Working face P4lobe2... 67

Figure 3-28 3D view of Working face P4lobe2 ... 67

Figure 3-29 Logic flow of load zone P4lobe2 ... 68

Figure 3-30 Spotting routes at loading face ... 69

Figure 3-31 Tree structure of Dumping Site ROM ... 70

Figure 3-32 3D view of loading ... 72

Figure 4-1 JaamSim GUI ... 82

XIV

Figure 4-2 JaamSim Control Panel ... 83

Figure 4-3 JaamSim Model Builder ... 84

Figure 4-4 JaamSim Object Selector.. 85

Figure 4-5 JaamSim Input Editor ... 85

Figure 4-6 JaamSim Output Viewer ... 86

Figure 4-7 Interactions between operational units ... 89

Figure 4-8 TSJSim model objects .. 90

Figure 4-9 Three-level model structure of TSJSim.. 92

Figure 4-10 Flow process chart of the truck-shovel system model in TSJSim 92

Figure 4-11 Flowchart for generating OreEntities ... 96

Figure 4-12 Flowchart for loading sub-programme ... 98

Figure 4-13 Flowchart for loading time calculation process 99

Figure 4-14 Flowchart for changing operator sub-programme 100

Figure 4-15 Flowchart for dumping sub-programme... 101

Figure 4-16 Simplified traffic network .. 102

Figure 4-17 Flowchart for searching for decision points at an intersection 103

Figure 4-18 Flowchart for obtaining decision points in Route object 104

Figure 4-19 Safezone area .. 105

Figure 4-20 Flowchart for searching for safezone points .. 106

Figure 4-21 Flowchart for examining truck hauling condition 109

Figure 4-22 Flowchart for calculating average velocity .. 111

XV

Figure 4-23 A truck hauling on route segments ... 112

Figure 4-24 Flowchart for velocity list determination ... 114

Figure 4-25 Components of hauling process ... 115

Figure 4-26 Logic of hauling process .. 115

Figure 4-27 Flowchart of truck hauling sub-programme ... 118

Figure 4-28 Logic of hauling animation .. 122

Figure 5-1 TSJSim model components .. 124

Figure 5-2 OreEntity input interface .. 125

Figure 5-3 Basic Graphics interface .. 125

Figure 5-4 Probability distributions library ... 127

Figure 5-5 Normal distribution inputs.. 127

Figure 5-6 OreGenerator input interface ... 128

Figure 5-7 Selecting Loader object for NextComponent input 129

Figure 5-8 Queue input interface ... 130

Figure 5-9 LoaderOperator input interface ... 130

Figure 5-10 Selecting Probability Distributions for ServiceTime 131

Figure 5-11 Truck-allocationStrategy objects in library ... 132

Figure 5-12 Loader inputs interface ... 133

Figure 5-13 Selecting Truck objects .. 134

Figure 5-14 Selecting TOperator objects ... 134

Figure 5-15 Selecting TQueue objects ... 135

XVI

Figure 5-16 Size specification for a loader .. 135

Figure 5-17 A 3D loader .. 136

Figure 5-18 Dump inputs interface .. 136

Figure 5-19 Routes consisting of coordinate points ... 137

Figure 5-20 Route input interface .. 138

Figure 5-21 Selecting Loader objects .. 139

Figure 5-22 RouteIntersection connecting routes .. 140

Figure 5-23 RouteIntersection input interface ... 140

Figure 5-24 Selecting Route objects .. 140

Figure 5-25 RouteSafezone input interface .. 141

Figure 5-26 3D Truck objects .. 142

Figure 5-27 Truck input interface .. 142

Figure 5-28 Loader output viewer ... 144

Figure 5-29 Truck output viewer.. 144

Figure 6-1 Route layout of Easter Ridge OB23/25 operation (Shaw, 2012) 145

Figure 6-2 Active haul routes of Easter Ridge OB23/25 operation 146

Figure 6-3 Model layout... 149

Figure 6-4 Default GUI window .. 151

Figure 6-5 Opening the Basic Objects library ... 151

Figure 6-6 Creating OreEntity object ... 152

Figure 6-7 OreEntity1 input ... 152

XVII

Figure 6-8 Setting size and shape of OreEntity1 ... 152

Figure 6-9 3D shape of OreEntity1 .. 153

Figure 6-10 Creating OreGenerator objects .. 153

Figure 6-11 Creating Loader objects ... 154

Figure 6-12 Setting size and shape of Tloader... 154

Figure 6-13 Modified shape of Tloaders ... 155

Figure 6-14 Creating Dump objects ... 155

Figure 6-15 Creating TEntitySinks ... 156

Figure 6-16 14 TTransporters .. 157

Figure 6-17 Size of CAT 785C .. 157

Figure 6-18 Weight, capacity and type of CAT 785C ... 157

Figure 6-19 Size of CAT 789C .. 158

Figure 6-20 Weight, capacity and type of CAT 789C ... 158

Figure 6-21 Creating TRoute .. 159

Figure 6-22 Key Inputs for TRoute1... 160

Figure 6-23 Haul route network layout .. 161

Figure 6-24 TRouteIntersection3 ... 162

Figure 6-25 Key Inputs for TRouteIntersection3 ... 163

Figure 6-26 Selecting TEntityGenerator in the View window 164

Figure 6-27 Key Inputs of TEntityGenerator1 ... 164

Figure 6-28 Key Inputs of Tloader1 ... 165

XVIII

Figure 6-29 Probability Distribution objects assigned to Tloader and Tdump 166

Figure 6-30 Creating TOperators .. 167

Figure 6-31 Creating TQueues ... 167

Figure 6-32 Selecting Tdump ... 168

Figure 6-33 Key Inputs of Tdump1 .. 168

Figure 6-34 Selecting TTransporter1 .. 169

Figure 6-35 Key Inputs for TTransporter1... 170

Figure 6-36 TSJSim simulation screenshot a .. 170

Figure 6-37 TSJSim simulation screenshot b .. 171

Figure 6-38 TSJSim simulation screenshot c ... 171

Figure 6-39 Distribution comparison on P3WC-ROM .. 172

Figure 6-40 t-test results for P3WC-ROM ... 173

Figure 6-41 Summary statistics of actual data and simulation results 174

Figure 7-1 Effect of mismatch and bunching (Morgan and Peterson, 1968) 181

Figure 7-2 Trucks hauling on route segments with different mean speeds 181

Figure 7-3 Three-stage bunching process .. 182

Figure 7-4 Two-stage bunching process .. 183

Figure 7-5 Safe correction distance process... 184

Figure 7-6 Bunching algorithm for trucks to haul on route 185

Figure 7-7 Two trucks hauling through one segment .. 187

Figure 7-8 Flowchart for bunching sub-programme .. 189

XIX

Figure 7-3 Three-stage bunching process .. 190

Figure 7-4 Two-stage bunching process .. 191

Figure 7-9 Safezone and intersection ... 194

Figure 7-10 Truck turning situations.. 194

Figure 7-11 Flowchart for safezone management .. 196

Figure 7-12 Algorithm of bunching animation .. 199

Figure 7-13 KPIs of the under trucked system for fleet 1 and fleet 2 203

Figure 7-14 KPIs of the over trucked system for fleet 1 and fleet 2 204

Figure 7-15 KPIs of the mix trucked system for fleet 1 and fleet 2 205

Figure 8-1 Decision points at intersections in a truck-shovel network system 207

Figure 8-2 RoutePool and decision points ... 208

Figure 8-3 Tree structure of decision points on haul routes 209

Figure 8-4 RoutePool algorithm flowchart .. 210

Figure 8-5 Load, Dump and Intersection Areas ... 213

Figure 8-6 Flowchart for FTA sub-programme ... 214

Figure 8-7 Flowchart for determining destination list in MTWT 216

Figure 8-8 Flowchart for searching for optimum destination in MTWT 217

Figure 8-9 GA method ... 222

Figure 8-10 FDA method ... 223

Figure 8-11 Flowchart for ECList determination ... 226

Figure 8-12 Flowchart for solutionList determination ... 228

XX

Figure 8-13 Flowchart for obtaining AET ... 229

Figure 8-14 Flowchart for varing indices of maximum Solution elements 231

Figure 8-15 Flowchart for the second step of FDA sub-programme 232

Figure 8-16 Relationship between production tonnes and fleet size with truck-

allocation rules ... 235

Figure 8-17 Relationship between queuing time and fleet size with truck-allocation

rules .. 236

Figure 8-18 Relationship between bunching time and fleet size under truck-

allocation rules ... 237

Figure 8-19 Multiple decision points model layout ... 237

Figure 8-20 System shift production tonnes with and without decision points 238

Figure 8-21 Total lost times with and without decision points 239

Figure AE-1 Performance chart for CAT 789C ... 258

Figure AE-2 Retarder chart for CAT 789C.. 259

XXI

LIST OF TABLES

Table 2-1 Typical rolling resistance factors (Hays, 1990) ... 12

Table 2-2 Advantages and disadvantages of dumping methods (Hays, 1990) 15

Table 3-1 Functionality comparison between Arena and FlexSim 42

Table 3-2 Arena loading time inputs .. 59

Table 3-3 Arena dumping time inputs ... 59

Table 3-4 Arena hauling time inputs .. 60

Table 3-5 Number in and out of shovels and dumps ... 60

Table 3-6 Accumulated process time and wait time (s) ... 60

Table 3-7 Process time and wait time per Entity (s) .. 61

Table 3-8 Shovel digging inputs .. 73

Table 3-9 Truck speed inputs ... 74

Table 3-10 Accumulated truck operational time (s) .. 74

Table 3-11 Accumulated shovel operational time (s) .. 75

Table 4-1 Creating a process (a function or method) ... 88

Table 4-2 Functionality of TSJSim model objects ... 90

Table 4-3 Hauling process functions.. 116

Table 4-4 JaamSim functions for animation .. 121

Table 5-1 Basic Graphics inputs .. 126

Table 5-2 OreGenerator inputs .. 128

Table 5-3 Queue inputs .. 130

Table 5-4 LoaderOperator inputs .. 131

XXII

Table 5-5 Principles of truck-allocation strategies... 132

Table 5-6 Loader inputs ... 133

Table 5-7 Dump inputs ... 137

Table 5-8 Route inputs ... 138

Table 5-9 Truck inputs ... 143

Table 6-1 Mining equipment at Easter Ridge OB23/25 operation 147

Table 6-2 Distributions of loading times ... 148

Table 6-3 Distributions of dumping times ... 148

Table 6-4 Truck inputs for CAT 785C and 789C .. 149

Table 6-5 Route information from P3WC to ROM Dump 159

Table 6-6 Coordinates of the nodes on TRoute1 between P3WC to ROM Dump ... 160

Table 6-7 Coordinates of the nodes on TRouteEmpty1 between P3WC and ROM

161

Table 6-8 Model objects in the layout.. 162

Table 6-9 NextComponent inputs for TEntityGenerators .. 164

Table 6-10 TTransporters for all the Tloaders .. 165

Table 6-11 Specifications of Probability Distributions ... 166

Table 6-12 Specifications of TOperators ... 167

Table 6-13 Tloader and Tdump input values for TTransporters.............................. 170

Table 6-14 Simulation model validation .. 173

Table 6-15 Case 1 Truck-shovel network shift simulation results 177

Table 6-16 Case 2 Truck-shovel network shift simulation results 178

XXIII

Table 7-1 Safezone traffic model input parameters ... 202

Table 8-1 Variables and sub-objects of ECT ... 225

Table 8-2 Information of truckListDV and solutionList ... 227

Table 8-3 Operational input parameters for truck-allocation evaluation 233

Table 8-4 MFs under FTA ... 234

Table AE-1 Rimpull, gear and maximum velocity for CAT 789C retarder curve .. 261

Table AE-2 Rimpull, gear and velocity for CAT 789C retarder curve 261

Table AE-3 Speed limitation table (Hays, 1990) ... 262

Table AI-1 Coefficient of traction for various haulage road surface (Hays, 1990) . 268

Table AI-2 Speed factor table (Bishop, 1972) ... 269

Table AI-3 Utilisation of shovels and trucks in Arena simulation model 269

Table AI-4 Truck trips of fleets in Arena simulation model 269

Table AI-5 Accumulated operational time (s) in FlexSim simulation model 270

Table AI-6 Trips of trucks in FlexSim simulation model .. 271

XXIV

LIST OF ABBREVIATIONS

2D 2-Dimensional

3D 3-Dimensional

AET Accumulated Estimated Semi-cycle Times

ASRS Automatic Storage/Retrieval Systems

BEP Bunching Effect on Production

CA Cellular Automata

CAPEX Capital Expenditure

CF Car-following

CT Coefficient of Traction

DES Discrete Event Simulation

Dlist Dump List

DP Decision Point

DPR Decision Point on Route

DR Dispatching Route

DV Decision Variable

DVV Decision Variable Value

ECList Estimated Cycle Time List

ECT Estimated Cycle Time

ESP Equipment Selection Problem

FDA Frozen Dispatching Algorithm

FEL Future Event List

FlexScript FlexSim Script

FlexSim DS FlexSim Distributed Simulation

FPC Fleet Production and Cost Analysis

FTA Fixed Truck Assignment

XXV

GA Genetic Algorithm

GP Goal Programming

GR Grade Resistance

GW Gross Weight

GUI Graphical User Interface

IDE Integrated Development Environment

ITS Intelligent Transportation System

JaamSim Java Animation Modelling and Simulation

KPI Key Performance Indicator

Llist Loader List

LP Linear Programming

MAX Maximum

MF Match Factor

MILP Mixed Integer Linear Programming

MILGP Mixed Integer Linear Goal Programming

MIN Minimum

MSPR Minimising Shovel Production Requirement

MTBF Mean Time Between Failure

MTSCT Minimising Truck Semi-Cycle Time

MTTR Mean Time To Repair

MTWT Minimising Truck Waiting Time

NLP Non-Linear Programming

OB Ore Body

OPEX Operating Expenses

OR Operations Research

RCF Retarder Calibrate Factor

XXVI

ROM Run Of Mine

RP Rimpull

RPM Runge Pincock Minarco

RR Rolling Resistance

SA Simulated Annealing

SD Safezone Decision Points

SF Speed Factor

SL Solution

TE Task Executer

TR Total Resistance

TSJSim Truck and Shovel JaamSim Simulator

VA Value-Added

VBA Visual Basic for Application

VP Velocity derived from Performance chart

VR Velocity derived from Retarder chart

1

CHAPTER ONE

INTRODUCTION

1.1 General

Surface mining is a broad term which refers to the removal of the soil and strata over

a mineral deposit followed by the removal of the deposit itself. This particular

mining method can be used when the deposit is close to the surface of the ground.

There are generally five stages in any surface mining process: (1) prospecting, (2)

exploration, (3) development, (4) exploitation, and (5) reclamation. Decisions about

when and how to perform the mineral extraction are made by mine planners,

including the selection of mining equipment, the determination of the number of

machines (Blackwell, 1999), and the allocation of mining equipment (Armacost et

al., 2002). Operations Research (OR) techniques have been used in surface mining

primarily for the mining development and exploitation stages; these techniques

include determination of the mining method, estimating production capacity and

infrastructure capital, performing detailed engineering design, and transporting the

ore from the loading site to the waste dump/ore crusher (Newman et al., 2010).

According to Newman et al. (2010), from the traditional pit limit design techniques

to the advanced techniques that attempt to solve the entire mine scheduling problem,

the OR applications relating to surface mining design and planning in literature are

grouped into one of the following three models:

1. Strategic ultimate pit limit design and mine layout models

To determine the ultimate pit limit, an orebody model consisting of a grid of

blocks and a geometric model of the deposit are established. Each of the blocks

consists of not only a volume of material and the mineral properties but also the

economic value determined by the extraction and processing costs. Extracting the

blocks with spatial reference points yields the final pit boundary. There are two

principal classical methods used in these models, one is the tractable method

provided by Lerchs and Grossmann (1965) and the other is the floating cone

method (Laurich, 1990). All the current commercial software packages for open-

Chapter One: Introduction

2

pit mine design (Whittle Consulting Software, 2018; Maptek Software Ltd., 2018;

Datamine, 2018) are based on these two classical methods. In addition, improved

algorithms have been developed, including the dynamic programming model

(Wright, 1989), the network-flow algorithm based on the graph theoretic

methodology (Underwood and Tolwinski, 1998), the maximum-flow, push-

relabel algorithm considering various mine characteristics, such as, ore-grade

distribution (Hochbaum and Chen, 2000), and stochastic models (Frimpong et al.,

2002).

2. Tactical block-sequencing models

While based on the first group of models, the second group of models considers

not only which blocks to remove but also the sequence in which these blocks are

removed. Combining the spatial relationships of the blocks and the periods of

life-of-mine allows for the consideration of resource constraints, such as,

extraction and milling. Initially researchers assumed a fixed cut-off grade and

tended to aggregate blocks into strata or layers (Busnach et al., 1985), and others

ignored the block-sequencing decisions (Tan and Ramani, 1992). In the 1980s,

sequencing decisions were made at the block level in some work using an exact

approach, namely Lagrangian relaxation, to resolve the difficulty due to their

model structure and size (Dagdelen and Johnson, 1986). The dynamic

programming method was also used to determine the ultimate pit limits and the

production schedule sequentially or iteratively (Dowd and Onur, 1993). Recently,

genetic algorithms combined with optimal solution strategies have been used to

resolve large integer programs in a timely manner (Caccetta and Hill, 2003).

3. Tactical and operational equipment-allocation models

The third group of models provides a more detailed scheduling method utilising

the output of the production schedule determined by the first two groups of

models. The tactical problem is to determine the size and configuration of the

fleet, which is dependent on mine characteristics and equipment capacities. The

operational problem relating to equipment-allocation models consists of

scheduling and dispatching strategies. Both queuing theory (Kappas and

Chapter One: Introduction

3

Yegulalp, 1991) and simulation (Oraee and Asi, 2004) can be used for the

equipment-allocation problem. Optimisation techniques, such as, integer

programming method, are also used to determine the fleet size and allocation.

The equipment selection problem (ESP) for surface mining was discussed by

Burt and Caccetta (2014) where they have emphasised the importance of the

match factor to the ESP in modelling and solution approaches. A transportation

model combined with an integer programming model was developed to

determine the optimal equipment schedule (Weintraub et al., 1987). In addition

to the network model, a real-time assignment model was also developed to

dispatch trucks for an open-pit operation (White and Olson, 1993).

Munirathinam and Yingling (1994) classified the existing truck-dispatching

strategies, examined their underlying mathematical formulations and discussed

the strengths and weaknesses of these strategies, reaching the conclusion that the

heuristic rule-based system has significant disadvantages in modelling the

dispatching problem.

This thesis was confined to the equipment-allocation modelling problem.

Computerised simulation was selected as the modelling approach to investigate the

short-term scheduling and planning in a truck-shovel haulage system of an open pit

mine.

A truck-shovel haulage system in an open pit is a stochastic and dynamic material

handling system, and the states of the resources in the system continually change.

Operational factors, for instance, lengths of queues at loading sites and dumps,

locations and states of the shovels, the number of trucks on certain segments of the

haul routes, assignments of the trucks to routes, breakdowns and delays in the system,

and operators’ performance, are important variables that keep updating stochastically

during truck cycle times (Hays, 1990). Given the nature of the truck-shovel system,

these operational factors should all be considered comprehensively when a truck-

allocation decision is made.

Multiple operational constraints, e.g., stripping ratio, grade control, and capacities of

the waste dump/ore crusher, have been considered in existing truck-allocation

models. There have been productivity improvements due to implementation of

Chapter One: Introduction

4

certain truck-allocation strategies (Munirathinam and Yingling, 1994). However,

according to Afrapoli and Askari-Nasab (2017), one major limitation of the current

truck-allocation models is the weak linkage between the strategic level and

operational level plans, and another important drawback is the proclivity to ignore

dynamic nature of the truck-shovel system and the requirement for realistic

modelling approach. most of the simulation models in the literature ignore the

important dynamic aspects of a truck-shovel system, for instance, the dynamic

relationship between queuing times and allocations of trucks to haul routes, the

impact of the changing performance of the shovel/loader on the queuing times, the

influence of truck bunching or traffic congestion on the haul routes, and the fleet

interaction in the intersection area.

1.2 Key objectives

In order to provide a better tool for strategic mine planning, this thesis aims to

develop a discrete-event simulator incorporating microscopic traffic modules and

truck-allocation modules to evaluate the performance of a truck-shovel system in an

open pit mine. The proposed simulator is expected to consider the dynamic

variability of traffic conditions and also the trucks as individual vehicle entities in

the system. The traffic modules provide the capability of estimating the short-term

productivity and equipment efficiency as well as optimising the fleet size. The truck-

allocation modules investigate impacts of the multiple decision points in the network

system on the truck-allocation efficiency as well as providing improved truck-

allocation methods. The specific objectives of this thesis include:

1. Studying existing truck-allocation models and comparing the advantages and

disadvantages of these models.

2. Studying applications of available simulation software on the truck-shovel

system to determine the most suitable simulation tool.

3. Developing a structured framework of a truck-shovel operation that includes

essential elements of a material handling system.

Chapter One: Introduction

5

4. Developing haulage modules with the ability to consider a realistic traffic

situation in a truck-shovel network system.

5. Investigating the interaction between individual hauling trucks and further the

interaction between multiple truck fleets in an intersection area, as well as

influences of the fleet interactions upon the mine KPIs.

6. Investigating the truck-allocation effect of multiple decision points in terms of

KPIs and the relationship between the truck-allocation efficiency and various

operational factors.

1.3 Methodology

An open-source simulation software package, JaamSim (JaamSim, 2018), was used

to develop a truck-shovel haulage system simulator, hereafter referred to as the

Truck-Shovel JaamSim Simulator (TSJSim). Using the open-source simulation

software package, a truck-shovel system simulation model was developed for a mine;

the developed model being validated using data collected by Shaw (2012). The

model development includes the following phases:

1. Model design ‒ existing truck-allocation models were reviewed to assess the

limitations of these models.

2. Selection of simulation tool ‒ applications of discrete-event simulation tools, i.e.,

Arena, FlexSim and JaamSim, were reviewed to assist in the selection of the

most suitable tool for the model development.

3. Model construction ‒ a framework of TSJSim was initially developed, followed

by the construction of a truck-shovel system model.

4. Model validation ‒ the truck-shovel system model developed was validated using

field data.

5. Experiment and analysis ‒ various scenarios were designed to investigate traffic

operational factors and truck-allocation strategies.

Chapter One: Introduction

6

1.4 Scope of the thesis

This thesis consists of nine chapters which met all the research objectives. The

outline of the thesis is as follows:

Chapter 2 reviews the truck-shovel mining operation and the existing truck-

allocation models, including considered operational elements, underlying

mathematical formulations and the advantages and disadvantages of these models.

Chapter 3 reviews general simulation approaches and focuses on the application of

two commercial discrete-event simulation tools, namely Arena and FlexSim. The

review provides the background for determining the most suitable simulation tool for

a truck-shovel mining system.

Chapter 4 presents the development of TSJSim, including the development of the

model structure and simulation model objects.

Chapter 5 presents the user guide of how to build and set up a truck-shovel system

model using the JaamSim objects.

Chapter 6 describes the construction of a truck-shovel system model using the

TSJSim objects. The truck-shovel model was validated by comparing simulation

results with field data. The validated model was then utilised to conduct sensitivity

analysis on truck-shovel selection options.

Chapter 7 presents the development of a microscopic traffic module in TSJSim that

includes a truck bunching module and an intersection traffic management module.

The impact of intersection traffic management on KPIs is evaluated and discussed.

Chapter 8 presents the development of a truck-allocation module in TSJSim,

including a RoutePool module and five truck-allocation algorithm modules. Impacts

of the developed truck-allocation modules on KPIs are evaluated and discussed.

Chapter 9 summarises the main conclusions drawn from this thesis. The limitations

and recommendations for future work are also discussed.

7

CHAPTER TWO

TRUCK-SHOVEL SYSTEM AND TRUCK-

ALLOCATION MODELS

2.1 Truck-shovel mining operation

Surface mining is the predominant method of mining used in coal mines, and the

practice contributes to about 65% of all coal production in Australia (Scott et al.,

2010). Truck-shovel and a combination of truck-shovel and draglines (Sargent, 1990)

are the predominant mining operations used in surface coal mines in Australia, as

shown in Figure 2-1. In this thesis, the term “shovel” does not only refer to a rope

shovel but also other loaders including hydraulic excavators and front-end loaders.

The term “truck” includes the conventional rear dump truck, the tractor-trailer truck

and the integral bottom dump truck. In general, the truck-shovel mining method is

the most flexible mining method utilised in geological complex deposits with

varying overburden depths and thicknesses along with smaller deposits (Westcott,

2004). The versatility of the system and ability to haul long distances makes the

truck-shovel mining method preferred in nearly all mining situations (Hays, 1990).

Figure 2-1 2003 open cut coal primary mining equipment used in Australia

(Westcott, 2004)

0

5

10

15

20

25

30

35

40

Dragline Only Truck&Shovel Dragline with
Truck&Shovel

Bucket Wheel
Excavator

N
u

m
b

e
r

o
f

M
in

e
s

Chapter Two: Truck-shovel System and Truck-allocation Models

8

A truck-shovel mining system generally consists of shovels and associated truck

fleets. Ore of different qualities and waste are loaded into trucks by shovels and

transported from loading sites to ore crushers or waste dumps. The productivity of an

operating truck depends on the actual truck payload and the truck cycle time. A

single truck cycle includes spotting and loading, hauling loaded, dumping, hauling

empty, waiting, and other operational delays (Figure 2-2).

Figure 2-2 Operations in truck cycle

The operational constraints of the truck cycle are:

1. Spotting and loading

Spotting is the process where the truck manoeuvres into a position for loading.

Loading is the process of placing mined material into a truck. The gathering of

material into the bucket and then unloading the material into the truck is called a

pass. A number of passes is usually required to load the truck. The spotting time

of the truck is influenced by the selected loading method. There are typically four

loading methods:

 Double sided loading technique

The trucks are spotted and loaded alternately on both sides of the shovel. The

shovel has a maximum swing of 90 , as shown in Figure 2-3. Sufficient

working room at the rear and on both sides of the shovel should be ensured.

Chapter Two: Truck-shovel System and Truck-allocation Models

9

Figure 2-3 Double sided loading technique (Caterpillar Inc., 2018a)

 Single sided loading technique

The truck is spotted and loaded to one side of the shovel with a maximum

swing of 90 . A second truck cannot be spotted and loaded until the first

truck has pulled clear of the shovel, therefore compared to double sided

loading, productivity is reduced.

 Drive-by loading technique

The shovel tracks are parallel with the face and the truck (tractor-trailer truck)

drives onto one access ramp and stops adjacent to the shovel. After being

loaded, the truck drives past the shovel. The shovel has a maximum swing of

180 , as shown in Figure 2-4.

Figure 2-4 Drive-by loading technique (Caterpillar Inc., 2018a)

Chapter Two: Truck-shovel System and Truck-allocation Models

10

 Modified drive-by loading technique

The shovel tracks are parallel with the working face and when the truck

drives under the shovel’s swing path the shovel dumps before the truck stops,

then the truck is spotted by backing and stopping near the working face. The

shovel has a maximum swing of 120 .

The number of passes required for loading and the shovel work cycle time

determine the loading time.

Number of passes, 𝑁 , can be calculated by Equation (2.1) (Hays, 1990):

𝑁

 𝑡

 𝑠
 (2.1)

where

 𝑡 truck capacity,

 loose cubic meters bucket rated capacity,

 loader bucket fill factor, decimal

 𝑠 material swell factor, decimal

 material bank bulk density,

The shovel work cycle time is the time taken for the shovel to dig the mineral, to

swing to the dump position, to dump the bucket, and to swing back. The work

cycle time varies depending on the specific loader type, the operator’s experience,

the material characteristics, and the operational conditions.

According to Hays (1990), if spot time is less than the shovel work cycle time,

the combined spot and load time, 𝑡 , can be calculated by Equation (2.2):

 𝑡 𝑁 (2.2)

where is the shovel work cycle time in minutes.

Chapter Two: Truck-shovel System and Truck-allocation Models

11

If spot time is greater than the shovel work cycle time, the combined spot and

load time, 𝑡 can be calculated by Equation (2.3):

 𝑡 𝑁 𝑠 (2.3)

where 𝑠 is the spot time in minutes.

The combined spot and load time depends on the following factors:

 Space and ground conditions,

 Types of loading equipment,

 Loading method,

 Rock fragmentation, and

 Match of shovel and trucks.

2. Travelling

Travelling includes hauling loaded material to the dumping site and returning

empty to the loading site. The travelling time depends on the following

constraints:

 Truck rimpull,

 The haulage route, including haulage route length, grade, rolling resistance,

and road conditions,

 Operating constraints such as velocity limits and bunching, and

 Operator performance.

Grade and rolling resistance provide resistance to truck motion. Grade resistance

is caused by the haulage road grade. Rolling resistance is due to tyre flexing on

the road, wheel bearing friction, tyre penetration into the ground, and air

movement. Typical rolling resistance factors are provided in Table 2-1 (Hays,

1990). Total resistance, , is the sum of grade and rolling resistance.

 (2.4)

where

 rolling resistance, ;

Chapter Two: Truck-shovel System and Truck-allocation Models

12

 grade resistance, .

Table 2-1 Typical rolling resistance factors (Hays, 1990)

Haulage Road Surface

Rolling

Resistance, %

Cement, asphalt, or soil cement without tyre penetration 2

Hard-packed gravel, cinders, or crushed rock 3

Firm packed earth or light surfacing 3.25

Moderately packed gravel, cinders, or crushed rock 5

Rutted or unmaintained earth 7.5

Loose sand and gravel 10

Soft, muddy, rutted, and unmaintained material 10-20

Given the total resistance and truck gross weight, there are six steps required to

read the available rimpull and maximum hauling velocity from published

performance and retarder curves, as shown in Figure 2-5.

(1) Determine total resistance as a percentage, say 6%.

(2) Beginning at point A for 6% total resistance, follow the line diagonally to

find the intersection between the truck gross weight and the total resistance,

i.e., point B.

(3) Establish a horizontal line to the left from point B to point C on the rimpull

scale.

(4) When altitude deration is considered, the value of point C is divided by the

percent of total horsepower available, which yields the available rimpull

value D higher than point C.

(5) Establish a horizontal line to the right from point D to the intersection of the

line with a curved speed range, i.e., point E.

(6) A vertical line down from point E determines the maximum speed, i.e., point

F on the speed scale.

Chapter Two: Truck-shovel System and Truck-allocation Models

13

Figure 2-5 Read available rimpull and speed from performance curve of CAT 785C

(Caterpillar Inc., 2018b)

The obtained available rimpull has to adhere to the following requirement:

 (2.5)

The usable rimpull is the pull a truck can exert before the tyres slip, and depends

on the maximum traction, , which is the usable driving force influenced by the

truck tyre on the surface of the ground, and the altitude. The maximum traction is

expressed by Equation (2.6) (Hays, 1990):

 (2.6)

where

 the coefficient of traction, decimal (Table AI-1 of Appendix I)

 weight on the drive tyres, kg

Chapter Two: Truck-shovel System and Truck-allocation Models

14

 grade angle of road section, degree.

The required rimpull is the power needed to propel a truck along a haul route,

and depends on the rolling resistance and grade (total resistance, TR), i.e.,

 (2.7)

where

 gross (total) truck weight which consists of the empty truck weight and

the amount of material loaded from the loader, kg

The average travelling speed, , can be estimated by multiplying the maximum

velocity with a speed factor, to account for the truck acceleration and braking

along the haulage routes (Bonates, 1996), as shown in Equation (2.8).

 (2.8)

where

 maximum speed read from the performance curve,

 speed factor, decimal.

The speed factor is an empirical adjustment factor. Table AI-2 of Appendix I

shows a table of speed factors arranged according to the distance of a route

section.

3. Dumping

This is the process where the truck empties the load at the designated dump site.

There are three dumping methods:

 Rear dumping,

 Bottom dumping, and

 Side and rear dumping.

Chapter Two: Truck-shovel System and Truck-allocation Models

15

According to Hays (1990), off-highway trucks can be classified into three main

types: (1) conventional rear dump truck; (2) tractor-trailer, bottom, side, and rear

dump truck; and (3) integral bottom dump truck (Figure 2-6).

Figure 2-6 Off-highway truck types (Hays, 1990)

Depending on the truck types, different dumping methods are used. The

advantages and disadvantages of the three dumping methods are summarised in

Table 2-2 (Hays, 1990).

Table 2-2 Advantages and disadvantages of dumping methods (Hays, 1990)

 Types

Properties
Rear dump truck

Tractor-trailer

truck

Integral bottom

dump truck

Dumping method Rear dumping

Bottom dumping,

side and rear

dumping

Bottom dumping

Versatility

Can haul a wide

variety of

materials

Can haul a wide

variety of materials

depending on dump

body types

Material must be

free flowing

Gradeability Good Poor Medium

Performance under

poor road conditions
Good Poor Medium

Maneuverability

Must stop, turn,

and back up to

dump

Good for dumping

while moving

Good for dumping

while moving

Suitable for

severe loading

impact?

Yes No No

Chapter Two: Truck-shovel System and Truck-allocation Models

16

Poor ground conditions may exist at the dump site, and equipment such as dozers

or graders are usually required for dump site construction and maintenance.

Maintaining the dump area can minimise traffic congestion and reduce safety

hazards, thus decreasing dumping times.

To summarise, dumping time depends on:

 Truck type and size,

 Material characteristics,

 Dump arrangements,

 Space available,

 Ground conditions, and

 Operating practices.

4. Waiting

When a truck reaches the loading or dumping site, the truck must wait in a queue

if the loading or dumping site is occupied by other trucks. Generally it occurs

when the resources (e.g., shovels and crushers) in the haulage system are not well

matched to the allocated trucks. Some factors that may cause waiting time are as

follows:

 Over-trucking

When the capacities of trucks in the system exceed loading and/or dumping

the capacities, truck queues are formed, and the waiting times of trucks

increase. This may happen across the entire system or at certain loading

and/or dumping sites. The number of trucks, for instance, may exceed the

capacities of all the shovels in the system, or the number of trucks allocated

to one shovel may exceed the capacity of this one shovel. In the latter case,

waiting time can be reduced by allocating trucks to other shovels that are idle.

 Bunching

The spacing between hauling trucks is reduced due to mixing trucks with

varied capacities (Hays, 1990). This comes about because overtaking is not

Chapter Two: Truck-shovel System and Truck-allocation Models

17

allowed at most surface mines. During hauling, the phenomenon of faster

trucks following the slower trucks results in truck bunching on route.

 Mismatching of equipment

This occurs when the truck-shovel system has equipment of various sizes

with variable performance characteristics, for example, small and large trucks

in the same fleet resulting in different truck cycle times.

 Operator performance

The performance of a shovel varies significantly depending on which

operator is operating the shovel (Patnayak et al., 2008), with the operator’s

experience causing variations in the truck cycle times. It has been estimated

that by optimising the performance of a shovel, a mine could save as much as

125 minutes per shovel per 20- hour day (Fiscor, 2007).

 Weather conditions

Weather conditions like rain or snow can result in poor equipment

performance and operating delays.

5. Delays

There are two kinds of operational delays that reduce equipments productive

output (Hays, 1990):

 Fixed delays

These are the delays that are planned and usually not considered in truck

cycle time and include reasons such as shift change, equipment inspection,

operator breaks, refuelling, and blasting.

Shift changeover is an important factor that affects the efficiency and

productivity within the truck-shovel system. The performance of operators

varies between shifts. There is also a delay caused when a truck hauls to the

parking lot for a shift operator changeover (Krause, 2006). The decision to

assign a truck either to a shovel or to the parking lot towards the end of the

shift can influence the shift production (Bastos, 2013). However, hot seat

Chapter Two: Truck-shovel System and Truck-allocation Models

18

changeovers (Burke, 2011), where a truck driver is replaced immediately

with another worker inside the mine at the end of a shift, have become

common practice in the mining industry to prevent production stoppages.

 Variable delays

These are the delays that are not predictable, and must be considered in the

truck cycle time, including haulage road maintenance, loading area clean-up,

driver relief stops and equipment breakdown.

An open-pit truck-shovel system is characterised by a complex haulage system.

According to Temeng (1997), the features of a truck-shovel haulage system are as

follows:

(1) The varying topography of a pit and the associated network of haul routes affect

truck cycle times. The route length, grade and rolling resistance, route condition,

traffic infrastructure, speed limits, traffic conditions, and the truck performance

all influence the travelling time along a haul route. The traffic network associated

with the haulage system may also take trucks to different destinations for

different tasks.

(2) The varying status of the operating equipment influences the system performance.

The breakdowns of shovels, trucks, ore crushers or waste dumps, including

scheduled and unscheduled breakdowns, further result in various delays in the

system.

(3) The capacities of shovels, ore crushers and waste dumps limit the maximum

numbers of trucks being allocated. Delays are caused when extra trucks are

allocated to these loading sites and/or dumping sites.

(4) The ore quality management requires the truck-allocation to take into account the

loading sites with varied ore quality attributes.

2.2 Truck-allocation models

For a truck-shovel system in an open-pit mine, the truck haulage costs have been

reported to exceed half of the total direct operating costs (Lizotte and Bonates, 1987).

Although efforts have been made in the past to reduce haulage costs by improving

Chapter Two: Truck-shovel System and Truck-allocation Models

19

the capacity and operating performance of the mining equipment, the same cost

reduction can be attained by more efficient utilisation of the haulage system (Baafi

and Ataeepour, 1998). In general, the efficient utilisation of the truck-shovel system

is limited by the waiting times of both trucks and shovels, and other variable delays

in the system. The waiting times of trucks increase when the system is over-trucked,

and the idle time for shovels increase when the haulage system is under-trucked.

Some segments of the haul roads may be blocked due to various variable delays,

such as haulage road maintenance. How trucks respond to the change of system

states (e.g., shovel’s state, queue length and route blockage) influences the

productivity and efficiency of the system. Truck dispatching strategies have been

applied to improve productivity and/or reduce operating costs by considering

alternative truck-shovel assignments in real time to increase utilisation of system

resources. By allocating the optimal number of trucks to shovels, the waiting times

of trucks in an over-trucked system as well as the idle times for shovels in an under-

trucked system can be minimised (Baafi and Ataeepour, 1998). Further, by re-

routing trucks when traffic congestion occurs, costs associated with variable delays

can be minimised (Jaoua et al., 2012b).

A truck dispatching system is an interactive system used by the fleet controller to

find the most appropriate destination for a truck so as to meet the production rate.

The primary objective of the truck dispatching system is to achieve efficient

utilisation of the available truck resources by careful consideration of truck-shovel

assignment alternatives and determination of assignment decisions in real time. The

truck dispatching systems evolved from manual dispatching systems to semi-

automated dispatching systems in the early 1970s. A manual dispatching system

depends on the judgement of a dispatcher who keeps track of the status of the

various resources visually and/or through radio communications. In semi-automated

dispatching systems, the status of all trucks and shovels are recorded and truck

assignments are suggested by minicomputers with the dispatcher still in control and

manually making assignments. Since the late 1970’s, fully-automated computer-

based dispatching systems have been applied to directly assign trucks to tasks solely

based on computer algorithms. With modern truck dispatching systems, the term

“dispatching” consists of two basic components: the first component is the data

Chapter Two: Truck-shovel System and Truck-allocation Models

20

communications between trucks hauling in a mine site and a central computer; the

second component is the computer program that generates truck assignments based

on the information gained through the data communications. In this thesis, only the

applications relating to truck assignments are considered; a truck assignment model

developed does not include the field data communications. The term “dispatching”

that appeared in the literature, such as “dispatching strategies” or “dispatching

points”, is used in this thesis only in terms of truck assignments/allocations.

According to Alarie and Gamache (2002), the main forms of truck-allocation are the

single stage and multistage systems. The single stage approach assigns trucks to

shovels according to one or several heuristic rules, such as “minimising truck

waiting time” and “minimising shovel idle time”, without taking into account the

specific production targets or constraints, hence a heuristic rule-driven system. The

multistage approach, on the other hand, consists of several stages or sub-problems

(Afrapoli and Askari-Nasab, 2017), which can be usually reduced to an upper stage

(a production optimisation problem) and a lower stage (a real-time dispatching

problem). The upper stage aims to set production targets for every shovel according

to specific operational constraints, while the lower stage assigns trucks to shovels to

minimise the deviation from the production targets set by the upper stage.

2.2.1 Single stage approaches

The single stage truck dispatching strategy assigns trucks to shovels based on one or

several criteria without considering any specific production targets or constraints.

They are usually heuristic methods based on rules of thumb (Alarie and Gamache,

2002). Some heuristic rules for truck dispatching are listed as follows:

 Fixed truck assignment (Lizotte and Bonates, 1987)

Each truck is assigned to a shovel in a fixed manner. This strategy can serve as a

baseline by which to measure the effectiveness of other dispatching strategies.

 Minimising truck waiting time (Kolonja et al., 1993)

By minimising the difference between the shovel-ready-time and the truck-

ready-time, the truck is assigned to the shovel that is expected to provide the

Chapter Two: Truck-shovel System and Truck-allocation Models

21

least possible waiting time for the truck. The shovel-ready-time includes the

expected loading time for the truck being loaded, the expected queuing time for

all the waiting trucks in the queue, and the expected travelling time for the

hauling truck. The truck-ready-time represents the expected arrival time for the

hauling truck. This strategy may lead to underutilisation of shovels located

further away from the location of the truck, making it difficult to fulfil the

operational targets.

 Minimising shovel waiting time (Kolonja et al., 1993; Lizotte and Bonates, 1987)

By maximising the difference between the shovel-ready-time and the truck-

ready-time, the truck is assigned to the shovel that has been waiting the longest.

In this case, some trucks may be assigned to the shovel located the furthest away

which has waited the longest, even though there is an idle shovel nearby.

 Maximising truck momentary productivity (Kolonja et al., 1993)

Truck momentary productivity is defined as the ratio between truck capacity and

truck cycle time. In the case of the trucks with homogeneous capacity,

minimising truck cycle time results in the maximum truck momentary

productivity. The truck assigned to a shovel that is nearby may have a lesser

cycle time, thus greater truck momentary productivity. This strategy may lead to

undesirable queues at the nearby shovels (Munirathinam and Yingling, 1994).

 Minimising shovel saturation (Kolonja et al., 1993)

The degree of shovel saturation is defined as the ratio of the actual number of

trucks that have been assigned to the shovel compared to the desired number.

The desired number is given by the ratio of the average travelling time compared

to the average loading time. A truck should be assigned to a shovel with the least

degree of saturation.

2.2.2 Comments on single stage approaches

According to Baafi and Ataeepour (1998), the rules aimed at minimising shovel idle

times perform better than minimising truck waiting times in an under-trucked system.

Chapter Two: Truck-shovel System and Truck-allocation Models

22

However, in an over-trucked system, the rules based on minimising truck waiting

times work better than minimising shovel idle times. In general, the above

dispatching criteria, except for the fixed truck assignment, all have potential to

increase the productivity but no one criterion can dominate all others (Munirathinam

and Yingling, 1994).

According to Munirathinam and Yingling (1994), the single stage dispatching

methods based on heuristic rules are easy to implement since much computation is

avoided when making dispatching decisions. The heuristic rules may serve as a

better basis for a very large and complex mining operation. However, there are two

major disadvantages of the above five single stage dispatching methods:

1. The single stage dispatching rules based on heuristic rules are applied to one-

truck-at-a-time. The current and further dispatching decisions are not made

collectively. When a truck is ready to be assigned to a shovel or route, according

to the one-truck-at-a-time dispatching method, the destination is determined

without considering future assignments of trucks. The possible assignments of

these trucks are ignored when the dispatching decision for the current truck is

made. Referring to Figure 2-7, suppose travelling time between Shovel 1 and

Dump 1 is 5 minutes and that between Shovel 1 and Dump 2 is 6 minutes, and

Shovel 1 is the neediest shovel at present.

Figure 2-7 Dispatching trucks collectively

Truck 2 has just completed dumping at Dump 2 and is ready to be dispatched,

and Truck 1 will complete dumping in 30 seconds. If Truck 2 is dispatched

without considering Truck 1, Shovel 1 would be the destination for Truck 2, and

Chapter Two: Truck-shovel System and Truck-allocation Models

23

Truck 2 would supposedly get loaded in 6 minutes without any delay. However,

if Truck 1 is considered, then it is clear that Truck 1 would arrive at Shovel 1

before Truck 2, thus causing Truck 2 to wait at Shovel 1. In this case, Shovel 2

might be an option for Truck 2. This implies that the dispatching decision should

be made considering other trucks that may have a future impact on the truck

concerned.

2. The single stage dispatching rules only consider actual system performance and

ignore operational constraints, such as ore quality and blending requirements.

2.2.3 Multistage approaches

Most of the truck-shovel dispatching algorithms and models using multistage

approaches deal with two major problems: the production optimisation problem and

the real-time dispatching problem.

2.2.3.1 The production optimisation problem

The approaches used to solve the production optimisation problem in the truck-

shovel dispatching models can be divided into Linear Programming (LP) approach,

Non-Linear Programming (NLP) approach, Goal Programming (GP) approach and

stochastic programming approach.

2.2.3.1.1 Linear Programming approach

White and Olson (1986) proposed a short-term production planning system which

consisted of two Linear Programming (LP) models. The solution to the first LP

model determines the optimum production rate of the shovels, which is then used to

link the first LP model with the second. The solution to the second LP model

allocates the volumes of the haulage capacity to all available haulage routes by

maximising production per unit of haulage resources. The allocated haulage capacity

of all paths serving a shovel should be no less than the shovel production rate given

by the first LP model, assuming that excess production is stockpiled. The models are

re-solved for re-planning if there are major changes in the operation (e.g., shovel

breakdown, changes in haulage routes, changes in blending requirement) or if a

grade control interval is triggered.

Chapter Two: Truck-shovel System and Truck-allocation Models

24

The objective function of the first LP model minimises the sum of various pseudo-

costs. The pseudo-costs are judgement-based weighting factors depending on the

relative importance determined by mine management. The first LP model presents

the shovel’s production with the consideration of the maximum digging rate for a

shovel, the maximum plant capacity, and the lower and upper limits of the ore

quality. The objective of their second LP model is to maximise production by

allocating minimum material flows along all feasible paths while satisfactorily

serving all operating shovels.

The advantages of the model by White and Olson (1986) can include real-time data

to reflect the current status of the mine, and the optimum production rate of a route is

based on the volume of material instead of the number of trucks. However, the

model fails to consider stripping ratio, and the predefined upper and lower quality

limits may influence the short-term plant output and input.

Lizotte and Bonates (1987) proposed a linear programming formulation as a part of

their semi-automated system to solve the production rates of all the shovels in order

to reach maximum production. Their LP model is run once a shift. The objective of

their LP model is to maximise the production rate of all shovels working in ore and

waste taking into account the ore grade requirements and the stripping ratio. The

model also assumes the shovels’ relative priority of working on ore faces. The major

drawback of their model is the assumption that the shovels’ production increases

linearly with the increasing number of trucks. In addition, stockpiling and re-

handling operations are ignored in the objective function.

Li (1990) proposed an LP formulation to allocate the optimal number of trucks to a

route to meet the required productivity rate. The objective of the model is to yield the

optimum truck flows by minimising total transportation work. Transportation work

is defined as the product of transported weight and hauled distance. This LP model

considers all the loading points, ore discharging points, stockpiling points and waste

disposing points as well as variables such as ore quality requirements, road length

and resistance factor. However, this model fails to consider a heterogeneous fleet in

the operational plan, and equipment breakdowns are ignored as well.

Chapter Two: Truck-shovel System and Truck-allocation Models

25

Gurgur et al. (2011) proposed a LP model which helps to minimise deviation of the

operation from the long-term planning generated from a mixed integer programming

(MIP) model. The MIP model determines the life of mine, production requirement in

each period by considering economic factors. The LP model determines the truck

allocation to shovels in each period to achive the required production, and takes into

account the the attributes of different types of trucks and shovels and the haul route

profiles in each period. In addition, the model considers the stochastic uncertainties

of the input parameters including load and travel times and ore grades. The major

advantage of their model is a multi-period optimisation model that takes into account

the effects of current operations on the next ones. However, their model uses

continuous variables, i.e., the flow rate of transported material, which fails to provide

a precise value of the number of truck trips required.

Ta et al. (2013) proposed a mixed integer linear programming (MILP) model to

assign trucks to loading units based on the probability of the shovels’ idle time. The

objective of their model is to minimise the total number of trucks assigned to each

shovel by considering throughput and ore grade constraints. Based on the theory of

finite source queues, the relationship between a shovel’s idle probability and the

number of trucks assigned to the shovel is determined via a simple approximation

and is incorporated into the MILP model. The model proposed by Ta et al. (2013) is

able to consider a heterogeneous fleet in a truck-shovel system.

Mena et al. (2013) proposed a multiple integer knapsack problem to obtain the

maximum cumulative fleet production in a fixed time frame. The objective of their

model is to assign available trucks to the route requesting trucks according to their

operating performance in a truck-shovel system. The equipment availability is

incorporated into the objective function of their model so that the stochastic

characteristics of the equipment behaviour and environment are able to be

considered. However, the major disadvantage of their model is that when a certain

number of trucks are in the state of maintenance repair, the optimiser fails to find an

optimal solution. In addition, the blending requirement of the plant is not taken into

account in their model.

Chapter Two: Truck-shovel System and Truck-allocation Models

26

Change et al. (2015) proposed a MILP model that aims to maximise transportation

revenue. A heuristic rule is implemented to solve the mode and schedule trucks over

a shift. Their model is based on a homogenous truck fleet and does not consider the

grade distribution and striping ratio as well as plant capacity.

Zhang and Xia (2015) proposed an MILP model that determines the trip numbers of

trucks hauling between loading sites and dump sites. The objective of their model is

to achieve the production target with minimum total truck operating costs in a shift

by taking into account of operational and ore grade constraints. A heterogeneous

truck fleet is considered in their model.

The above LP models generally assume that the productivity of a shovel is

proportional to the number of trucks allocated to this shovel. However, as the

haulage allocation level increases, waiting times increase as well due to the nature of

haulage, loading, and dumping operations.

2.2.3.1.2 Non-Linear Programming approach

Soumis et al. (1990) proposed another planning formulation and dispatching method.

Their method uses nonlinear programming to determine the haulage plan and

considers waiting time and loading time estimates in the assignment problem. The

entire dispatching procedure is executed over three stages, namely equipment plan,

operational plan, and dispatching plan. The equipment plan and operational plan

form the stationary haulage allocation plan.

The equipment plan evaluates feasible combinations of shovel locations using a

combinatory procedure (Soumis et al., 1990), with the number of trucks, the shovel

locations and the ore grades at shovel locations as inputs to the plan. For a subset of

the feasible locations, optimisation of production is performed using a mixed integer

programming model subject to ore quality constraints. With the 10 best solutions

displayed on the computer screen, the user chooses one solution as a good initial

solution, and the model determines the shovel locations, and their approximate

production rates.

Chapter Two: Truck-shovel System and Truck-allocation Models

27

The operational plan refines the preliminary plan to provide a more realistic

objective for truck dispatching by shovel production and optimal truck routes, using

shovel locations and number of trucks previously obtained as inputs. The

optimisation procedure is based on nonlinear programming techniques and the

objective function combines three factors: shovel production, truck cycle time and

quality objectives. Shovel production (expressed as truck rates) is maximised by

minimising the sum of the squares of difference between the maximum truck rate

that the shovel can handle and computed truck rate for the shovel. The second factor

minimises the sum of squared differences between computed truck hours and

available truck hours. The computed truck hours include the truck waiting times,

estimated using queuing theory, as a function of truck arrival and service rates. The

third factor deals with quality objectives by introducing penalty functions.

According to Munirathinam and Yingling (1994), the major advantage of NLP

model is that the NLP method searches for the optimum solution over the entire

feasible region instead of looking for the optimum solution on the corner of the

feasible region. However, their model considers only a homogenous truck fleet, and

it is assumed that the grade material in each mining face is fixed.

2.2.3.1.3 Goal Programming approach

Temeng (1997) proposed a non-pre-emptive goal programming model. In order to

reflect the comparative importance of both production and ore quality in meeting

managerial goals, deviational variables for both production and ore quality are used

in the objective function. Production is maximised by the selection of routes with the

shortest cycle times between each shovel and destination. When it is practically

impossible to satisfy all the constraints in the LP model, this GP approach is able to

find a feasible solution which violates the smallest number of constraints or those

that are least important.

The objective function maximises each shovel’s production and maintains ore

quality targets by minimising the deviations from the maximum production and ore

quality maintenance. The model considers ore quality requirement, shovel digging

rate, dumping capacity and stripping ratio requirement, and accounts for a

Chapter Two: Truck-shovel System and Truck-allocation Models

28

heterogeneous truck fleet. The order of relative importance of production

maximisation and ore quality maintenance is presented in the objective function

using values that indicate the difference in the magnitude of priorities ranged from 0

to 10.

2.2.3.1.4 Stochastic programming approach

Ta et al. (2005) proposed a truck allocation model that utilises a chance-constrained

stochastic optimisation method to incorporate uncertain parameters including

truckload and cycle time in a truck-shovel system. They also developed a model

updater to update the model parameters per shift or when status of the operation is

changed. The decision variables of the stochastic linear optimisation include the

number and type of trucks assigned to shovels, and the integer decision variables can

be solved by converting the stochastic linear model into a quadratic deterministic

model to be solved with a mixed integer non-linear solver. To avoid the time

consuming problem caused by NLP approach, Ta et al. (2005) divided the initial

model into two sub-models which were solved to assign a discrete number of trucks

to the shovels.

2.2.3.2 The real-time dispatching problem

According to Afrapoli and Askari-Nasab (2017), the approaches to solving the real-

time dispatching problem can be divided into two major approaches: the assignment

problem approach and transportation problem approach.

2.2.3.2.1 Assignment problem approach

The assignment problem approach is defined as the approach to dispatch trucks as

supply to loading or dumping units as demand. Afrapoli and Askari-Nasab (2017)

suggested that almost all real-time truck dispatching models are based on the

assignment problem with the objective including minimising shovel idle time, truck

waiting time and inter-truck time.

In the real-time haulage assignment model proposed by White and Olson (1986),

trucks are assigned to shovels to minimise the deviation between the current path

flowrate and the optimal path flowrate specified by the LP models. This is achieved

Chapter Two: Truck-shovel System and Truck-allocation Models

29

by creating two assignment lists: the first for the trucks and the second for the paths.

The truck list contains all trucks currently dumping and on route from a shovel to a

dump. The path list includes the allocated haulage, the time of last truck allocation,

and the optimal flowrate as determined by the LP models. The dispatching is

achieved by matching the “best truck” from the truck list with the “neediest path”

from the path list. The methods they used to determine the “neediest path” and the

“best truck” are as follows:

A measure named “need time” is defined to find the “neediest path” which is the

path with the minimum “need time” in the path list. The “need time” is defined as

the expected time for the next truck requirement of each path, and is computed by

considering the time last truck allocated a shovel, the flowrate of each path specified

by their LP models, haulage requirements, etc. Another measure used to determine

the “best truck” in the truck list is named “lost-tonnes” which considers the truck

capacity, shovel digging rate, expected truck waiting time and travel time, and

expected shovel idle time.

The truck with the minimum “lost-tonnes” for the “neediest path” is labelled as the

“best truck”. After assigning the “best truck” to the “neediest path”, the “neediest

path” is moved to the bottom of the path list. The path on the top of the list now

becomes the “neediest path” (the path list is ordered according to the “need time”),

and the next “best truck” is chosen from those that have not been assigned using the

lost-tonnes measure. The process is repeated until all trucks on the truck list have

been assigned to shovels.

Although White and Olson (1993) claim that the assignment part of their dispatching

system is based on dynamic programming, Alarie and Gamache (2002) point out that

the lower stage of their dispatching system is a heuristic method, a procedure which

is based upon practical or logical operating procedures but not mathematically

proven as being the optimal procedure.

Elbrond and Soumis (1987) proposed a dispatching procedure that considers current

truck positions and shovel status to solve the assignment problem. The objective

function of the assignment problem minimises the sum of squared differences

Chapter Two: Truck-shovel System and Truck-allocation Models

30

between the average waiting time of trucks and shovels as calculated from the

haulage allocation plan and the forecasted waiting times based on the current status

of the mine operation. The expected waiting time of trucks and the expected idle

time of shovels are calculated using constantly updated distributions of various cycle

time elements. However, Elbrond and Soumis (1987) did not consider the possibility

of assigning more than one truck to a shovel in one decision making step, and they

also assumed that the truck fleet is homogeneous, which is the same problem

identified in the formulations provided by Li (1990).

Bonates and Lizotte (1988) proposed the dispatching method which takes the results

from their developed simulator and compares these with an optimal production plan

obtained from the LP model, the dispatching criterion with the smallest deviation of

results from the optimum production target is chosen as the optimum dispatching

rule. The dispatching criteria include minimising truck waiting time, minimising

shovel waiting time and a combination of the two by introducing the match factor

which is usually defined as the ratio of truck arrival rate to loader service time (Burt

and Caccetta, 2014). However, their developed simulator and the production plan

generator are not a part of the dispatching method itself. Therefore their approach is

sensitive to the drawbacks affecting the myopic dispatching approaches (Alarie and

Gamache, 2002).

Li (1990) proposed a truck dispatching algorithm based on the difference between

the actual truck interval time and the optimal truck interval time on a path to a

destination. This algorithm uses the least square of truck interval time as the criterion

to optimally match trucks with shovels. The trucks are assigned to the destination

where the deviation between the actual and optimal truck interval times on that path

is maximum. This truck dispatching rule is easy to implement in real-time mining

operations. However, an important disadvantage of this real-time dispatching model

is that the truck waiting times at the destinations, especially at the shovels, are

ignored.

2.2.3.2.2 Transportation problem approach

Temeng (1997) proposed a real-time dispatching model based on the transportation

problem. In order to reflect the comparative importance of both production and ore

Chapter Two: Truck-shovel System and Truck-allocation Models

31

quality in meeting managerial goals, deviational variables for both production and

ore quality are used in the objective function. Production is maximised by the

selection of routes with the shortest cycle times between each shovel and destination.

In their model, needy shovels are defined as those shovels with current cumulative

productions below the target obtained from their goal programming model. On the

other hand, non-needy shovels are those shovels with current cumulative productions

equal to or above the production target. The number of truck required by each needy

shovel is determined by comparing the tonnage for each route to maintain ore quality

and stripping ratios with appropriate truck capacity. The demand for each shovel and

the total demand of the operation are then determined. All trucks currently at a

dump/crusher, and all enroute from shovels to dumps/crushers are considered

eligible for assignment. The criterion for assigning trucks is to minimise the total

waiting time of both shovels and trucks.

The model proposed by Temeng (1997) assumes a heterogeneous truck fleet and

assigns the trucks to the destinations by considering the number of available trucks,

ore quality and striping ratio. In the situation that a shovel is far behind its target

production, the model is able to assign more than a single truck to this shovel. One

major drawback of this model is that the deviation of routes is determined based on

the mean of production rate for all routes. The second major drawback is due to the

fact that transportation costs of any unit of material are considered as independent of

suppliers, this model is not able to account for the truck waiting time at the shovel or

crusher that is depending on the previously allocated trucks, especially in an over-

trucked system.

2.2.3.3 Some other approaches

Subtil et al. (2011) proposed a multistage truck dispatching model that is used in the

commercial package SmartMine
®

 marketed by Devex SA. A LP model is used in the

upper stage to determine the maximum tonnage production considering the

operational constraints. A heuristic dispatching rule combining computational

simulation and multi-criterion techniques is used in the lower stage for truck

Chapter Two: Truck-shovel System and Truck-allocation Models

32

allocation. However, their model does not consider the operational constraints such

as grade blending, desired feed to plants, etc.

Ouelhadj and Petrovic (2009) state that using metaheuristics as an optimisation

method for dynamic scheduling/control is more appropriate than dispatching rules

and simple heuristics. However metaheuristic searching is not widely used in real-

time dispatching as it generally needs extensive computational time. Jaoua et al.

(2012a) developed a metaheuristic model, using the Simulated Annealing (SA)

algorithm to compute the near-optimal assignment in a truck-shovel dispatching

system within the system-response time requirement (<120s). However,

metaheuristic optimisation can only be applied during the time when the truck is

unloading, assumed by Jaoua et al. (2012a) to be at least three minutes.

Bissiri et al. (2014) introduced a new technique, the swarm-based intelligence

approach, to simulate the truck dispatching system based on the behaviour of social

insects such as ant colonies. Their model optimises the truck allocation using local

optimisation approach to consider variations of the operation. In the model, the

trucks and shovels adopt to operational changes to meet the operational targets under

given constraints.

Upadhyay and Askari-Nasab (2017) proposed a Mixed Integer Linear Goal

Programming (MILGP) model as a shovel allocation optimiser tool to work as the

upper stage in a multistage fleet management system. Their model aims to allocate

shovels to mining faces with the objective of maximum production by accounting for

the desired plant’s head grade and tonnage at the crushers and minimum shovel

movements.

2.2.4 Summary

Single stage dispatching systems provide the most direct approach to computer-

based dispatching which is especially prone to random fluctuations in a stochastic

and complex mining operation. The shortest path between shovels and destinations is

determined, and then both the production optimisation and the real-time truck

allocation are solved simultaneously. The limitation of the one-truck-at-a-time

dispatching method and the lack of consideration of operational constraints, such as

Chapter Two: Truck-shovel System and Truck-allocation Models

33

ore quality requirements and blending constraints, are the major weaknesses of

single stage dispatching systems.

Multistage dispatching systems are mainly composed of two components, the first

component attempts to specify the short-term production plan which is usually

generated using a mathematical programming model. The objectives of the short-

term production plan vary from maximising production to minimising both operating

costs and transportation work (i.e., the product of transported weight and hauled

distance). The operational constraints considered usually include ore quality limits,

stripping ratio, digging rate, capacity of dumps and crushers and ore tonnage flow at

dumps, crushers and shovels. On the basis of the first component, the second

component allocates trucks in real time to achieve the prescribed short-term

production plan. The real-time dispatching models include heuristic models,

mathematical programming models and intelligent metaheuristic models.

According to Alarie and Gamache (2002), by solving a mathematical program that

considers multiple operational constraints in order to improve the quality of

assignments, the multistage dispatching systems have a great advantage over the

single stage dispatching systems. However, Munirathinam and Yingling (1994)

pointed out that there is no significant difference in the performance between the

single stage dispatching strategies and the multistage dispatching strategies, although

the multistage dispatching strategies produced better results in a more consistent

fashion.

As identified by Afrapoli and Askari-Nasab (2017), there are still many shortfalls in

the existing algorithms and models. Two major limitations are how to model close to

reality and how to determine dynamic best path. For large open-pit mines, there is a

large fleet of heterogeneous trucks hauling on a vast network of haul roads in the

operation area. A large fleet of trucks usually consists of various truck types with

varied performance and different speed limits and averages, and the interaction of

these trucks often result in truck bunching on some route segments and traffic delay

at intersection areas.

Chapter Two: Truck-shovel System and Truck-allocation Models

34

There are some important haulage operational aspects that are simplified or

inadequately covered by the above dispatching models, including:

1. The influence of the haul route conditions (e.g., grade and rolling resistance,

speed limit) and the truck configurations (e.g., truck model, payload,

performance and retarder charts) on the truck travelling time.

2. The influence of the dynamic interaction between individual trucks travelling on

a shared haul route on mine KPIs, e.g., the bunching effect which is an important

factor that causes the reduction in the maximum productivity (Smith, 1999) but is

not well studied in the literature (Burt and Caccetta, 2007).

3. The influence of the dynamic interaction between multiple truck fleets in a traffic

network system on KPIs, e.g., the passing priority and the traffic management at

an intersection area.

In this thesis, in order to account for the above dynamic operational factors in the

truck-allocation model and to improve the existing truck-allocation models,

simulation methodology was used to develop a new truck-shovel simulation model.

The developed model considers a truck as an individual vehicle entity that

dynamically interacts with other trucks in the system as well as other elements of the

traffic network, considering operational factors such as the bunching of trucks on the

haul routes, practical rules at intersections, multiple decision points along the haul

routes as well as the influence of the truck allocation on the estimated queuing time.

35

CHAPTER THREE

SIMULATION OF TRUCK-SHOVEL SYSTEM

3.1 Introduction of simulation approach

A computer-based simulation is the representation of an industrial operation or a

real-world process or system programmed with the aid of computer software.

Simulation models are generally classified into the following types (Banks et al.,

2010):

1. Static versus dynamic models. A static simulation model represents a system at a

particular point in time, e.g., the economic demand and price model (Gargi and

Reddy, 2014). A dynamic simulation model represents a system that changes

over time. For instance, the simulation of a bank system from 9:00 A.M. to 5:00

P.M. is a dynamic model.

2. Deterministic versus stochastic models. A deterministic simulation model

contains no random variables, e.g., a linear programming model, while a

stochastic simulation model has one or more random variables as inputs and

outputs, e.g., a queuing model.

3. Discrete versus continuous models. A discrete-event simulation (DES) model

represents a system in which the state variable(s) change only at a discrete set of

points in time. For example, a truck-shovel system is a typical discrete system. A

continuous simulation model represents a system in which the state variable(s)

change continuously over time, such as a system associated with flowing fluids.

In this thesis, the truck-shovel system simulation model is considered as a dynamic,

stochastic and discrete model.

According to Pegden (2010), simulation models are built using one or more “world

views” that provide the modeller with a framework for defining the behaviour of the

system of interest. A simulation modelling world view sets the rules for advancing

time and changing the state of the model. Since the 1960s, there have been three very

prevalent simulation modelling world views, these being the event-scheduling, the

process-interaction, and the object-oriented world views.

Chapter Three: Simulation of Truck-shovel System

36

1. Event-scheduling world view

When using the event-scheduling approach, the modeller concentrates on events

and their effect on the system state. The mechanism for the event-scheduling

approach is based on the future event list (FEL) which arranges all events in the

correct chronological order. The duration of a scheduled event is computed or

drawn as a sample from a statistical distribution. As the simulation progresses,

the length and contents of the FEL are constantly updated and the management

of the FEL includes the removal of the imminent event, the addition of a new

event, and occasionally the removal of some other events. When all events and

system state changes have occurred at an instant of simulated time, the

simulation time (CLOCK) is advanced to the time of the next imminent event on

the FEL. The event-scheduling world view was applied by Simscript and GASP

from the 1960s to the 1980s, then displaced by the process-interaction approach.

However, the event-scheduling world view is used as the basic modelling

approach in the internal logic for all discrete-event simulation models.

2. Process-interaction world view

In this world view, the modeller describes the simulation model in terms of

processes. A process is considered as the life cycle of one entity flowing through

the system, and consists of various activities. Some activities require resources

with limited capacities causing processes to interact. One example is a truck

waiting for a shovel which is loading another truck. The simulation models with

the process-interaction world view are typically defined in the form of a

flowchart in which capacities of the resources are seized and released by the

entities. The process-interaction approach allows the modeller to build the

process flow in terms of high-level blocks or network constructs without having

to deal with the development of the interaction among processes. This world

view is widely applied in simulation models using simulation programming

languages, such as GPSS/H and SIMAN. Figure 3-1 illustrates a GPSS/H block

diagram for a single server queue model which is composed of GENERATE,

QUEUE, SEIZE, DEPART, ADVANCE, RELEASE, TEST, BLET, TER and

TERMINATE blocks (Banks et al., 2010). Exponential arrivals are specified by

Chapter Three: Simulation of Truck-shovel System

37

the GENERATE block after which the system response data is collected using

the combination of the QUEUE block and DEPART block with the name of

SYSTIME. The queuing information is collected by the QUEUE block with a

queue named LINE, the SEIZE block and the DEPART block with the name of

LINE. Normally distributed processing times can be allocated to the resource

which is represented by the ADVANCE block. Next, the customer gives up the

use of the facility CHECKOUT with a RELEASE block. Finally the TEST,

BLET, TER and TERMINATE block combination deals with the required output

information.

Figure 3-1 GPSS/H block diagram example (Banks et al., 2010)

3. Object-oriented world view

The notion of object orientation was first introduced by Simula 67 as part of a

simulation modelling paradigm in the 1960s, and this idea completely changed

the design and implementation of simulation software as well as many later

programming languages, including Smalltalk, LISP, C++, Java, and C#. In the

object-oriented world view, the system is modelled by describing the objects that

Chapter Three: Simulation of Truck-shovel System

38

make up the system. For example, the shovels, dumps, trucks, haul routes and

other objects that make up the truck-shovel mining system. The interaction of

these objects represents the system behaviour. Modelling consists of construction

of the object-oriented simulation tool that directly relates to the physical system

instead of representing the logical process. Object-oriented simulation tools, such

as JaamSim, FlexSim, AnyLogic and Simio, must be open and allow users to

create new objects. Some important concepts of the object-oriented modelling

approach include:

 Class: a class can be defined as a template for creating different objects. It

describes the states and behaviours of the objects. For example, in JaamSim,

a loader class can be defined as a template for all the loader objects and

shown in the Model Builder list.

 Object: an object is an instance of the class. Objects have states and

behaviours defined by the class. For instance, in JaamSim, loader objects can

be created by dragging and dropping the “loader class” from the Model

Builder list to the View Window.

 Sub-class: a class that is derived from another class, and thus inherits

attributes and behaviours from the base class or superclass. For example, in

JaamSim, an Entity class is defined as the base class for other classes such as

the loader, the truck and the dump classes.

The following three categories of simulation software packages are available:

1. General-purpose programming languages, such as C, C++, and Java.

When using the general-purpose programming languages in simulation, the

modeller has to explicitly program all details of the event-scheduling algorithm,

the random-number generator, the generation of samples from specified

probability distributions and the report generator. However, the object-oriented

feature in a general-purpose programming language is able to support large and

flexible model construction.

Chapter Three: Simulation of Truck-shovel System

39

2. Simulation programming languages, such as GPSS/H and SIMAN.

The simulation programming language, for instance, GPSS/H, is highly

structured, and purposefully built for simulation, which is based on the process-

interaction approach and oriented toward queuing systems. It usually provides a

block diagram to describe the simulated system and includes built-in routines

supporting functionality such as block operand, debugger and random-variate

generator. However, for the most part, the special purpose languages hide the

details of the event scheduling algorithm.

3. Simulation environments, such as Arena, Automod, FlexSim, Haulsim, JaamSim,

SIMUL8 and Simio.

The simulation environments share some common characteristics including a

graphical user interface (GUI), animation, and output reports to measure system

performance. Some simulation environments support warmup determination,

design of experiments and sensitivity analyses. Model building, model

debugging, animation and interactive running of models are generally integrated

into most of the simulation environments.

In a truck-shovel system, the complex and dynamic interactions between the

variables in the haulage system dictate that analytical methods are not feasible for

model development (Ramani, 1990). The loading time and amounts loaded vary

according to the truck type, shovel type, material characteristics, operator’s

performance, etc. The truck cycle time is influenced by:

 the weight of the truck, the truck performance curves, retarder curves (Erarslan,

2005) and the truck driver’s skill,

 the haul routes design and road conditions such as rolling resistance, haul

grade and road maintenance, and

 the traffic constraints, e.g., the bunching effect, intersection passing priority and

speed control, etc.

Chapter Three: Simulation of Truck-shovel System

40

With discrete-event simulation, it is possible to evaluate the stochastic and dynamic

elements of a truck-shovel mining system and support management when evaluating

and comparing alternatives for decision-making (Ebrahim et al, 2015).

The traffic control simulation models are often classified into three kinds dependent

on the level of modelling detail, these being macroscopic, microscopic and

mesoscopic models (Jaoua et al., 2009).

Macroscopic models describe the traffic over time and space as flows, using a set of

equations based on the mechanics of fluids. The most popular macroscopic traffic

model is the Lighthill-Whitham model (Lighthill and Whitham, 1955) with the

assumption that the traffic flow is the product of the traffic density and the average

velocity. The main advantages of macroscopic traffic models include good

agreement with empirical data, suitability for analytical investigations and less

coding effort (Helbing, 2001). However, these models ignore the complex and

interactive aspects of a dynamic transport network system (Duncan and Littlejohn,

1997).

Microscopic models try to capture the actions and reactions of the traffic particles as

accurately as possible. In contrast to the macroscopic models, the microscopic

models consider the individual vehicles moving within the traffic network and

emulate both the interaction between individual vehicle units and the influence of the

road infrastructure. According to Burghout (2004), the microscopic models can often

be divided into the following models:

 Car-following models which describe the breaking, accelerating and decelerating

patterns due to the interaction of the leading vehicles and the vehicles following

behind as well as road conditions (e.g., speed limits, road curvature, etc.).

 Route-choice models which describe the route taken by drivers when travelling

from an origin to a destination, and the influence of the traffic and route

information along the way.

 Lane-changing models which describe the decisions to change lanes, considering

the driver’s preferences and the traffic situation in relevant lanes.

Chapter Three: Simulation of Truck-shovel System

41

Two major embedded formulations, i.e., cellular automata (CA) (Nagel and

Schreckenberg, 1992) and car-following (CF) (Brackstone and McDonald, 1999), are

widely used in micro-simulator traffic software. The drawbacks to the microscopic

approach include the large data requirements, significant development effort and

model calibration (Jaoua et al., 2009).

The mesoscopic model is the third class of traffic simulation models; the level of

detail found in mesoscopic models is between that of the microscopic and

macroscopic models. The vehicle units are usually described in a high level of detail,

while their behaviour and interactions in a lower level of detail. The speed of

vehicles may be determined by a speed-density function (Leonard et al., 1989), or by

traffic control objects (Ben-Akiva, 1996) instead of using vehicle-following models.

However, the route-choice model can be implemented due to the individual vehicles

in the mesoscopic model. Both macroscopic and mesoscopic models are easier to

calibrate than microscopic models, whereas the interaction between vehicles in the

traffic system is ignored in these models.

Simulator tools have been widely used in mining industry to evaluate and analyse

mining operations (Afrapoli and Askari-Nasab, 2017). Askari-Nasab et al. (2007)

developed an open-pit production simulator to represent dynamic expansion of an

open-pit mine. Fioroni et al. (2008) developed a discrete-event simulator that works

with an optimisation model to implement the short-term production plan. Ebrahim et

al. (2015) used GPSS/H
®

 to develop a discrete-event system simulation for a truck-

shovel system to investigate the environmental impact taking into account mining

haulage performance and production target. Hashemi and Sattarvand (2015)

developed a discrete-event simulation model using Arena simulation software to

evaluate the transportation system of a copper mine. Their model is able to monitor

the material excavated from different operating benches and considers the ore grade

requirement. Upadhyay and Askari-Nasab (2017) developed a simulation

optimization tool that interacts with a GP based optimisation model to generate an

uncertainty based short-term plan. Shishvan and Benndorf (2017) presented the

extension of a developed simulation model from a conceptual stage to a Technology

Readiness Level by implementing the model to two coal mines.

Chapter Three: Simulation of Truck-shovel System

42

However, most previous work on simulation of a truck-shovel system (Lizotte and

Bonates, 1987; Kolonja et al., 1993; Temeng et al., 1997; Baafi and Ataeepour, 1998;

Hashemi and Sattarvand, 2015; Sofranko et al., 2015; Que et al., 2016) applied the

macroscopic approach in the simulation models and failed to capture the interactions

between the individual vehicles, and between the vehicles and traffic infrastructure.

According to Byurckert et al. (2000) and Jaoua et al. (2009), there is a large gap

between macroscopic models and the real world performance of the truck-allocation

algorithms.

3.2 Arena and FlexSim simulation software

These two commercial simulation software packages have been widely used in both

the mining and construction industries. Both Arena (Rockwell Automation, 2018)

and FlexSim (FlexSim Software Products Inc., 2018) have powerful capabilities to

model various material handling systems, supporting discrete-event simulation with

both incorporating statistics analysis via a user-friendly GUI.

The main differences between the functionality found in the two software packages

are listed in Table 3-1 (Banks et al., 2010).

Table 3-1 Functionality comparison between Arena and FlexSim

Functionality Arena FlexSim

Type
Discrete and continuous

systems

Discrete-event, continuous, and

agent-based systems

Field

Manufacturing, material-

handling and flow process

systems

Manufacturing, logistics and

distribution, and transportation

Chapter Three: Simulation of Truck-shovel System

43

Approach

The core of Arena is the

SIMAN simulation language,

and its open architecture,

including embedded Visual

Basic for Application (VBA),

enables data transfer with

other applications as well as

custom interface development.

Simulation models are built

from graphical objects called

modules to define system

logic. Modules are represented

by icons plus associated data,

and these icons are connected

to represent Entity flow.

Modules are organized into

collections called templates.

It integrates MS’s Visual C++

Integrated Development

Environment (IDE) and compiler

within a graphical 3D click-and-

drag simulation environment. It

currently offers both Flexscript

and C++ for modelling complex

algorithms. A simulation model

of any flow system or process

can be created by using drag-

and-drop model-building

objects. It provides the ability to

customize objects for specific

needs. Robust defaults allow a

modeller to have a model up and

running quickly.

Animation

2-D animations are created by

using the built-in drawing

tools and by incorporating clip

art, AutoCAD, Visio, and

other graphics. 3-D animations

can be generated by the Arena

3DPlayer.

Using Open GL technology, 3D

animation is shown as virtual

reality, and all views can be

shown concurrently during run

phase.

Input/Output

The Input Analyser automates

the process of selecting the

proper distribution and its

parameters for representing

existing data, such as process

and inter-arrival times. The

Output Analyser and Process

Analyser automate comparison

of different design

alternatives.

Input parameters can be changed

interactively during a model run

and can come from internal or

external sources. Outputs are

displayed dynamically and in

graphical and tabular format, and

statistical analysis of output data

with confidence intervals are

also supported.

Experiment

tool

The OptQuest optimisation

engine is fully integrated into

it.

A complete environment for the

user to define scenarios,

determine warmup, conduct

experimentation including

design of experiments is

provided.

Other None

FlexSim Distributed Simulation

(DS) allows multi-user model

collaboration to model large and

complex systems using hundreds

of computers linked together.

Chapter Three: Simulation of Truck-shovel System

44

3.3 Modelling a simplified truck-shovel mining system with Arena and

FlexSim

Two different truck-shovel models (named the Arena model and the FlexSim model)

were developed using data from the Eastern Ridge Ore Body (OB) 23/25 operation,

which is located at the Mt Whaleback surface mine (Shaw, 2012). The pit includes

the following active production areas: Pit 3 Western Cutback (P3WC) and Pit 4

(P4lobe2) in conjunction with their respective haulage routes to the P3WD dump,

WD dump and the Run Of Mine (ROM) dump.

There are two shovels working at Pit 4 (P4lobe2) (Shovel 1) and Pit 3 Western

Cutback (P3WC) (Shovel 2), and 13 trucks serving both these shovels. It can be

assumed that the fleet has a homogeneous capacity, and the fixed truck-allocation

rule is applied. The truck fleets are divided into four groups. Two trucks (Truck

Group 1) travel between P4lobe2 and the WD dump, four trucks (Truck Group 2)

between P4lobe2 and the ROM dump, four trucks (Truck Group 3) between P3WC

and the ROM dump, and three trucks (Truck Group 4) between P3WC and P3WD. A

simplified layout of the model is shown in Figure 3-2.

Figure 3-2 The simplified layout of Mt Whaleback mining operation (Shaw, 2012)

The material flow of the model is a typical truck cycle that includes trucks waiting in

queues and trucks being loaded by shovels. Trucks then travel loaded, dump their

loads, and then return empty. The Mean Time Between Failure (MTBF) and Mean

Time To Repair (MTTR) are considered in both models.

It is assumed that the route will not be extended, i.e., the length of the haul route is

static. The amount of the ore or waste is unlimited, so are the capacities of the dumps.

Crew changeover and other operational delays are not considered.

Chapter Three: Simulation of Truck-shovel System

45

The model input data is based on the time and motion study conducted by Shaw

(2012), and has been modified to fit the two models. The triangular distribution

function was used to describe the loading times and dumping times in both the Arena

model and the FlexSim model. Hauling time in the Arena model and speed

parameters in the FlexSim model were estimated from the haul cycle times on

various routes provided by Shaw (2012). The shovel loading time per pass in the

FlexSim model was also estimated based on the loading time.

3.4 Simulation of truck-shovel system with Arena

The framework of Arena mainly consists of blocks called flowchart modules along

with data modules, hence the truck-shovel mining system is converted to the

following operational components: trucks, shovels, routes and queues. The basic

material flow mode is that the flowing Entities are considered as trucks which travel

between the loading sites and dumps without being destroyed or leaving the system.

The major mutually connected modules include: the Truck-allocation module, which

is responsible for assigning trucks under a fixed truck-allocation rule, the Shovel and

Dump modules which model loading and dumping procedures, the Route module,

which guides trucks to loaders and dumps, the Priority module, which manages the

intersection passing priority, and the MTBF/MTTR module, which is responsible for

operational delays that include equipment breakdowns.

3.4.1 Operational components of the truck-shovel system in Arena

The operational components are the simplification of the real truck-shovel system.

The degree of simplification depends on the constraints associated with the

simulation tools. In the Arena model, the truck-shovel operation can be divided into

the following operational components:

 Trucks: travel between shovels and dumps, resulting in various forms of time

consumption including travelling time, waiting time and dumping time.

 Shovels, Dumps and Repair facilities: process trucks and introduce delays.

 Routes: direct trucks to loading sites and dumps.

 Queues: store and release trucks at shovels, dumps and repair facilities.

Chapter Three: Simulation of Truck-shovel System

46

3.4.2 Available modules in Arena

The Arena modules that can be used to simulate the operational components in a

truck-shovel system are as follows:

 Create module: generates Entities which represent trucks in the system. The

Entities can represent the arriving, waiting and departing activities of trucks.

 Process module: simulates the loading, dumping and repair processes. The

Resources generated by the Process module are capable of representing

processing conditions for shovels, dumps and repair facilities, and the Failure

module can be added to the Resources module to model scheduled downtime and

unscheduled breakdowns and repair times.

 Sequence module: specifies the fixed truck-allocation rule for each type of Entity

so that trucks at various loading sites are directed to desired destinations.

 Station, Enter and Release modules: represent the travelling procedure, including

the intersection passing priority, and the hauling time en route.

 Queue module: the queue in front of the Process module.

 Other modules: the Assign module assigns variables and attributes which trace

the states of the Entities. The Decide module sends Entities to different modules

according to certain logic conditions. The Record module records the numbers of

cycles of each Entity, and displays them in reports.

 Animation module: represents the animation of the logic flow.

Arena is well suited to simulate the truck-shovel system in flowchart mode, and

reflects major operations such as waiting, loading, routing, dumping and breakdowns

within the framework of Arena. For example, the delay time for the loading

procedure is specified by the Process module which contains the processes of Seize,

Delay and Release.

3.4.3 Logic flow in Arena

Depending on the way Entities flow in the model, there are basically two modelling

modes, as shown in Figure 3-3:

Chapter Three: Simulation of Truck-shovel System

47

1. Entities flow through the system with these Entities being generated by the

Create module and later destroyed by the Dispose module;

2. Entities never exit from the system but keep circling within it.

Figure 3-3 Two modes of Entities flow in a model

The Entities can be considered as being the ore or waste, and the Transporters the

trucks when applying the Transfer module. The Entities are carried by the

Transporters from a shovel (using a Create and a Delay modules) to a dump (a

Delay module). Next, the Entities are “destroyed” and the empty Transporters are

sent back to the shovel. This method follows the principle of the first modelling

mode in Figure 3-3 with Entities flowing through the system. However, this

modelling method has a limitation in truck-allocation: the Transporter module can

only be managed as an entire group of transporters instead of individual transporters

or divided groups. In addition, the Sequence module, which specifies the fixed truck-

allocation rule, can only specify the Entities rather than the Transporter module. The

assignments are bound with the Entities when the Entities are initiated; once the

Entities are “destroyed” by the Dispose module, i.e., when the trucks finish dumping,

the assignments for the Entities are “destroyed” as well.

When the Entities are considered to be the trucks, their assignments can be specified

for each group of Entities. After a truck fleet Resource is assigned to each group of

Entities, these Entities are sent to the dumps and then return to certain shovels

according to the Sequence data module. Therefore the Entities keep circling within

the system, and the production data is generated by recording the accumulated

circling times of the Entities in the system. Since there are four truck fleets in the

Chapter Three: Simulation of Truck-shovel System

48

truck-shovel mining system, and the fixed truck-allocation strategy is applied for

each fleet, the second modelling mode in Figure 3-3 with Entities circling in the

system is applicable.

3.4.4 Simulation of truck-shovel components in Arena

The Arena model consists of five major components: Truck-allocation modules,

Loading and Dumping modules, Route modules, Priority modules, along with the

MTBF and MTTR modules.

3.4.4.1 Truck-allocation modules

In the Arena model, a Station represents the location of a shovel, dump or

intersection. Referring to the layout shown in Figure 3-2, six Stations are defined,

i.e., Shovel 1 (P4lobe2), Shovel 2 (P3WC), WD, ROM, P3WD and Station C (the

intersection between P3WC and the P3WD dump). The fixed truck assignment for

each group of trucks is specified using the Sequence data module which allows the

user to define an ordered list of Stations to be visited for each group of Entities. Four

Sequences are therefore defined, i.e., Truck Group 1 Sequence, Truck Group 2

Sequence, Truck Group 3 Sequence and Truck Group 4 Sequence. The Station lists

for all the Sequences are as follows:

 Truck Group 1 Sequence: {WD, Shovel 1};

 Truck Group 2 Sequence: {ROM, Shovel 1};

 Truck Group 3 Sequence: {Station C, ROM, Station C, Shovel 2};

 Truck Group 4 Sequence: {Station C, P3WD, Station C, Shovel 2}.

To generate the Sequence template, first select the Sequence data module in the

Advanced Transfer list (Figure 3-4), then enter the Sequence name for each truck

group in the Sequence spreadsheet, for instance the Truck Group 1 Sequence, as

shown in Figure 3-5.

Chapter Three: Simulation of Truck-shovel System

49

Figure 3-4 Selecting Sequence

Figure 3-5 Setting Sequence name

Then click the Steps row and select the corresponding Stations in the Steps

spreadsheet for each Truck Group Sequence, as shown in Figure 3-6.

Figure 3-6 Setting Station name

Chapter Three: Simulation of Truck-shovel System

50

To direct the generated Entities to follow this pattern of Station visitations, the

Sequences are assigned to the four groups of Entities, respectively, as shown in

Figure 3-7, and the “By Sequence” option in the Route module is used to transfer the

Entity to its next destination.

Figure 3-7 Assigning Sequence to four groups of Entities

3.4.4.2 Loading and Dumping modules

The Entities are sent to the loader by using the Process and Assign modules, which

imitate the loading delay and change the state of trucks to either “empty” or “loaded”.

The Dumping modules are similar to the Loading modules. The combination of the

two modules is shown in Figure 3-8.

Figure 3-8 Process and Assign modules for loading and dumping processes

1
Create Truck Group

for Truck Group 1
Assign Sequence

2
Create Truck Group

for Truck Group 2
Assign Sequence

3
Create Truck Group

for Truck Group 3
Assign Sequence

4
Create Truck Group

for Truck Group 4
Assign Sequence

0

0

0

0

Chapter Three: Simulation of Truck-shovel System

51

3.4.4.3 Route modules

The Route modules consist of Station, Enter, Leave and Decide modules, responsible

for directing the trucks from one location to another. In the Arena model, Entities

are transferred from one Station to another by obtaining fleet Resources, and the fleet

Resources must be released before the Entities are processed. The Enter modules are

used for releasing fleet Resources before Entities are processed by the Loading or

Dump modules, and the Leave modules are used for seizing fleet Resources before

sending Entities to the next Station.

When Entities are generated initially and sent to the shovels for the first time, these

Entities have no fleet Resources. A Decide module is used to decide whether the fleet

Resource has been assigned to the Entities (or whether the Entities are initialised). If

the Entities own the fleet resource, then they are sent to the corresponding Enter

module to release the fleet Resource before being processed. Otherwise, the Entities

are sent to the Loading or Dump modules directly. The combination of Enter and

Station modules before the loading process is shown in Figure 3-9.

Figure 3-9 Enter and Station modules before loading process

After processing, the Entities are sent to the corresponding Leave modules to be

assigned fleet Resources. With the allocated fleet Resources, the Entities are

transferred to the next Station, based on the Sequence set in the Truck-allocation

module. These modules are shown in Figure 3-10.

Chapter Three: Simulation of Truck-shovel System

52

Figure 3-10 Leave modules after loading process

There is an intersection on the haul routes, i.e., Station C, which separates the Truck

Groups 3 and 4 travelling from P3WC, and directs them to either the ROM Dump or

Dump P3WD, respectively. The Station C modules, as shown in Figure 3-11, decide

which Truck Group a truck belongs to before releasing the corresponding fleet

Resource, and then depending on whether the truck is empty or not, the truck is sent

to the shovel or dump by following the Sequence module.

Figure 3-11 Station C modules

3.4.4.4 Priority modules

It may happen that loaded trucks take priority over empty trucks when passing

through an intersection area. To simplify this problem, assume the intersection is a

rectangular area with four corner points; the Station modules are used for directing

the trucks through the intersection area shown in Figure 3-12.

Release T3

Station C

Loaded

Station C T3

Route 1 from

Loaded

Station C T4

Route 1 from

Decide Fleet
T ru e

F a l s e

Station C

Release T4

Station C

Decide Loaded T3
T ru e

F a l s e

Empty

Station C T3

Route 1 from

Decide Loaded T4
T ru e

F a l s e

Empty

Station C T4

Route 1 from

0

 0

0

 0

0

 0

Chapter Three: Simulation of Truck-shovel System

53

Figure 3-12 Intersection area

Two traffic management rules are applied within this intersection area:

 General passing rule

Trucks entering the intersection area have to wait outside at corner points if any

truck travelling along the adjacent routes is within this area. As shown in Figure

3-13, as the trucks hauling on Route 2 are passing through the intersection, the

trucks hauling on Route 1 have to queue outside the intersection. However, as the

mine routes in an open-pit accommodate two-way traffic, the trucks travelling

along the same routes, in opposite direction, do not impact on each other.

Figure 3-13 General passing rule

 Priority rule

Giving priority to a loaded truck at an intersection means that an empty truck has

to give way to loaded trucks when it arrives at the intersection. Loaded trucks are

allowed to enter the area whether there are empty trucks waiting or not. However,

for the empty trucks, they are not allowed to enter the area until there are no

loaded trucks waiting at the intersection (Figure 3-14).

C

D

E

F

Route 2

Route 1

Chapter Three: Simulation of Truck-shovel System

54

Figure 3-14 Priority for loaded trucks

The Priority modules consist of the Enter, Leave, Decide, Assign and Hold modules.

The key to solving the problem of priority at an intersection is to dynamically count

the number of trucks passing through the area as well as those in the queue, and the

decision of entering the area depends on this value. The following six variables were

defined to store the number of trucks in the queue and in the intersection:

 Full 1 – the number of loaded trucks on Route 1, including both the loaded

trucks travelling through the intersection and those loaded trucks waiting in the

queue.

 Full 1 After – the number of loaded trucks travelling through the intersection area

on Route 1.

 Full 2 – the number of loaded trucks on Route 2, including both the loaded

trucks travelling through the intersection and those loaded trucks waiting in the

queue.

 Full 2 After - the number of loaded trucks travelling through the intersection area

on Route 2.

 Empty 1 – the number of empty trucks travelling through the intersection area on

Route 1.

 Empty 2 - the number of empty trucks travelling through the intersection area on

Route 2.

When one loaded truck arrives at the intersection, Full 1 or Full 2 (depending on its

route) is increased by 1 using the Assign module. The two conditions for the loaded

truck to enter the intersection (including both the general passing rule and the

priority rule) are:

Chapter Three: Simulation of Truck-shovel System

55

1. For the loaded truck hauling on Route 1, if Full 2 After > 0 or Empty 2 > 0, then

the loaded truck has to wait.

2. For the loaded truck hauling on Route 2, if Full 1 After > 0 or Empty 1 > 0, then

the loaded truck has to wait.

After the loaded truck has entered the intersection area, either Full 1 After or Full 2

After is increased by 1, and after the loaded truck has finally left the area, either Full

1 or Full 2 and either Full 1 After or Full 2 After is decreased by 1, using the Assign

module (Figure 3-15).

Figure 3-15 Hold modules for loaded trucks priority

For the entrance of empty trucks, the variables to be examined are Full 1 and Empty

1, or Full 2 and Empty 2. The two conditions are:

1. For the empty truck hauling on Route 1, if Full 2 > 0 or Empty 2 > 0, then the

empty truck has to wait.

2. For the empty truck hauling on Route 2, if Full 1 > 0 or Empty 1 > 0, then the

empty truck has to wait.

Either Empty 1 or Empty 2 is increased by 1 when the empty truck is ready to enter

the intersection. The modules are shown in Figure 3-16.

Figure 3-16 Hold modules for empty trucks priority

Chapter Three: Simulation of Truck-shovel System

56

The complete Priority modules for the four corner points (Stations) at the

intersection are shown in Figure 3-17.

Figure 3-17 Modules of intersection priority

3.4.4.5 MTBF and MTTR modules

A Failure data module for general MTBF and MTTR function can be directly

applied to the Resource modules including shovels, dumps and repair facilities.

To generate the Failure template, select the Failure data module in the Advanced

Process list (Figure 3-18), and specify the failure information, e.g., named Shovel 1

Failure, in the Failure spreadsheet, as shown in Figure 3-19. The type of the failure

is set to time-based; the UP TIME is set to uniform(600000 s, 720000 s) and the

DOWN TIME uniform (1500 s, 1800 s).

Station C
Station C Loaded

Route 1 from
at Station C

Route 1 Loaded Decide T ru e

F a l s e

Station C Empty

Route 1 from

Add Loaded 1 Up
2 and Full 2 After

Hold Scan Empty

Down
Reduce Empty 1

Station D
at Station D

Route 1 Loaded Decide T ru e

F a l s e

1 Down
Reduced Loaded

Station D Loaded

Route 1 from

and Empty 2

Hold Scan Full 2 Add Empty 1 Up
Station D Empty

Route 1 from

Station E
at Station E

Route 2 Loaded Decide T ru e

F a l s e

Down
Reduce Loaded 2

Station E Loaded

Route 2 from

and Empty 1

Hold Scan Full 1 Add Empty 2 Up
Station E Empty

Route 2 from

Station F
Station F Loaded

Route 2 from
at Station F

Route 2 Loaded Decide T ru e

F a l s e

Station F Empty

Route 2 from

Add Loaded 2 Up
1 and Full 1 After

Hold Scan Empty

Down
Reduce Empty 2

A fter Up
Add Loaded 1

A fter Up
Add Loaded 2

0

 0

0

 0

0

 0

0

 0

Chapter Three: Simulation of Truck-shovel System

57

Figure 3-18 Selecting Failure

Figure 3-19 Failure spreadsheet

Next, select Shovel 1 from the Resource spreadsheet, click the Failure row (Figure

3-20), in the Failures spreadsheet, as shown in Figure 3-21, select Shovel 1 Failure

as the Failure Name input value for Shovel 1, and select Wait as the Failure Rule

input value. The Wait option is considered if the operating time is larger than the

duration of the failure.

Figure 3-20 Resource spreadsheet

Chapter Three: Simulation of Truck-shovel System

58

Figure 3-21 Selecting Failure template

In the Arena model, since trucks are modelled using Entities that keep circling

within the system, and the failure of the Entity cannot be specified using the Failure

data module, a Process module is used to determine the delay of repair time, and a

variable, Last Failure Time, is used to record the last failure time. The interval

between the accumulated travelling time and the last failure time is calculated to

check whether or not the trucks should be repaired, using the Decide, Process and

Assign modules, as shown in Figure 3-22.

Figure 3-22 Repair modules

3.4.5 Animation in Arena

The animation in the Arena model is a reflection of the logic defined by the modules

flowchart which consists of Stations, Routes, Resources, Entities and Queues. To

start the animation, click the Go button in the Standard toolbar; to end the

animation, click the End button . The screenshot of the animation is shown in

Figure 3-23. The Entities (trucks) travel along the haul routes and queue before the

Resource modules (shovels or dumps). When a shovel or dump is busy, it is

represented by a red box, if idle it is then represented by a green box.

Decide Failure for T1
True

False

for T1
Repair Process

T1
Failure T ime for

Assign Last
0

 0
 0

Chapter Three: Simulation of Truck-shovel System

59

Figure 3-23 Animation of the truck-shovel system in Arena

3.4.6 Inputs and outputs in Arena

The main data inputs include the processing times for shovels and dumps, and

hauling times from one Station to another. The running results are generated in the

form of reports and can be viewed from the Reports list.

The statistical data report includes outputs of the Entity, Process, Queue, Resource

and user specified modules in terms of average, minimum and maximum values. The

output performance measures of the report include the Value-added (VA) time per

Entity, waiting time per Entity, total time per Entity, waiting time in each queue,

number of Entities waiting in each queue, utilisation of each Resource, loads of each

Entity as well as the total loads. Most of the outputs, apart from the loads for each

truck, are based on the Resources, namely shovels and dumps, but not on the Entities,

namely trucks. The details of the inputs and outputs are shown in the following

sections.

3.4.6.1 Arena model inputs

The loading time, dumping time and hauling time inputs are shown in Tables 3-2

through 3-4.

Table 3-2 Arena loading time inputs

Shovel Loading time (s)

P3WC Triangular(112, 121, 136)

P4lobe2 Triangular(161, 181, 201)

Table 3-3 Arena dumping time inputs

Dump Dumping time (s)

WD Triangular(26, 42, 62)

P3WD Triangular(26, 42, 62)

ROM Triangular(26, 42,62)

Chapter Three: Simulation of Truck-shovel System

60

Table 3-4 Arena hauling time inputs

Route Hauling time (s) Truck No.

Shovel P4lobe2 - Dump WD Triangular(312, 347, 371) 1,2

Shovel P4lobe2 - Dump ROM Triangular(455.5, 491.5, 514.5) 3,4,5,6

Shovel P3WC - Station C Triangular(37, 41, 43.5)
7,8,9,10

Station C - Dump ROM Triangular(334.5, 370.5, 394)

Shovel P3WC - Station C Triangular(30.5, 34, 36.5)
11,12,13

Station C - Dump P3WD Triangular(276.5, 308, 329.5)

3.4.6.2 Arena model outputs

The Arena simulation model was run for 8 hours representing one shift with 100

replications. Tables 3-5 shows the average number of trucks that enter and leave the

loading and dump sites, i.e., the number of trucks that have been processed by

shovels and/or dumps.

Table 3-5 Number in and out of shovels and dumps

Location Average number in Average number out

Shovel P3WC 208.4 207.1

Shovel P4lobe2 149.8 148.4

Dump P3WD 93.2 93.2

Dump ROM 198.7 198.3

Dump WD 58.5 58.3

Table 3-6 shows the accumulated loading times and dumping times as well as the

accumulated waiting times at loading and dump sites.

Table 3-6 Accumulated process time and wait time (s)

Location Average process time Average wait time

Shovel P3WC 25470 13490

Shovel P4lobe2 26859 13757

Dump P3WD 4039 0

Dump ROM 8587 610

Dump WD 2536 0

Chapter Three: Simulation of Truck-shovel System

61

By dividing the accumulated values (Table 3-6) by the number of processed Entities

(Table 3-5), the average processing time and waiting time per Entity (truck) is

obtained, as shown in Table 3-7. The ratio of the processing time to the waiting time

per truck at Shovel P3WC is about 1.8, and the ratio of the processing time to the

waiting time per truck at Shovel P4lobe2 is about 2.0, reflecting the allocation rule

where more trucks have been assigned to Shovel P3WC. The utilisation of both the

shovels and dumps is provided in Table AI-3 of Appendix I. The number of truck

trips for each truck fleet are provided in Table AI-4 of Appendix I.

Table 3-7 Process time and wait time per Entity (s)

Location

Process time per Entity Wait time per Entity

Average

Min

value

Max

value Average

Min

value

Max

value

Shovel

P3WC
123 112 136 65 0 762

Shovel

P4lobe2
181 161 201 93 0 941

Dump P3WD 43 26 62 0 0 0

Dump ROM 43 26 62 3 0 59

Dump WD 44 26 62 0 0 0

3.5 Simulation of the truck-shovel system with FlexSim

FlexSim is also a discrete-event simulation software package developed by FlexSim

Software Products, Inc. (FlexSim, 2017), which provides an object-oriented

environment for model development. Different types of resources in the simulation

can be modelled using FlexSim objects. By dragging and dropping the FlexSim

objects from the object library, the users can layout, connect and functionalise the

model. All the data and information regarding objects is organised in a hierarchical

tree structure where the users can customise the objects using both the FlexSim

Script (FlexScript) and the C++ high level programming language.

3.5.1 Operational components of the truck-shovel system in FlexSim

The modelling of a truck-shovel operation using FlexSim consists of the following

operational components:

Chapter Three: Simulation of Truck-shovel System

62

 Ore or waste: the material handled in the system.

 Dispatcher: responsible for truck-allocation.

 Trucks: transport materials between shovels and dumps.

 Shovels: load the materials into the trucks.

 Loading and dumping zones: trucks queue outside those areas then follow

specific spotting methods, such as alternating backing and stopping near the face.

 Routes: include the distance, level, grade and speed limits of haul routes, and

represent the layout of the traffic.

3.5.2 Available objects and functionalities in FlexSim

The FlexSim objects and functionalities that can be used to simulate the operational

components in a truck-shovel system are:

 Flowitems: the objects that move through the model, i.e., the ore and/or waste.

The Flowitems are generated by a Source object and disposed of/recycled by a

Sink object.

 Labels: information such as truck cycle time, loading time, dumping time and

other operational data can be stored with the Labels functionality. Labels can be

dynamically altered during the running of the simulation.

 Ports: an object communicates with other objects through the Ports functionality

which include Input, Output and Central Ports. If an Output Port of an object

(object a) is connected with an Input Port of another object (object b), the

Flowitems will be sent to the object b through the Output Port of the object a.

The Central Ports are used to create references between two objects, for example,

a Dispatcher object must be connected to the Central Ports of other Dispatcher

objects to transfer tasks.

 Kinematics: the Kinematics functionality allows the users to have an object

perform travel operations, and each travel operation can have its own

acceleration, deceleration, startspeed, endspeed, and maximum speed properties.

The Kinematics functionality can be used to simulate the loading and dumping

activities by having the shovel and truck components perform the travel

operations in sequence.

Chapter Three: Simulation of Truck-shovel System

63

 Basic Task Executer (TE): Task Executer objects are used to execute Task

Sequences which are defined as a series of tasks to be executed in sequential

order. The Task Executer objects include Operators, Transporters, Cranes,

Automatic Storage/Retrieval Systems (ASRS) vehicles, Robots and Elevators. A

Basic TE object is a Task Executer object that can be customised using either the

FlexSim Script or the C++ high level programming language. The Basic TE

objects can be used not only to develop trucks that transport Flowitems between

shovels and dump sites but also to form components of a shovel to execute the

loading activities.

 Dispatcher: Task Sequences are sent to the Dispatcher from an object and the

Dispatcher transfers the Task Sequences to the Task Executer objects that are

connected to the Dispatcher’s Output Ports or to other Dispatchers through the

Central Ports. A Dispatcher is a super-class of all Task Executers, thus all Task

Executers can also act as Dispatchers.

 Networknodes: the Networknode objects are used to define a network of paths

that the Basic TE objects follow. The trucks can follow the Networknode paths to

perform operations including hauling, queuing and spotting.

 Visual Tool: the Visual Tool object can be used as a container for hierarchically

organising other objects in a model.

 MTBF/MTTR: the MTBF/MTTR objects are used to set random breakdown and

recovery times for groups of objects in the model.

 Sink: the Flowitems that have passed through the model are sent to a Sink object

to be disposed of/recycled.

Since the available objects have the capabilities to perform the movements at a more

integrated logic level, the truck-shovel system can be represented in a more detailed

way. The motions such as digging, rotating, loading, unloading and spotting can all

be captured and represented in 3D animation in FlexSim. Beside the objects

provided by FlexSim, the FlexSim Script allows the users to develop user-defined

objects that meet specific needs.

Chapter Three: Simulation of Truck-shovel System

64

3.5.3 Logic flow in FlexSim

FlexSim is suitable for the modelling method that allows the Flowitems to flow

through the system. The Flowitems are generated at the loading faces and disposed

of at the dump sites. The main process is to transport the Flowitems (ore and/or

waste) with trucks from the loading sites to the dump sites, then send the empty

trucks back to the loading sites to repeat the cycle, as shown in Figure 3-24. Within

the cycle, the operational processes such as queuing, spotting and dumping can also

be simulated.

Figure 3-24 Logic flow of the FlexSim model

3.5.4 Simulation of truck-shovel components in FlexSim

Based on the functionality, the truck-shovel simulation model in FlexSim includes

the following components: Truck Dispatcher, Truck, Loading Zone, Dump Zone and

States Recording objects.

Figure 3-25 shows the Task Sequences assignment for the truck operational

procedures.

Dispatcher

Load Zone Dump Zone

Truck

dispatch
trucks

Travel between Load
Zone and Dump Zone

Figure 3-25 Truck task allocation mode

Chapter Three: Simulation of Truck-shovel System

65

These procedures can be described as follows:

 Travelling empty procedure

The Truck Dispatcher object transfers the hauling task to an empty Truck object

to direct it to a Loading Zone via the Networknodes.

 Loading procedure

When the Truck arrives at the Loading Zone, the Loading Zone receives the

loading task from the Truck Dispatcher to generate Flowitems and to initiate the

Loader object to operate when the Truck enters the loading area by following the

spotting routes.

 Travelling loaded procedure

After loading, The Truck Dispatcher transfers the hauling task to the loaded

Truck object to direct it to a Dump Zone via the Networknodes.

 Dumping procedure

When the Truck arrives at the Dump Zone, the Truck Dispatcher transfers the

dumping task to the Dump Zone to control the dumping procedure that includes

spotting, dumping and leaving the dump area.

3.5.4.1 Truck Dispatcher

The Truck Dispatcher object manages the Task Sequences of allocating Trucks to

Loading Zones, initiating the Loading Zones to execute the loading task, allocating

the Trucks to Dump Zones, initiating the Dump Zones to execute the dumping task,

and then re-allocating the Trucks to Loading Zones (see Figure 3-26).

Chapter Three: Simulation of Truck-shovel System

66

Assigning trucks to specific loaders

Passing tasks to Loading objects for
loading procedure

Assigning trucks to specific dumps

Passing tasks to Dumping objects
for dumping procedure

Figure 3-26 Logic flow of Truck Dispatcher

To execute the inner logic of the truck-allocation task, the Truck Dispatcher must be

linked with the Truck, Loading Zone and Dump Zone objects through Ports to allow

reference data transfers between the Truck Dispatcher and the other objects. The

Trucks are all connected to the Truck Dispatcher via Output Ports, and both the

Loading Zones and Dump Zones are linked via Central Ports. These objects can be

referenced by the indices of the Ports.

All the task implementation procedures within the Truck Dispatcher were coded

using the Task Commands in FlexSim Scripts, as shown in Appendix A.

3.5.4.2 Loading Zone

The loading procedure is a coordinated operation that involves waiting, spotting,

loading and exiting. It is executed by a group of hierarchical objects, including the

Visual Tools, Dispatchers and Basic TEs. The tree structure of a Loading Zone

object is shown in Figure 3-27 and the 3D view of a working face is shown in Figure

3-28.

Chapter Three: Simulation of Truck-shovel System

67

Working face
P4lobe2

load zone
P4lobe2

Front Shovel
P4lobe2

load spot 1

load spot 2

Body

Center

Boom

Stick

Dozer

Clam

Figure 3-27 Tree structure of Working face P4lobe2

Figure 3-28 3D view of Working face P4lobe2

The Working face P4lobe2 is a Visual Tool object which contains other objects in a

group to perform the coordinated operations and also links the Loading Zone with

the Truck Dispatcher. The Working face P4lobe2 is the “parent-node” of the

following objects:

 the load zone P4lobe2, which is a Dispatcher object;

 the Front Shovel P4lobe2, which is a Basic TE object and contains six sub-Basic

TE objects including Body, Center, Boom, Stick, Dozer, and Clam objects

(Figure 3-27);

Chapter Three: Simulation of Truck-shovel System

68

 the load spot1 and load spot2, which are Basic TE objects. The Front Shovel

P4lobe2 object executes the double sided loading operation at the two load spots.

The main tasks of the above objects are discussed as follows:

The load zone P4lobe2 receives the Task Sequences from the Truck Dispatcher and

sends the loading tasks to other objects in the group, i.e., the Front Shovel P4lobe2,

the load spot1 and the load spot2, and the Truck objects. The load zone P4lobe2 is

the “control centre” which manages the loading tasks such that the other objects in

the group execute the respective sub-tasks to accomplish the loading procedure. The

loading tasks include the following sub-tasks:

(1) creating Flowitems;

(2) having the loader (the Front Shovel P4lobe2 object) pick up the first load;

(3) having the Truck travel to either the load spot1 or load spot2;

(4) having the loader load the Truck; and

(5) having the Truck exit from the Load Zone.

The logic flow of the loading tasks is shown in Figure 3-29. The codes that

implement these processes are provided in Appendix B.

Create Flowitems

 Shovel picks up the first
load

Truck travels to the load
spot

Shovel loads required passes

Truck exits from load zone

Figure 3-29 Logic flow of load zone P4lobe2

Chapter Three: Simulation of Truck-shovel System

69

The Front Shovel P4lobe2 object is responsible for the loading activities. The

loading activities include the digging, swinging and dumping motions; these motions

can be simulated by performing the travel operations of the Body, Center, Boom,

Stick, Dozer and Clam objects using the Kinematics functionality. Once the Front

Shovel P4lobe2 object receives the loading tasks from the load zone P4lobe2 object,

the loading operations are executed. The complete codes that specify the loading

motion are provided in Appendix C.

The load spot 1 and load spot 2 objects direct the Trucks to the loading spots by

following the spotting routes, as shown in Figure 3-30.

Figure 3-30 Spotting routes at loading face

The two loading spots at the loading face, i.e., load spot 1 and load spot 2, are

occupied by Truck 1 and Truck 11, respectively. Truck 9, 12 and 10 are queuing at

the node NN42. The route for spotting at load spot 1 is from NN42 to NN43, then to

load spot 1, and the route for spotting at load spot 2 is from NN42 to NN45, then to

NN46, then to load spot 2. When the loading is finished, the loaded truck at load spot

1 exits from the loading area by travelling from load spot 1 to NN43, then onto NN48

while the truck at load spot 2 goes straight from load spot 2 to NN48, NN49 to

unload. When Truck 1 finishes loading, the Loader begins to load Truck 11 at load

spot 2. After Truck 1 leaves the loading area, Truck 9 is allocated to the load spot 1

for loading, and when Truck 11 finishes loading and leaves the loading area, the load

spot 2 is occupied by Truck 12. The loading spots being occupied by the queuing

Chapter Three: Simulation of Truck-shovel System

70

Trucks in an alternate way is executed using the command line “insertproxytask

(TASKTYPE_CALL SUBTASKS, current object …)”. This command initiates the

linked objects, i.e., the load spot 1 and load spot 2 objects, dynamically depending

on which one is available. Once a particular load spot object is initiated, the Truck

can be directed to that load spot.

3.5.4.3 Dump Zone

The dumping procedure includes the waiting, dumping and exiting operations. This

is similar to the loading procedure except that the dumping operation is

accomplished by the Truck. The Dumping Site ROM object contains three Basic TE

objects including the Dump Zone ROM, dump spot 1 and dump spot 2 objects, as

shown in Figure 3-31.

Dumping Site
ROM

Dump Zone
ROM

dump spot 1

dump spot 2

Figure 3-31 Tree structure of Dumping Site ROM

The Dumping Site ROM object is a Visual Tool object used to locate the dump and

organise the group of the Dump Zone ROM, dump spot 1 and dump spot 2 objects.

The Dump Zone ROM object, as a “child-node” in the tree, acts as the “control centre”

which allocates the dumping tasks including:

(1) having the dump spot 1 and dump spot 2 objects to direct Trucks to enter and exit

from the dump area, and

(2) having Trucks perform the dumping operation.

Chapter Three: Simulation of Truck-shovel System

71

The dump spot 1 and dump spot 2 objects receive the entrance tasks and direct the

Trucks to the dumping spots, and then the Trucks objects receive the dumping tasks

and execute the dumping operation; after that, the dump spot 1 and dump spot 2

objects direct the Trucks to exit from the dump area. By specifying the travel

operations of the Truck components, the dumping activities including lifting and

lowering the truck bed can be simulated with the Kinematics functionality. The

unloaded Flowitems (ore/waste) end up in the Sink object. The FlexSim Scripts for

the dumping procedure are provided in Appendix D.

3.5.4.4 States Recording

FlexSim is able to model systems which change their state at the time discrete events

occur. Common states in FlexSim can be classified as idle, busy, blocked, or down.

In the truck-shovel system, the state parameters for Trucks are:

 MINING_STATE_TRAVEL_TO_LOADZONE

 MINING_STATE_TRAVEL_TO_DUMPZONE

 MINING_STATE_QUEUE_AT_LOADZONE

 MINING_STATE_QUEUE_AT_DUMPZONE

 MINING_STATE_SPOT_AT_LOADZONE

 MINING_STATE_SPOT_AT_DUMPZONE

 MINING_STATE_WAIT_FOR_LOAD

 MINING_STATE_LOADING

 MINING_STATE_DUMPING

 MINING_STATE_EXIT_LOADZONE

 MINING_STATE_EXIT_DUMPZONE

 BREAKDOWNS

The state parameters for Loaders are:

 MINING_LOADER_IDLE

 MINING_LOADER_LOADING

 BREAKDOWNS

Chapter Three: Simulation of Truck-shovel System

72

The states of the Trucks and Loaders are assigned to the Label items while the

simulation is running. Each state has two variables which are associated with the

simulation time clock, one for the beginning time of a particular state and the other

for the end time of that state. The difference between the two time variables is the

duration of this state, and is added to the corresponding state Label. For example,

when a Truck arrives at a Loading Zone and begins to queue, the simulation time is

captured by one variable within the Truck state, i.e., MINING_STATE_QUEUE_AT

_LOADZONE, and when the Truck finishes queuing, the simulation time is captured

by the other variable with the difference between the two variables calculated and

then added to the Label called MINING_STATE_QUEUE_AT_ LOADZONE in this

Truck object. The states generated by BREAKDOWNS via the MTBF/MTTR object

are also recorded in Labels.

3.5.5 Animation in FlexSim

Figure 3-32 shows an example of the 3D animation of the loading operation in

FlexSim.

Figure 3-32 3D view of loading

The 3D files of the Truck and Loader objects were from the FlexSim Community

Forum (Peterson, 2008). The 3D animation and the logic behind the animation are

integrated in FlexSim. For the loading procedure, the motions of Loaders, including

Chapter Three: Simulation of Truck-shovel System

73

digging, lifting, rotating, lowering and dumping, are demonstrated; the motions for

the truck dumping procedure are also demonstrated in this case.

3.5.6 Inputs and outputs in FlexSim

The main input parameters contain the dig time of each loader (for one truck load),

loading frequency, dump delay, speed of empty truck and loaded truck, speed at load

zone and dump zone. The simulation results are recorded in the state Labels in each

object. The information for each truck includes the travel time to load zone, waiting

time at load zone, spot time at load zone, loading time, exit time at load zone, travel

time to dump zone, waiting time at dump zone, spot time at dump zone, dumping

time and exit time at dump zone. The information for loaders includes the idle time

and loading time. The details of inputs and outputs are shown in the following

sections.

3.5.6.1 FlexSim model inputs

To have similar input specifications as the Arena model, the loading frequency is set

to 3, and the value of the digging time is one third of the loading time in the Arena

model, as shown in Table 3-8.

Table 3-8 Shovel digging inputs

Parameters Value

Digging time of Shovel P3WC (s) Triangular(37.3, 40.3, 43.5)

Digging time of Shovel P4lobe2 (s) Triangular(53.7, 60.3, 67)

Passes per Truck 3

Input parameters for truck hauling speed are estimated by dividing route distances by

respective travelling times in the Arena model. Since there are four routes, including

P4lobe2 - WD, P4lobe2 - ROM, P3WC - ROM, P3WC - P3WD, the speed

parameters are separated into four groups, as shown in Table 3-9.

Chapter Three: Simulation of Truck-shovel System

74

Table 3-9 Truck speed inputs

Route Truck State Speed (m/s)

Shovel P4lobe2 - Dump

WD

Empty 1.56

Loaded 1.41

Shovel P4lobe2 - Dump

ROM

Empty 4.01

Loaded 3.72

Shovel P3WC - Dump

ROM

Empty 5.1

Loaded 4.6

Shovel P3WC - Dump

P3WD

Empty 3.98

Loaded 3.57

Other assumed input data are as follows:

Speed at load zone/dump zone = 1 m/s;

Dumping time = Triangular (26, 42, 62) s;

3.5.6.2 FlexSim model outputs

The FlexSim simulation model was run for 8 hours representing one shift and each

run was implemented with 30 replications. Table 3-10 shows the results of the

accumulated travelling time, waiting time, loading time and dumping time of all the

trucks. Table 3-11 shows the accumulated loading time and idle time of shovels. The

times of each operation for all the trucks per shift are provided in Table AI-5 of

Appendix I. The total trips of each truck are provided in Table AI-6 of Appendix I.

Table 3-10 Accumulated truck operational time (s)

Route
Truck

No.

Travel

time

Waiting

time

Loading

time

Dumping

time

P4lobe2 –

WD

1 18519 55 5182 5005

8 18589 353 4984 4751

P4lobe2 –

ROM

9 19188 1633 4095 3590

10 18801 2236 4042 3525

11 19282 1390 4255 3606

12 18907 1981 4027 3613

Chapter Three: Simulation of Truck-shovel System

75

P3WC –

ROM

2 17949 1118 4709 4664

3 17890 1487 4533 4684

4 18149 1252 4653 4686

13 18241 915 4731 4733

P3WC –

P3WD

5 17602 333 5793 4864

6 17520 655 5583 4897

7 17345 934 5476 4849

Table 3-11 Accumulated shovel operational time (s)

Shovel No.
Idle

time

Loading

time

Parking

time

Shovel P4lobe2 7705 20285 742

Shovel P3WC 5894 22226 591

3.6 Comparison between the Arena and FlexSim modelling methods

The differences as well as the advantages and disadvantages of the two modelling

methods are discussed below:

1. Material flowing mode

In the Arena model, trucks circling around the system are represented by the

Entities, and there is no ore or waste in the system, the production of the

materials is determined by the trips of the Entities, which means the amount of

each load is fixed in the model. In the FlexSim model, the modelling level is

more detailed. The ore (waste) is represented by the Flowitems which are loaded

by the loaders and transported by the trucks. This modelling approach reflects the

actual material handling process. Not only can the amount of each load be

simulated in a random manner but also the dumping time can be reflected in a

more accurate way depending on the size of the load in the truck beds.

2. 3D environment

In the Arena model, the logic model is limited to a 2D environment. Even though

a 3D view is available in more recent versions, while based on the logic of the

Chapter Three: Simulation of Truck-shovel System

76

2D model, this 3D view is actually a 2D model with a 3D appearance. The 2D

model also limits modelling the motions of the shovels and trucks in Arena. In

the FlexSim model, both the animation and the modelling are integrated in the

3D environment. Thus it is a true 3D model. The spatial coordinates are easy to

build in FlexSim and the motions of the loaders and trucks can be simulated.

3. Model unit

In the Arena model, modules are the basic logic units, existing at the most

fundamental logic level. These modules are able to perform the elementary

simulation processes such as delaying, deciding, recording and creating, rather

than the integrated material handling processes. On the other hand, the modelling

units in the FlexSim model, i.e., objects, are more like functional units integrated

with the basic logic to perform the common material handling operations, for

instance, loading, unloading and transporting.

4. Model connection and communication

In the Arena model, the connections between modules are maintained by

connection lines which are the flow paths of Entities in the logic, but there is no

data connection between the modules. Though the variables or sets can be used

in some modules, the references to the modules are not available. In the FlexSim

model, the connections between the objects are similar to that in Arena. However,

the Ports allow the object to refer to other objects so that the data can be shared

by other objects that are connected by the Ports. The Dispatcher and Basic

Transport Entity are capable of assigning tasks to make coordinated task

sequences that allow complex behaviours, such as the loading, unloading motion

and spotting process, to be simulated in FlexSim.

5. Information storage

In the Arena model, the information can be stored in many forms, such as

variables, sets, entity attributes and so on, but not all the data storages can be

referenced. In the FlexSim model, the information is mainly stored in a Label

which is actually a tree structure of an object. The information stored in the

Chapter Three: Simulation of Truck-shovel System

77

Labels in different levels is easily referenced. Therefore in FlexSim it is much

easier to record the states of each object when compared to Arena.

6. Truck-allocation method

In the Arena model, the truck-allocation sequences are set in the Sequence

module prior to model execution, thus only the fixed truck-allocation rule can be

directly applied in the Arena model. When the Entities are transported, they

follow certain routes set in the Sequence data module. In the FlexSim model, the

truck-allocation strategies are set in the Dispatcher object by Task Sequence

commands. It is possible to modify the truck-allocation strategies in the Task

Sequence according to the tasks allocated by other objects.

7. MTBF/MTTR

In the Arena model, the MTBF/MTTR can be applied to the Resources by using

the Failure modules, but the MTBF/MTTR is not available for the Entities in the

model, meaning that configuration of truck breakdowns has to be indirect. In the

FlexSim model, there is a MTBF and MTTR object that can be directly applied to

all the objects in the model.

8. Model inputs and outputs

In the Arena model, the shovel loading time and truck dumping time are set,

respectively, in the Shovel and Dump modules as stochastic distributions. The

truck travelling times are set as stochastic distributions of truck hauling times on

various haul routes. Thus the trucks hauling on the same route share the same

travelling time parameters. However, in the FlexSim model, the loading

frequency for each truck is specified and the loading time input is for one load.

The truck hauling speeds are set for truck hauling inputs, including speeds for

empty and loaded trucks to travel along haul routes and within load zones and

dump zones.

Although the Arena model provides reports with statistical analysis relating to

the performance of the truck-shovel system, those results are limited in the

Resources like queues, shovels and dumps, and the detail of the performance of

Chapter Three: Simulation of Truck-shovel System

78

trucks is not accessible. It is difficult to estimate the impact of detailed

operational procedures on productivity. However, the results generated by the

FlexSim model are based on the states of each object; the data about the detailed

operational procedures is recorded and accessible so that it is possible to analyse

the influence of operational variables on the system performance.

3.7 Summary

When comparing the two modelling approaches, i.e., the process-interaction and the

object-oriented approaches, it is clear that Arena and FlexSim both provide some

advantages, such as integrated model units, MTBF/MTTR, experiment designs, and

friendly GUIs. While this functionality is convenient for modelling general and

standardised material handling processes within the framework of the simulation

software. A truck-shovel mining system involves more highly interactive and

stochastic operational variables due to its specific operational constraints. This is an

environment quite different from general manufacturing or warehousing systems.

The object-oriented modelling approach is considered more suitable for the

development of a truck-shovel mining system. However, there are some significant

disadvantages in using either of the two simulation software for modelling a truck-

shovel mining system:

Both Arena and FlexSim are not designed exclusively for the truck-shovel mining

operation, thus the modelling of operational components in the truck-shovel mining

system, for instance, shovel, dump and truck, are significantly limited in the

functional framework of the model units provided by Arena and FlexSim. First of all,

the model input/output fundamentally restrains the modelling pattern. In both Arena

and FlexSim, the input for truck configuration determines the truck hauling speed,

and the truck speed or hauling time is set directly by users. However, the actual truck

performance is dynamically influenced by both the truck configuration and haul

route conditions. The truck speed or hauling time is determined by the inputs of

truck configurations, such as, truck capacity, truck performance and retarder curves,

loading amount, and route parameters, such as, grade, rolling resistance, and the

dynamic traffic conditions that include traffic intersection management and route

section speed control. Therefore, a more detailed model that considers the actual

Chapter Three: Simulation of Truck-shovel System

79

operational constraints in the truck-shovel mining system is difficult, if not

impossible, to build using only the given model units. Furthermore, there are

significant limitations for data communication among model units in both Arena and

FlexSim. The data communication depends on the connection between the model

units, for example, in FlexSim, the information can only be shared between the two

objects if they are connected via Ports. However, access to information for all the

operating units and the entire traffic environment is necessary for a highly interactive

and dynamic truck-shovel mining system, especially when used for the purpose of

truck-allocation.

80

CHAPTER FOUR

DEVELOPMENT OF JAAMSIM SIMULATION

MODEL

4.1 Why JaamSim?

Most commercial simulation software packages, such as Arena and FlexSim, are not

designed exclusively for truck-shovel earth-moving or mining system. It is difficult

for such commercial simulation software to capture the specific and dynamic

operational features and constraints of a truck-shovel mining system, especially

when the modelling needs to be detailed enough to represent microscopic traffic

movements. Some commercial simulation software packages that are designed

exclusively for a truck-shovel mining system are still not sophisticated enough for

the modelling of the dynamic and interactive aspects of a truck-shovel haulage

network system. For instance, TALPAC (RPMGlobal Holdings Ltd., 2018a) can only

model one single loading unit at any one time; Caterpillar’s Fleet Production and

Cost Analysis (FPC) simulator supports only mean value inputs for the loading and

dumping times. RPMGlobal’s HAULSIM (RPMGlobal Holdings Ltd., 2018b)

integrates both the TALPAC equipment database and the discrete-event simulation

engine from FlexSim. HAULSIM includes multi-loader and truck analysis, full

network travel time determination, modelling of congestion and queuing, display of

dashboard results and 3D visualisation. However, HAULSIM is a closed source

commercial simulation software which does not allow users to create their own

modelling objects.

According to King and Harrison (2013), there are two types of modelling objects in

simulation software designated as either low-level objects or high-level objects.

Low-level objects have a broad application, such as for queues and servers. On the

other hand, high-level objects have a more specific application, for example the

Processor, Combiner, Separator, Transporter, Elevator and Crane objects in FlexSim.

In practice, complex models can be built more easily using high-level objects.

Chapter Four: Development of JaamSim Simulation Model

81

JaamSim (Java Animation Modelling and Simulation), as a free open source

discrete-event simulation software developed by Ausenco (JaamSim, 2018), allows

users to create their own palettes of high-level objects for new applications. This is

the key feature that distinguishes JaamSim from commercial off-the-shelf simulation

software packages. Although some commercial simulation software packages

provide a programming interface for creating new objects, the embedded

programming environment is not able to provide the necessary programming and

debugging tools for object-oriented programming languages, especially when

thousands of lines of computer programming code are required to capture the details

of a complex system. However, JaamSim provides the capability of developing new

objects in the standard Java programming language with Eclipse, which is currently

the most widely used Java integrated development environment (IDE) with features

that include easy navigation, error debugging, auto completion and refactoring. New

objects can be programmed with 3D graphics and the Input Editor and Output

Viewer, and can be dragged-and-dropped for direct usage.

JaamSim offers a highly effective simulation engine and allows users to establish

their own high-level modelling objects for complex operating systems. Therefore,

with the aid of JaamSim, the special functionality of the model objects that are based

on the actual truck-shovel operational elements and conditions can be developed, and

a flexible and customised truck-shovel mining system model can be built using these

objects. The loader, truck, dump, and the traffic environment, such as haul routes,

traffic intersections, can all be developed as model objects involving all the

necessary operational constraints. The interactions between the objects, for example,

the interaction between the individual trucks and the interaction between the hauling

trucks and the traffic environment, can be specified in detail.

4.2 Features of JaamSim

A basic knowledge of the JaamSim architecture and the development environment is

required to build a truck-shovel mining system using the JaamSim software. This

section introduces the basic features of JaamSim mainly from the aspect of the GUI,

3D graphics and discrete-event simulation.

Chapter Four: Development of JaamSim Simulation Model

82

4.2.1 GUI

Figure 4-1shows the six windows that make up JaamSim’s GUI:

Control Panel ‒ controls the execution of models and provides access to other GUI

components.

View Window ‒ shows 3D views of the model.

Model Builder ‒ holds a library of model components.

Object Selector ‒ provides access to each object in the model.

Input Editor ‒ allows for the editable inputs of the selected object.

Output Viewer ‒ displays the outputs to the selected object.

Figure 4-1 JaamSim GUI

Chapter Four: Development of JaamSim Simulation Model

83

4.2.1.1 Control Panel

The Control Panel (Figure 4-2) controls the progress of a simulation run and

displays output to the monitor. The panel can be divided into the menu bar, tool bar,

and status bar. The menu bar includes file management, tools display, views control,

options and help. The tool bar contains controls for manipulating the simulation run,

i.e., starting, pausing, resetting a simulation model and controlling the execution

speed and the 3D view for the View Window. The status bar displays the progress

and status of a simulation run.

Figure 4-2 JaamSim Control Panel

4.2.1.2 View Window

The View Window displays a graphical representation of a simulation. Multiple View

Windows can be used to depict different aspects of a model. Some graphical objects

shown in the default View Window, e.g., XY-Grid, XYZ-Axis, Logo, Title, and Clock,

can be modified through the Input Editor.

4.2.1.3 Model Builder

The Model Builder provides a list of objects that can be dragged and dropped to

develop a new model or modify an existing one. Once an object has been created, its

parameters are entered using the Input Editor. Six different types of model objects

are provided by JaamSim, as shown in Figure 4-3:

Graphics Objects ‒ creates 3D objects, pictures, text, graphs, arrows, and other

visual components needed to visualise and monitor a simulation.

Probability Distributions ‒ provides a selection of theoretical statistical distributions

including uniform, triangular, normal, exponential, erlang, gamma, beta, weibull,

lognormal and log-logistics distributions as well as user-defined distributions.

Chapter Four: Development of JaamSim Simulation Model

84

Basic Objects and Process Flow ‒ contains a number of simple objects that can be

used to create process flow simulation, similar to the objects provided by

commercial simulation software packages such as Arena and Simio. These objects

include SimEntity, ReporterGenerator, EntityLogger, EntityGenerator, Server,

EntitySink, EntityConveyor, EntityDelay, Assign, Queue, Seize, Release, Resource,

Branch, Pack and Unpack.

Calculation Objects ‒ contains mathematical calculation formulas to calculate values

from simulation results.

Fluid Objects ‒ provide objects for fluid simulation.

Figure 4-3 JaamSim Model Builder

4.2.1.4 Object Selector

The Object Selector, as shown in Figure 4-4, contains all the objects that have been

created for the current model and are organised in a tree format. The objects created

in the model can be selected either by clicking its node in the Object Selector or by

clicking the object in a View Window. Operations such as renaming and deleting

objects can be executed from the Object Selector.

Chapter Four: Development of JaamSim Simulation Model

85

Figure 4-4 JaamSim Object Selector

4.2.1.5 Input Editor

Figure 4-5 shows the Input Editor which allows the user to modify and assign

parameters for objects in the model. When an object is selected, its parameters are

shown in the Input Editor window, grouped under a number of tabs. The input table

contains Keyword, Default and Value columns. The Keyword includes the names of

parameters, for example, Position, Alignment, Size, etc. The default values for each

parameter are pre-set in the Default column. Assigned value can be modified by

clicking on the Value column and entering a new value.

Figure 4-5 JaamSim Input Editor

Chapter Four: Development of JaamSim Simulation Model

86

4.2.1.6 Output Viewer

The Output Viewer shows the updated outputs for the selected object continuously as

the simulation progresses. The Output Viewer contains Output and Value columns.

Users can define their own Attributes in the Output Viewer. The Output Viewer, as

shown in Figure 4-6, is the basis for all model graphics and reports.

Figure 4-6 JaamSim Output Viewer

4.2.2 3D graphics

JaamSim offers 3D graphics through a built-in rendering system that uses the JOGL2

implementation of OpenGL graphics for Java (King and Harrison, 2013). Each

object is displayed in 3D graphics in real time and is fully interactive. Complex

graphical models created using Autodesk 3ds Max, Maya or AutoCad can be

converted to Collada files (.dae) and imported into Jaamsim. The JaamSim rendering

system was designed to operate independently from the simulation logic with the

aim of improving execution speed. The 3D rendering sub-programme runs on a

separate thread and interacts with the simulation only at the start of each rendering

cycle gathering the relevant simulation information.

Chapter Four: Development of JaamSim Simulation Model

87

4.2.3 Discrete-event simulation approach

JaamSim contains a number of objects and functions

 to implement simulated time

and to coordinate multiple simultaneous processes with convenient tools that are

fully-integrated with the underlying Java programming language. Using common

basic discrete-event simulation logic, JaamSim maintains two master lists:

 Future Events. A list of future events sorted in order of increasing event time and

priority.

 Conditional Events. A list of conditional events sorted in order; the first

conditional event on top of the list is tested first.

The execution follows the steps below:

1. Start the simulation run.

2. Pull the events whose event time is equal to the current time from the Future

Event List and execute them one by one.

3. Test each conditional event on the Conditional Event List one by one. If the

condition is satisfied, the event is pulled from the list and is executed.

4. Advance the current time for the next event on the Future Event List. If this time

does not correspond with the end of run time, return to step 2; otherwise continue

to step 5.

5. End of the simulation run.

Table 4-1 lists the Entity functions that start and maintain new processes (functions

or methods).

 In the Java programming language, a method is the same as a function in other high level programming languages.

Chapter Four: Development of JaamSim Simulation Model

88

Table 4-1 Creating a process (a function or method)

Function/Method Description

startProcess (function, arg1,

arg2, …)

A new process created allows the function

to be executed in parallel to the original

function, rather than in series.

scheduleProcess (dur, function,

arg1, arg2, …)

The given function is called after the

specified delay.

getSimTime () Returns the current simulation time.

simWait (dur, pri)
Stops the execution of the current function

for the given duration of simulation.

While (condition) {

 waitUntil ();

}

waitUntilEnded ()

Stops execution of the current function until

the given condition is FALSE.

simWaitLas ()
Stops execution of the current function until

all other events have been executed.

getProcess ()
Returns the active process executing the

function.

interruptProcess (process)
Interrupts the given process and causes its

next event to be executed immediately.

killProcess (process) Terminates the given process.

JaamSim provides the following basic simulation object classes to implement the

discrete-event simulation logic:

 EventManager: maintains simulated time and the list of future and conditional

events.

 Entity: the basic object for the simulation.

 Process: a sub-class of a thread that allows for the simultaneous executions of

functions of the Entities.

Chapter Four: Development of JaamSim Simulation Model

89

4.3 Development of truck-shovel system model

The truck-shovel mining system is a highly interactive and dynamic material

handling system. The basic operational elements in the truck-shovel system include

loading units (shovels), dump sites/stockpiles, trucks, haul routes and a dispatcher.

Figure 4-7 shows the mutual interactions between operational units.

Figure 4-7 Interactions between operational units

A truck interacts with the shovel, the dump/stockpile, the route, the dispatcher and

other trucks in the system, resulting in queuing, bunching and operational delays

under certain traffic conditions. The loading time and loading amount are stochastic

variables which are usually affected by truck type, shovel type, material

characteristics, and the operator’s skill. The truck travelling times are dynamically

influenced by both truck parameters, such as the performance curve and truck gross

weight, and the haul routes design and conditions. Furthermore, the traffic

constraints, including the bunching and the intersection traffic management, also

have an impact on the truck performance.

In order to correctly capture the dynamic and interactive nature of a truck-shovel

mining system, new objects were exclusively designed for such a system using the

Java programming language. In this thesis, a flexible Truck-Shovel JaamSim

Simulator (TSJSim) was developed for estimating the impact of operational elements

on the performance of the truck-shovel system. TSJSim considers the stochastic,

dynamic and interactive features of a truck-shovel network system. Twelve new

objects shown in Figure 4-8 were developed for modelling a typical truck-shovel

mining network system. The main simulation model objects are: OreGenerator,

OreSink, OreEntity, Truck, Loader, Dump, Queue, Route, RouteIntersection, Route-

SafeZone, Truck-allocationStrategy and LoaderOperator.

Chapter Four: Development of JaamSim Simulation Model

90

The main functionality of each of these model objects is summarised in Table 4-2.

Figure 4-8 TSJSim model objects

Table 4-2 Functionality of TSJSim model objects

Model objects Description Functionality

OreEntity

Flows through the system

as the material

transported by the Truck.

Properties such as shape, weight, can

be assigned.

OreGenerator
Generates the OreEntity

consistently.

The first/inter arrival time and the

maximum amount of the OreEntity

can be set.

OreSink Dispose of the OreEntity.

Queue

Works as a storage area

for the Truck at the

loading site or dump

when the Loader or the

Dump is busy.

Collects the information about the

queuing trucks including the number

of queuing trucks and waiting times.

Loader

Receives the OreEntity

from the OreGenerator,

processes it and sends it

to the Truck when the

Truck is ready.

1. The loading time and loading

amount can be specified according to

the capacity of the truck, the bucket

capacity of the shovel, the truck

spotting time, fill factor, swell factor,

material density, and the shovel

working cycle time.

2. Operators with different skills can

be assigned to the Loader to reflect

the varied performance of the

Loader.

Chapter Four: Development of JaamSim Simulation Model

91

LoaderOperator

Influences the

performance of the

Loader.

Working cycle time and working

hours for each LoaderOperator can

be set.

Dump
Receives the OreEntity

from the Truck.

Dumping time varies according to

the size of the Truck and the weight

assigned to the OreEntity.

Truck

Transports the OreEntity

between the Loader and

the Dump on the Route.

1. The speed of the Truck is set by

considering the Truck's

configurations, such as dimension,

weight, capacity, performance and

retarder curves, and the Route's

condition including rolling resistance

and grade.

2. The mutual influence of the Truck

has been considered. The bunching

effect resulting from mixed

equipment with varied capacities has

been considered.

Route
The track on which the

Truck is hauling.

The spatial coordinates of the Route,

the rolling resistance and the

coefficient of traction for each

segment can be specified.

RouteIntersection
The intersection of the

routes

By combining the RouteIntersection

and the Route, the traffic network

forms.

RouteSafeZone

The abstract area that

implements the traffic

management rules.

1. The priority of the Route, namely

the main road for production, can be

set, so that the trucks hauling on the

main road have higher priority for

passing through the RouteSafeZone

area.

2. The traffic rules for trucks to pass

through the intersection area can also

be specified, for instance, the priority

for heavy truck.

Truck-allocation

Strategy

Assigns the Truck under

certain truck-allocation

rules.

The truck-allocation rules are:

1.Fixed truck assignment;

2.Minimising truck waiting time;

3.Minimising truck semi-cycle time;

4.Minimising shovel production

requirement.

4.4 Structure of TSJSim framework

TSJSim contains three levels of class hierarchy: the first level is the basic simulation

object Entity. All the newly created model objects in TSJSim are subclasses of the

Chapter Four: Development of JaamSim Simulation Model

92

Entity class, which encapsulates the functions and data needed to create a simulation

object and to achieve a discrete event simulation. The second level is the

TLinkedComponent which is based on the Entity class to form a chain of components

that process all the simulation objects passing through the system. It functions as an

abstract class that receives the specified Entity from an upstream component and

sends the Entity to the next component downstream. The third level is the subclasses

of TLinkedComponent, referred to as the TDisplayEntity, which includes the basic

truck-shovel simulation objects for the TSJSim model, i.e., OreGenerator, OreSink,

OreEntity, Truck, Loader, LoaderOperator, Dump, Route, RouteIntersection and

RouteSafezone. Figure 4-9 shows the three-level model structure of TSJSim.

Figure 4-9 Three-level model structure of TSJSim

From a modelling point of view, the truck-shovel mining system was considered as a

material handling system in which the material mined (Entity) flows through the

system, with the trucks hauling this material in the system (between loaders and

dumps). The basic logic flow of the truck-shovel system model in TSJSim is shown

in Figure 4-10.

Figure 4-10 Flow process chart of the truck-shovel system model in TSJSim

The OreEntity object (material mined) is generated by the OreGenerator object, and

processed at the Loader object, and then transported by the Truck object from the

Loader object to the Dump object through the Route object. The travelling speed of

Chapter Four: Development of JaamSim Simulation Model

93

the Truck object is influenced by both the condition of the haul routes and the

operational factors of the truck. When the Truck object arrives at the Dump object,

the OreEntity object is sent to the OreSink object to be disposed of, and the empty

Truck object is sent back to the Loader object, completing a single truck cycle.

In this process, firstly the OreEntity is processed by the Loader as the loading

procedure, then sent to the Truck to be processed as the hauling procedure, finally

sent to the Dump to be processed as the dumping procedure. The Truck not only

processes the OreEntity but is also being processed when the empty Truck returns

from the Dump. The Route object, including the RouteLoaded (the route for the

loaded hauling truck) and the RouteEmpty (the route for the empty hauling truck), is

not a processor but only provides the route parameters that influence the hauling

time of the Truck.

4.4.1 TLinkedComponent object

The TLinkedComponent object provides the basic functionality of connecting the

objects, namely sending one object to another. According to the logic of the material

handling process, the following three types of functions are required for the

TLinkedComponent object:

1. Sending an OreEntity to a Loader, Dump or OreSink object

The Java code is as follows:

// For transporter to send entity to next component input from upstream.
sendToNextComponent(DisplayEntity ent, TLinkedComponent nextcom) {

 nextcom.addDisplayEntity(ent);

 }

The sendToNextComponent(DisplayEntity, TLinkedComponent) function is

implemented under the following situations:

 When the OreEntity is sent from an OreGenerator to a Loader.

 When the OreEntity is sent from a Truck to a Dump.

 When the OreEntity is sent from a Dump to an OreSink.

Chapter Four: Development of JaamSim Simulation Model

94

Parameter ent refers to OreEntity and parameter nextcom refers to the component

to receive the OreEntity. The addDisplayEntity(DisplayEntity) function adds the

OreEntity to the specified objects including the Loader, Dump and OreSink.

2. Sending a Truck to a Loader or Dump object

The Java code is as follows:

// For loader to send transporter to 'itself'(not to route).
sendTransToNextComponent(TTransporter trans, TLinkedComponent nextcom){

 nextcom.addTTransporter(trans);

}

The sendTransToNextComponent(TTransporter, TLinkedComponent) function is

executed when a Truck arrives at either a Loader or a Dump. The add-

TTransporter(trans) function sends the Truck to either the Loader or Dump

object. When the Loader or Dump receives a Truck, the Truck is added to the

Queue for Trucks.

3. Sending an OreEntity to a Truck

The Java code is as follows:

// For loader to send entity to transporter.
sendEntityToTrans(DisplayEntity ent, TLinkedComponent trans,
TLinkedComponent nextcom, TRoute route){

 trans.addDisplayEntity(ent, nextcom);

 }

The sendEntityToTrans(DisplayEntity, TLinkedComponent, TLinkedComponent,

TRoute) function is called to send an OreEntity to the Truck when a Truck arrives

at a Loader and is ready to be loaded, i.e., there is no other Trucks in front of this

Truck in the Queue for Trucks. The destination of the OreEntity, i.e., parameter

nextcom, and the haul route, i.e., parameter route, are also assigned to the Truck

for further use.

Chapter Four: Development of JaamSim Simulation Model

95

4.4.2 OreGenerator object

The OreGenerator object creates a sequence of OreEntities at arrival intervals

defined by the user. The key input parameters to the OreEntity sub-programme are:

1. NextComponent: the next object to which the processed OreEntity is passed, i.e.,

a Loader object.

2. FirstArrivalTime: the arrival time for the first generated Entity. The time can

have a constant value or a value sampled from a user-defined statistical

distribution, or a Time series object defined by the user.

3. InterArrivalTime: the inter-arrival time between generated Entities. The time can

have a constant value or a value sampled from a user-defined statistical

distribution, or a Time series object defined by the user.

4. PrototypeEntity: the prototype for Entities to be generated. The generated

Entities would be duplicates of the Entity.

5. MaxNumber: the maximum number of Entities to be generated. Default is no

limit.

Figure 4-11 shows the process logic for generating OreEntities. If there is no

OreEntity in the system, i.e., the variable numberGenerated equals 0, then the

FirstArrivalTime is used as the delay time for generating the first OreEntity;

otherwise, the InterArrivalTime is used. When an OreEntity is created, the

numberGenerated is increased by 1. If there are more than two OreEntities blocked

at the OreGenerator, the OreGenerator will stop generating OreEntities. Otherwise,

the OreGenerator will send the generated OreEntity to a Loader and keep generating

OreEntities until the simulation is terminated.

Chapter Four: Development of JaamSim Simulation Model

96

Figure 4-11 Flowchart for generating OreEntities

4.4.3 Loader object

The Loader object receives the OreEntity object from the OreGenerator object,

processes it and then sends it to the Truck object. The key input parameters to the

loading sub-programme are:

1. NextComponent: the next object for a Loader which is a Dump object.

2. Transporter: the truck(s) assigned to the Loader. Multiple Truck objects can be

selected.

3. ServiceTime: the service time required to process an OreEntity. The service time

can have a constant value or a value sampled from a user-defined statistical

distribution, or a Time series object defined by the user. The loading time is

determined by this input data only if the Operator’s input is left blank.

4. Operator: the loader operators assigned to the Loader object. Multiple Operator

objects can be selected and once selected, the loading time is determined by the

work cycle time of the operators.

Start

numberGenerated

= 0?

Delaytime = firstArrivalTime

Delaytime = interArrivalTime

Entity numbers at

Loader > 2?

numberGenerated++

Initiate OreEntity

sendToNextComponent (OreEntity)

Y

N

Y

N

Simulation

terminated?

End

N

Y

Chapter Four: Development of JaamSim Simulation Model

97

5. QueueforOreEntity: the queue in which the OreEntity is placed.

6. QueueforTruck: the queue in which the Truck is placed.

7. BucketCapacity: the capacity of the loader bucket.

8. FillFactor: the fill factor of the loader bucket.

9. SwellFactor: the material swell factor.

10. Density: the material density.

11. PredefinedProduction: the amount of production target allocated to the loader.

The main outputs include:

1. TotalProduction: the production of the loader or the tonnage of the OreEntities

processed by the loader during the simulation time.

2. Busytime: the time duration in which the loader is busy loading a truck.

The loader starts the loading procedure only if there is a truck in the queue. In the

TSJSim model, the loading procedure consists of two functions: the

ProcessQueuedEntity and the RemoveDisplayEntity functions. As shown in Figure

4-12, firstly the ProcessQueuedEntity function checks whether there are any

available trucks in the queue ready for the loading procedure. If not, the loading

process is delayed until there is a truck in the queue; otherwise, three sub-processes

are implemented to determine the loading time, apply shift change and collect

simulation data such as queuing time. After the loading time delay, the

RemoveDispayEntity function is called to send the OreEntity to the Truck as well as

sending the Truck to a Dump object via the haul route for the hauling process. Then

the sub-programme returns to the ProcessQueuedEntity function to start another

loading procedure.

Chapter Four: Development of JaamSim Simulation Model

98

Figure 4-12 Flowchart for loading sub-programme

The following three sub-processes in the ProcessQueuedEntity function are

responsible for the loading process, shift change and simulation information

collection:

1. Loading time delay

The loading time can be obtained either directly from the ServiceTime input data

or calculated based on the work cycle time of the loader operator according to

Equations (2.2) and (2.3) discussed in Chapter 2. Figure 4-13 shows how the

loading time is determined. If the ServiceTime input is left blank (i.e.,

ServiceTime is null), then the loading time, , is determined from the number of

loads, , the operator’s work cycle time, and/or the truck spot time (on the

condition that the truck spot time is less than the work cycle time).

If any truck in

the queue?

1. Loading time delay

2. Shift change

3. Collecting simulation information

1. Send entity to truck

2. Send truck to dump

Y

N

Chapter Four: Development of JaamSim Simulation Model

99

Figure 4-13 Flowchart for loading time calculation process

2. Shift change

The shift change sub-programme changes the shovel’s operator at the end of a

shift. The ScheduleProcess function (refer to Table 4-1) is used to set the shift

duration and call the ChangeOperator function at the end of the shift, as shown

in Figure 4-14. If the Boolean variable, shiftflag, is FALSE, the ScheduleProcess

function is executed, i.e., the ChangeOperator function will be called after a shift

duration, and the shiftflag is set to TRUE so that the ScheduleProcess is called

only once per shift. When the ChangeOperator function is called, the next loader

operator in the Operator input list is selected to replace the current operator, and

the shiftflag is set back to FALSE so that the next shift change can be

implemented.

If ServiceTime

is null?

Set t =

ServiceTime

Determine the

number of loads, n

If truck spot time <

loader driver work cycle

time?

Set t =

n * loader cycle time

Set t =

(n-1) * loader cycle time +

spot time

Set t = 0

Y

N

Y

N

Start

End

Chapter Four: Development of JaamSim Simulation Model

100

Figure 4-14 Flowchart for changing operator sub-programme

3. Simulation information

The simulation data collected during each loading procedure includes the

loading amount assigned to each OreEntity, the queueing time and the

loading time of the Truck. Other relevant simulation data, such as the truck

production, the shovel production, the busy time of the shovel, the number of

trucks processed by the shovel, the truck cycle time and cycle count, and the

average speeds for each truck hauling loaded and empty, are collected at the

end of the shift.

4.4.4 Dump object

The Dump object receives the Truck and OreEntity objects, and sends the OreEntity

to the OreSink object to be disposed of. The key input parameters to the dumping

sub-programme are:

1. NextComponent: the next object for the Dump, i.e., an OreSink object.

2. ServiceTime: the time required for dumping. The service time can have a

constant value or a value sampled from a user-defined statistical distribution, or a

Duration = Shift duration

Set shiftflag = true

Collect simulation data per shift

Get the next operator

Set shiftflag = false

 shiftflag =

false?

Y

N

Loading

process

Chapter Four: Development of JaamSim Simulation Model

101

Time series object defined by the user. The dumping times for various truck

types can be input.

3. QueueforOreEntity: the queue in which the OreEntity is placed.

4. QueueforTruck: the queue in which the Truck object is placed.

The Dump object outputs TotalProduction, i.e., the tonnage of OreEntities processed

during the simulation time.

The dumping sub-programme, as shown in Figure 4-15, is similar to the loading sub-

programme which consists of the ProcessQueuedEntity and the

RemoveDisplayEntity functions. If there is a truck in the queue, then the ServiceTime

input value is set as the dumping delay; otherwise, the dumping procedure is

suspended until there is a truck at the dump. After the dumping delay, the

RemoveDisplayEntity function sends the Entity object to the OreSink object and the

empty truck back to a shovel via the haul route. The sub-programme then repeats the

ProcessQueuedEntity function for another dumping procedure. The simulation data

collected during the dumping procedure is the queuing time at the dump and the

dumping time.

Figure 4-15 Flowchart for dumping sub-programme

If any truck in

the queue?

1. Dumping time delay

2. Collecting simulation information

1. Send entity to OreSink

2. Send truck back to shovel

Y

N

Chapter Four: Development of JaamSim Simulation Model

102

4.4.5 Route and RouteIntersection

Most surface mines use trucks that operate to the left side of the roadway (Karmis,

2001) and most haul routes are two-way routes that allow trucks to travel in both

directions. The route along which the loaded trucks travel to the dumps is referred to

as the loaded route, and the route along which the empty trucks return to the loading

sites is referred to as the empty route. The Route objects in TSJSim are connected by

the RouteIntersection object which consists of haul route intersections and provides

information about the crossing routes. In this way, a traffic network is formed,

allowing trucks to shift from one route to another. As shown in Figure 4-16, the

RouteIntersection object is defined by the points A-B-C-D. A and C are the turning

points (or decision points for the truck-allocation strategy) for the truck hauling

loaded and the truck hauling empty, respectively.

Figure 4-16 Simplified traffic network

The key input parameters for the Route object are:

1. Points: a list of Cartesian coordinates defining the route segments that make up

the haul route.

2. RollingResistance: the rolling resistance parameter for each route segment.

3. CoefficientofTraction: the coefficient of traction parameter for each route

segment.

Chapter Four: Development of JaamSim Simulation Model

103

4. LoadingSite: the Loader object from which the haul route starts.

5. DumpingSite: the Dump object to which the haul route ends.

The key input parameters for the RouteIntersection object are:

1. Points: a list of Cartesian coordinates forming the intersection.

2. Routes: both the loaded routes and the empty routes that form the intersection.

As the RouteIntersection object contains multiple Route objects, the decision points

can be identified and added to a DP list in the RouteIntersection object and a DPR

list in the Route object, which is discussed as follows:

1. Adding decision points to the DP list in the RouteIntersection object

Figure 4-17 shows the developed algorithm structure.

Figure 4-17 Flowchart for searching for decision points at an intersection

To search for the decision points which are the intersections of the crossing

routes, a nested loop structure was developed to loop through and compare all the

get route i

get point j

get route i

get point j

If point j =

point j ?

add point j to

DP list

Break loop

Y

N

Chapter Four: Development of JaamSim Simulation Model

104

points on different routes until the intersection is found. After the decision points

are found, their coordinates are added to the DP list in the RouteIntersection

object.

2. Adding decision points to the DPR list in the Route object

Figure 4-18 shows the nested loop algorithm developed for this process. The

points on the route are compared with the decision points in the DP list of the

RouteIntersection object, which is stored in the Intersection list, and if the point

on the route equals the decision point, i.e., they have the same coordinates, this

point would be marked as the decision point by assigning a non-zero number to

the ID of the point as a mark, and then the coordinates of the point are added to

the DPR list in the Route object.

Figure 4-18 Flowchart for obtaining decision points in Route object

4.4.6 RouteSafezone object

The RouteSafezone object manages traffic flow at an intersection area if the

production priority for trucks hauling on the route is required. The area defined by

get point i

get intersection j

get decision point i

If point i =

decision point i ?

add decision point i

to DPR list

Break loop

Y

N

Chapter Four: Development of JaamSim Simulation Model

105

the RouteSafezone object is referred to as the “safezone” in this thesis. The trucks

without production priority have to give way to the trucks with priority when they

are hauling in the area defined as the safezone. As shown in Figure 4-19, the

RouteSafezone object is defined by the points A-B-C-D-E-F-G-H-A, these points

being the “safezone points”. The RouteIntersection object included in the

RouteSafezone is defined by the intersections B-I-F-J.

A main route is defined as the haul route that connects the active loading units and

dumps or crushers with the high priority, and all other haul routes without this

priority are named non-main routes. A truck on the main road has priority to pass

through the safezone area before a truck on the non-main road. The truck on the non-

main road must wait outside the safezone while the truck on the main road is hauling

within the safezone. Further details about the main road and non-main road traffic

management in the safezone area are discussed in Chapter 7. This section deals with

the sub-programme identifying and marking the safezone points.

Figure 4-19 Safezone area

The main key inputs for the RouteSafezone object specification are:

1. SafezonePoints: a list of Cartesian coordinates defining the safezone area.

2. Routes: both the loaded routes and the empty routes that form the safezone area.

3. RouteIntersection: the RouteIntersection object included in the RouteSafezone

object.

Chapter Four: Development of JaamSim Simulation Model

106

As the RouteSafezone object contains Routes input, the safezone points can be

identified and added to a list in the Route objects, named the SD list. Figure 4-20

shows how to add the safezone points to the SD list. All the points on each route in

the Routes input are looped through, and by comparing the points on the routes with

the SafezonePoints input of the RouteSafezone, the safezone points are identified and

added to the SD list for each Route object; a non-zero number is assigned to each

such point as an identity to mark the safezone point.

Figure 4-20 Flowchart for searching for safezone points

4.4.7 Truck object

The Truck object interacts with the Loader, Dump and Route objects. It receives the

OreEntity from the Loader and transports it from the loading site to the dump site as

the hauling loaded process, and after the dumping process, the empty truck returns

from the dump site to the loading site.

At a mine site, overtaking operating dump trucks is not permitted. Overtaking other

vehicles, e.g., dozers, graders, drill rigs, etc., is only permitted on the condition that

Get route i

Get point j

Get point j

If point j =

point j ?

Add point j to SD list

Break loop

Y

N

Chapter Four: Development of JaamSim Simulation Model

107

 radio contact with the machine operator is established and approval for

overtaking is given;

 adequate visibility of the road ahead is ensured; and

 there is no oncoming traffic (Karara Hematite Project, 2013).

The model developments to handle the bunching effect and how the traffic in the

intersection area is managed are discussed in Chapters 7 and 8.

The required data for the Truck object are listed below:

1. Size: the size of the truck defined by Cartesian coordinates.

2. DisplayModel: the graphic representation of an object.

3. TruckWeight: the weight of an empty truck.

4. TruckCapacity: the maximum truck capacity.

5. TruckType: the truck model type.

6. HaulingRouteLoaded: the routes on which the loaded truck hauls.

7. HaulingRouteEmpty: the routes on which the empty truck hauls.

8. Bunching: whether the bunching effect is to be considered or not in a simulation.

9. BunchingDistance: the safe travelling distance between the bunched trucks.

10. Loader: the initial loader assigned to a truck.

11. Dump: the initial dump assigned to a truck.

12. DispatchingMode: the truck-allocation method applied to a truck. Different

truck-allocation method can be selected as the Truck-allocation Strategy object.

13. SpotTime: the time duration for a truck to spot before the loading process. The

time can have a constant value or a value sampled from a user-defined statistical

distribution, or a Time series object defined by the user.

Chapter Four: Development of JaamSim Simulation Model

108

14. RetarderCalibrateFactor: the factor used to calibrate the velocity generated from

the retarder chart. This factor is ranged between 0 and 1.

The main outputs from the Truck object include:

1. The statistics generated for the truck cycle time, queuing time at loader, loading

time, hauling time loaded, queuing time at dump, dumping time, hauling time

empty and total cycle count.

2. Bunching time: although the faster trucks are not permitted to overtake slower

trucks when they are hauling along the route, the “bunching effect” still may be

reduced or prevented by applying the truck-allocation strategy. For example, the

slower truck that may cause congestion along a haul route can be assigned to

another route or destination to prevent the possible “bunching effect”. In this

thesis, a theoretical variable, named bunching time, is used to measure the

“bunching effect” on hauling time. The bunching time is defined as the increased

hauling time due to bunching and equals the difference between the hauling time

with the “bunching effect” and the hauling time without the “bunching effect”.

3. The increased waiting time due to bunching: another variable used to measure

the “bunching effect” on the truck waiting time, which equals the difference

between the waiting time with the “bunching effect” and the waiting time

without the “bunching effect”.

4. Truck production.

4.4.7.1 Determination of average hauling velocity

A truck can move on the haul road only if the following condition is satisfied:

 (4.1)

The usable rimpull is the maximum force that can be transferred from drive tyres to

road surface which is equal to the product of the coefficient of traction and the

weight on the drive tyres. The required rimpull is the resistance to movement which

Chapter Four: Development of JaamSim Simulation Model

109

is equal to the product of the total resistance and the gross truck weight (Hays, 1990).

The available rimpull is the truck rimpull force which can be obtained from the truck

performance and retarder charts. The performance chart is used when the total

(effective) resistance is positive, indicating the maximum truck velocity when the

available rimpull is equal to the required rimpull; the retarder chart is employed

when the total resistance is negative, showing the safest truck velocity that the truck

is hauling on a downgrade route. The relationship between the available rimpull and

the maximum speed can be established in the form of piece-wise functions using a

linear regression method. Appendix E shows the process of transforming the

performance and retarder curves into mathematical functions for CAT 789C truck to

calculate the average hauling velocity.

In the TSJSim model, a sub-programme was developed to examine the condition for

a truck (either loaded or empty) hauling on routes. In the case of poor traction, the

rolling resistance factors should be reduced by improving the road condition to

ensure that the hauling condition is satisfied. The flowchart for the sub-programme is

shown in Figure 4-21.

Figure 4-21 Flowchart for examining truck hauling condition

Start

get route i

get section j

TRj > 0 ?

CTj*W*DIS >= RP >=

TRj*W ?

TRj = TRj – 0.1

RRj = RRj – 0.1

Use performance chart

End

Y

Y

N

N

Use retarder chart

Chapter Four: Development of JaamSim Simulation Model

110

When a truck finishes loading or dumping, all the haul routes are looped through and

the condition for the truck to haul on each route section is examined. If the total

resistance of route section j () is negative, meaning the truck is going downhill,

then the retarder chart is used to determine the safest speed on route section j;

otherwise, Equation (4.2) is used to examine the condition for truck hauling:

 (4.2)

where

 coefficient of traction of route section j, decimal

 empty weight of an empty truck or gross vehicle weight of a loaded truck, kg

 distribution of weight, %

 available rimpull from the performance chart, kg

 total resistance of route section j, %

If Equation (4.2) is satisfied, then the performance chart is used to determine the

maximum speed on route section j; otherwise, the condition of the road must be

imrpoved.

In TSJSim, the speed determination sub-programme contains three functions, the

getVelocityFromPerformanceChart, getVelocityFromRetarderChart and

getAverage- Velocity functions. The getVelocityFromPerformanceChart function

uses three input parameters, i.e., the gross truck weight, the total resistance and the

truck model type, to determine the maximum velocity from the performance chart.

The getVelocity-FromRetarderChart function has the same input parameters as the

getVelocityFrom- PerformanceChart function and returns the velocity from the

retarder chart.

The getAverageVelocity function is used to calculate the average velocity based on

the speed from either the performance chart or retarder chart. Figure 4-22 illustrates

Chapter Four: Development of JaamSim Simulation Model

111

the flowchart for the getAverageVelocity function. If the speed is indicated by the

performance chart (), the hauling state of a truck is firstly checked; if the truck

is hauling, the speed factors (sf) for a truck in motion when entering a route section

are selected depending on the length of the section (l); otherwise, the speed factors

for a truck starting from a section are selected to calculate the average velocity. If the

speed is from the retarder chart (), then Equation (AE.4) of Appendix E is used to

calculate the average velocity. Next, the speed limitation constrained by the grade

resistance of the route segment (g) is compared with the average speed value. The

resulting minimum value is the final average velocity for the truck to haul on the

route section.

Figure 4-22 Flowchart for calculating average velocity

Start

End

Truck is hauling?

If l 100 ?

sf = 0.5+0.2*ramdon

ElseIf l 1000 ?

sf = 0.8+0.05*ramdon sf = 0.8+0.1*ramdon

Y Y

N N

 ...

 ...

If l 100 ?

sf =

0.25+0.25*ramdon

ElseIf l 1000 ?

sf = 0.65+0.1*ramdon
sf =

0.7+0.15*ramdon

V = VPmax*sf

Y Y

N N

 ...

 ...

If 0<g 6% ?

V=min(V, 60)

ElseIf g 8% ?

V=min(V, 30)

ElseIf g 10% ?

V=min(V, 25)

ElseIf g 12% ?

V=min(V, 20) V=min(V, 15)

Y Y Y Y

N N N N

End

Y

N

Performance

chart is used?
V = VR + (Vbefore - VR)*RCF

Y

N

Chapter Four: Development of JaamSim Simulation Model

112

4.4.7.3 Hauling information object

Since the haul route consists of numerous segments with varied route conditions and

parameters, the hauling velocity for a truck travelling along the haul routes changes

dynamically, i.e., a truck travels at various speeds on different route segments. As

shown in Figure 4-23, the average hauling velocity for a truck to haul on each of

route segments a to k, is pre-determined before the truck leaves a loading site or

dump site. These pre-determined hauling velocities associated with route segments

are stored in the lists of a hauling information object, named DRoute object.

There are four types of information included in the DRoute object:

1. Point: a collection of the coordinate points on the selected path.

2. Index: a collection of the indices of route segments, in the form of (r, s), meaning

segment s on route r.

3. Length: a collection of the lengths of route segments.

4. Velocity: a collection of the average velocities of the trucks hauling on the

respective route segments.

As both the hauling speed corresponding to the route segment and the length of each

route segment are known, the hauling time that is required for the truck to travel

through each route segment can be estimated.

Figure 4-23 A truck hauling on route segments

Chapter Four: Development of JaamSim Simulation Model

113

Although the hauling information for all the route segments in the entire traffic

network can be specified once the truck is ready for the hauling process, it is more

effective from the perspective of running the programme to prepare hauling

information for part of the haul route and then update the information when required.

The truck follows the route information provided by the DRoute object until it

arrives at a decision point, either to change from one route to another or to remain

hauling on the same route. After a new truck assignment is generated based on a

truck-allocation strategy, the related hauling information including the coordinate

points, the indices and the lengths of the haul route segments along with the required

hauling velocities, are obtained and stored in the DRoute object to guide the truck to

the next decision point. For instance, in Figure 4-23, before the loaded truck hauling

on Route 1 reaches decision point A, which is the intersection of Route 1 and Route 2,

the DRoute object contains only the hauling information of the route section a, b and

c. When the truck arrives at decision point A, and if the dispatcher decides to assign

the truck to Route 2, the hauling information of the route segment f and g on Route 2

is added to the DRoute object. After the truck arrives at decision point B and if the

truck chooses to haul straight into the intersection area instead of turning to Route 3,

only segment h and other segments on Route 2 are added to the DRoute object.

The sub-programme to establish the hauling velocity list consists of two main tasks.

The first task is to update the DRoute object with the route, including the points and

the indices of the route segments. This is accomplished by the truck-allocation sub-

programme which assigns a path to the truck on the basis of a truck-allocation

strategy. Using the Point list and the Index list, the second task involves calculating

and adding the length of each segment as well as the respective hauling velocity to

the Length list and the Velocity list, respectively. Figure 4-24 shows the velocity

calculation process task. Looping through all the points in the Point list, the lengths

for all the segments can be added into the Length list, and based on the total

resistance of each segment, the hauling velocity of each route segment can be

obtained and added into the Velocity list.

Chapter Four: Development of JaamSim Simulation Model

114

Figure 4-24 Flowchart for velocity list determination

4.4.7.4 Hauling process sub-programme

The TSJSim hauling model consists of Loader, Route, RouteSafezone, Route

Intersection and Dump objects; these five objects form the basis of the truck-shovel

system. Figure 4-25 shows the components of the hauling process in this truck-

shovel system.

Component A: queuing at loader, loading procedure and truck-allocation

management after loading is applied;

Component B: hauling outside safezone;

Component C: hauling inside safezone, traffic management for truck priority is

applied;

Set i = 1

If i < size of Point

list ?

Get point i, point i+1

Calculate length(i), add it to

Length list

If TR of section i

> 0 ?

Calculate VP(i) using

getVelocityFromPerformanceChart

Calculate VR(i) using

getVelocityFromRetarderChart

Calculate V(i) using

getAverageVelocity

Add v(i) to Velocity list

Set i = i + 1

Start

End

Y

N

Y

N

Chapter Four: Development of JaamSim Simulation Model

115

Component D: hauling inside intersection, truck-allocation and truck turning process

is applied;

Component E: queuing at dump, dumping procedure and truck-allocation

management after dumping is applied.

Figure 4-25 Components of hauling process

Figure 4-26 shows the logic of the entire hauling process.

Figure 4-26 Logic of hauling process

Loading

Dispatching

Hauling outside

safezone

Arriving at safezone

Passing

requirement?

Entering safezone

Hauling inside safezone

Arriving at intersection

Dispatching

Waiting

Entering intersection

Exiting intersection

Exiting safezone

Hauling outside

safezone

Dumping

Dispatching

Hauling outside

safezone
.

.

.

Y

N

Chapter Four: Development of JaamSim Simulation Model

116

After the loading procedure, a dump site for the truck is decided upon by the truck-

allocation process. The truck then hauls on the route outside the safezone. When the

truck arrives at a safezone, depending on the traffic condition at the safezone and

whether the requirement for passing the safezone is satisfied or not, the truck either

waits at the safezone or enters the safezone.

While the truck is travelling through the safezone, the traffic conditions within the

safezone are updated dynamically to determine when other waiting truck(s) at the

safezone, if any, are allowed to enter the safezone. When the truck arrives at an

intersection, a new truck assignment is generated based on the current system state.

The truck may either change direction or remain hauling in the same direction to the

dump site. After dumping, the truck is assigned at the dump site to a new hauling

route. The empty truck then repeats the hauling process with the truck and route

parameters having been updated.

Based on the logic of the hauling process, 15 interrelated major functions were

developed to manage the truck hauling process, as shown in Table 4-3. A global

variable, n, was defined to signify the index of the route segment on which the truck

is hauling. It is increased by 1 as soon as the truck enters a route segment. When the

truck arrives at the beginning point of the segment, the hauling time for the truck to

travel through this segment, named hauling delay, is determined and the value of this

delay is set in the scheduleProcess function (Table 4-1). The truck may stop and wait

at the safezone if the passing requirement is not satisfied. The waiting time depends

on how the traffic of the safezone area is managed.

Table 4-3 Hauling process functions

Function Description

addDisplayEntity

Directs the truck to the hauling process after the

loading process and initiates the hauling

information, such as the velocity list.

travelOutSafezone

Following the addDisplayEntity function, deals

with the hauling process outside the safezone,

collecting the hauling time information.

arriveAtInterval

Following the travelOutSafezone function, decides

whether the truck is going to arrive at a dump site

or a safezone, or leave a safezone.

Chapter Four: Development of JaamSim Simulation Model

117

removeDisplayEntity

Following the arriveAtInterval function, deals with

the hauling process on the last segment of a route

before the truck starts the dumping process.

removeTransporter

The sub-function of the removeDisplayEntity

function. Sends the Truck object to the Dump

object.

removeOreEntity

The sub-function of the removeDisplayEntity

function. Sends the OreEntity object to the Dump

object.

travelInSafezone

Following the arriveAtInterval function, works as

either the entrance or exit of a safezone, depending

on the value of SafezoneFlag.

exitFromSafezone

Following the travelInSafezone function, deals

with the hauling process on the last segment within

a safezone, decreases the number of trucks within

the safezone, resets the SafezoneFlag, and

accumulates the segment index.

arriveAtSafezone

Following the travelInSafezone function, manages

the queuing process at a safezone based on the

passing priority and the traffic condition within the

safezone.

enterSafezone

Following the arriveAtSafezone function, sends the

truck into a safezone and updates the truck status

as well as the traffic condition within the safezone.

arriveAtIntervalInSafezone

Following the enterSafezone function, decides

whether the truck is going to travel outside an

intersection, or enter the intersection, or leave a

safezone.

travelOutIntersectionInSafezone

Following the arriveAtIntervalInSafezone

function, deals with the hauling process within a

safezone but outside an intersection.

travelInIntersection

Following the arriveAtIntervalInSafezone

function, calls the truck-allocation sub-programme

to generate a new truck assignment, and decides

whether the truck is going to cross an intersection

or make a turn at the intersection.

enterIntersection

Following the travelInIntersection function, deals

with the hauling process when the truck is crossing

an intersection.

exitFromIntersection

Following the enterIntersection function, sends the

truck out of an intersection, and updates the truck

status and the traffic condition within the

intersection.

Chapter Four: Development of JaamSim Simulation Model

118

Figure 4-27 shows the flowchart of the truck hauling sub-programme. The sub-

programme starts with the addDisplayEntity function which is called at the end of

the loading process to direct the truck to the haul route for the hauling process. The

main task of addDisplayEntity is to initiate the hauling information, especially the

velocity list for the truck to haul outside the intersection (e.g., segments a-b-c-d-e in

Figure 4-25), and to increase n by 1.

Figure 4-27 Flowchart of truck hauling sub-programme

The travelOutSafezone function deals with the hauling process when the truck is

travelling outside the safezone(s). General information, such as the simulation time

of entering and leaving the segment and the travelling time through a segment, is

collected in this function. When the hauling delay occurs due to the implementation

of the scheduleProcess function, the animation sub-programme is called to show the

truck hauling on the route segment.

Chapter Four: Development of JaamSim Simulation Model

119

Before the truck enters the next route segment after exiting from the previous haul

segment, the arriveAtInterval function decides the next destination of the truck.

There are three cases considered:

1. If the next segment is the last segment of a route, meaning the truck is going to

leave the haul route and start the dumping process, the removeDisplayEntity

function, which contains two sub-functions, removeTransporter and

removeOreEntity, is called to assign the Truck and the OreEntity to the Dump

object, separately.

2. If the next segment is part of a safezone (e.g., segment bc in Figure 4-25), the

travelInSafezone function is called, which works as either the “entrance” or the

“exit” of a safezone. The travelInSafezone function deals with the hauling

process either in the segment right before the safezone (e.g., segment bc in

Figure 4-25) or in the last segment within the safezone (e.g., segment ef in Figure

4-25). A flag (named SafezoneFlag) is defined to signify whether the truck is

either entering or leaving a safezone:

 {

 (4.3)

Depending on the value of the flag, either the arriveAtSafezone function or the

exitFromSafezone function is implemented. When the exitFromSafezone function

is implemented, the number of trucks within the safezone is decreased by 1, the

SafezoneFlag value set to 0, and the index of the route segment for the truck is

increased by 1. Then the arriveAtInterval function is called again for deciding

the next destination.

3. If the next segment is the last segment within a safezone, meaning the truck is

leaving the safezone, then the travelOutSafezone function is called for the

hauling process outside the safezone.

When the truck is entering a safezone, the sub-programmes for hauling through the

safezone and the intersection are implemented. The arriveAtSafezone function

Chapter Four: Development of JaamSim Simulation Model

120

manages the queuing process at the safezone based on the passing priority applied

and the traffic condition within the safezone. When the passing requirement is

attained, the enterSafezone function is implemented to update the truck status and the

safezone condition. After that, the arriveAtIntervalInSafezone function is called to

evaluate the following three cases:

1. If there is more than one route segment before reaching the intersection, the

travelOutIntersectionInSafezone function is then called to deal with the hauling

process on the segment that is within the safezone but outside the intersection.

The main task of this function is to determine the duration for the truck to travel

through the segment. After that, the arriveAtIntervalInSafezone function is called

again.

2. If there is only one segment before an intersection (e.g., segment de in Figure 4-

25), the travelInIntersection function is executed to

(i) call the truck-allocation sub-programme to generate a new hauling path and

store the hauling information in the DRoute object if the last point of this

segment is a decision point, and

(ii) call the enterIntersection function if the truck is proceeding on the same route

when entering the intersection (e.g., segment ef in Figure 4-25), or call the

arriveAtIntervalInSafezone function if the truck is going to shift from one

route to another at the intersection.

When the truck leaves an intersection, the exitFromIntersection function is called

to update the truck status and the traffic condition at the intersection area, and

then the arriveAtIntervalInSafezone function is called again.

3. If the segment is the last one in the safezone, the travelInSafezone function is

called.

Chapter Four: Development of JaamSim Simulation Model

121

4.4.7.5 Animation for hauling process

JaamSim provides a 3D rendering system programmed in Java and integrated with

the JaamSim code for fully-interactive, high-performance graphic presentations. The

graphics functions provided by JaamSim are listed in Table 4-4.

Table 4-4 JaamSim functions for animation

Function Description

updateGraphics(simTime)

The renderer interface functions for DispalyEntity. The position,

size, alignment, and orientation based on the objects' status at

the given simulation time are set. This function updates the

graphics constantly to manifest smooth motion.

setPosition(pos) Sets the position to the given coordinates.

setOrientation(euler) Sets the orientation Euler angles to the given values.

The animation for the general hauling process was developed based on the JaamSim

animation functions. The basic logic is to set the positions and orientations for the

Truck and the OreEntity objects at the given simulation time. Since the parameter for

updateGraphics is the current simulation time, the position and orientation for the

truck hauling in a route segment can be determined according to the velocity and the

entry time of the segment. The hauling sub-programme collects the necessary

hauling information for the animation, including index of route segment, velocity,

starting time (when the truck enters a segment), arrival time (when the truck arrives

at the end of a segment) and entry time at safezone (when the truck is estimated to

enter a safezone). The length and the orientation of each route segment are also

available in the Route object. Figure 4-28 shows the logic of the hauling animation.

If a truck is hauling on a regular route segment (SafezoneFlag = 0), the distance from

the starting point of the segment can be determined by Equation (4.4):

 (4.4)

where

 distance from the starting point of the segment, m

Chapter Four: Development of JaamSim Simulation Model

122

 current simulation time, s

 time when the truck enters a segment, s

 velocity in the segment, m/s.

Figure 4-28 Logic of hauling animation

Once the distance is determined, the truck position and orientation can be obtained.

If the truck is hauling in a safezone, the waiting process at the safezone is considered

in the animation. The waiting duration is the difference between the entry time into

the safezone and the arrival time at the safezone. Thus when the current simulation

time is less than the arrival time, meaning the truck has not yet reached the safezone,

the distance, truck position and orientation can be obtained as in the regular haul

route section. However, if the simulation time is between the arrival time and the

entry time, i.e., the truck is waiting, then the distance of the truck should remain

static until the truck enters the safezone, and the value of the distance is given by

Equation (4.5):

 (4.5)

where

Chapter Four: Development of JaamSim Simulation Model

123

 time when the truck arrives at the end point of a segment, s.

124

CHAPTER FIVE

DEVELOPING A TRUCK-SHOVEL MODEL

USING JAAMSIM OBJECTS

5.1 Introduction of TSJSim set-up

Using the developed TSJSim objects and functions discussed in Chapter 4 as well as

the JaamSim built-in objects, a truck-shovel network system simulation was

developed. The TSJSim objects and functions are shown in italics; the JaamSim

built-in objects and functions are shown in bold italics. The model

components/objects are: OreEntity, OreGenerator, OreSink, Queue, Probability

Distribution, Loader-Operator, Dispatcher (Truck-allocation object), Loader, Dump,

Route, Route-Intersection, RouteSafeZone and Truck. Figure 5-1 shows the major

TSJSim simulation components for a truck-shovel network system displayed in the

View Window. These simulation objects can be dragged and dropped from the

JaamSim Model Builder; the input parameters are specified using the Input Editor

for each object. The simulation results can be shown in the Output Viewer or saved

as a text file.

Figure 5-1 TSJSim model components

Chapter Five: Developing a Truck-shovel Model Using JaamSim Objects

125

5.2 OreEntity set-up

The OreEntity represents the material that flows through the system. It is generated

by the OreGenerator, processed by the Loader, then transported and dumped by the

Truck and finally disposed of by the OreSink. An OreEntity object can be created by

dragging and dropping it from the Model Builder. This creates an OreEntity object

with a default name or ID (OreEntity1 in Figure 5-2). The object’s name can be

edited from the Object Selector. There is only one keyword under the Key Inputs tab

of the OreEntity, i.e., Description for describing the object, as shown in Figure 5-2,

the default value of Description is empty, shown as {}, and the assigned value is

“Material mined”.

Figure 5-2 OreEntity input interface

Figure 5-3 shows the keywords under the Basic Graphics tab which is also the

template for all the visualised objects in JaamSim.

Figure 5-3 Basic Graphics interface

Chapter Five: Developing a Truck-shovel Model Using JaamSim Objects

126

Table 5-1 explains the information required for the Basic Graphics inputs. As an

example, in Figure 5-3, for visual purposes, the width, length and height of an

OreEntity are set to 5, 6 and 3 m, respectively, to approximately fit in with a CAT

785C truck with a length of 11.02 m, a width of 6.64 m and a height of 4.98 m

(Caterpillar Inc., 2018b). A cube shape is selected as the shape of the OreEntity from

a list of user-defined shapes. Once the OreEntity is set up, OreEntities of the same

size and shape can be generated by the OreGenerator.

Table 5-1 Basic Graphics inputs

Input Description

Position The location of the object in spatial coordinates.

Alignment
The point within the object that is located at the coordinates of

its Position input.

Size The size of the object in spatial coordinates.

Orientation Euler angles defining the rotation of the object.

Region

If a Region is specified, the Position and Orientation inputs for

the object are relative to the Position and Orientation for the

specified Region.

RelativeEntity
If an object is specified, the Position input for the object is

relative to the Position input for the specified object.

DisplayModel The graphic representation of the object.

Active If TRUE, the object is active in simulation runs.

Show If TRUE, the object is shown in the View windows.

Movable If TRUE, the object can be positioned with the mouse.

5.3 Probability Distributions set-up

JaamSim provides a selection of standard theoretical probability distributions as well

as user-defined probability distributions which can be created by dragging and

dropping the Probability Distribution objects from the Model Builder, as shown in

Figure 5-4. The Probability Distribution objects include uniform, triangular, normal,

exponential, erlang, gamma, beta, weibull, lognormal and log-logistics distributions.

Chapter Five: Developing a Truck-shovel Model Using JaamSim Objects

127

Figure 5-4 Probability distributions library

Figure 5-5 shows the set-up of a normal distribution, N(35.7 s, 11.0 s), with a mean

of 35.7 s, a standard deviation of 11.0 s, a minimum value of 18 s and a maximum

value of 67 s. The UnitType is set by selecting the TimeUnit from a drop-down list

which includes the angle unit, cost unit, volume unit, density unit, dimensionless unit

and other common units.

Figure 5-5 Normal distribution inputs

Chapter Five: Developing a Truck-shovel Model Using JaamSim Objects

128

5.4 OreGenerator and OreSink set-up

The OreGenerator generates a series of OreEntities and should be located at a

loading site. The data input interface of the OreGenerator object is shown in Figure

5-6. The input descriptions are provided in Table 5-2.

Figure 5-6 OreGenerator input interface

Table 5-2 OreGenerator inputs

Input Description

Description A free form string describing the object.

NextComponent
The next object to which a generated OreEntity is

passed.

FirstArrivalTime

The arrival time for the first generated OreEntity. The

time can have a constant value or a value sampled

from a user-defined statistical distribution, or a

TimeSeries object defined by the user.

InterArrivalTime

The inter-arrival time between one generated

OreEntity and the next. The time can have a constant

value or a value sampled from a user-defined

statistical distribution, or a TimeSeries object defined

by the user.

PrototypeEntity The prototype for OreEntities to be generated.

MaxNumber The maximum number of OreEntities to be generated.

As an example, in Figure 5-7, the NextComponent input value is set to a Loader

object by selecting the Loader object from a drop-down list containing all the

Chapter Five: Developing a Truck-shovel Model Using JaamSim Objects

129

available objects, the OreEntity generated is then sent to this Loader object directly.

The FirstArrivalTime and the InterArrivalTime input values are set to the default

values, 0 and 1 s, respectively. The OreEntity object (OreEntity1) is set as the

PrototypeEntity of the OreGenerator, and the default empty value ({}) of the

MaxNumber input has no limit (Figure 5-6).

Figure 5-7 Selecting Loader object for NextComponent input

The OreSink should be located at a dump site for destroying the OreEntities that

have flowed through the system. No input data is required for the OreSink object.

5.5 Queue set-up

The Queues, shown as a triangle in JaamSim, are assigned to specific Loaders or

Dumps, and can be classified as the Queue for OreEntities and the Queue for Trucks

(depending on the inputs of the Loader or Dump objects). The data input interface of

the Queue object (name TQueue3) is shown in Figure 5-8. Table 5-3 provides the

input descriptions of the Queue object.

Chapter Five: Developing a Truck-shovel Model Using JaamSim Objects

130

Figure 5-8 Queue input interface

Table 5-3 Queue inputs

Input Description

Description A free form string describing the object.

Spacing
The amount of graphical space between objects in the

Queue.

MaxPerLine Maximum number of objects in each row of the Queue.

Visibility If TRUE, the Queue is visible in the View windows.

5.6 LoaderOperator set-up

The shovel work cycle time or loading time and the working hours of one loader

operator can be specified using the LoaderOperator. Multiple LoaderOperators can

be assigned to one Loader to reflect the varied performance of the loader due to shift

change. The LoaderOperator, , can be dragged and dropped from the Model

Builder. The LoaderOperator’s data input interface is shown in Figure 5-9. Table 5-

4 explains the information required for the LoaderOperator inputs.

Figure 5-9 LoaderOperator input interface

Chapter Five: Developing a Truck-shovel Model Using JaamSim Objects

131

Table 5-4 LoaderOperator inputs

Input Description

Description A free form string describing the object.

ServiceTime

The loading time for one truck (with multiple loads).

The time can have a constant value or a value sampled

from a user-defined statistical distribution, or a

TimeSeries object defined by the user.

CycleTime

The shovel work cycle time for one load. The time can

have a constant value or a value sampled from a user-

defined statistical distribution, or a TimeSeries object

defined by the user.

WorkingHour The shift length for the LoaderOperator.

As an example, in Figure 5-10, the ServiceTime is set to a normal distribution by

selecting the Probability Distribution object from the multiple checkbox containing

all the available Probability Distribution objects, and the WorkingHour value is set

to 11 hours. The CycleTime is left blank, thus the loading time for the Loader object

is determined by the ServiceTime instead of the CycleTime.

Figure 5-10 Selecting Probability Distributions for ServiceTime

5.7 Truck-allocation Strategy set-up

Four truck-allocation strategies, namely fixed truck-allocation (the FixedDispatching

object in Figure 5-11), minimum truck waiting time (the MinTruckWaiting object),

minimum semi-cycle time (the MinSemiCycleTime object) and minimum production

requirement (the MinPreProductionErr object) can be selected from the Truck-

allocationStrategy list in the Model Builder. The principles behind each of these

Chapter Five: Developing a Truck-shovel Model Using JaamSim Objects

132

truck-allocation strategies are summarised in Table 5-5. Once a Truck object selects

a truck-allocation strategy, the Truck will implement this specific truck-allocation

strategy during the simulation run. Further information about the development of

these truck-allocation objects is provided in Chapter 8.

Figure 5-11 Truck-allocationStrategy objects in library

Table 5-5 Principles of truck-allocation strategies

Truck-allocation strategy Principle

Fixed truck-allocation

Each truck is assigned to a fixed loader. This

strategy serves as a baseline from which the effect

of other truck-allocation strategies is measured.

Minimum truck waiting time
The truck is assigned to the loader that is expected

to provide the least waiting time for the truck.

Minimum production

requirement

The loaders have pre-defined production targets and

the trucks are assigned to the loader with the largest

shortfall, maximum difference between the planned

production and the actual production.

Minimum semi-cycle time

The truck semi-cycle time is defined as the sum of

the time duration for a truck to travel from an

origin, i.e., a loader, dump or intersection, to a final

destination, i.e., a dump or loader, and the time

duration for queuing and loading or dumping. The

objective of this truck-allocation algorithm is to

obtain the assignment with the minimum estimated

truck semi-cycle time.

5.8 Loader set-up

The Loader object receives the OreEntities generated by the OreGenerator,

following the loading process, then passes the OreEntities on to the Truck. The data

input interface for the Loader object is shown in Figure 5-12. The input descriptions

of the Loader object are provided in Table 5-6.

Chapter Five: Developing a Truck-shovel Model Using JaamSim Objects

133

Figure 5-12 Loader inputs interface

Table 5-6 Loader inputs

Input Description

Description A free form string describing the object.

Transport

The Truck objects that transport the processed

OreEntity from a Loader object to a Dump object,

depending on the truck-allocation strategy applied. If

the fixed truck-allocation rule is applied, the specified

Trucks are always assigned to this Loader object,

otherwise, this is the initial assignment at the beginning

of the simulation.

TOperator
The loading time depends on the specified

LoaderOperator objects.

WaitTQueue The Queue object in which OreEntities are placed.

WaitTQueueForLoadingT

Transporter

The Queue object in which Truck objects are placed.

The set-up is the same as the WaitTQueue input.

BucketCapacity The capacity of the loader bucket, ().

FillFactor The fill factor of the loader bucket, (in decimal).

SwellFactor The material swell factor, (in decimal).

Density The material density, (⁄).

PredefinedProduction
The required production tonnage if the minimum

production requirement truck-allocation is applied.

For the Transport input, the Truck objects can be selected from the multiple

checkbox which contains all the available Truck objects, as shown in Figure 5-13.

Chapter Five: Developing a Truck-shovel Model Using JaamSim Objects

134

Figure 5-13 Selecting Truck objects

For the TOperator input, the LoaderOperator objects can be selected from the

multiple checkbox which contains all the available LoaderOperator objects, as

shown in Figure 5-14.

Figure 5-14 Selecting TOperator objects

For the WaitTQueue input, a Queue object can be selected from a drop-down list

containing all the available Queue objects, as shown in Figure 5-15.

Chapter Five: Developing a Truck-shovel Model Using JaamSim Objects

135

Figure 5-15 Selecting TQueue objects

The size and shape of the Loader object can be set in the Basic Graphics tab of the

Input Editor. A 3D file, i.e., a Collada file generated with SketchUp 3D Builder

software (Trimble Inc., 2018), can be imported into the TSJSim model. This file can

be selected from the drop-down list in the DisplayModel input. The length, width

and height of the Loader can be specified in the Size input under the Basic Graphics

tab. Figure 5-16 shows the size specification for a CAT 997K wheel loader and

Figure 5-17 shows the 3D image of the Loader object.

Figure 5-16 Size specification for a loader

Chapter Five: Developing a Truck-shovel Model Using JaamSim Objects

136

Figure 5-17 A 3D loader

5.9 Dump set-up

The Dump object receives and processes both the OreEntities and the Truck objects,

and passes the OreEntities on to the OreSink object. The size and shape set-up for

the Dump object is similar to that of the Loader. Figure 5-18 shows the data input

interface of the Dump object. Table 5-7 provides the input descriptions of the Dump

object.

Figure 5-18 Dump inputs interface

Chapter Five: Developing a Truck-shovel Model Using JaamSim Objects

137

Table 5-7 Dump inputs

Input Description

Description A free form string describing the object.

NextComponent
The OreSink object on to which the OreEntity is

passed.

ServiceTime

The truck dumping time. The time can have a

constant value or a value sampled from a user-

defined statistical distribution, or a TimeSeries

object defined by the user. Multiple dumping

times for various truck model types can be set.

WaitTQueue
The Queue object in which OreEntities are

placed.

WaitTQueueForUnloading

TTransporter

The Queue object in which Truck objects are

placed.

5.10 Route set-up

The Route objects, including the routes for loaded trucks (TRouteLoaded) and the

routes for empty trucks (TRouteEmpty), connect the loading sites with the dump sites.

The Route object consists of spatial coordinate points, as shown in Figure 5-19. The

data input interface of the Route object is shown in Figure 5-20. Table 5-8 provides

the input descriptions of the Route object.

Figure 5-19 Routes consisting of coordinate points

Chapter Five: Developing a Truck-shovel Model Using JaamSim Objects

138

Figure 5-20 Route input interface

Table 5-8 Route inputs

Input Description

Points

A list of coordinates defining the line

segments that make up the haul route. The

input format is { } { }

{ } …

RollingResistance

A list of rolling resistance parameters

corresponding to the list of route segments,

(%).

CoefficientofTraction

A list of coefficient of traction parameters

corresponding to the list of route segments,

(in decimal).

LoadingSite, DumpingSite
The Loader and the Dump objects that are

connected by the Route.

MainRoad
If TRUE, the Route is defined as a main road,

otherwise it is defined as a non-main road.

RestrictedVelocity Speed limits for certain route segments.

NumberForRestrictedVelocity
The order number of the route segment with

the speed limit.

For the LoadingSite, DumpingSite inputs, the Loader or Dump objects can be

selected from the drop-down list showing all the available Loader or Dump objects,

as shown in Figure 5-21.

Chapter Five: Developing a Truck-shovel Model Using JaamSim Objects

139

Figure 5-21 Selecting Loader objects

Another way of setting up the speed limits on the haul route is to set the hauling

velocity using Java programming code. An example of the code is provided below:

//g is the grade resistance; v is the velocity
 if(g < 6 && g >= 0)

{v = Math.min(v, 60);}
 else if(g < 8)

{v = Math.min(v, 30);}
 else if(g < 10)

{v = Math.min(v, 25);}
 else if(g < 12)

{v = Math.min(v, 20);}
 else

{v = Math.min(v, 15);}

If the grade resistance on a route segment is within a certain range, for instance, [0,

6%], then the speed limit is set to 60 km/h using the Java intrinsic function min().

5.11 RouteIntersection set-up

The RouteIntersection objects are used to connect the Route objects to form a traffic

network so that the Trucks can move from one route to another (Figure 5-22). The

data input interface of the RouteIntersection object is shown in Figure 5-23. Similar

to the Route object, the RouteIntersection object consists of a series of coordinates

assigned to the Points keyword; the points on the RouteIntersection must be the

common points of the crossing Routes. The crossing Route objects also need to be

assigned to the TRouteLoaded (for loaded routes) and the TRouteEmpty (for empty

Chapter Five: Developing a Truck-shovel Model Using JaamSim Objects

140

routes) keywords by selecting the available Route objects from the multiple

checkbox, as shown in Figure 5-24.

Figure 5-22 RouteIntersection connecting routes

Figure 5-23 RouteIntersection input interface

Figure 5-24 Selecting Route objects

Chapter Five: Developing a Truck-shovel Model Using JaamSim Objects

141

5.12 RouteSafezone set-up

Similar to the RouteIntersection object, the RouteSafezone object also consists of a

series of coordinates. Apart from the Points and Route inputs, the RouteIntersection

object within the RouteSafezone object should be assigned to the TRouteIntersection

keyword by selecting the available RouteIntersection objects from the drop-down list,

as shown in Figure 5-25.

Figure 5-25 RouteSafezone input interface

5.13 Truck set-up

The data input requirement of the size and shape of a Truck object is similar to those

of the Loader object. The 3D Truck objects are shown in Figure 5-26. The input

interface of the Truck object is shown in Figure 5-27. Table 5-9 provides the input

descriptions of the Truck object.

Chapter Five: Developing a Truck-shovel Model Using JaamSim Objects

142

Figure 5-26 3D Truck objects

Figure 5-27 Truck input interface

Chapter Five: Developing a Truck-shovel Model Using JaamSim Objects

143

Table 5-9 Truck inputs

Input Description

SpotTime

The truck spot time. The time can have a constant

value or a value sampled from a user-defined

statistical distribution, or a TimeSeries object

defined by the user.

WeightofTrucks The weight of the truck (kg).

CapacityofTrucks The capacity of the truck (kg).

TypeofTrucks

In the TSJSim model, three types of trucks have

initially been defined: the CAT 785C (type 1), the

CAT 789C (type 2) and the Komatsu 860E (type

3). For instance, for the truck model CAT789C, a

value of 2 is entered.

Bunching
If TRUE, the bunching effect is to be considered.

Otherwise, it is not considered.

BunchingDistance
The distance between two hauling trucks if

bunching takes place.

RetarderCalibrateFactor

The factor used to calibrate the velocity generated

from the retarder chart. This factor is ranged

between 0 and 1 (in decimal).

TRouteLoaded,

TRouteEmpty All the Routes along which the Truck travels.

Tloader, Tdump
All the Loaders and Dumps to which the Truck

can be assigned.

Dispatching
The truck-allocation strategy applied to the Truck

object.

5.14 Simulation output

The simulation results can be viewed in the Output Viewer. The main outputs for the

Loader (Figure 5-28) include:

1. NumberAdded. The number of OreEntities received from OreGenerator.

2. NumberProcessed. The number of OreEntities processed by the Loader.

3. ProcessingRate. The number of OreEntities processed per unit of time by the

Loader.

Chapter Five: Developing a Truck-shovel Model Using JaamSim Objects

144

4. LoadsProcessed. The weight of OreEntities processed by the Loader.

5. BusytimeForShovel. The busy time for the Loader during the simulation time.

Figure 5-28 Loader output viewer

The simulation results for the Truck object include:

1. The truck cycle time, cycle counts and the elements of the cycle time including

the queuing time for loading, loading time, loaded travelling time, queuing time

for dumping, dumping time, empty travelling time, as shown in Figure 5-29.

2. Truck production.

3. Average truck velocity.

4. Bunching time on the haul route and increased queuing time due to bunching.

Figure 5-29 Truck output viewer

145

CHAPTER SIX

TSJSIM MODEL VALIDATION

6.1 Easter Ridge OB23/25 operation

The developed TSJSim model was validated using field data collected by Shaw

(2012) at a truck-shovel mining operation in Western Australia. The mining

operation known as Easter Ridge OB23/25 consists of four loading sites, namely

S4C, P3WC, P3EC and P4, and four dumping sites, named P1ED, P3WD, P4WD

and ROM Dump. The S4C site is a low grade ore stockpile which produces low

grade material transported to dump P1ED. The other loading sites produce both high

grade ore and waste which is hauled to P3WD, P4WD and the ROM Dump. The

Vulcan 3D surface topography model of the Easter Ridge OB23/25 operation with

the haul route layout and route nodes is shown in Figure 6-1.

Figure 6-1 Route layout of Easter Ridge OB23/25 operation (Shaw, 2012)

The spatial data of the route system including the length and grade of each haul route

segment is provided in Appendix F. The active haul routes from which the data was

collected during a time and motion study are shown in Figure 6-2 and they are also

listed below:

Chapter Six: TSJSim Model Validation

146

 Pit 3 Western Cutback to Pit 3 Waste Dump (P3WC-P3WD).

 Pit 3 Western Cutback to ROM (P3WC-ROM).

 Pit 3 Eastern Cutback to Pit 3 Waste Dump (via lobe 2) (P3EC-P3WD lobe 2).

 Pit 3 Eastern Cutback to ROM (via lobe 2) (P3EC-ROM lobe2).

 Pit 4 to ROM (via lobe 2) (P4-ROM lobe 2).

 Pit 4 to Pit 4 Waste Dump (via lobe 2) (P4-P4WD lobe 2).

 S4C Low Grade Stockpile to Pit 1 East (S4C-P1E).

Figure 6-2 Active haul routes of Easter Ridge OB23/25 operation

The mining equipment available for this truck-shovel mining operation is listed in

Table 6-1. The mining equipment was not assigned to the loading sites or haul routes

permanently, but allocated according to mine planning requirements. In reviewing

the mine production data, there were no more than three active mining areas during

the period investigated (from December 2011 to March 2012) with all the excavators

working in these three active mining areas with wheel loaders utilised as ancillary

equipment.

Chapter Six: TSJSim Model Validation

147

Table 6-1 Mining equipment at Easter Ridge OB23/25 operation

Model Class Fleet Size

Liebherr 9250 Excavator 1

Hitachi 1900BE Excavator 2

CAT 993 Wheel Loader 1

CAT 992G Wheel Loader 1

CAT 785B Haul Truck 2

CAT 785C Haul Truck 11

CAT 789C Haul Truck 5

6.2 Data collection

Shaw (2012) conducted a time and motion study to gather operational cycle time

data at the Easter Ridge OB23/25 operation, and developed an Excel template

utilising the Visual Basic Application (VBA) for observers sitting in haul trucks to

record the required data. The collected data comprised:

1. Truck cycle durations that included queuing, spotting at loader, loading, hauling

loaded, spotting at dump, dumping and returning empty;

2. Truck cycle times were recorded for each active haul route namely:

 P3WC-ROM cycle times for CAT 785

 P4-ROM via lobe 2 cycle times for CAT 785

 P4-P4WD via lobe 2 cycle times for CAT 785

 P3EC-P3WD cycle times for CAT 785

 S4C-P1E cycle times for CAT 789

All of these cycle times are provided in Appendix G. Any cycle times less than

10 records were ignored.

3. Data captured by the observers located in the loading units also included loading

times for the:

Chapter Six: TSJSim Model Validation

148

 Liebherr 9250 loading CAT 785

 Hitachi 1900BE loading CAT 785

 Hitachi 1900BE loading CAT 789

 CAT 993 Wheel Loader loading CAT 785

The probability distribution fits for the loading times analysed using the JMP

software are given in Table 6-2.

Table 6-2 Distributions of loading times

Loader type Distribution

Liebherr 9250 Normal(122.35 s, 18.08 s)

Hitachi 1900BE (loading 785C) LogNormal(5.19 s, 0.16 s)

Hitachi 1900BE (loading 789C) Normal(250.6 s, 33.14 s)

CAT 993 Wheel Loader (loading 785C) LogNormal(5.73 s, 0.12 s)

4. The probability distribution fits for the CAT 785 and CAT 789 dumping times

collected are provided in Table 6-3.

Table 6-3 Distributions of dumping times

Truck type Distribution

CAT 785C Normal(35.77 s, 11.02 s)

CAT 789C Normal(46.88 s, 11.97 s)

6.3 Model input data

The Easter Ridge OB23/25 truck-shovel network, as shown in Figure 6-3, was

modelled using the developed TSJSim model and the field data collected by Shaw

(2012). The initial rolling resistance for each route section was set according to the

following rules:

 Within 50 m of the loading site, rolling resistance is around 12%;

 Outside the loading area and within 200 m of the loading site, rolling resistance

is around 5%;

Chapter Six: TSJSim Model Validation

149

 Within 100 m of the dump site, rolling resistance is around 12%;

 All other routes are maintained at a 4% rolling resistance.

Figure 6-3 Model layout

In the TSJSim model, the loaders were assigned to the fixed loading sites and the

trucks were allocated to the haul routes according to the fixed truck-allocation rule.

The Liebherr 9250 works at P3WC, two Hitachi 1900BEs work at S4C and P3EC,

and the CAT 993 works at P4. Four trucks (CAT 785C) are assigned to route P3WC

– ROM Dump; four trucks (CAT 789C) to route S4C – P1ED; four trucks (CAT

785C) to route P3EC – P3WD; one truck (CAT 785C) to route P4 – ROM Dump and

one truck (CAT 785C) to P4 – P4WD.

The main input parameters for trucks are provided in Table 6-4.

Table 6-4 Truck inputs for CAT 785C and 789C

Truck

type

Empty

weight(kg)
Capacity(kg) Length(m) Width(m) Height(m)

CAT

785C
102 150 147 330 11.02 6.64 4.98

CAT

789C
135 670 181 845 12.13 7.97 5.69

Chapter Six: TSJSim Model Validation

150

The loading times of the four shovels and the dumping times of the trucks are

summarised in Tables 6-2 and 6-3, respectively. The bucket capacity of the Liebherr

9250 is 15 m
3
 and the capacity of the Hitachi 1900BE and the CAT 993 is 12 m

3
.

The assumptions for the model implementation were:

 Each truck is assigned to a fixed route (fixed truck-allocation mode).

 The bunching effect is considered.

 The simulation model runs for 11 hours representing one shift during the

simulation run.

 The experiment comprises 100 simulation replications.

6.4 Development of the Easter Ridge OB23/25 truck-shovel model

The process of developing the Easter Ridge OB23/25 truck-shovel model using the

TSJSim model objects consists of two main steps. The first step is to create the main

model objects and to set up the layout of the truck-shovel network; the second step is

to set up the keywords of the model objects (the TSJSim objects and inputs/outputs

are shown in italics; the JaamSim built-in objects and the provided inputs/outputs

functionalities are shown in bold italics).

6.4.1 Model layout

The default GUI window is shown in Figure 6-4.

Chapter Six: TSJSim Model Validation

151

Figure 6-4 Default GUI window

Clicking on the “+” icon of the Basic Objects in the Model Builder expands the list

for the Basic Objects (Figure 6-5).

Figure 6-5 Opening the Basic Objects library

Clicking on the OreEntity icon in the Basic Objects list and dragging and dropping it

to the View window (Figure 6-6) creates the material that will flow through the

system. The default ID of this object is OreEntity1. Figure 6-7 shows the Input

Editor for OreEntity1. Set the Description input value to “OreEntity flowing through

the system”. Click on the Basic Graphics tab of the Input Editor, set the Size input

value to {5 6 3 m} to approximately match the CAT 785C truck size for visual

purposes, and select Cube as the shape of OreEntity1 (Figure 6-8). Figure 6-9 shows

the modified shape of OreEntity1.

Chapter Six: TSJSim Model Validation

152

Figure 6-6 Creating OreEntity object

Figure 6-7 OreEntity1 input

Figure 6-8 Setting size and shape of OreEntity1

Chapter Six: TSJSim Model Validation

153

Figure 6-9 3D shape of OreEntity1

To generate the OreEntities at the four loading sites, i.e., P3WC, S4C, P3EC and P4,

TEntityGenerator1, TEntityGenerator2, TEntityGenerator3 and TEntityGenerator4

are dragged from the Model Builder, as shown in Figure 6-10. TEntityGenerator1 is

set as the OreGenerator at P3WC, TEntityGenerator2 as the OreGenerator at S4C,

TEntityGenerator3 as the OreGenerator at P3EC and finally TEntityGenerator4 as

the OreGenerator at P4.

Figure 6-10 Creating OreGenerator objects

The OreEntity generated by the OreGenerator will be sent to the Loader object.

Four Loader objects (named Tloader in the Model Builder) are next created (i.e.,

Tloader1, Tloader2, Tloader3, Tloader4) to work at the four loading sites, as shown

Chapter Six: TSJSim Model Validation

154

in Figure 6-11. Tloader1 will be set as the shovel at P3WC, Tloader2 as the shovel at

S4C, Tloader3 as the shovel at P3EC and Tloader4 as the shovel at P4. For visual

purposes, the CAT 997K wheel loader is used as the model for all the Tloaders. To

specify the size and shape of these Tloaders, select the Basic Graphics tab of each

Tloader, set the Size input value to {15.3 6.3 5.5 m} and select the Loader shape as

the DispalyModel input value (Figure 6-12). Figure 6-13 shows the modified shape

of the Tloaders.

Figure 6-11 Creating Loader objects

Figure 6-12 Setting size and shape of Tloader

Chapter Six: TSJSim Model Validation

155

Figure 6-13 Modified shape of Tloaders

The OreEntities processed by the Loader objects are transported from the loading

sites to the four dump sites, i.e., ROM, P3WD, P1ED and P4WD dumps. Tdump1,

Tdump2, Tdump3 and Tdump4 are dragged from the Model Builder, as shown in

Figure 6-14. Tdump1 will be set as the ROM Dump, Tdump2 as the P3WD dump,

Tdump3 as the P1ED dump and Tdump4 as the P4WD dump.

Figure 6-14 Creating Dump objects

After the dumping process, the OreEntity will be destroyed by the OreSink object.

TEntitySink1, TEntitySink2, TEntitySink3 and TEntitySink4 are next created by

Chapter Six: TSJSim Model Validation

156

dragging and dropping them from the Model Builder, as shown in Figure 6-15.

TEntitySink1 is the OreSink for the ROM Dump, TEntitySink2 for the P3WD dump,

TEntitySink3 for the P1ED dump and TEntitySink4 for the P4WD dump.

Figure 6-15 Creating TEntitySinks

To transport the OreEntity from the loading sites to the dump sites, Truck objects are

created by dragging and dropping the TTransporter from the Model Builder to the

View window. There are 14 trucks in total required in the Easter Ridge OB23/25

truck-shovel network (10 CAT 785C trucks and 4 CAT 789C trucks), as shown in

Figure 6-16. For the CAT 785C, the Size input value under the Basic Graphics tab is

set to {11.02 6.64 4.98 m} and a CAT model is selected as the DisplayModel input

value (Figure 6-17); under the Key Inputs tab, the WeightofTrucks input value is set

to 102 150 kg, the CapacityofTrucks input value is set to 147 330 kg, and the

TypeofTrucks input value is set to 1 for the CAT 785C (Figure 6-18). For the CAT

789C, the Size input value under the Basic Graphics tab is set to {12.13 7.97 5.69 m}

and a CAT model is selected as the DisplayModel input value (Figure 6-19); under

the Key Inputs tab, the WeightofTrucks input value is set to 135 670 kg, the

CapacityofTrucks input value is set to 181 845 kg, and the TypeofTrucks input value

is set to 2 for the CAT 789C (Figure 6-20).

Chapter Six: TSJSim Model Validation

157

Figure 6-16 14 TTransporters

Figure 6-17 Size of CAT 785C

Figure 6-18 Weight, capacity and type of CAT 785C

Chapter Six: TSJSim Model Validation

158

Figure 6-19 Size of CAT 789C

Figure 6-20 Weight, capacity and type of CAT 789C

The loading and dump sites are connected by haul routes. In the Model Builder, the

TRoute object is the route on which the loaded trucks haul and the TRouteEmpty is

the route on which the empty trucks haul. The created TRoute object contains only

two points, as shown in Figure 6-21.

Chapter Six: TSJSim Model Validation

159

Figure 6-21 Creating TRoute

Based on the spatial data of the route system provided in Appendix F, the length and

grade of each haul route segment can be converted into a series of coordinates and

assigned to the Points input of the TRoute and TRouteEmpty objects. For example,

TRoute1 is used as the haul route between the P3WC loading site (with Tloader1)

and the ROM dump (with Tdump1); the information for this haul route, as shown in

Table 6-5, can be converted into the coordinates for all the nodes along the haul

route, assuming node P3WC is the reference point with coordinate, (0, 0, 0), as

shown in Table 6-6.

Table 6-5 Route information from P3WC to ROM Dump

Haul section Distance (m) Grade (%)

P3WC to WC1 57.9 0.6

WC1 to WC2 47.7 9.8

WC2 to WC3 38.4 10.5

WC3 to WC4 109.3 2.8

WC4 to ROM1 294.1 -0.7

ROM1 to ROM2 86.5 0.7

ROM2 to ROM3 457.2 0.9

ROM3 to ROM4 178.5 6.5

ROM4 to ROM5 320.2 1.2

ROM5 to ROM Dump 303.7 -0.2

Chapter Six: TSJSim Model Validation

160

Table 6-6 Coordinates of the nodes on TRoute1 between P3WC to ROM Dump

Node Coordinate (m)

P3WC {0, 0, 0}

WC1 {0, -57.9, 0.3474}

WC2 {0, -105.6, 5.022}

WC3 {0, -144, 9.054}

WC4 {0, -253.3, 12.1144}

ROM1 {0, -547.4, 10.0557}

ROM2 {0, -633.9, 10.6612}

ROM3 {0, -1091.1, 14.776}

ROM4 {0, -1269.6, 26.3785}

ROM5 {0, -1589.8, 30.2209}

ROM Dump {0, -1893.5, 29.6135}

The Points input value of TRoute1 can be entered using Table 6-6; Tloader1, which

is at the P3WC loading site, is selected as the LoadingSite input value and Tdump1,

which is at the ROM dump, as the DumpingSite input value. The rolling resistance

and the coefficient of traction factors of each route section are also assigned to the

RollingResistance and CoefficientofTraction keywords, respectively, as shown in

Figure 6-22.

Figure 6-22 Key Inputs for TRoute1

For a two-way traffic haul route, the minimum road width is usually set to 3-3.5

truck widths (Holman, 2006). In the TSJSim model, the maximum truck width is

Chapter Six: TSJSim Model Validation

161

about 8 m (CAT 789C), thus the road width is set to 28 m for safety reasons. The

coordinates of the nodes on TRouteEmpty1 are provided in Table 6-7.

Table 6-7 Coordinates of the nodes on TRouteEmpty1 between P3WC and ROM

Node Coordinate (m)

P3WC {-28, 0, 0}

WC1 {-28, -57.9, 0.3474}

WC2 {-28, -105.6, 5.022}

WC3 {-28, -144, 9.054}

WC4 {-28, -253.3, 12.1144}

ROM1 {-28, -547.4, 10.0557}

ROM2 {-28, -633.9, 10.6612}

ROM3 {-28, -1091.1, 14.776}

ROM4 {-28, -1269.6, 26.3785}

ROM5 {-28, -1589.8, 30.2209}

ROM Dump {-28, -1893.5, 29.6135}

The remaining haul routes are set up similar to TRoute1 and TRouteEmpty1. Figure

6-23 shows the layout of the haul route system in the TSJSim model. Table 6-8

shows the final model objects assigned to both the loading sites and dump sites.

Figure 6-23 Haul route network layout

Chapter Six: TSJSim Model Validation

162

Table 6-8 Model objects in the layout

Location TEntityGenerator Tloader Tdump TEntitySink

P3WC loading site TEntityGenerator1 Tloader1 - -

S4C loading site TEntityGenerator2 Tloader2 - -

P3EC loading site TEntityGenerator3 Tloader3 - -

P4 loading site TEntityGenerator4 Tloader4 - -

ROM dump - - Tdump1 TEntitySink1

P3WD dump - - Tdump2 TEntitySink2

P1ED dump - - Tdump3 TEntitySink3

P4WD dump - - Tdump4 TEntitySink4

To connect the haul routes so that the hauling trucks can shift from one route to

another, five RouteIntersection objects are used, i.e., TRouteIntersection1, TRoute

Intersection2, TRouteIntersection3, TRouteIntersection4 and TRouteIntersection5.

The intersections of the haul routes are entered as the Points input value of the

TRouteIntersection. The crossing TRoutes and TRouteEmptys are selected as the

input values for the TRouteLoaded and the TRouteEmpty keywords, respectively. For

example, TRouteIntersection3 links TRoute1 and TRoute2 as well as TRouteEmpty1

and TRouteEmpty2, as shown in Figure 6-24. The input parameters for

TRouteIntersection3 are shown in Figure 6-25.

Figure 6-24 TRouteIntersection3

Chapter Six: TSJSim Model Validation

163

Figure 6-25 Key Inputs for TRouteIntersection3

6.4.2 Key Inputs configuration

After setting up the model layout, the Key Inputs for each object can be specified in

the following sections:

6.4.2.1 TEntityGenerator

Select a TEntityGenerator in the View window (Figure 6-26). The NextComponent

input value should be the Loader object working at the loading site. For instance, the

NextComponent for the TEntityGenerator1 is Tloader1 at the P3WC loading site, as

shown in Figure 6-27. The FirstArrivalTime and InterArrivalTime input values for

each TEntityGenerator are set to the default values, i.e., 0 and 1 s, respectively.

OreEntity1 is selected as the PrototypeEntity for all the TEntityGenerators. The

value of the Maxnumber input is left blank, so there is no limit to the maximum

number of OreEntities being generated. All the TEnityGenerators, i.e.,

TEntityGenerator1, TEntityGenerator2, TEntityGenerator3 and TEntityGenerator4,

have the same FirstArrivalTime, InterArrivalTime, PrototypeEntity and Maxnumber

input values but different NextComponent input values. Table 6-9 shows the

NextComponent input values for all the TEntityGenerators.

Chapter Six: TSJSim Model Validation

164

Figure 6-26 Selecting TEntityGenerator in the View window

Figure 6-27 Key Inputs of TEntityGenerator1

Table 6-9 NextComponent inputs for TEntityGenerators

Object ID NextComponent Description

TEntityGenerator1 Tloader1 OreGenerator at P3WC

TEntityGenerator2 Tloader2 OreGenerator at S4C

TEntityGenerator3 Tloader3 OreGenerator at P3EC

TEntityGenerator4 Tloader4 OreGenerator at P4

Chapter Six: TSJSim Model Validation

165

6.4.2.2 Tloader

A Tloader is selected from the View window, e.g., Tloader1 at P3WC. Figure 6-28

shows the Input Editor of Tloader1.

Figure 6-28 Key Inputs of Tloader1

The Key Inputs are specified as follows:

Description: enter “Loader at P3WC” as the description for Tloader1.

Transport: select the trucks assigned to the Tloader. In Figure 6-28, four trucks

(CAT 785C) are assigned to Tloader1, i.e., TTransporter5, TTransporter6,

TTransporter7 and TTransporter8. Table 6-10 shows the Transport input values as

well as the associated truck types for all the Tloaders.

Table 6-10 TTransporters for all the Tloaders

Object ID Description Transport Truck type

Tloader1 Loader at P3WC TTransporter5,6,7,8 CAT 785C

Tloader2 Loader at S4C TTransporter1,2,3,4 CAT 789C

Tloader3 Loader at P3EC TTransporter9,10,11,12 CAT 785C

Tloader4 Loader at P4 TTransporter13,14 CAT 785C

TOperator: the loading time of a Tloader is determined by the TOperator assigned to

the Tloader. Six Probability Distribution objects, including NormalDistribution1,

NormalDistribution2, NormalDistribution3, NormalDistribution4, LogNormal-

Chapter Six: TSJSim Model Validation

166

Distribution1 and LogNormalDistribution2, are used to specify the loading time and

dumping time, as shown in Figure 6-29.

Figure 6-29 Probability Distribution objects assigned to Tloader and Tdump

The specifications for these Probability Distributions are shown in Table 6-11.

Table 6-11 Specifications of Probability Distributions

Object ID

Probability

distribution Description

NormalDistribution1

Normal(35.77 s,

11.02 s) Dumping time for CAT 785C

NormalDistribution2

Normal(46.88 s,

11.97 s) Dumping time for CAT 789C

NormalDistribution3

Normal(250.6 s,

33.14 s)

Loading time of Tloader2 at

S4C

NormalDistribution4

Normal(122.35 s,

18.08 s)

Loading time of Tloader1 at

P3WC

LogNormalDistribution1

LogNormal(5.19 s,

0.16 s)

Loading time of Tloader3 at

P3EC

LogNormalDistribution2

LogNormal(5.73 s,

0.12 s) Loading time of Tloader4 at P4

Next four TOperators, i.e., TOperator1, TOperator2, TOperator3 and TOperator4,

are created, as shown in Figure 6-30. For example, TOperator1 is assigned to

Tloader1 at P3WC, thus NormalDistribution4 is set as the ServiceTime input value.

Chapter Six: TSJSim Model Validation

167

Figure 6-30 Creating TOperators

Table 6-12 provides the ServiceTime input parameters for all the TOperators.

Table 6-12 Specifications of TOperators

Object ID Description ServiceTime

TOperator1 Assigned to Tloader1 at P3WC NormalDistribution4

TOperator2 Assigned to Tloader2 at S4C NormalDistribution3

TOperator3 Assigned to Tloader3 at P3EC LogNormalDistribution1

TOperator4 Assigned to Tloader4 at P4 LogNormalDistribution2

WaitTQueue and WaitTQueueForLoadingTTransporter: TQueue objects can be

dragged and dropped from the Model Builder (Figure 6-31) and next assigned to

each loading site and dump site. For instance, TQueue1 is assigned as the

WaitTQueue input value and TQueue2 as the WaitTQueueForLoadingTTransporter

input value for Tloader1 (Figure 6-28).

Figure 6-31 Creating TQueues

Chapter Six: TSJSim Model Validation

168

6.4.2.3 Tdump

A Tdump object is selected at a dump site, e.g., Tdump1 at the ROM dump, as shown

in Figure 6-32. As an example, the Key Inputs values for Tdump1 are shown in

Figure 6-33. The TEntitySink at the dump site is selected as the NextComponent

input value. Both NormalDistribution1 and NormalDistribution2 are selected as the

ServiceTime input values for the dumping times of the CAT 785C and CAT 789C

trucks. TQueue13 is selected as the WaitTQueue input value and TQueue14 as the

WaitTQueueFor-UnloadingTTransporter input value.

Figure 6-32 Selecting Tdump

Figure 6-33 Key Inputs of Tdump1

Chapter Six: TSJSim Model Validation

169

6.4.2.4 TTransporters

The Key Inputs of all the TTransporters (TTransporter1 through TTransporter14)

are required to be specified. Select a TTransporter from the View window, for

example, TTransporter1 (CAT 789C), as shown in Figure 6-34. The following Key

Inputs (Figure 6-35) are required:

 Bunching: TRUE.

 BunchingDistance: 20 m.

 TRouteLoaded and TRouteEmpty: select all the available TRoute and

TRouteEmpty objects, so that the TTransporter can haul on the respective routes.

 Tloader and Tdump: select the Tloader and Tdump assigned to the TTransporter.

Table 6-13 provides the Tloader and Tdump input values for all the

TTransporters.

 Dispatching: select FixedDispatching as the truck-allocation method applied to

the TTransporter.

Figure 6-34 Selecting TTransporter1

Chapter Six: TSJSim Model Validation

170

Figure 6-35 Key Inputs for TTransporter1

Table 6-13 Tloader and Tdump input values for TTransporters

TTransporter ID Tloader Tdump

1,2,3,4 Tloader2 (at S4C) Tdump3 (at P1ED dump)

5,6,7,8 Tloader1 (at P3WC) Tdump1 (at ROM dump)

9,10,11,12 Tloader3 (at P3EC) Tdump2 (at P3WD dump)

13,14 Tloader4 (at P4) Tdump4 (at P4WD dump)

The screenshots for the simulation animation are shown in Figures 6-36 through 6-

38.

Figure 6-36 TSJSim simulation screenshot a

Chapter Six: TSJSim Model Validation

171

Figure 6-37 TSJSim simulation screenshot b

Figure 6-38 TSJSim simulation screenshot c

6.5 Model validation

The TSJSim model was run using the above data for 11 hours and each run was

implemented with 100 replications. The simulation results were compared with the

field data collected by Shaw (2012) for the model validation. The average truck

cycle times on all the haul routes, including P3WC – ROM Dump (CAT 785C), S4C

– P1ED (CAT 789C), P3EC – P3WD (CAT 785C), P4 – ROM (CAT 785C) and P4

– P4WD (CAT 785C), generated by running the TSJSim model were compared to

the actual cycle times observed during the time and motion study using the JMP data

analysis. The cycle times of the simulation results are provided in Appendix H.

Chapter Six: TSJSim Model Validation

172

Formally, a statistical test of the null hypothesis: 𝑠 𝑟

Alternative hypothesis: 𝑠 𝑟

where

 𝑠 Average cycle time calculated from simulation results.

 𝑟 Average cycle time derived from field data.

If is not rejected, then it is not sufficient to consider the model invalid. If is

rejected, then the current version of the model is rejected.

The testing of the hypothesis was implemented using the JMP statistical software

(Carver, 2010). In the JMP data analysis, the null hypothesis is assumed to be true at

the level of significance 0.05.

6.5.1 Comparison of cycle times on route P3WC – ROM Dump

As an example, Figure 6-39 shows the comparison of the distributions of the cycle

times on route P3WC-ROM using both the field data and the simulation results.

Figure 6-39 Distribution comparison on P3WC-ROM

Chapter Six: TSJSim Model Validation

173

The mean value for the cycle time derived from the field data 𝑟 is 831 s. The

mean value for the cycle time from the simulation results 𝑠 is 829 s. At 95%

confidence, the half-width is 4 s and the estimate value is in the range of [825 s, 833

s]. The estimate error is -0.3%.

In the case of the t significance test for the comparison of cycle times on route

P3WC-ROM, as shown in Figure 6-40, the p-values marked by the red square prove

that for route P3WC-ROM, there is no significant difference between the mean cycle

time from the field data and the mean cycle time from the simulation results.

Figure 6-40 t-test results for P3WC-ROM

6.5.2 Model validation summary

The summary statistics taken from the comparison of the actual cycle times and the

simulation results are provided in Figure 6-41 and Table 6-14. The maximum

prediction error for all the output is 0.5% and the p-values for all the cycle times are

significantly greater than 0.05. It is sufficient to assume that the TSJSim model is

valid.

Table 6-14 Simulation model validation

Haul routes Actual cycle time (s) Simulated cycle time (s) Error p-value

P3WC-ROM 831 829 -0.30% 0.24

P4-ROM 953 958 0.50% 0.41

P4-P4WD 684 683 -0.20% 0.92

S4C-P1E(789) 1432 1432 0% 0.96

P3EC-P3WD 1452 1453 0% 0.93

Chapter Six: TSJSim Model Validation

174

Figure 6-41 Summary statistics of actual data and simulation results

6.6 Model application for optimum fleet size

The match factor (MF) has been widely used in the mining industry for selecting the

optimum fleet for a truck-shovel system (Morgan and Peterson, 1968):

Chapter Six: TSJSim Model Validation

175

 𝑀
 𝑁 𝐿

 𝑁
 (6.1)

A MF of 1.0 represents a balance point which indicates that the arriving rate of the

trucks equals the shovel serving rate. If the ratio exceeds 1.0, then the arriving rate of

the trucks exceeds the shovels’ serving rate, resulting in trucks queuing at the

shovels. If the ratio is below 1.0, then the shovels’ serving rate exceeds the arriving

rate of the trucks, resulting in the shovels waiting for trucks to arrive.

The validated TSJSim model was used to optimise the Eastern Ridge OB 23/25

operation using a fleet “sub-optimisation” method suggested by Ataeepour and

Baafi (1999). Two trucks are assigned to each shovel initially. The “optimum”

number of trucks for the first shovel can be obtained by following the steps:

1. Increase the number of trucks for the first shovel while keeping the number of

trucks for the remaining shovels at two;

2. Evaluate the shovel production, equipment utilization, etc. to find out the

optimum number of trucks for the first shovel.

Then the “optimum” number of trucks for the second shovel can be obtained by

following the steps:

1. Increase the number of trucks for the second shovel but using the “optimum”

fleet size so far obtained;

2. Evaluate the shovel production, equipment utilization, etc. to find out the

optimum number of trucks for the second shovel.

By repeating the above “sub-optimisation” method for all the shovels, the “optimum”

number of trucks for all the shovels in the network was obtained. The sequence of

the “sub-optimisation” was as follows:

1. Shovel 1 (P3WC loading site with Liebherr 9250),

2. Shovel 2 (S4C loading site with Hitachi 1900BE),

3. Shovel 3 (P3EC loading site with Hitachi 1900BE),

Chapter Six: TSJSim Model Validation

176

4. Shovel 4 (P4 loading site with Hitachi 1900BE).

The outputs include the truck queuing time for one truck cycle, the truck cycle time,

the shovel utilisation, the shovel production and the match factor (MF).

According to Smith (1999), the system productivity is dependent on the shovel

utilisation. The higher the shovel utilisation, the greater the system production.

However, the efficiency of the entire system is significantly influenced by the truck

utilisation which is defined by Equation (6.2):

(6.2)

In an over trucked system, i.e. a MF > 1, too many trucks in the system cause low

truck utilisation. Although high system productivity may be maintained, the system

efficiency is reduced and the operating expenses (OPEX) increases. On the contrary,

in an under trucked system, i.e. a MF < 1, the truck utilisation is improved with a

loss of system productivity. The OPEX is reduced and the truck fleet size shrinks,

thus the capital expenditure (CAPEX) decreases (Hays, 1990).

Case 1: Over trucking to maximise production at the expense of OPEX

If the KPI for the entire truck-shovel network system is tonnes of materials moved,

the focus for the operation is to maximise total production across the entire fleet of

shovels and trucks. The following two production constraints can be set:

1. The utilisation of each shovel above 95%;

2. The truck utilisation in the range of 90% to 95%.

Table 6-15 shows the truck fleets configuration and the associated performance

parameters for the entire truck-shovel network system using such production

constraints. There are 28 trucks serving the system in which 7 trucks are allocated to

Shovel 1, 8 trucks to Shovel 2, 8 trucks to Shovel 3 and 5 trucks to Shovel 4. The

match factor for each fleet is close to 1, the balance point which implies that the

Chapter Six: TSJSim Model Validation

177

shovel and the associated trucks are well matched. The production of each shovel in

the system is maximised as indicated by the full utilisation of the shovel and also the

truck utilisation is controlled. The system production per shift (11 h) is 154 433 t.

Table 6-15 Case 1 Truck-shovel network shift simulation results

Loader
Fleet

size

Ave

waiting

time (s)

Ave cycle

time (s)

Truck

utilisation

Shovel

utilisation

Shovel

production (t)
MF

Shovel 1 7 51 867 94% 99% 51 656 1.04

Shovel 2 8 119 1492 92% 99% 36 253 1.07

Shovel 3 8 103 1455 93% 99% 34 005 1.08

Shovel 4 5 87 918 91% 99% 32 519 1.08

Assuming that the cost for a mining dump truck to operate is AU$ 400 per hour and

an excavator AU$ 800 per hour (Nel et al., 2012). The total queuing time for all the

trucks is 83381 s, 23.16 hrs, and the total idle time for all the loaders is 1430 s,

nearly 0.40 hrs. Then the total OPEX caused by truck queuing and loader waiting is

AU$ 9582 per shift and approximately 6 cents per tonne.

Case 2: Slightly under trucking to reduce OPEX savings at the cost of production

If the KPI for the truck-shovel network system is to maximise truck utilisation and

also the focus of operational planning is to reduce OPEX by slightly under trucking,

then the following two production constraints can be imposed:

1. The utilisation of each shovel at around 90%;

2. The truck utilisation above 95%.

Table 6-16 shows the simulation results. In this case, the truck fleet size is 24. 6

trucks are assigned to Shovel 1, 7 trucks to Shovel 2, 7 trucks to Shovel 3, and 4

trucks to Shovel 4. As the shovel utilisation decreases, the total shift production is

reduced to 138 498 t.

Chapter Six: TSJSim Model Validation

178

Table 6-16 Case 2 Truck-shovel network shift simulation results

Loader
Fleet

size

Ave

waiting

time (s)

Ave

cycle

time (s)

Truck

utilisation

Shovel

utilisation

Shovel

production

(t)

MF

Shovel 1 6 19 835 98% 88% 46 041 0.89

Shovel 2 7 40 1417 97% 92% 33 386 0.93

Shovel 3 7 45 1398 97% 92% 31 068 0.94

Shovel 4 4 24 859 97% 85% 28 003 0.86

The total queuing time for all the trucks is reduced to 26758 s, 7.43 hrs, but the total

idle time for all the loaders increases to 17144 s, 4.76 hrs. The total OPEX caused by

truck queuing and loader waiting is AU$ 6783 per shift and approximately 5 cents

per tonne. Compared with Case 1, AU$ 2799 per shift (1.3 cent per tonne) is saved

from OPEX. In Case 2, the fleet size is reduced to 24. Suppose the capital cost of

each saved truck is approximately AU$ 1 650 000 (Machinery Trader, 2016) and the

serving time of the truck fleet is 20 years, without considering depreciation, the cost

saved from CAPEX is AU$ 414 per shift, approximately 0.3 cent per tonne.

Therefore, the total cost saved from OPEX and CAPEX, compared with Case 1, is

AU$ 3214 per shift, 1.6 cent per tonne.

In a real truck-shovel mining network system, a single shovel may be critical to

ensure a dragline or coal fleet is not delayed and therefore would have a higher

priority than other shovels which may have a lower priority and therefore can absorb

a lower productivity. The TSJSim model provides the capability of estimating the

equipment performance for not only a single truck fleet but also for multiple truck

fleets in the entire truck-shovel network system. The best truck fleet combination can

be determined by varying shovel priorities. This capability offers a management a

tool to evaluate the performance of the entire truck-shovel network system of a mine.

179

CHAPTER SEVEN

MICROSCOPIC SIMULATION WITH TSJSIM

7.1 Microscopic simulation approach

There are two approaches commonly used to model an Intelligent Transportation

System (ITS), i.e., the macroscopic and microscopic modelling approaches. The

macroscopic approach describes the traffic process via low level detailed traffic

objects such as the traffic flow or traffic density. The microscopic is known as a

higher level detailed modelling approach, considering the traffic elements, for

instance, individual vehicle units, haul routes, the interaction between the vehicle

units and the influence of the traffic network on the vehicle units. Previous work by

Liu et al. (1996), Larry et al. (2000) and Ben-Akiva et al. (2003) proved that the

macroscopic approach fails to reproduce the individual vehicle movement and also

to capture the dynamic interaction on traffic networks. Furthermore, Jaoua (2009)

pointed out that when traffic interaction on haul route networks is ignored, the

macroscopic simulation results are biased significantly.

The developed TSJSim model considers a microscopic discrete-event simulation

option that can be used to evaluate the true KPIs of a truck-loader transportation

system as it considers the dynamic interaction between the trucks and the traffic

environment. More specifically, the impact of the truck bunching effect and the

traffic management in the intersection areas are studied in this Chapter.

7.2 Bunching effect

According to Smith (1999), an important factor that reduces the productivity of the

truck-loader system is bunching which is the phenomenon where a truck following a

slower truck catches up and then slows itself behind the slower truck. Bunching

occurs when the trucks are not evenly spaced and the distance between the trucks is

reduced due to the mixing of trucks with varied performances. In general, for safety

reason, when bunching occurs, overtaking is not permitted unless positive

communication is established and acknowledgement from the machine operator is

Chapter Seven: Microscopic Simulation Study With TSJSim

180

obtained, and the condition for safe overtaking is ensured (Karara Hematite Project,

2013).

Generally speaking, the bunching effect prolongs the hauling time of a truck,

resulting in the variations in truck cycle times and non-synchronisation in the

haulage system (Hays, 1990), thus lowering the truck utilisation and productivity.

Morgan and Peterson (1968) examined the bunching effect on productive efficiency

by using a stochastic simulation and changing the cycle time variation of the hauling

trucks. Their simulation results show that the maximum reduction in efficiency due

to bunching, i.e., the bunching correction in Figure 7-1, occurs at the perfect match

point and the correction for bunching diminishes as the mismatch increases. Morgan

and Peterson (1968) proposed that a correction factor between the minimum and

maximum bunching correction factors can be used to correct the efficiency. This

method of correction is easier than a stochastic simulation (Douglas, 1964; Smith et

al., 2000) and is used in practice, for example, Caterpillar’s Fleet Production and

Cost Analysis (FPC) simulator uses a bunching factor to reflect minimal, average

and maximum levels of bunching influence. Most of the previous truck-allocation

models (Lizotte and Bonates, 1987; Kolonja et al., 1993; Temeng et al., 1997; Baafi

and Ataeepour, 1998; Alarie and Gamache, 2002; Hashemi and Sattarvand, 2015;

Sofranko et al., 2015; Que et al., 2016) using the macroscopic modelling approach

simplify or ignore the bunching effect in a truck-shovel system. Burt and Caccetta

(2007) pointed out that further modelling of the bunching effect is still needed for a

better estimation of the performance of the truck-loader system.

Chapter Seven: Microscopic Simulation Study With TSJSim

181

Figure 7-1 Effect of mismatch and bunching (Morgan and Peterson, 1968)

7.2.1 A truck bunching model

In TSJSim, the Route object is divided into various segments depending on the

combination of route variables which include grade, rolling resistance and traffic

infrastructure. Trucks travel along these segments of the hauling route with different

mean travelling speeds dependant on the particular segment. As shown in Figure 7-2,

when a truck is travelling within Segment A, the speed of the truck is ; when the

truck is hauling within Segment B, the speed is , and when it reaches point B, the

speed changes from to . When bunching occurs, depending on which of the

segment(s) both the truck ahead (the slower truck) and the truck behind (the faster

truck) are within, there are three bunching possibilities: the three-stage bunching

possibility, the two-stage bunching possibility and the safe correction distance

possibility.

Figure 7-2 Trucks hauling on route segments with different mean speeds

Chapter Seven: Microscopic Simulation Study With TSJSim

182

 Three-stage bunching possibility

When bunching occurs (Figure 7-3), if both trucks are still within the same route

segment, the speed change for the truck following to travel through this route

segment can be considered in three stages:

(1) hauling at its own speed on the current segment,

(2) bunching with the speed of the truck ahead on the current segment, and

(3) bunching with the speed of the truck ahead on the next segment.

As shown in Figure 7-3, in Stage 1, after reaching point A and before bunching

occurs, Truck 2 travels with , the designated speed for Truck 2 to haul in

Segment B; after bunching occurs and before Truck 1 arrives at point B, in Stage

2, the bunching speed of Truck 2 is equal to the speed of Truck 1, , the speed

for Truck 1 to haul in Segment B. When Truck 1 arrives at point B and Truck 2

is still on Segment B, in Stage 3, the bunching speed of Truck 2 is , the

designated speed for Truck 1 to haul on Segment C. Therefore the sequent

hauling speeds for Truck 2 to travel through Segment B include , and .

Figure 7-3 Three-stage bunching process

 Two-stage bunching possibility

When bunching occurs (Figure 7-4), if the truck ahead is on Segment C whereas

the following truck is still on Segment B, the speed change for the truck

following to travel through Segment B can be considered in two stages:

Chapter Seven: Microscopic Simulation Study With TSJSim

183

(1) hauling at its own speed on the current segment, and then

(2) bunching with the speed of the truck ahead on the next segment.

As shown in Figure 7-4, in Stage 1, before the bunching occurs, Truck 2 travels

at , the designated speed for Truck 2 to haul in Segment B; in Stage 2, after

bunching occurs, although Truck 2 is still on Segment B, as Truck 1 is already on

Segment C or other trucks causing Truck 1 to follow behind are already on

Segment C, the speed of Truck 2 changes to , the speed for Truck 1 to haul on

Segment C. Thus the sequent speeds for Truck 2 to travel on Segment B include

 and .

Figure 7-4 Two-stage bunching process

 Safe correction distance possibility

It may happen that the initial distance between the two trucks is shorter than the

required safety bunching distance. In this case, the truck following has to slow

down to increase the distance between itself and the truck ahead to the required

safety bunching distance. As shown in Figure 7-5, the reduced speed of the truck

following (Truck 2), which ensures that the safety bunching distance can be

obtained before the truck ahead (Truck 1) leaves the segment (Segment B), can

be calculated by Equation (7.1):

 (7.1)

where

 initial distance between Truck 1 and Truck 2, m

Chapter Seven: Microscopic Simulation Study With TSJSim

184

 hauling speed for Truck 1 on Segment B, m/s

 time for Truck 1 to reach point B, s

 modified hauling speed for Truck 2 increasing the bunching distance, m/s

 safety bunching distance, m

Therefore the reduced speed should satisfy the following condition:

 (7.2)

Figure 7-5 Safe correction distance process

7.2.2 Bunching module development

When bunching occurs, if there are more than two trucks in the bunch, the behaviour

of the bunched trucks is influenced by the (first) leading truck in the bunch.

Bunching may also disappear when trucks enter a traffic intersection. In the

developed TSJSim simulation model, the information for the bunched trucks is

stored in a list which keeps updating according to the status of each individual truck

in the bunch.

The bunching algorithm for trucks to travel on a route is summarised in Figure 7-6.

Chapter Seven: Microscopic Simulation Study With TSJSim

185

Figure 7-6 Bunching algorithm for trucks to haul on route

When a truck enters a route segment, the model checks if there are any other trucks

on this segment. If not, the truck travels without bunching; otherwise, the three

bunching possibilities are considered. The conditions are determined from the first

stage, namely the time duration for the truck to reach the truck ahead, , which

equals the ratio of the distance between the two trucks to the difference between the

velocities, as given by Equation (7.3). The safety correction distance sub-programme

is implemented if the distance of the two trucks is shorter than the safety bunching

distance.

 (7.3)

where

 time duration for the faster truck to reach the slower truck, s

 distance between the two trucks, m

 difference between the speed of the faster truck and that of the slower truck,

m/s.

Chapter Seven: Microscopic Simulation Study With TSJSim

186

The chasing time for the three-stage bunching is different from that for the two-stage

bunching, as the value of is different. Therefore the condition for applying the

three-stage bunching process is

 𝑢𝑟𝑟 𝑡 𝑠 𝑟𝑠𝑡 (7.4)

The condition for applying the two-stage bunching process is

 𝑢𝑟𝑟 𝑡 𝑠 𝑟𝑠𝑡 (7.5)

where

 𝑢𝑟𝑟 𝑡 time for the current truck to enter the segment, s

 𝑟𝑠𝑡 time for the leading truck in the bunch to arrive at the next

 point on the route, s

 𝑠 time duration for the truck following to reach the truck ahead

 in the three-stage bunching process, s

 𝑠 time duration for the truck following to reach the truck ahead

 in the two-stage bunching process, s

If the conditions for three-stage bunching and two-stage bunching are not satisfied,

indicating that the truck following is not fast enough to bunch behind the truck ahead,

then the truck following travels at its designated speed.

For a simplified truck-shovel model with one shovel, consider two loaded trucks

travelling from the same shovel, Truck 1 hauling within a route segment and Truck 2

ready to enter the segment, as shown in Figure 7-7.

Chapter Seven: Microscopic Simulation Study With TSJSim

187

Figure 7-7 Two trucks hauling through one segment

The average velocities for Truck 1 and Truck 2 to travel through this segment are

and (m/s), respectively, and . If bunching occurs, the following condition

must be satisfied:

 (7.6)

where

 the entry time of Truck 2, i.e., the time of which Truck 2 enters the

segment, s

 the time duration for Truck 2 to reach Truck 1, s

 the time when Truck 1 leaves the segment, s

In addition, the following equations are given:

{

 (7.7)

where

 the loading time for Truck 2, which equals the difference between the

 entry time of Truck 2 and that of Truck 1, s

Chapter Seven: Microscopic Simulation Study With TSJSim

188

 the entry time of Truck 1, i.e., the time for Truck 1 to enter the segment, s

 the distance between Truck 1 and Truck 2, m

 the hauling time for Truck 1 to travel through the segment, s

 the length of the segment, m

Thus, the following formula can be derived from the above equations:

 (7.8)

This implies that in the truck-shovel system with one shovel, if bunching occurs on a

haul segment, the loading time for the truck behind must be less than a certain value

which is determined by both the length of the segment and the velocities of the lead

truck and the truck behind.

The sub-programmes responsible for the bunching process were setup similar to the

hauling process discussed in Section 4.4.7.4 of Chapter 4. The entityOvertaking

Schedule function for loaded hauling trucks and the transOvertakingSchedule

function for empty hauling trucks were developed to implement the bunching

algorithm on routes. When a truck enters a haul segment, either the

entityOvertakingSchedule function or the transOvertakingSchedule function is called

to check if bunching will occur on the segment, and if so, either the three-stage

bunching process or the two-stage bunching process is to be implemented, as shown

in Figure 7-8.

Chapter Seven: Microscopic Simulation Study With TSJSim

189

Figure 7-8 Flowchart for bunching sub-programme

The time durations that the bunched truck spends at each bunching stage are stored

in variables durFirst (Stage 1 bunching), durSecond (Stage 2 bunching) and

durThird (Stage 3 bunching), which are determined as follows:

 Variable durFirst (Stage 1 bunching)

Both for the three-stage bunching and two-stage bunching, variable durFirst is

the time duration taken for the truck following to reach the truck ahead during

the first stage, i.e., 𝑠 in Equation (7.4) and 𝑠 in Equation (7.5), respectively.

 Variable durSecond (Stage 2 bunching)

For the three-stage bunching process, variable durSecond is the time that the

truck following spends bunched with the truck ahead which is hauling on the

same route segment. According to Figure 7-3, variable durSecond in the three-

stage bunching process can be given by Equation (7.9):

 𝐿 𝑠 (7.9)

where

If 3-stage-

bunching is

satisfied?

If 2-stage-

bunching is

satisfied?

durFirst

durSecond

durThird

durFirst

durSecond

secondStageTargetInThreeStages

thirdStageTargetInThreeStages

secondStageTargetInTwoStages

Y

N N

Y

arriveAtInterval

Chapter Seven: Microscopic Simulation Study With TSJSim

190

 𝐿 length of the segment, m

 𝑠 duration for the truck behind to reach the truck ahead in the three-stage

 bunching process, s

 speed for Truck 2 () to haul on Segment B in Figure 7-3 Stage 1, m/s

 distance between Truck 2 () and Truck 1 () in Figure 7-3 Stage 2, m

 speed for Truck 1 () to haul on Segment B in Figure 7-3 Stage 2, m/s

Figure 7-3 Three-stage bunching process

For the two-stage bunching process, variable durSecond is the time duration that

the truck following spends bunched with the truck ahead which is hauling on the

next route segment. Referring to Figure 7-4, variable durSecond in the two-stage

bunching process can be given by Equation (7.10):

 (7.10)

where

 distance between Truck 2 () and Truck 1 () in Figure 7-4 Stage 2, m

 speed for Truck 1 () to haul on Segment C in Figure 7-4 Stage 2, m/s

Chapter Seven: Microscopic Simulation Study With TSJSim

191

Figure 7-4 Two-stage bunching process

 Variable durThird (Stage 3 bunching)

The third stage of the three-stage bunching process is similar to the second stage

of the two-stage bunching process. Variable durThird is the time duration taken

by the following truck to follow along behind the truck ahead which is hauling in

the next route segment at the third stage of the three-stage bunching process.

Referring to Figure 7-3, variable durThird can be given by Equation (7.11):

 (7.11)

where

 distance between Truck 2 () and Truck 1 () in Figure 7-3 Stage 3, m

 speed for Truck 1 () to haul on Segment C in Figure 7-3 Stage 3, m/s

Once the time duration for each bunching stage is determined, the total delay time

can be set in the scheduleProcess function by calling the three functions

secondStage-TargetInThreeStages, thirdStageTargetInThreeStages and secondStage

TargetInTwo-Stages. For the three-stage bunching process, durSecond is the total

delay time for the secondStageTargetInThreeStages function and durThird the total

delay time for the thirdStageTargetInThreeStages function. For the two-stage

bunching process, durSecond is the total delay time for the secondStageTarget-

InTwoStages function.

Chapter Seven: Microscopic Simulation Study With TSJSim

192

After the bunching delay on the current haul segment has been determined, the truck

leaves the current segment for the next segment. The arriveAtInterval function is

then called again.

7.2.3 Assessing the bunching effect on mine production

For a truck-shovel system with only one shovel and one truck, there is neither

queuing nor bunching in the system and both the truck utilisation and the truck

productivity are 100%, although the shovel productivity may be low. As more trucks

are added to the system, a queue is formed at the shovel and there is a potential for

bunching; both the utilisation and productivity of each truck is then decreased.

Consider two trucks hauling the same distance on the same haul route, Truck 1 (in

front) with average velocity and Truck 2 (behind Truck 1) with average velocity

 , ; the travelling time for Truck 1 is and that for Truck 2 is ,

obviously, . If bunching happens, Truck 2 continues to follow Truck 1 with

speed of , the increased hauling time caused by bunching, , is defined

as the bunching time. Since , the lost time due to bunching (or the

bunching time) can be written as:

 (7.12)

For a truck-shovel system model with no bunching effect considered, the production

is reduced due to truck queuing. However, if the bunching effect is considered in the

model, the reduced production can be the combined result of truck bunching and

queuing. To estimate the bunching effect, the bunching time and the increased

queuing time due to bunching are required. A factor, bunching effect on production

(BEP, tonnes per unit time), defines the changing rate of production caused by

bunching which can be expressed by Equation (7.13). This factor shows the

production change for every lost unit time caused by bunching (includes the

bunching time and increased queuing time due to bunching). For instance, if the BEP

of a truck is x tonne/min, it indicates that shovel production change is x tonne for

every minute the truck bunches and queues due to bunching.

Chapter Seven: Microscopic Simulation Study With TSJSim

193

7.3 Traffic control in safezone

The bunching process discussed above is the traffic situation where those trucks that

interact with each other are hauling on the same route and travelling in the same

direction. In other words, it only covers the truck interaction that occurs on one

single route, namely the bunching phenomenon on the route. However, in open-pit

mining, a traffic network is usually formed by haul routes and intersections

connected to each other, and the trucks hauling on one route often interact with the

trucks hauling on another route at the roadway intersections.

7.3.1 Main-route traffic management

A main route is defined as the haul route that connects the active loading units and

dumps or crushers with a high priority; other haul routes without this priority are

referred to as non-main routes. Since the traffic flow on the main route has priority

over the traffic flow on the non-main routes, the non-main route trucks have to give

way to the main route trucks at the roadway intersection. When a non-main route

truck reaches an intersection area and is ready to travel through the intersection or

make a turn, and a main route truck arrives at the same time or is within the safe

distance (m) from the intersection, the non-main route truck has to wait until the

main route truck has left the intersection. Figure 7-9 highlights the use of a safezone

at an intersection. Trucks on the non-main route have to wait at the safezone until

there is no main route truck in the safezone. The behaviours of the non-main route

trucks, i.e., waiting, moving forward and entering the safezone, are highly influenced

by the dynamic traffic conditions in the safezone. The number of trucks already in

the area, their hauling speeds and the number of trucks entering the area all impact

on the overall truck delays at the intersection.

Chapter Seven: Microscopic Simulation Study With TSJSim

194

Figure 7-9 Safezone and intersection

7.3.2 Truck turning management at an intersection

When a truck arrives at an intersection, there are always two options available for the

truck. The first option is to travel through the intersection; the second option is to

turn, either through the intersection or away from the intersection. For example, in

Figure 7-9, Truck 2 may travel straight through the intersection or turn left (away

from the intersection) and Truck 1 may travel straight or turn right (through the

intersection). Figure 7-10 shows two Cases of a truck turning at a four-way

intersection, i.e., main-route loaded trucks hauling from right to left and from left to

right.

Figure 7-10 Truck turning situations

In Case 1, Truck 2 and Truck 3 may travel through or turn inside the intersection,

while Truck 1 has to wait at the safezone. However, Truck 4 has no impact on Truck

1 because, as a non-main route truck, it can only turn away from the intersection. In

Case 2, Truck 2 and Truck 3 may travel through or turn away from the intersection.

Whether Truck 1 waits at the safezone depends on the turning decisions of Truck 2,

Chapter Seven: Microscopic Simulation Study With TSJSim

195

Truck 3 and Truck 4. If either Truck 2 or Truck 3 is travelling through the safezone,

Truck 1 has to wait; if both Truck 2 and Truck 3 are turning, Truck 1 does not have

to wait; if Truck 4 is turning at the intersection, then Truck 1 also has to wait at the

safezone.

7.3.3 Safezone traffic model development

The traffic management options available in the TSJSim model for the trucks hauling

through the safezone can be summarised as follows:

1. If the truck is a main route truck, then it travels through the safezone without

delay.

2. If the truck is a non-main route truck, then it has to wait at the safezone if a main

route truck is either travelling straight through the safezone or turning inside the

intersection, or if another non-main route truck from the opposite direction enters

and turns inside the intersection.

The information for all the trucks in the safezone is stored and updated in a list

named entityInSafezone in the Safezone object. When a truck enters the safezone, the

information for this truck is added to the entityInSafezone list, and when the truck

exits from the safezone, its information is removed from the list. The information in

the entityInSafezone list mainly includes:

 Truck object,

 Route object, the route that the truck is hauling on,

 StartTime, the time when the truck enters the safezone,

 ExitTime, the time when the truck leaves the safezone.

Traffic management conditions to be considered at an intersection are:

1. whether the truck is hauling on the main route, and

Chapter Seven: Microscopic Simulation Study With TSJSim

196

2. whether the truck is hauling straight through or turning inside the intersection or

turning away from the intersection.

A Boolean variable, MainRoadInput, is used to specify whether the route is a main

route or not. The route is set as a main route if the value of the MainRoadInput is

TRUE. Similarly, two Boolean variables, turnIn and turnOut, are used to decide if

the truck is hauling straight through or turning inside or turning away from an

intersection. The value of turnIn is TRUE if the truck is turning inside the

intersection, the value of turnOut is TRUE if the truck is turning away from the

intersection, and both the values are FALSE when the truck is hauling straight

through the intersection. The direction that a truck takes depends on the route

generated by the Truck-allocation Strategy sub-programme.

The flowchart of the algorithm for the safezone traffic sub-programme is shown in

Figure 7-11.

Figure 7-11 Flowchart for safezone management

entityInSafezon

is empty?

This truck on main

route?

waitTime=0

N

Y

N

Y

Get truck i

Condition1 ?

maxExitTime=

truck i. exitTime

Condition2 ?

maxExitTime=

currentTime

Condition3 ?

maxExitTime<

truck j.exitTime?

maxExitTime=truck j. exitTime

Out loop

waitTime=maxExitTime-

currentTime

scheduleProcess(waitTime,

enterSafezone)

Get truck j

Y Y Y

N N N

Y

N

ArriveAtSafezone

enterSafezone

Chapter Seven: Microscopic Simulation Study With TSJSim

197

As a truck (Truck a) arrives at a safezone, it is checked if Truck a is a main route

truck. If so, then there is no delay for Truck a to travel through the safezone.

Otherwise, the sub-programme checks whether Truck a will wait at the safezone or

not. Firstly, whether the entityInSafezone list is empty or not it is checked. If there is

no element in the list, meaning the safezone is empty, then Truck a can enter the area

without delay; otherwise, if there are some trucks within the safezone, then these

trucks are looped through (Truck i represents one of these trucks) to obtain the value

of maxExitTime which is the estimated time for the last truck to exit from the

safezone. The following conditions determine whether Truck a should give way to

Truck i:

 Condition 1 determines whether Truck i is a non-main route truck travelling on

the same route as Truck a but from the opposite direction, and whether Truck i is

turning inside the intersection, e.g., Truck 4 in Figure 7-10 Case 2. If Condition 1

is satisfied, then the exitTime of Truck i is set as the maxExitTime. Otherwise,

meaning Truck i is a main route truck, e.g., Trucks 2 and 3 in Figure 7-10, and

 Condition 2 is used to decide whether Truck i is turning away from the

intersection. If Condition 2 is satisfied, then the waiting time of Truck a is set to

zero. Otherwise,

 Condition 3 is considered to identify whether Truck i is travelling straight

through or turning inside the intersection. If Condition 3 is satisfied, all the

trucks in the entityInSafezone list would be looped through to obtain the

maxExitTime for Truck a. Otherwise, the waiting time is set to zero.

After waiting, Truck a enters the safezone, i.e., the enterSafezone function is called.

If there is any truck in the safezone, the arriveAtSafezone function would be

executed again to check the traffic condition in the safezone.

7.4 Bunching animation

The animation for the bunching process is similar to the animation for the hauling

process, which uses the velocity and time duration to obtain the hauling distance on a

haul route. The position and orientation of the hauling truck can be obtained using

Chapter Seven: Microscopic Simulation Study With TSJSim

198

the setPosition and setOrientation functions. The animation codes were integrated in

the animation function updateGraphics.

7.4.1 Bunching animation on haul route

A Boolean variable, moving, defines the status of a truck to signify whether a truck is

moving or not. Three variables, including startTime, durFirst and durSecond in the

three-stage bunching and two-stage bunching processes, are used in the bunching

animation. The startTime variable refers to the time when the truck enters a route

segment; the durFirst variable is the time duration for the truck behind to reach the

truck ahead at the first stage of bunching; the durSecond variable is the time period

where the truck behind follows the truck ahead which is hauling on the current route

segment. Two variables, overtakingTime and midTime, defined by Equations (7.14)

and (7.15), respectively, are used in the bunching animation:

 (7.14)

 (7.15)

where

 start time point of the second stage of bunching, s

 end time point of the second stage of bunching, s

The algorithm of the bunching animation is shown in Figure 7-12.

Chapter Seven: Microscopic Simulation Study With TSJSim

199

Figure 7-12 Algorithm of bunching animation

If a truck is waiting at a safezone, i.e., variable moving is FALSE, then the bunching

animation at safezone sub-programme is called. Otherwise, the bunching animation

on haul route sub-programme is executed.

Each stage of the bunching animation on a haul route is considered as follows:

When the truck is in the first bunching stage, i.e.,

 , the hauling distance is obtained by using Equation (7.16):

 𝐿 (7.16)

where

 distance that the truck has travelled.

 𝐿 sum of the lengths of the segments that the truck has travelled

through.

 current simulation time.

 hauling velocity in the first bunching stage.

Start

If moving = true?

If SimTime

overtakingTime?

Equation 7.16 Equation 7.17

Y

N

Y

N If SimTime

midTime?

Y

N

Equation 7.18
Bunching animation at

safezone

Set position and

orientation

End

Chapter Seven: Microscopic Simulation Study With TSJSim

200

When the truck is in the second bunching stage, i.e.,

 , the hauling distance can be calculated using Equation

(7.17):

 𝐿

 (7.17)

where

 hauling velocity in the second bunching stage.

In the third bunching stage, if any, i.e., , Equation

(7.18) is used to calculate the hauling distance.

 𝐿

(7.18)

where

 hauling velocity in the third bunching stage.

After the distance is determined, the position and orientation of the truck can be

specified.

7.4.2 Bunching animation at safezone

When a truck is waiting at a safezone, other trucks behind the truck may bunch and

also queue at the safezone. Both the queuing and bunching processes at the safezone

are considered in the animation algorithm. The waiting process can only happen in

the second and third stages of the bunching process, in other words, the truck behind

waits after it reaches the truck ahead that is waiting at the safezone. The waitTime

variable is used to accumulate the waiting duration while the truck is waiting at the

Chapter Seven: Microscopic Simulation Study With TSJSim

201

safezone, and the waitStartTime variable is used to store the time the truck starts to

wait.

The three stages of the bunching process were also considered in the animation

algorithm. In the first bunching stage, current simulation time should be less than

overtakingTime, and Equation (7.16) is used to calculate the hauling distance.

However, in the second stage and third stage, it is possible for the truck to queue at

the safezone, thus the possible waiting time should also be used in the calculation. In

the second stage, if the truck ahead is hauling, then Equation (7.19) is used to

calculate the hauling distance; otherwise Equation (7.20) is used.

 𝐿

 (7.19)

 𝐿

(7.20)

In the third stage, if the truck ahead is hauling, then Equation (7.21) is used to

calculate the hauling distance; otherwise Equation (7.22) is used.

 𝐿

(7.21)

Chapter Seven: Microscopic Simulation Study With TSJSim

202

 𝐿

(7.22)

7.5 Managing main route trucks through the safezone

The TSJSim simulation model was used to study the impacts of the following three

truck and shovel configurations for the haul route between the P3WC loading site

(with Shovel 1), the S4C loading site (with Shovel 2) and the ROM dump (Figure 6-

2):

1. Both shovels were under trucked, with five trucks (CAT 785C) assigned to

Shovel 1 and five trucks (Komatsu 860E) assigned to Shovel 2;

2. Both shovels were over trucked, with eleven trucks (CAT 785C) assigned to

Shovel 1 and nine trucks (Komatsu 860E) assigned to Shovel 2;

3. One shovel was under trucked and the other over trucked, with five trucks (CAT

785C) assigned to Shovel 1 and nine trucks (Komatsu 860E) assigned to Shovel

2.

The haul route between the P3WC loading site and the ROM dump is selected as the

main route. Various safe distances or lengths of the safezone (Figure 7-9) were

considered, including 0 m (no safe zone), 50 m, 100 m, 150 m and 200 m.

The main operational data are provided in Table 7-1.

Table 7-1 Safezone traffic model input parameters

Parameter Value

CAT 785C empty weight (kg) 102 150

CAT 785C capacity (kg) 147 330

Komatsu 860E empty weight (kg) 200 351

Komatsu 860E capacity (kg) 254 363

Chapter Seven: Microscopic Simulation Study With TSJSim

203

Shovel service time for CAT 785C (s) Normal(122, 18)

Shovel service time for Komatsu 860E (s) Normal(208, 21)

Dumping time for CAT 785C (s) Normal(35, 11)

Dumping time for Komatsu 860E (s) Normal(46, 12)

The simulation results include shovel shift production, total bunching time, total

queuing time at shovel, and total queuing time at safezone.

Case 1: Both shovels under trucked

Figure 7-13 illustrates the trends of the KPIs with the safe distance changes in Case 1.

Figure 7-13 KPIs of the under trucked system for fleet 1 and fleet 2

As the safe distance increased from 0 to 150 m, the shift production of Shovel 1

increased from 36159 t to 36704 t. Then the value dropped to 36528 t when the safe

distance is 200 m. The total queuing time of fleet 1 decreased significantly from 83.4

min to 20.0 min and the total bunching time of fleet 1 also decreased from 13.3 min

to 1.0 min. The utilisation of the main route truck fleet improved with the increase in

the safe distance.

However, the production of Shovel 2 showed a negative relationship with the

increasing safe distance, ranging from 61182 t to 59725 t, and the total queuing time

increasing from 21.7 min to 48.9 min. Although the total bunching time for fleet 2

was insignificant, the total queuing time at the safezone increased from 0.5 min to

Chapter Seven: Microscopic Simulation Study With TSJSim

204

46.3 min. Thus, for the truck-shovel mining system with both shovels under-trucked,

the safezone has a significant influence on both the main route fleet and the non-

main route fleet. As the length of the safezone increases, the production of the main

route fleet increases, and both the queuing time and the bunching time of the main

route fleet decrease significantly. However, both the utilisation of the non-main route

fleet and the shovel production were reduced with the increase in the safe distance.

Case 2: Both shovels over trucked

Figure 7-14 shows the trends of the KPIs with the changing safe distance in Case 2.

Figure 7-14 KPIs of the over trucked system for fleet 1 and fleet 2

As the safe distance increased, the respective production of Shovels 1 and 2

remained stable. For the truck fleet assigned to Shovel 1 (main route fleet), even

though the bunching time decreased, there was no significant change in the queuing

time at Shovel 1. For the truck fleet assigned to Shovel 2 (non-main route fleet),

although the queuing time at Shovel 2 decreased, the truck utilisation did not

improve due to the increase in queuing time at the safezone. Therefore in an over-

trucked system, the impact of the safezone on the system productivity and fleet

utilisation is relatively insignificant compared to an under-trucked system.

Chapter Seven: Microscopic Simulation Study With TSJSim

205

Case 3: One shovel under trucked and the other over trucked

Figure 7-15 shows the trends of the KPIs with the safe distance in Case 3.

Figure 7-15 KPIs of the mix trucked system for fleet 1 and fleet 2

When Shovel 1 was under trucked and Shovel 2 was over trucked, the production of

Shovel 1 increased and the bunching time and queuing time decreased with the

increase in the safe distance, while the production of Shovel 2 with the associated

fleet utilisation showed no significant change. The results show that the safezone has

a significant impact on the utilisation of the under trucked fleet; it has positive

impact on the main route fleet utilisation and negative impact on the non-main route

fleet utilisation.

Based on the simulation results, it can be concluded that as the safe distance

increased, the utilisation of the main route fleet improved at the expense the non-

main route fleet. Therefore the safezone and main route management are necessary

in optimising the productivity of a truck-shovel system.

206

CHAPTER EIGHT

TRUCK-ALLOCATION MODEL

8.1 TSJSim truck-allocation approach

In an active surface mine, a truck-allocation decision point is defined as the time or

the spatial position at which a truck driver needs to make a decision as to what route

to select so as get to a particular destination. This decision may occur before and

after loading, before and after dumping, or when a truck arrives at an intersection.

According to Munirathinam and Yingling (1994), most of the previous simulation

models assume one or two decision points in one truck cycle, either at the loading

site or at the dump site or at both. For example, in DISPATCH (White and Olson,

1993), the trucks in the real-time dispatching list are those that have completed or

about to complete dumping; Hauck (1973) assumed the unloading point to be the

decision point for real-time truck dispatching; Jaoua et al. (2012a) used a specified

regular time interval (the control horizon) to manage the time for dispatching instead

of using a decision point.

Ouelhadj and Petrovic (2009) suggested the intelligent metaheuristic searching

methods, including the Genetic algorithm, Tabu Search and Simulated Annealing, as

those methods are more powerful and appropriate for complex system

scheduling/control optimisation than the simple heuristic rules. Pfeiffer et al. (2007)

also demonstrated the performance improvement using a dynamic scheduling

method based on a Genetic algorithm. Jaoua et al. (2012a) proposed a metaheuristic

model, using the Simulated Annealing (SA) algorithm to compute the near-optimal

assignment in a truck-shovel dispatching system.

In the TSJSim simulation model, multiple decision points in the haulage network

system within a one truck cycle were considered to handle the complexity of the

traffic network and the dynamic operational variables of a surface mine. The Route-

Intersection object handles the assignment of the Truck on Route objects. Referring

to a typical truck-shovel network system shown in Figure 8-1, when a loaded Truck

completes dumping at Dump 2, and depending on the system status at this very

Chapter Eight: Truck-allocation Model

207

moment, e.g., the traffic conditions on the various Routes, the availabilities of the

Shovels, the lengths of the Queues at the loading sites and the performance of the

LoaderOperators, an assignment is generated by the Truck-allocation Strategy

object to send the Truck to a loading site. After hauling for a period of time, the

Truck arrives at RouteIntersection a, which provides an opportunity for the Truck to

make a decision either to turn left for Shovel 1 or to turn right to other Shovels

{ }. The system status when the Truck arrives at RouteIntersection a

may be different from when the Truck was leaving Dump 2. If the Truck-allocation

Strategy object regenerates a new truck-allocation solution at that moment, the

assignment for the Truck may be different from but could be more productive than

the assignment when the Truck was leaving Dump 2. After hauling from

RouteIntersection a to b, the Truck then makes a further choice between Shovel 2 or

Shovel 3 and Shovel 4 or Shovel 5. A similar decision is made when the Truck arrives

at RouteIntersection c which is the last intersection on the haul route. Thus it is clear

that in a truck-shovel network system where the operational variables change

continuously, the truck assignment decisions could be made at the decision points on

the haulage network to optimise productivity.

Figure 8-1 Decision points at intersections in a truck-shovel network system

In the TSJSim simulation model, the truck-allocation approach is implemented

mainly by two objects: the RouteIntersection object and the Truck-allocation

Strategy object. The RouteIntersection object specifies all the decision points on

Routes as well as the associated possible truck-allocation paths at each decision point.

The Truck-allocation Strategy object assigns a Truck object to a destination based on

the specified truck-allocation strategy.

Chapter Eight: Truck-allocation Model

208

8.2 Truck-allocation paths development

The total possible truck-allocation paths for the trucks to travel from the traffic

intersections to all the loading sites or dump sites are specified and stored in a list

referred to as the RoutePool list in the RouteIntersection object. For instance, Figure

8-2 shows an ideal truck-shovel haulage network layout with the decision points for

the loaded trucks and the possible paths at the RouteIntersection objects.

Figure 8-2 RoutePool and decision points

The RoutePool list at decision point D has two possible truck-allocation paths, i.e., D

– Dump 3 and D – Dump 4; the RoutePool list at decision point C contains three

possible paths, i.e., C – Dump 2, C – D – Dump 3 and C – D – Dump 4; the

RoutePool list at decision point B includes four possible paths, i.e., B – Dump 1, B –

C – Dump 2, B – C – D – Dump 3 and B – C – D – Dump 4; the RoutePool list at

decision point A has six possible paths, i.e., A – B – Dump 1, A – B – C – Dump 2, A

– B – C – D – Dump 3, A – B – C – D – Dump 4, A – D – Dump 3 and A – D –

Dump 4. To determine all the possible paths at each RouteIntersection, the route

network is considered to be tree structure that consists of the decision points and the

Chapter Eight: Truck-allocation Model

209

destinations being the tree nodes, as shown in Figure 8-3. The decision points at the

lowest level provide the direct routes to the destinations, e.g., the decision point D is

connected with Dump 3 and Dump 4. The decision points at the upper levels provide

the routes to both other decision points and the final destinations. For instance, the

decision point C is connected with Dump 2 and another decision point, i.e., D; the

decision point B is connected with Dump 1 and another decision point, i.e., C; the

decision point A is connected with other decision points, namely B and D.

Figure 8-3 Tree structure of decision points on haul routes

In TSJSim, the decision points are located with the spatial points on the Route

objects, with each decision point at the RouteIntersection having its own RoutePool

list. A recursive algorithm which consists of three embedded for-loops and one

defined function was developed for generating all the possible truck-allocation paths

at the various decision points. The function, named MethodofRoutePool, with the

three input parameters calls itself recursively to determine the RoutePool lists.

𝑀 (8.1)

where

 RouteIntersection object which contains the intersecting Route objects;

 Route object which consists of various spatial points;

 truck-allocation path to which the Truck is assigned, consisting of various

 spatial points. The starting point of the path is at the RouteIntersection,

Chapter Eight: Truck-allocation Model

210

 and the ending point is at the Loader or the Dump or the next Route-

 Intersection.

Figure 8-4 illustrates the flowchart for the algorithm. The main aim is to check all

the nodes and the associated Route objects of the tree structure from the top to the

bottom.

Figure 8-4 RoutePool algorithm flowchart

The outermost for-loop function loops through all the RouteIntersection objects in

the truck-shovel network system. For the i
th

 RouteIntersection object, i.e., inter (i),

the MethodofRoutePool (inter, route, droute) is implemented to determine

RoutePool (i), which is the RoutePool list at inter (i). The parameter route

temporarily saves the Route object that was passed from the previous

MethodofRoutePool function (if any), and the parameter droute temporarily saves

the paths already generated by all the previous MethodofRoutePool functions (if

Chapter Eight: Truck-allocation Model

211

any). For example, in Figure 8-2, to determine the RoutePool list at

RouteIntersection A, suppose the MethodofRoutePool function is being implemented

for RouteIntersection C, the current route parameter would be Route 2 and the

current droute parameter would be the path A-B-C (Figure 8-3). The initial values of

route and droute are set to null, as the starting point of the truck-allocation path at

the RouteIntersection contains no previous Route objects or paths (e.g., Node A in

Figure 8-3). The MethodofRoutePool (inter, route, droute) has an inner for-loop

function which loops through all the Route objects at inter (i), i.e., all the intersecting

routes at the intersection. Within this for-loop, route (j) is compared with route to

check for new branches at the intersection. If route (j) and the route input parameter

are two different Route objects, then a new truck-allocation path, i.e., droute (j), is

initiated and replaced by droute. After that, the third for-loop function loops through

all the points on route (j) to check whether to add point (n) to droute (j) or to

implement another MethodofRoutePool for inter (i+1) (the next intersection).

Depending on the location of point (n) on route (j), the following three conditional

statements are executed to control the recursion:

(1) If the decision point at inter (i) is connected with a destination, and point (n) is

located between inter (i) and the destination, then point (n) is added to droute (j);

(2) If the decision point at inter (i) is connected with another decision point, and

point (n) is located between inter (i) and inter (i+1) on route (j), then point (n) is

added to droute (j);

(3) If point (n) is the decision point at inter (i+1) on route (j), then the

MethodofRoutePool is implemented with inter (i+1), route (j) and droute (j) as

the input parameters.

In the case where multiple decision points exist in the system, the spatial points

between inter (i) and inter (i+1) are first added to droute (j) at inter (i), then the

second MethodofRoutePool for the next decision point at inter (i+1) is implemented.

This process continues until the last MethodofRoutePool function is implemented for

the last decision point at the bottom of the tree structure. In the implementation of

this last MethodofRoutePool, if the spatial points of the droute (j) are between the

Chapter Eight: Truck-allocation Model

212

last decision point and the final destination, then the droute (j) for the Route object at

inter (size of inters -1), i.e., the last RouteIntersection object, is added to RoutePool

(i). After that, the algorithm sub-programme executes the second last

MethodofRoutePool for inter (size of inters -2), i.e., the second last RouteIntersection

object, and adds the droute (j)s for all the Route objects at inter (size of inters -2) to

RoutePool (i). This process continues until the sub-programme executes the first

MethodofRoutePool, thus solving RoutePool (i) at inter (i) by examining all the

decision points from the top to the bottom of the tree structure. By following the

above recursive process, all the RoutePool lists at all the RouteIntersection objects

are generated.

8.3 Truck-allocation Strategy

According to Munirathinam and Yingling (1994), in the one-truck-at-a-time truck-

allocation model, the current and further assignment decisions are not made

collectively. When a truck is ready to be assigned to a destination, the destination is

determined without considering other trucks that could be assigned later and this

could lead to sub-optimum truck-allocation. In TSJSim, the truck-allocation decision

is made by applying the multi-trucks-at-a-time approach, i.e., the trucks close to the

decision points at the loading sites, dump sites and traffic intersections are all

considered in the truck-allocation process. For modelling purposes, the truck-shovel

haulage system is divided into the following three areas:

(1) Load Area, an area near the loader. The empty trucks hauling towards the loader

within this area, the trucks queuing at the loader as well as those trucks being

loaded are all considered and added to a truckInLoadzone list.

(2) Dump Area, an area near the dump. The loaded trucks hauling towards the dump

within this area, the queuing trucks at the dump and the trucks dumping are all

considered and added to a truckInDumpzone list.

(3) Intersection Area, an area near the intersection. The trucks hauling inside an

intersection area and those trucks waiting outside the safezone area are all

considered and added to a truckInSafezone list.

Chapter Eight: Truck-allocation Model

213

As an example, in Figure 8-5, when Truck 1 finishes loading and is ready for an

assignment, in Load Area 1, Truck 2 is waiting and Truck 3 is hauling empty to

Loader 1. In Load Area 2, Truck 4 is also hauling empty to Loader 2. In the

Intersection Area, Truck 5 is hauling loaded to Dump 1 and Truck 6 is waiting

outside the safezone area due to the passing priority rule (Zeng et al., 2017). Those

trucks are all close to the decision points, thus Truck 2, 3, 4, 5 and 6 as well as other

trucks that have already been assigned to the respective dumps could potentially

influence the assignment of Truck 1 to a dump.

Figure 8-5 Load, Dump and Intersection Areas

Four truck-allocation strategies developed as part of TSJSim model are:

 Fixed truck assignment (FTA),

 Minimising truck waiting time (MTWT),

 Minimising shovel production requirement (MSPR), and

Chapter Eight: Truck-allocation Model

214

 Minimising truck semi-cycle time (MTSCT). Two truck-allocation methods

which are the genetic algorithm (GA) and the frozen dispatching algorithm

(FDA), were developed to implement MTSCT.

8.3.1 Fixed truck assignment (FTA)

Under the FTA rule, each truck is assigned to a fixed shovel and dump at all times.

Although this truck-allocation rule fails to dynamically change the production

resource in a truck-shovel system, it serves well as a baseline for comparing and

evaluating the effectiveness of other truck-allocation strategies. The match factor for

each shovel can only be obtained using the fixed truck-allocation strategy.

In the TSJSim model, FTA is set as the default truck-allocation rule. The default

destinations that the truck travels between are set in the Loader and Dump inputs in

the Truck object. If the user only enters one loader in the Loader input and one dump

in the Dump input, then it is assumed that the FTA is applied in the model. The

flowchart for the FTA sub-programme is shown in Figure 8-6. The RoutePool list is

looped through and the route in the RoutePool with the same destination as the input

is selected as the hauling route and stored in an object, DR (dispatching route).

Figure 8-6 Flowchart for FTA sub-programme

Chapter Eight: Truck-allocation Model

215

8.3.2 Minimising truck waiting time (MTWT)

Using the MTWT truck-allocation method, the truck is assigned to the shovel that is

expected to generate the least amount of truck waiting time. The truck being loaded

and the trucks in the queue at the loader are considered when estimating the total

expected loading time of the loader. The loader with the minimum total expected

loading time is selected as the destination for the empty truck that is waiting for a

truck assignment. If the truck concerned is a loaded truck, then the total expected

dumping time at the dumps is estimated. This process considers the trucks that are

dumping as well as those waiting in the queue at the dumps. The dump with the

minimum total expected dumping time is selected as the best destination for the

loaded truck waiting for a truck assignment. Thus, MTWT is a one-truck-at-a-time

truck-allocation approach which ignores the trucks that are close to the decision

points, other than those in the queues or those being loaded or dumping. Trucks that

have already been assigned to the loader and are currently hauling on routes are not

considered when determining the expected loading times and/or dumping times.

The logic used to determine MTWT is as follows: Firstly all the available

destinations based on the current status and position of the truck to be allocated are

determined. Secondly the expected loading times at all the available loaders or the

expected dumping times at all the available dumps are estimated. The truck is then

assigned to the destination with the minimum time value.

Figure 8-7 shows the flowchart for determining the loader list (Llist) or dump list

(Dlist).

Chapter Eight: Truck-allocation Model

216

Figure 8-7 Flowchart for determining destination list in MTWT

If the truck to be allocated is at a loading site, all the available Dump objects

assigned in the Dump input parameter are added to the dump list. If the truck is at a

dump site, all the available Loader objects assigned in the Loader input parameter

are added to the loader list. If the truck is hauling in an intersection area, its

destination depends on the truck status (hauling either loaded or empty) and the

RoutePool at the intersection, i.e., the final destinations from the intersection. For a

hauling empty truck (i.e., isLoaded=FALSE), the corresponding Loaders for all the

routes in the RoutePool are obtained and then added to the loader list; for a hauling

loaded truck (i.e., isLoaded=TRUE), the corresponding Dumps for all the routes in

the RoutePool are obtained and added to the dump list.

Figure 8-8 shows the flowchart for determining the expected loading times at all the

available loaders or the expected dumping times at all the available dumps. If the

truck is hauling empty, the loader list is considered, otherwise the dump list is

considered. To determine the expected loading time, all the trucks at the loader,

including the trucks in the queue, are considered. Detailed calculations of the

expected loading time were discussed in Section 4.4.3 of Chapter 4. The loader with

the minimum expected loading time is selected as the destination for the truck being

considered. A similar process is used to determine the minimum expected dumping

time among all the available dumps.

loc = atLoader ?

Add DumpInput

into Dlist

loc = atDump ?

Add LoaderInput

into Llist

isLoaded=false ?

Get the destination of

route i, loader i

Add loader i into Llist

Get the destination of

route j, dump j

Add dump j into Dlist

Y Y Y

N N N

Start

End

Chapter Eight: Truck-allocation Model

217

Figure 8-8 Flowchart for searching for optimum destination in MTWT

8.3.3 Minimising shovel production requirement (MSPR)

With the MSPR truck-allocation strategy, the shovels have predefined production

targets and the trucks are assigned to the shovel with the maximum difference,

shortfall, between the planned production and the ongoing simulated production.

This strategy focuses on the production requirement of shovels, instead of the

utilisation of the truck fleet as in MTWT. However, for the trucks at the loading sites

and for those hauling loaded towards the dumps, MTWT is still used to determine

the optimum dump with the minimum expected dumping time. This implies MSPR

is utilised for the trucks at dumps and hauling empty back to the loading sites.

The planned production for a shovel can be the Loader object input data. A variable,

diffProduct, was defined to record the difference between the planned production

and the ongoing simulated production. The MSPR model object searches for the

isLoaded=false ?

Get loader i

Set expLoad=0

Get truck j

If j=0 ?

expLoad=finishLoad-

SimTime

Loading time

calculation process

Accumulate

expLoad

Get the loader with

minimum expLoad

Get dump i

Set expDump=0

Get truck j

If j=0 ?

expDump=finishDump-

SimTime

Dumping time

calculation process

Accumulate

expDump

Get the dump with

minimum expDump

Y

N

Y

N

Y

N

Start

End

Chapter Eight: Truck-allocation Model

218

loader with the maximum value of diffProduct and assigns the truck to this loader

when the truck is at a dump or hauling empty at an intersection area.

8.3.4 Minimising truck semi-cycle time (MTSCT)

One of the measures of the productivity and efficiency of a truck-shovel mining

system is the truck cycle time. In a complete truck cycle, the truck departs from a

loader towards a dump and then returns from the dump back to a loader. The

complete truck cycle time includes the loading time, hauling time from the loader to

a dump site, queuing time at the dump site, dumping time, hauling time from the

dump site either to the same loading site or to another one, and queuing time at the

loading site. It is clear that one complete truck cycle includes two destinations:

(1) The departure destination, is the planned destination of a truck when departing. If

a truck is leaving a dump site, then a loading site would be the departure

destination for the truck; if a truck is leaving a loading site, then a dump site

would be the departure destination.

(2) The returning destination, which is the destination that a truck will return to after

arriving at the departure destination. If a truck is leaving a dump site, then a

dump site would be the returning destination for the truck; if a truck is leaving a

loading site, then a loading site would be the returning destination.

Due to the influence of ongoing truck allocations within the entire system, the further

the truck travels, the more time the truck will spend on the route, and the more

difficult it is to estimate the complete truck cycle time. The estimated queuing times

at the returning destinations are more variable than those at the departure

destinations. If the complete truck cycle time is considered, the variable estimated

queuing times at the returning destinations could bias the truck-allocation decision

making process for the departure destination.

In the TSJSim simulation model, a truck semi-cycle time is defined as the sum of the

time durations for a truck travelling from the origin, i.e., a loader, dump or

intersection, to the departure destination, i.e., a dump or loader, plus the time

duration for queuing and loading or dumping at the departure destination. The

Chapter Eight: Truck-allocation Model

219

influence of the returning destination is not included in the truck semi-cycle time.

The objective of the truck-allocation algorithm is to obtain the assignment with the

minimum estimated truck semi-cycle time.

8.3.4.1 Components of the truck semi-cycle time

The estimated semi-cycle time for a truck at the decision point is expressed as:

 𝑏 ℎ𝑏 𝑞𝑏 𝑝𝑏 (8.2)

where

 𝑏 estimated semi-cycle time for a truck to travel from origin , i.e., a loader,

 dump or intersection, to destination , i.e., a dump or loader;

 ℎ𝑏 estimated hauling time to arrive at destination ;

 𝑞𝑏 estimated initial queuing time at destination ;

 𝑝𝑏 estimated processing time (loading time or dumping time) at destination .

For the “potential truck” close to a decision point, which is hauling to or waiting at a

loader, dump or intersection, the estimated semi-cycle time is:

 𝑏 ℎ 𝑞 𝑝 ℎ𝑏 𝑞𝑏 𝑝𝑏 (8.3)

where

 ℎ estimated hauling time to arrive at origin , if the truck is still hauling;

 𝑞 estimated initial queuing time at origin , if the truck needs to queue;

 𝑝 estimated processing time (loading time or dumping time) at origin .

Suppose one truck just finishes dumping and is ready to be assigned to a loader.

There could be n shovels in the network system, i.e., { , , , … , } and m

trucks that need to be allocated in this assignment, i.e., { , , , … , }. The

Chapter Eight: Truck-allocation Model

220

estimated semi-cycle time for each truck to reach the next decision point at a loader,

i.e., when the truck finishes loading, can be expressed by Equation (8.4):

[

 𝑠1𝑡1 𝑠2𝑡1 𝑠3𝑡1 … 𝑠𝑗𝑡1 … 𝑠𝑛𝑡1

 𝑠1𝑡2 𝑠2𝑡2 𝑠3𝑡2 … 𝑠𝑗𝑡2 … 𝑠𝑛𝑡2

 𝑠1𝑡3 𝑠2𝑡3 𝑠3𝑡3 … 𝑠𝑗𝑡3 … 𝑠𝑛𝑡3

⋮ ⋮ ⋮ ⋱ ⋮ ⋱ ⋮
 𝑠1𝑡𝑖 𝑠2𝑡𝑖 𝑠3𝑡𝑖 … 𝑠𝑗𝑡𝑖 … 𝑠𝑛𝑡𝑖

⋮ ⋮ ⋮ ⋱ ⋮ ⋱ ⋮
 𝑠1𝑡𝑚 𝑠2𝑡𝑚 𝑠3𝑡𝑚 … 𝑠𝑗𝑡𝑚 … 𝑠𝑛𝑡𝑚]

 (8.4)

where

 matrix of estimated semi-cycle times for assigning m trucks to n shovels.

 𝑠𝑗𝑡𝑖 estimated semi-cycle time for truck to arrive at shovel and to finish

 loading.

If the estimated semi-cycle time of each truck is independent of all others, then the

solution for equals the minimum estimated semi-cycle time in { 𝑠1𝑡𝑖 𝑠2𝑡𝑖 𝑠3𝑡𝑖

… 𝑠𝑛𝑡𝑖
} , i.e., { 𝑠1𝑡𝑖 𝑠2𝑡𝑖 𝑠3𝑡𝑖 … 𝑠𝑛𝑡𝑖

} . However, the estimated semi-

cycle times are not independent of one other because the trucks interact with each

other in the truck-shovel mining network system. The interaction between the trucks

includes the bunching effect on the haul route, the passing priority in the safezone,

and most importantly, the queuing at the loader or dump.

The estimated queuing time expressed in Equations (8.2) and (8.3) is an initial value

which is the combined result of the present queue length at a loader or dump and the

estimated hauling time. However, the actual estimated queuing time not only is

influenced by the queue length but also varies according to the truck-allocation. In

TSJSim, truck-allocation methods were designed to change the estimated queuing

time to reflect the influence of truck-allocation decisions. As more trucks are

assigned to the same loader or dump, the estimated queuing time increases, and the

resultant increase in the estimated semi-cycle time is considered in the truck-

assignment.

Chapter Eight: Truck-allocation Model

221

8.3.4.2 Truck-allocation methods for searching for the optimum destination

with MTSCT

In order to solve the problem of the mutual influence of possible queuing times and

truck-allocation using MTSCT, two truck-allocation modules were developed: The

Genetic Algorithm (GA) and the Frozen Dispatching Algorithm (FDA).

8.3.4.2.1 Genetic Algorithm (GA)

The GA is a popular meta-heuristic optimisation method that has been applied

extensively in the industry with a good deal of success (Gosavi, 2015). In TSJSim,

the decision variables (Trucks) are stored in a list named truckListDV, { , , , … ,

 }, and their values (destinations, i.e., shovels or dumps) are stored in a list named

DVV, { , , , … , }. The size of the solutionList is set to the number of

destinations in the system, { 𝐿 𝐿 𝐿 … 𝐿 … 𝐿 }. A solution, 𝐿 , consists

of m elements for all the decision variables; the element value is the estimated truck

semi-cycle time:

 𝐿 { 𝑠𝑗𝑡1 𝑠𝑗𝑡2 𝑠𝑗𝑡3 … 𝑠𝑗𝑡𝑖 … 𝑠𝑗𝑡𝑚 } (8.5)

where

 𝐿 𝑗th
 solution, 𝑗 ∈ [];

 𝑠𝑗𝑡𝑖 estimated truck semi-cycle time to destination point , ∈ [].

Let denote the iteration number of the algorithm and the maximum number of

iterations to be performed. Set and a constant value depending on the

size of the model. There is no rule to determine an optimal iteration number and it is

usually set by the permissible amount of computer time. The GA steps are as

follows:

1. Calculate the function value for each solution, i.e., 𝐿 , which is the

accumulated estimated semi-cycle times for all the trucks. The steps for

calculating 𝐿 are as follows:

Chapter Eight: Truck-allocation Model

222

(i) Rank 𝑠𝑗𝑡𝑖 in 𝐿 in ascending order. In the new 𝐿 , will be the first truck

to arrive at destination , the second truck, and the i
th

 truck.

(ii) Modify the estimated queuing time of each semi-cycle time element. When

arrives at , if the shovel is still loading − , i.e., the expected arrival time of

 is less than the expected departure time of − , then the queuing time is

added to 𝑠𝑗𝑡𝑖 .

(iii)Sum up all the modified semi-cycle time elements in 𝐿 , namely,

 (𝐿) 𝑠𝑗𝑡1 𝑠𝑗𝑡2 𝑠𝑗𝑡3 ⋯ 𝑠𝑗𝑡𝑚 (8.6)

2. Compare and rank 𝐿 in solutionList according to 𝐿 . Denote the minimum

by 𝐿 and the maximum by 𝐿 . Randomly select a neighbour of 𝐿 ,

and call it 𝐿 𝑤, i.e., { }. Replace 𝐿

by 𝐿 𝑤 , in other words, 𝐿 𝐿 𝑤 . Referring to Figure 8-9, suppose

 𝐿 is 𝐿 and 𝐿 is 𝐿4. Initiate 𝐿 𝑤 by reproducing 𝐿 , and then

replace all the elements in 𝐿 𝑤 with the elements in the neighbouring solution

list, for instance, the replacement for 𝑠2𝑡1 can be either 𝑠1𝑡1 or 𝑠3𝑡1 ,

depending on the generated random number.

3. Increment by 1. If , return 𝐿 as the optimum solution and STOP.

Otherwise, go back to step 1.

Figure 8-9 GA method

Chapter Eight: Truck-allocation Model

223

8.3.4.2.2 Frozen Dispatching Algorithm (FDA)

The FDA module was originally designed for the TSJSim model based on the actual

behaviour of a truck-shovel mining system. The FDA’s basic steps are summarised

below:

1. Select the element with a minimum value (minimum element) in list 𝑡𝑖
=

{ 𝑠1𝑡𝑖 𝑠2𝑡𝑖 𝑠3𝑡𝑖 … 𝑠𝑛𝑡𝑖
}, ∈ [], and store the element(s) of which the

destination is in list 𝑠𝑗, 𝑗 ∈ []; for an example, as shown in Figure 8-10,

suppose 𝑠1𝑡1 is the minimum element in 𝑡1 ={ 𝑠1𝑡1 𝑠2𝑡1 𝑠3𝑡1 … 𝑠𝑛𝑡1},

and 𝑠1𝑡2 is the minimum element in 𝑡2={ 𝑠1𝑡2 𝑠2𝑡2 𝑠3𝑡2 … 𝑠𝑛𝑡2}, then

 𝑠1𝑡1 and 𝑠1𝑡2are stored in 𝑠1 . Suppose 𝑠3𝑡3 is the minimum element in

 𝑡3= { 𝑠1𝑡3 𝑠2𝑡3 𝑠3𝑡3 … 𝑠𝑛𝑡3}, then 𝑠3𝑡3 is stored in 𝑠3.

Figure 8-10 FDA method

2. Compare and rank the elements stored in 𝑠𝑗 , 𝑗 ∈ [] . If the minimum

element in 𝑠𝑗
, 𝑗 ∈ [], is 𝑠𝑗𝑡𝑥, meaning the truck is supposed to be the

first truck to arrive at and there will be no increase in queuing time for at ,

then the value of 𝑠𝑗𝑡𝑥 will not be changed, and this assignment is “frozen”, i.e.,

 will be assigned to . As an example, in Figure 8-10, compare and rank of the

two elements, 𝑠1𝑡1 and 𝑠1𝑡2 in 𝑠1; suppose 𝑠1𝑡2 is the minimum element,

then 𝑠1𝑡2 is “frozen” (in the shadow) and will be assigned to . 𝑠3 only

contains one element, 𝑠3𝑡3, therefore 𝑠3𝑡3 is “frozen” (in the shadow) and

will be assigned to .

Chapter Eight: Truck-allocation Model

224

3. Consider the elements in 𝑠𝑗, 𝑗 ∈ [], that are not “frozen”. The truck with

the minimum estimated time duration is supposed to arrive at the destination first

and cause other “unfrozen” trucks in 𝑠𝑗 to wait on the condition that they

arrive at the destination before the already assigned truck finishes loading or

dumping. Therefore the expected queuing time is added to other elements in

 𝑠𝑗 . To add the queuing time: first add the queuing time to the second minimum

element, e.g., 𝑠1𝑡1 in Figure 8-10, and then repeat steps 1 and 2. If 𝑠1𝑡1 is still

the minimum element in 𝑡1, this element would be “frozen”; if 𝑠2𝑡1 is the

minimum element in 𝑡1 , since it is the only element in 𝑠2 , it would be

“frozen”; if 𝑠3𝑡1 is the minimum element in 𝑡1, it would be compared with

other “unfrozen” elements in 𝑠3 to decide whether it is the second minimum

element in 𝑠3 . After the second minimum element is “frozen”, the third

minimum element in 𝑠𝑗 is considered. This process continues until all the

elements in 𝑠𝑗
 are all “frozen”.

8.3.4.3 Development of MTSCT

A function, dispatchingMethod (trans, isLoaded, in), was developed to implement

the MTSCT truck-allocation algorithm. It contains three parameters:

(1) trans, a Truck object to be assigned,

(2) isLoaded, a Boolean variable, if TRUE, the truck is loaded, otherwise, the truck

is empty, and

(3) in, a RouteIntersection object.

The returned value is the destination (a loader or dump) with the minimum estimated

truck semi-cycle time. The function consists of two components: the first component

is to determine the initial estimated semi-cycle time list; the second component is the

execution of GA and FDA.

Chapter Eight: Truck-allocation Model

225

8.3.4.3.1 Determination of initial semi-cycle time list

When a truck is to be allocated, all the initial semi-cycle times of the trucks in the

Load Area, Dump Area and Intersection Area must be determined before executing

the truck-allocation algorithm. An ArrayList object referred to as ECList (estimated

cycle time list) is used to store the initial estimated semi-cycle times. ECList’s

element, ECT (estimated cycle time), saves initial estimated semi-cycle time, varied

estimated semi-cycle time, etc. Each Truck object has an ECList object to store the

initial estimated semi-cycle times to all the available destinations. Table 8-1 provides

the descriptions of the variables and sub-objects of the ECT object.

Table 8-1 Variables and sub-objects of ECT

Type Name Description

Double c Initial estimated semi-cycle time

Double vc

Estimated semi-cycle time to be varied for truck-

allocation algorithm

Loader object s Shovel destination

Dump object d Dump destination

Truck object t The truck to be allocated

For a truck to be allocated, Equation (8.2) is used to determine its initial estimated

semi-cycle times to all the available destinations. For the “potential trucks” in the

Load Area, Dump Area and Intersection Area, Equation (8.3) is used. Once all the

“potential trucks” are determined, their initial estimated semi-cycle times are added

to the ECList.

The flowchart for determining ECList is shown in Figure 8-11.

Chapter Eight: Truck-allocation Model

226

Figure 8-11 Flowchart for ECList determination

To determine the ECList, the following four conditions are considered:

1. If the truck to be allocated is at a loading site, then all the trucks in the

truckInLoadzone list and all the loaded trucks in the truckInSafezone list are

added to the ECList.

2. If the truck to be allocated is at a dump site, then all the trucks in the

truckInDumpzone list and all the empty trucks in the truckInSafezone list are

added to the ECList.

3. If the truck to be allocated is hauling empty at a safezone, then all the empty

trucks in the truckInSafezone list and all the trucks in the truckInDumpzone list

are added to the ECList.

4. If the truck to be allocated is loaded hauling at a safezone, then all the loaded

trucks in the truckInSafezone list and all the trucks in the truckInLoadzone list

are added to the ECList.

If loc = atLoader ?

Truck semi-cycle time estimation:

1. trucks in truckInLoadzone

2. loaded trucks in truckInSafezone

Add to ECList

If loc = atDump ?

Truck semi-cycle time estimation:

1. trucks in truckInDumpzone

2. empty trucks in truckInSafezone

Add to ECList

Y

Y

N

If loc =

atIntersection ?
If isLoaded=false ?

N

Truck semi-cycle time estimation:

1. empty trucks in truckInSafezone

2. trucks in truckInDumpzone

Add to ECList

Truck semi-cycle time estimation:

1. loaded trucks in truckInSafezone

2. trucks in truckInLoadzone

Add to ECList

Y Y

N

Start

End

N

Chapter Eight: Truck-allocation Model

227

8.3.4.3.2 Development of GA method

The GA method sub-programme consists of the following two components:

(1) The determination of the truckListDV and the solutionList.

(2) The execution of the GA algorithm.

The two components are discussed in the following sections.

8.3.4.3.2.1 Determination of truckListDV and solutionList

Both the truckListDV and the solutionList are ArrayList objects. The truckListDV

stores the Truck objects considered in the truck-allocation and the solutionList stores

the estimated semi-cycle time information (the ECT objects in Table 8-1) of these

Truck objects. Table 8-2 provides the element descriptions of the truckListDV and

the solutionList.

Table 8-2 Information of truckListDV and solutionList

Name

ArrayList

Element Description

truckListDV Truck object All the Truck objects considered in the truck allocation.

solutionList
Solution

object

The Solution object contains the following three sub-

objects to store the estimated semi-cycle time

information:

1. an ArrayList object, named soList, which stores ECT

objects (Table 8-1);

2. an Arraylist object, named soInList, which stores the

indices of the ECT objects in the soList;

3. a Double variable, named AET, which stores the value

of the accumulated estimated semi-cycle times of the

Solution object, namely the function value of each

solution, 𝐿 .

Similar to the determination of the ECList, depending on the location and the status

of the truck to be allocated, the Truck objects listed in the trucksInLoadzone,

trucksInDumpzone and trucksInSafezone lists are added to the truckListDV. The

trucks’ corresponding estimated semi-cycle times listed in the ECList are added to

the solutionList as well.

Chapter Eight: Truck-allocation Model

228

Figure 8-12 shows the flowchart for determining the solutionList when the truck to

be allocated is at a loading site.

Figure 8-12 Flowchart for solutionList determination

All the dumps in the dump list (DList) are looped through. For each dump, a new

Solution object is initialised. The index of the Solution equals the index of the dump.

For each Solution, all the Truck objects listed in the truckListDV are looped through;

the element of ECList for each Truck is added to the Solution with the same dump

index. For the truck at a dump or safezone, the solutionList is determined in a similar

way except that the destination list and the trucklistDV are changed.

8.3.4.3.2.2 Execution of GA algorithm

The GA computation sub-programme contains the following four steps:

1. Obtaining the accumulated estimated semi-cycle times (AET) for each Solution.

Y

N

Get dump i

Initiate a new Solution, s

Get truck j

Add dump i index to soInList

Get ECT k

Add dump i index to soInList

truck j = truck of ECT k and

dump i = dump of ECT k?

Add ECT k to soList

Add s to solutionList

k = k+1

Chapter Eight: Truck-allocation Model

229

2. Determining the Solutions with the minimal and maximum AET from the

solutionList.

3. Implementation of the mutation process.

4. Setting the destination for the truck.

Each of the above steps is discussed below:

1. Obtaining the AET of each Solution

Figure 8-13 shows the flowchart for obtaining the AET for each Solution in the

solutionList.

Figure 8-13 Flowchart for obtaining AET

For Solution i in the solutionList, all the Truck objects in the soList are sorted in

ascending order according to their initial estimated semi-cycle times; this implies

that the Truck object of soList (0) has the minimum estimated semi-cycle time

and is the first truck to arrive at the destination. Then the varied estimated semi-

Get solution i,

Sort the soList in solution i in ascending order

Set AET = 0;

arriTime = solution(i).soList(0).vc

Get soList j, j+1

arriTime+processingTime<

solution(i).soList(j+1).vc?

arriTime=solution(i).soList(j+1).vc solution(i).soList(j+1).vc=

arriTime+processingTime;

arriTime=arriTime+processingTime

AET=AET+solution(i).soList(j+1).vc

Solution(i).AET=AET

Y

N

Chapter Eight: Truck-allocation Model

230

cycle time (vc) of the second truck, i.e., the Truck of soList (1), is determined

based on the second truck’s arrival time which is stored in the arriTime variable.

It is expected that when the second truck arrives at the destination, if the previous

truck is still being processed (the processing time for the previous truck is stored

in the processingTime variable), i.e., arriTime + processingTime the initial

estimated semi-cycle time of the second truck, then the second truck is expected

to wait, its estimated truck semi-cycle time is changed to arriTime plus

processingTime, and the processingTime of the previous truck is added to the

arriTime for the evaluation for the next truck. This process is repeated until all

the Truck objects in the soList are examined to obtain the AET of Solution i.

Finally all the Solutions in the solutionList are looped through to obtain the

values of the AETs for all the Solutions.

2. Finding the Solutions with the minimal and maximum AETs in the solutionList

The Java code that implements this process is provided below. The indices of the

Solutions with the minimum and maximum AETs are saved in the variables min

and max, respectively.

double fmin = solutionList.get(0).aet;

int min = 0;

double fmax = solutionList.get(0).aet;

int max = 0;

for(int i = 0; i < solutionList.size(); i++){

 if(fmin > solutionList.get(i).aet){

 fmin = solutionList.get(i).aet;

 min = i;

 }

}

minout = min;

for(int i = 0; i < solutionList.size(); i++){

 if(fmax < solutionList.get(i).aet){

 fmax = solutionList.get(i).aet;

 max = i;

 }

}

3. Mutation process

Each Solution object contains a soList object for the estimated semi-cycle times

(ECT objects) and a soInList object for the indices of the estimated semi-cycle

times (ECT objects). The mutation process sub-programme modifies the soInList

Chapter Eight: Truck-allocation Model

231

of the Solution with maximum AET (maximum Solution), and uses the modified

soInList to reproduce a new Solution which is then used to replace the maximum

Solution.

Figure 8-14 shows the flowchart for modifying indices of the maximum Solution.

Firstly, all the elements of the maximum Solution are looped through. A random

integer number ranging from [-1, 1] is generated to obtain the neighbouring

index of each element of the minimum Solution which are stored in variable

newIndex. If the newIndex variable is less than 0 or exceeds the size of the

solutionList, a new random number is generated. Finally each element of the

soInList of the maximum Solution is replaced with the newIndex variable.

Figure 8-14 Flowchart for varing indices of maximum Solution elements

4. Setting the destinations for the trucks

The final step is to loop through all the trucks of the minimum Solution, and to

set the destinations of the Truck objects of the trucklistDV to the destination

variables of the minimum Solution.

8.3.4.3.3 Development of Frozen Dispatching Algorithm (FDA)

The implementation of the FDA method algorithm involved the following two steps:

Get minIndex i from min Solution

newIndex i=minIndex i + random

newIndex i < 0 or

> solutionList size ?

index i of soInList =

newIndex i

Y

N

Get index i of soInList

Chapter Eight: Truck-allocation Model

232

In the first step, similarly with the determination of the truckListDV in GA method,

trucks are selected from the trucksInLoadzone, trucksInDumpzone and

trucksInSafezone lists depending on the location and status of the truck to be

allocated, and the initial estimated semi-cycle times are added to the ECLists of these

trucks. The ECList objects are also initialised in both Dump and Loader objects. For

a loader or dump, the truck with the minimum initial estimated semi-cycle time is

added to the loader or dump’s ECList.

The second step of the sub-programme executes the second and third steps in the

FDA algorithm. A function, named FDAEngine, with three parameters Truck, Dump

and Loader objects, was developed (Figure 8-15). Firstly, the function determines

the ECT with the minimum estimated semi-cycle time for a loader or dump. Next,

the condition for ending the search is evaluated. If the destination remains

unchanged and/or there is only one ECList in the dump or loader, then the truck is

“frozen” and is assigned to the destination, otherwise the estimated semi-cycle time

is modified and stored in the vc variable of the truck’s ECT object, and the function

calls itself to execute another loop. The process for calculating the modified

estimated semi-cycle time is similar to the GA method.

Figure 8-15 Flowchart for the second step of FDA sub-programme

Get the min ET,

Set dump=ET.d or

loader=ET.s

If d=dump or

l=loader?

Set d or l as the

destination for t

If size of dump

or loader=1?

vc=modified

semi-cycle time

Return

Y Y

N N

Chapter Eight: Truck-allocation Model

233

8.4 Comparison of truck-allocation strategies

The following two sensitivity analyses were evaluated using the TSJSim model:

1. The influence of the truck-allocation strategies on the KPIs in the case where the

truck-shovel matches varied.

2. The influence of multiple truck-allocation decision points on the KPIs of the

truck-shovel system.

8.4.1 Truck-allocation strategies where the truck-shovel matches change

A simplified simulation model was established using the validated TSJSim model.

The routes between P3WC, S4C and the ROM dump were selected (Figure 6-2). The

fleet in the system is comprised of Shovel 1 working at P3WC with associated trucks

(named fleet 1, made up of CAT 785Cs) and Shovel 2 serving S4C with associated

trucks (named fleet 2, made up of Komatsu 860Es). The main operational inputs are

shown in Table 8-3.

Table 8-3 Operational input parameters for truck-allocation evaluation

Parameter Value

Material density (kg/m
3
) 2788

Material swell factor 1.05

Shovel bucket fill factor 0.9

Shovel bucket capacity (m
3
) 15

Shovel operator work cycle time (s) Normal(25, 10)

Shift duration (h) 8

Truck type CAT 785C, Komatsu 860E

Safe bunching distance (m) 25

Dumping time (s)

Normal(35, 11) for CAT 785C,

Normal(46, 12) for Komatsu 860E

Five truck-allocation strategies, i.e., Fixed Truck Assignment (FTA), Minimising

Shovel Production Requirement (MSPR), Minimising Truck Waiting Time (MTWT)

and Minimising Truck Semi-cycle Time (MTSCT) including GA and FDA method,

Chapter Eight: Truck-allocation Model

234

were considered in this exercise. The simulation results included system production,

truck queuing time and bunching time.

The total fleet size varied from 10 to 19 so that the truck-shovel match changed from

Case 1, both shovels under-trucked, to Case 2, one shovel under-trucked and the

other over-trucked, and then to Case 3, both shovels over-trucked. The total fleet size

varied from 10 to 14 as the number of Komatsu 860Es in fleet 2 increased from 4 to

8; the total fleet size continued to increase from 14 to 19 as the number of CAT

785Cs in fleet 1 increased from 6 to 10. The fleet size and MFs for the three Cases

are shown in Table 8-4.

Table 8-4 MFs under FTA

Truck-shovel

match

Total

fleet size

Fleet

(Shovel) no.

Fleet

size
MF

Case 1

10
1 6 0.70

2 4 0.75

11
1 6 0.69

2 5 0.93

Case 2

12
1 6 0.69

2 6 1.12

13
1 6 0.69

2 7 1.31

14
1 6 0.69

2 8 1.50

15
1 7 0.81

2 8 1.50

16
1 8 0.92

2 8 1.50

Case 3

17
1 9 1.03

2 8 1.50

18
1 10 1.15

2 8 1.50

19
1 11 1.27

2 8 1.50

Chapter Eight: Truck-allocation Model

235

The simulation results are as follows:

 System production tonnes

Figure 8-16 shows the relationship between the system shift production tonnes and

the system fleet size using the four truck-allocation rules, i.e., MSPR, MTWT, GA

and FDA.

Figure 8-16 Relationship between production tonnes and fleet size with truck-

allocation rules

The MSPR, MTWT, GA and FDA rules demonstrated similar increasing trends in

shift production tonnages. Production using FDA remained relatively higher when

compared with other rules. The trends can be divided into the following stages:

(1) ∈ []: When both Shovel 1 and Shovel 2 were under-trucked, as

the fleet size increased, the shift production tonnages increased.

(2) ∈ [6]: When Shovel 1 was under-trucked and Shovel 2 was

over-trucked, as the fleet size increased from 12 to 14, the shift production

tonnages continued to increase. When the total fleet size exceeded 14, i.e., six

CAT 785Cs and eight Komatsu 860Es in the system, the shift production

tonnages remained stable.

(3) ∈ [9]: When both Shovel 1 and Shovel 2 were over-trucked, all

the shift production tonnages remained stable as the total fleet size increased.

60000

65000

70000

75000

80000

85000

90000

95000

10 11 12 13 14 15 16 17 18 19

Sh
if

t
p

ro
d

u
ct

io
n

 (
t)

Fleet size

MSPR MTWT GA FDA

Chapter Eight: Truck-allocation Model

236

 Queuing time

Figure 8-17 shows the trends of total queuing time (both queuing times at shovel and

dump) versus the system fleet size using the truck-allocation rules. The MSPR,

MTWT, GA and FDA rules all had similar trends with respect to the queuing times.

The queuing times had a stable increasing trend as the fleet size increased. When the

fleet size increased from 12 to 16 (Shovel 1 under-trucked and Shovel 2 over-

trucked), the queuing times had similar increasing rates as with the queuing times

when the fleet size increased from 17 to 19 (both shovels over-trucked). The queuing

time using the FDA rule remained relatively lower than queuing times generated

using other rules.

Figure 8-17 Relationship between queuing time and fleet size with truck-allocation

rules

 Bunching time

Figure 8-18 illustrates the trends of bunching times versus the fleet size using the

five truck-allocation rules, i.e., FTA, MSPR, MTWT, GA and FDA. It is clear that

the bunching times using the MSPR, MTWT, GA and FDA rules were all relatively

less than the bunching time when using the FTA rule, meaning that the bunching

effect in the model was reduced when the truck-allocation rules were applied.

0

500

1000

1500

2000

2500

3000

10 11 12 13 14 15 16 17 18 19

Q
u

eu
in

g
ti

m
e

(m
in

)

Fleet size

MSPR MTWT GA FDA

Chapter Eight: Truck-allocation Model

237

Figure 8-18 Relationship between bunching time and fleet size under truck-

allocation rules

8.4.2 Multiple decision points effect

A truck-shovel haulage network system with multiple traffic intersections was

constructed. Figure 8-19 illustrates the model layout which consists of three loading

areas, three dumps, four traffic intersections along with the associated routes. There

are 21 trucks (11 CAT 785Cs and 10 Komatsu 860Es) and three shovels of the same

type in the system. The main operational inputs are shown in Table 8-3.

Figure 8-19 Multiple decision points model layout

Two cases were considered in the sensitivity analysis:

 Trucks were assigned only at loading areas and dumping areas, the decision

points at traffic intersections were not considered;

0

5

10

15

20

25

30

35

10 11 12 13 14 15 16 17 18 19

B
u

n
ch

in
g

ti
m

e
(m

in
)

Fleet size

FTA MSPR MTWT GA FDA

Chapter Eight: Truck-allocation Model

238

 Trucks were also assigned at the decision points located at traffic intersections

only.

The Minimising Shovel Production Requirement (MSPR), the Minimising Truck

Waiting Time (MTWT) and the Frozen Dispatching Algorithm (FDA) were

considered. The simulation outputs included the system shift production tonnes and

the total lost time, i.e., the sum of total queuing time and total bunching time.

The simulation results are discussed below:

Figure 8-20 illustrates the system shift production tonnes using the MSPR, MTWT

and FDA rules. If the decision points at the intersections were not considered, the

system shift production tonnes using the MSPR, MTWT and FDA rules were 63114

t, 79684 t and 80577 t, respectively. If the decision points at the intersections were

considered, the system shift production tonnes using the MSPR, MTWT and FDA

rules increased to 70196 t, 82090 t and 85940 t, respectively.

Figure 8-20 System shift production tonnes with and without decision points

Figure 8-21 illustrates the total lost times using the MSPR, MTWT and FDA rules. If

the decision points at the intersections were not considered, the total lost time using

the MSPR, MTWT and FDA rules was 3271 min, 2147 min and 1679 min,

respectively. If the decision points at the intersections were considered, the total lost

0

10000

20000

30000

40000

50000

60000

70000

80000

90000

MSPR MTWT FDA

P
ro

d
u

ct
io

n
(t

)

No intersection Intersection

Chapter Eight: Truck-allocation Model

239

time using the MSPR, MTWT and FDA rules decreased to 2781 min, 1513 min and

1168 min, respectively.

Figure 8-21 Total lost times with and without decision points

It is clear that by considering the decision points at the intersections in the simulation

model, both the system productivity and the fleet utilisation significantly improve.

Therefore, the intersection decision points should be considered in the truck-

allocation decision making.

8.5 Conclusions

A realistic discrete-event truck-shovel JaamSim simulator (TSJSim) integrated with

the microscopic traffic module and the truck-allocation module was developed. The

truck-allocation module considers multi-trucks-at-a-time and multiple decision-

points in the truck-allocation strategy. The Frozen Dispatching Algorithm and

Genetic Algorithm were developed for the truck-allocation method. The sensitivity

analyses based on the TSJSim simulation model were designed and implemented.

The observations drawn from the truck-allocation evaluation models are summarised

below:

1. In the simulated truck-shovel system with two fleets, the changing trends for the

production and queuing time utilising the four truck-allocation strategies (MSPR,

0

500

1000

1500

2000

2500

3000

3500

MSPR MTWT FDA

To
ta

l l
o

st
 t

im
e(

m
in

)
No intersection Intersection

Chapter Eight: Truck-allocation Model

240

MTWT, FDA and GA) all demonstrated similar patterns as the fleet size varied.

As the system fleet size increased, the system production tonnes under these

truck-allocation strategies firstly increased significantly and then remained

stable; the queuing time under these truck-allocation strategies showed a positive

relationship with the system fleet size. The bunching time decreased when the

truck-allocation strategies were applied in the model.

2. In the simulated truck-shovel network system with multiple traffic intersections,

by assigning the trucks at the intersections, both productivity and fleet utilisation

increased. Thus, the multiple decision points along the haul routes should be

considered in the truck-allocation decision making process.

Generally the optimum fleet size for a truck-shovel system can be determined using

the MF(s) of the loader(s). However, when truck-allocation strategies are applied, the

number of trucks assigned to the loaders, the loader cycle times as well as the truck

cycle times may vary due to the flexible truck assignments. Such a problem can be

solved by TSJSim which provides the capability of evaluating the influence of the

truck-allocation strategies on KPIs when the system fleet size is changed.

241

CHAPTER NINE

SUMMARY AND CONCLUSIONS

9.1 Summary

Both simulation and queuing models are commonly used to model truck-shovel

mining operation systems. One basic problem associated with these two truck-

allocation modelling techniques is the fact that most of these models handle the truck

haulage system as macroscopic simulation models and ignore the fact that a truck is

an individual vehicle unit dynamically interacting not merely with other trucks in the

system but also with other elements of the traffic network. Some important

operational factors, such as the bunching effect and the influence of the traffic

intersection area, are either simplified or ignored in these macroscopic models. The

simulation results obtained from such macroscopic traffic model tend to be

unrealistic.

This thesis focuses on capturing the truck-shovel system interaction and dynamics

using the microscopic modelling approach. Two commercial discrete-event

simulation software packages, Arena and FlexSim, were used to model a truck-

shovel system; both Arena and FlexSim are ideal for developing macroscopic truck-

shovel simulation models. In this thesis, a microscopic truck-shovel simulation

model, TSJSim (Truck and Shovel JaamSim Simulator), was developed using a

freely available and open source discrete-event simulation software package,

JaamSim. JaamSim’s features include a drag-and-drop user interface, interactive 3D

graphics, input and output editors, and model development tools. JaamSim provides

the modeller with the ability to build a customised model with high-level objects,

which perfectly matches the objective of a microscopic traffic modelling approach

and satisfies the requirement for modelling truck-allocation algorithms.

Using the JaamSim simulation engine and its animation rendering techniques, the

truck-shovel microscopic traffic simulator, TSJSim, was developed. TSJSim

considers a truck as an individual vehicle unit that dynamically interacts with other

trucks in the system as well as other elements of the traffic network. TSJSim

Chapter Nine: Summary and Discussions

242

accounts for the bunching of trucks on the haul routes as well as the practical rules at

the traffic intersection areas.

9.2 Conclusions

The significant features of TSJSim are summarised as follows:

1. A complete material handling operation framework was developed which

includes all the necessary operational elements of such a system, i.e., entity,

generator, processor, transporter, sink, and the associated operations, such as

loading, transporting and unloading.

2. Various types of input and output parameters relating to the truck-shovel model

objects can be set by the user, including different stochastic distributions,

deterministic values and model objects.

3. A haul route network system can be constructed using the RouteIntersection

objects to connect different Route objects. The multiple truck fleets assigned to

various loaders use the same network of haul routes, and the influence of the

interaction between the trucks hauling along different routes can be modelled and

evaluated.

4. The interaction between the hauling trucks and the impact of the route conditions

on the truck’s speed is considered. The hauling velocity is determined by both

the truck configurations and the haul route conditions. TSJSim allows for

bunching of trucks while hauling.

5. TSJSim can handle the traffic management of trucks with a priority allocation at

haul route intersection areas.

6. The loading time can be specified by either the total loading time input data or

the task cycle time input of the shovel operator.

7. TSJSim offers four truck-allocation strategies, i.e., Fixed Truck Assignment

(FTA), Minimising Shovel Production Requirement (MSPR), Minimising Truck

Waiting Time (MTWT) and Minimising Truck Semi-cycle Time (MTSCT)

including the Genetic Algorithm (GA) method and the Frozen Dispatching

Algorithm (FDA) method rules. Multiple decision points along the haul routes

and at all the “potential trucks” close to the decision points were included in the

truck-allocation model. In a truck-shovel network system, these decision points

Chapter Nine: Summary and Discussions

243

allow new truck-allocation solutions to be generated based on the continuously

changing operational conditions. For example, when a truck arrives at the

intersection, the new assignment for a truck could be more productive than that

of the existing assignment.

Using TSJSim, a truck-shovel network model was constructed based on the field

data of the Eastern Ridge OB23/25 surface mining operation. The average truck

cycle times on all the haul routes generated from the TSJSim model were compared

to the actual cycle times from the field data for model validation.

With the validated TSJSim model, the influence of traffic management within the

intersection area was evaluated with respect to KPIs including shift production and

queuing time. Sensitivity analyses were also designed and implemented using the

truck-allocation model to evaluate the influence of the truck-allocation method and

decision points on these KPIs. The simulation results are summarised below:

1. As the length of the safezone increased, the utilisation of the main route fleet

with no waiting at an intersection was significantly improved at the expense of

the non-main route fleet. The main route management in the safezone had a

significant impact on the KPIs of the under-trucked fleet; this factor should be

considered as an important operational factor that significantly influences the

efficiency of the system.

2. In the simulated truck-shovel system with two fleets, the trends for the

production tonnes and queuing time utilising the four truck-allocation strategies

(MSPR, MTWT, FDA and GA) all demonstrated similar patterns as the fleet size

varied. As the system fleet size increased, the system production tonnes under

these truck-allocation strategies firstly increased significantly and then remained

stable; the queuing time under these truck-allocation strategies showed a positive

relationship with the system fleet size. The bunching time decreased when the

truck-allocation strategies were applied in the model.

3. In the simulated truck-shovel network system with multiple traffic intersections,

by assigning the trucks at the intersections, both productivity and fleet utilisation

Chapter Nine: Summary and Discussions

244

increased. Thus, the multiple decision points along the haul routes should be

considered in the truck-allocation decision making process at operational level.

9.3 Limitations of TSJSim

The major limitations of the developed TSJSim simulation model are summarised as

follows:

1. Only short-term planning was considered. Generally long-term planning requires

models developed utilising the macroscopic modelling approach, and software

such as HAULSIM and TALPAC. TSJSim was developed as a microscopic

model which mainly focused on more detailed traffic behaviour in the truck-

shovel system. In TSJSim, the time frame for the simulation to run was set to

short term/operational periods; the positions of the loaders and dumps were fixed,

and the lengths of the routes in the model also remained static. However, in a real

situation, the lengths of the haul routes extend as mining is progressed and the

loaders are likely to be assigned to various locations according to the mining

schedule.

2. TSJSim is a simulator developed for truck allocation required for mine

scheduling but not for real-time dispatching control. TSJSim is only able to

evaluate the effectiveness of the truck-allocation strategies.

3. Operational constraints such as quality parameters and stripping ratio have yet to

be incorporated in the TSJSim truck-allocation model.

4. The input/output interface is not user-friendly, and the simulation experiments

with a large number of repetitions are laborious to implement.

9.4 Future work

Future work is listed below:

1. Long-term planning should be incorporated in TSJSim.

2. The lengths of the haul routes should be extendable as mining is progressing with

loaders being assigned to various loading sites during the simulation run.

Chapter Nine: Summary and Discussions

245

3. Operational constraints including quality parameters and stripping ratio should

also be included when long-term planning is considered.

4. The user interface for the model input /output and experiment design needs

improvement.

5. There is an opportunity to incorporate a real-time dispatching controller with the

truck-allocation simulator.

6. The modules for equipment breakdowns and repair times should be included in

TSJSim.

7. The influence of moisture on tonnage production should be taken into account.

Appendices

246

APPENDICES

Appendix A FlexSim Scripts: Task Sending of Dispatcher

Appendix B FlexSim Scripts: Loading Procedure

Appendix C FlexSim Scripts: Loading Motion

Appendix D FlexSim Scripts: Dumping Procedure

Appendix E Determining Average Speed of CAT789C

Appendix F Route Information of Easter Ridge OB23/25

Appendix G Truck Cycle Times from Time & Motion Study

Appendix H Truck Cycle Times from Simulation Results

Appendix I Parameter Tables and Arena/FlexSim Simulation Results

Appendices

247

APPENDIX A

FlexSim Scripts: Task Sending of Dispatcher

/**Create a task sequence*/

treenodecurrent = ownerobject(c);

treenode truck = msgsendingobject;

int loadzone_port;

int dumpzone_port;

loadzone_port = getlabelnum(truck,6);

dumpzone_port = getlabelnum(truck,7);

treenode loadzone = centerobject(current, loadzone_port);// Randomly pick a zone for the load zone

treenode dump = centerobject(current, dumpzone_port);// Respectively pick a zone for the dump

loadzone = first(loadzone);// Set the loadzone to the load zone dispatcher

dump = first(dump);// Set the dump to the dump zone dispatcher

treenode newts = createemptytasksequence(truck,0,0);// Create a new task sequence

inserttask(newts, TASKTYPE_SENDMESSAGE, truck, truck, 99,

MINING_STATE_TRAVEL_TO_LOADZONE, 0);// Send a message to the truck to change its state

inserttask(newts, TASKTYPE_TRAVEL, centerobject(loadzone, 1), NULL, 0, 0);// Travel to the shovel queue

inserttask(newts, TASKTYPE_CALLSUBTASKS, loadzone, NULL, 1, 0, 0);// Call sub tasks to load the truck

inserttask(newts, TASKTYPE_SENDMESSAGE, truck, truck, 99,

MINING_STATE_TRAVEL_TO_DUMPZONE, 0);// Send a message to the truck to change its state

inserttask(newts, TASKTYPE_TRAVEL, centerobject(dump, 1), NULL, 0, 0); // Travel to the dump

inserttask(newts, TASKTYPE_CALLSUBTASKS, dump, NULL, 1, 0, 0);// Call sub tasks to dump the truck

inserttask(newts, TASKTYPE_SENDMESSAGE, current, truck, 0, 0, 0);// Send a message to do this loop again

dispatchtasksequence(newts);// Dispatch the task sequence

Appendices

248

APPENDIX B

FlexSim Scripts: Loading Procedure

/**Create a coordinated task sequence based on msgparam(1)*/

treenodecurrent = ownerobject(c);

treenode TDisp = node("/Truck Dispatcher", model());

treenode truck = msgsendingobject;

treenode shovel = centerobject(current, 3);

int index;

switch(msgparam(1))

{

 case0:

 {

 int loads = executefsnode(label(shovel, "PassesPerTruck"), shovel, truck, 1);// This is the

number of passes to fill the truck

 treenode newts = createemptytasksequence(truck,0,0);// Create the task sequence

 inserttask(newts, TASKTYPE_SENDMESSAGE, truck, truck, 99,

MINING_STATE_QUEUE_AT_LOADZONE, 0);// Send a message to the truck to change its state

 inserttask(newts, TASKTYPE_CALLSUBTASKS, truck, NULL, 102, 1, tonum(current)); //

Call the subtasks on the truck to possibly breakdown

 returntonum(newts);

 }

 case1:

 {

 int loads = executefsnode(label(shovel, "PassesPerTruck"), shovel, truck, 1);

 // This is the number of passes to fill the truck

 treenode newts = createemptytasksequence(truck,0,0);// Create the task sequence

 inserttask(newts, TASKTYPE_SENDMESSAGE, truck, truck, 99,

MINING_STATE_QUEUE_AT_LOADZONE, 0);// Send a message to the truck to change its state

 inserttask(newts, TASKTYPE_CALLSUBTASKS, truck, NULL, 101, 1, tonum(current));

 // Call the subtasks on the truck to possibly breakdown

 returntonum(newts);

 }

 case2:

 {

 int loads = executefsnode(label(shovel, "PassesPerTruck"), shovel, truck, 1);

 // This is the number of passes to fill the truck

 treenode newts = createcoordinatedtasksequence(truck);

//Create the coordinated task sequence

 int traveler = insertallocatetask(newts, truck, 0, 0);// Allocate the truck

 insertproxytask(newts, traveler, TASKTYPE_SENDMESSAGE, truck, truck, 99,

MINING_STATE_QUEUE_AT_LOADZONE, 0);// Send a message to the truck to change its state

 if(loads >0)// If we have loads to load

 {

 for(index = 1; index <= loads; index++)// Create the loads

 {

 createcopy(node("/1/FlowItemBin/10/1", model()), current);

// Create a load for this truck

 setloc(last(current), xsize(current) / 2, -ysize(current) / 2 +

ysize(last(current)) / 2, 0); // Set the location of the load

 }

 int loadspot = insertallocatetask(newts, current, 0, 0);// Allocate the load spot

 int loader = insertallocatetask(newts, shovel, 0, 0, 1); // Allocate the shovel

 //int loadspot1=insertallocatetask(newts, outobject(current,1), 0, 0);

 insertproxytask(newts, loader, TASKTYPE_SENDMESSAGE, loader, loader, 99,

MINING_SHOVEL_LOADING, 0);// Send a message to the shovel to change its state

 insertproxytask(newts, loader, TASKTYPE_SENDMESSAGE, loader, loadspot, 0,

0, 0);// Using the shovel send a message to the shovel from the loader

 int sync0 = insertproxytask(newts, loader, TASKTYPE_LOAD, rank(current,

content(current)), current, 0, 0);// Have the shovel pick up the 1st load

Appendices

249

 int sync1 = insertproxytask(newts, traveler, TASKTYPE_CALLSUBTASKS,

loadspot, NULL, 0, 0, 0);// Have the truck travel to the load spot

 insertsynctask(newts, sync0);

 // Sync

 insertsynctask(newts, sync1);

 // Sync

 insertproxytask(newts, traveler, TASKTYPE_SENDMESSAGE, truck, truck, 99,

MINING_STATE_LOADING, 0);// Send a message to the truck to change its state

 int sync2 = insertproxytask(newts, loader, TASKTYPE_UNLOAD, rank(current,

content(current)), first(truck), 0, 0);// Dump the load in the truck

 for(index = 1; index < loads; index++)

 {

 insertproxytask(newts, loader, TASKTYPE_LOAD, rank(current,

content(current) - index), current, 0, 0); // Pick up the load

 sync2 = insertproxytask(newts, loader, TASKTYPE_UNLOAD,

rank(current, content(current) - index), first(truck), 0, 0);// Dump the load in the truck

 }

 insertsynctask(newts, sync2);

 // Sync

 insertproxytask(newts, traveler, TASKTYPE_SENDMESSAGE, loader, loader, 1,

0, 0);// Send a message to the loader to possibly park

 insertdeallocatetask(newts, loader);// Deallocate the Shovel

 insertproxytask(newts, traveler, TASKTYPE_SENDMESSAGE, truck, truck, 99,

MINING_STATE_EXIT_LOADZONE, 0);// Send a message to the truck to change its state

 int sync3 = insertproxytask(newts, traveler, TASKTYPE_TRAVEL,

centerobject(current, 2), NULL, 0, 0);// Travel to the load zone exit

 insertsynctask(newts, sync3);

 // Sync

 insertdeallocatetask(newts, loadspot);// Deallocate the Load Spot

 insertdeallocatetask(newts, traveler);// Deallocate the Truck

 }

 else
 {

 insertproxytask(newts, traveler, TASKTYPE_SENDMESSAGE, truck, truck, 99,

MINING_STATE_EXIT_LOADZONE, 0);// Send a message to the truck to change its state

 int sync1 = insertproxytask(newts, traveler, TASKTYPE_TRAVEL,

centerobject(current, 2), NULL, 0, 0);// Travel to the load zone exit

 insertsynctask(newts, sync1);

 // Sync

 insertdeallocatetask(newts, traveler);// Deallocate the Truck

 }

 returntonum(newts);// Dispatch the task sequence

 }

}

Appendices

250

APPENDIX C

FlexSim Scripts: Loading Motion

/**Rotate the Excavator*/

treenodecurrent = ownerobject(c);

// the following x, y, and z values are requested x, y, and z offsets from this object's x/y center and z base.

double x = parval(1);

double y = parval(2);

double z = parval(3);

treenodeitem = parnode(4);

double endspeed = parval(5);

double maxspeed = parval(6);

double acceleration = parval(7);

double deceleration = parval(8);

double lastupdatedspeed = parval(9);

double rotatewhiletraveling = parval(10);

treenode kinematicnode = parnode(11);

treenode body = first(current);

treenode arm1 = first(first(body));

treenode arm2 = first(arm1);

treenode dozer = first(arm2);

treenode clam = first(dozer);

double yr;

double zr = zrot(current);

//Set the z rotation of the excavator to within 0 and 360

if(zr >360 || zr <0) //If we need to adjust the zrot of the excavator

{

 while(zr <0) zr += 360;//If the zrot is less than 0 then increase it by 360

 while(zr >360) zr -= 360;//If the zrot is greater than 360 then reduce it by 360

 setrot(current, xrot(current), yrot(current), zr);//Set the zrot of the excavator to the new zr

}

//Init the Kinematics

treenode bodykinlabel = label(current, "fs_body_kinematics");//Get a pointer to the Kinematics label for the

body

if(!objectexists(bodykinlabel))//Check to see if the body Kinematics label doesn't exist

{

 addlabel(current, "fs_body_kinematics");//Add the Kinematics label

 bodykinlabel = label(current, "fs_body_kinematics");//Get a pointer to the Kinematics label

}

initkinematics(bodykinlabel, body, 0,0);//Init the body Kinematics

treenode arm1kinlabel = label(current, "fs_arm1_kinematics");//Get a pointer to the Kinematics label for the

arm1

if(!objectexists(arm1kinlabel))//Check to see if the arm1 Kinematics label doesn't exist

{

 addlabel(current, "fs_arm1_kinematics");//Add the Kinematics label

 arm1kinlabel = label(current, "fs_arm1_kinematics");//Get a pointer to the Kinematics label

}

initkinematics(arm1kinlabel, arm1, 0,0);//Init the arm1 Kinematics

treenode arm2kinlabel = label(current, "fs_arm2_kinematics");//Get a pointer to the Kinematics label for the

arm2

if(!objectexists(arm2kinlabel))//Check to see if the arm2 Kinematics label doesn't exist

{

 addlabel(current, "fs_arm2_kinematics");//Add the Kinematics label

 arm2kinlabel = label(current, "fs_arm2_kinematics");//Get a pointer to the Kinematics label

}

initkinematics(arm2kinlabel, arm2, 0,0);//Init the arm2 Kinematics

treenode dozerkinlabel = label(current, "fs_dozer_kinematics");//Get a pointer to the Kinematics label for the

dozer

if(!objectexists(dozerkinlabel))//Check to see if the dozer Kinematics label doesn't exist

{

Appendices

251

 addlabel(current, "fs_dozer_kinematics");//Add the Kinematics label

 dozerkinlabel = label(current, "fs_dozer_kinematics");//Get a pointer to the Kinematics label

}

initkinematics(dozerkinlabel, dozer, 0,0);//Init the dozer Kinematics

treenode clamkinlabel = label(current, "fs_clam_kinematics");//Get a pointer to the Kinematics label for the

clam

if(!objectexists(clamkinlabel))//Check to see if the clam Kinematics label doesn't exist

{

 addlabel(current, "fs_clam_kinematics");//Add the Kinematics label

 dozerkinlabel = label(current, "fs_clam_kinematics");//Get a pointer to the Kinematics label

}

initkinematics(clamkinlabel, clam, 0,0); //Init the clam Kinematics

int digtype = getlabelnum(current, "DigType"); //1 is by dig time and 2 is by speeds

if(endspeed >= 0)//Our end speed is negative when we want to park and 0+ when we are loading and unloading

{

 if(content(current) == 1)//We need to load into a truck

 {

 //Calculate the required z rotation of the excavator

 double dzr = radianstodegrees(atan2(y, x));//Calculate a preliminary z rotation for the item

 double loadzr;//Create variable to hold our loaded rotation

 if(y <0)

 {

 dzr = 360 + dzr;//If the y is negative then we need to add it to 360 to get the

rotation in positive values

 }

 loadzr = dzr;//Save the loading position

 dzr = dzr - (zrot(body) + zr); //Calulate the difference between our current zrot and the

required zrot

 if(digtype == 1)//We are going based on a given time

 {

 //Get the basic parameters needed

 double digtime = executefsnode(label(current, "DigTime"), current, NULL,

1);//This is the time it will take to make one pass

 double timetodig = getlabelnum(current, "DigPercent") * digtime;

//This is the time that will be used in the digging motion

 double timetodump = getlabelnum(current, "DumpPercent") * digtime;

 //This is the time that will be used in the dumping motion

 double traveltime = (digtime - (timetodig + timetodump)) / 2;

 //This is the time that we have to swing each way

 double timetotravelto = traveltime;

//This is one of the travel times we need to include in loading

 double halftravel = traveltime / 2;

 setlabelnum(current, "fs_TravelTime", traveltime);

//Set the fs_TravelTime label so that we know how long to dravel for the dump

 setlabelnum(current, "fs_DumpTime", timetodump);

 //Set the fs_DumpTime label so that we know how long to dump for

 //Rotate the excavator towards the load and move the arms and dozer into the

digging position

 addkinematic(bodykinlabel, 0, 0, dzr, fabs(dzr) / traveltime, 0, 0, 0, 0, time(),

KINEMATIC_ROTATE);

 yr = getlabelnum(arm1, 4) - yrot(arm1);

 addkinematic(arm1kinlabel, 0, yr, 0, fabs(yr) / halftravel, 0, 0, 0, 0, time() +

halftravel, KINEMATIC_ROTATE);

 yr = getlabelnum(arm2, 4) - yrot(arm2);

 addkinematic(arm2kinlabel, 0, yr, 0, fabs(yr) / halftravel, 0, 0, 0, 0, time() +

halftravel, KINEMATIC_ROTATE);

 yr = getlabelnum(dozer, 4) - yrot(dozer);

 addkinematic(dozerkinlabel, 0, yr, 0, fabs(yr) / halftravel, 0, 0, 0, 0, time() +

halftravel, KINEMATIC_ROTATE);

 yr = getlabelnum(clam, 4) - yrot(clam);

 addkinematic(clamkinlabel, 0, yr, 0, fabs(yr) / halftravel, 0, 0, 0, 0, time() +

halftravel, KINEMATIC_ROTATE);

 //Rotate the excavator through the digging motion

 yr = getlabelnum(arm1, 5) - getlabelnum(arm1, 4);

Appendices

252

 addkinematic(arm1kinlabel, 0, yr, 0, fabs(yr) / timetodig, 0, 0, 0, 0, time() +

traveltime, KINEMATIC_ROTATE);

 yr = getlabelnum(arm2, 5) - getlabelnum(arm2, 4);

 addkinematic(arm2kinlabel, 0, yr, 0, fabs(yr) / timetodig, 0, 0, 0, 0, time() +

traveltime, KINEMATIC_ROTATE);

 yr = getlabelnum(dozer, 5) - getlabelnum(dozer, 4);

 addkinematic(dozerkinlabel, 0, yr, 0, fabs(yr) / timetodig, 0, 0, 0, 0, time() +

traveltime, KINEMATIC_ROTATE);

 yr = getlabelnum(clam, 5) - getlabelnum(clam, 4);

 addkinematic(clamkinlabel, 0, yr, 0, fabs(yr) / timetodig, 0, 0, 0, 0, time() +

traveltime, KINEMATIC_ROTATE);

 senddelayedmessage(current, traveltime + (timetodig / 2), current, 2, 0, 0);//Send a

message to set the DrawDirt label to 1

 //Get the dump position

 treenode dumpspot = tonode(getlabelnum(current, "fs_DumpSpot"));

 x = vectorprojectx(dumpspot, 0, 0, 0, up(current)) -

vectorprojectx(first(first(current)), 0, 0, 0, up(current));

 y = vectorprojecty(dumpspot, 0, 0, 0, up(current)) -

vectorprojecty(first(first(current)), 0, 0, 0, up(current));

 dzr = radianstodegrees(atan2(y, x));//Calculate a preliminary z rotation for the item

 if(y <0)

 {

 dzr = 360 + dzr;

 //If the y is negative then we need to add it to 360 to get the rotation in

positive values

 }

 dzr = dzr - loadzr;

 //Calulate the difference between our current zrot and the required zrot

 //Rotate the excavator towards the dump position

 addkinematic(bodykinlabel, 0, 0, dzr, fabs(dzr) / traveltime, 0, 0, 0, 0, time() +

traveltime + timetodig, KINEMATIC_ROTATE);

 yr = getlabelnum(arm1, 6) - getlabelnum(arm1, 5);

 addkinematic(arm1kinlabel, 0, yr, 0, fabs(yr) / halftravel, 0, 0, 0, 0, time() +

traveltime + timetodig, KINEMATIC_ROTATE);

 yr = getlabelnum(arm2, 6) - getlabelnum(arm2, 5);

 addkinematic(arm2kinlabel, 0, yr, 0, fabs(yr) / halftravel, 0, 0, 0, 0, time() +

traveltime + timetodig, KINEMATIC_ROTATE);

 yr = getlabelnum(dozer, 6) - getlabelnum(dozer, 5);

 addkinematic(dozerkinlabel, 0, yr, 0, fabs(yr) / halftravel, 0, 0, 0, 0, time() +

traveltime + timetodig, KINEMATIC_ROTATE);

 yr = getlabelnum(clam, 6) - getlabelnum(clam, 5);

 addkinematic(clamkinlabel, 0, yr, 0, fabs(yr) / halftravel, 0, 0, 0, 0, time() +

traveltime + timetodig, KINEMATIC_ROTATE);

 return traveltime * 2 + timetodig;

 //Return the amount of time it will take to complete the process

 }

 else
 //We are going based on the rotation speeds

 {

 //Setup the variables

 double timetodig;

 double temptimetodig;

 double timetotravel;

 double temptimetotravel;

 double traveltime;

 double halftravel;

 //Rotate the excavator towards the load and move the arms and dozer into the

digging position

 traveltime = addkinematic(bodykinlabel, 0, 0, dzr, getlabelnum(body, 1),

getlabelnum(body, 2), getlabelnum(body, 3), 0, 0, time(), KINEMATIC_ROTATE);

 halftravel = (traveltime - time()) / 2;

 yr = getlabelnum(arm1, 4) - yrot(arm1);

 temptimetotravel = addkinematic(arm1kinlabel, 0, yr, 0, getlabelnum(arm1, 1),

getlabelnum(arm1, 2), getlabelnum(arm1, 3), 0, 0, time() + halftravel, KINEMATIC_ROTATE);

 timetotravel = max(traveltime - time(), temptimetotravel - time());

Appendices

253

 yr = getlabelnum(arm2, 4) - yrot(arm2);

 temptimetotravel = addkinematic(arm2kinlabel, 0, yr, 0, getlabelnum(arm2, 1),

getlabelnum(arm2, 2), getlabelnum(arm2, 3), 0, 0, time() + halftravel, KINEMATIC_ROTATE);

 timetotravel = max(timetotravel, temptimetotravel - time());

 yr = getlabelnum(dozer, 4) - yrot(dozer);

 temptimetotravel = addkinematic(dozerkinlabel, 0, yr, 0, getlabelnum(dozer, 1),

getlabelnum(dozer, 2), getlabelnum(dozer, 3), 0, 0, time() + halftravel, KINEMATIC_ROTATE);

 timetotravel = max(timetotravel, temptimetotravel - time());

 yr = getlabelnum(clam, 4) - yrot(clam);

 temptimetotravel = addkinematic(clamkinlabel, 0, yr, 0, getlabelnum(clam, 1),

getlabelnum(clam, 2), getlabelnum(clam, 3), 0, 0, time() + halftravel, KINEMATIC_ROTATE);

 timetotravel = max(timetotravel, temptimetotravel - time());

 //Rotate the excavator through the digging motion

 yr = getlabelnum(arm1, 5) - getlabelnum(arm1, 4);

 timetodig = addkinematic(arm1kinlabel, 0, yr, 0, getlabelnum(arm1, 1),

getlabelnum(arm1, 2), getlabelnum(arm1, 3), 0, 0, time() + timetotravel, KINEMATIC_ROTATE);

 yr = getlabelnum(arm2, 5) - getlabelnum(arm2, 4);

 temptimetodig = addkinematic(arm2kinlabel, 0, yr, 0, getlabelnum(arm2, 1),

getlabelnum(arm2, 2), getlabelnum(arm2, 3), 0, 0, time() + timetotravel, KINEMATIC_ROTATE);

 timetodig = max(timetodig - time(), temptimetodig - time());

 yr = getlabelnum(dozer, 5) - getlabelnum(dozer, 4);

 temptimetodig = addkinematic(dozerkinlabel, 0, yr, 0, getlabelnum(dozer, 1),

getlabelnum(dozer, 2), getlabelnum(dozer, 3), 0, 0, time() + timetotravel, KINEMATIC_ROTATE);

 timetodig = max(timetodig - time(), temptimetodig - time());

 yr = getlabelnum(clam, 5) - getlabelnum(clam, 4);

 temptimetodig = addkinematic(clamkinlabel, 0, yr, 0, getlabelnum(clam, 1),

getlabelnum(clam, 2), getlabelnum(clam, 3), 0, 0, time() + timetotravel, KINEMATIC_ROTATE);

 timetodig = max(timetodig, temptimetodig - time());

 double timetotravelto = timetotravel;

 //Store the first travel time

 senddelayedmessage(current, timetotravelto + (timetodig / 2), current, 2, 0,

0);//Send a message to set the DrawDirt label to 1

 //Get the dump position

 treenode dumpspot = tonode(getlabelnum(current, "fs_DumpSpot"));

 x = vectorprojectx(dumpspot, 0, 0, 0, up(current)) -

vectorprojectx(first(first(current)), 0, 0, 0, up(current));

 y = vectorprojecty(dumpspot, 0, 0, 0, up(current)) -

vectorprojecty(first(first(current)), 0, 0, 0, up(current));

 dzr = radianstodegrees(atan2(y, x));

 //Calculate a preliminary z rotation for the item

 if(y <0)

 {

 dzr = 360 + dzr;

 //If the y is negative then we need to add it to 360 to get the rotation in

positive values

 }

 dzr = dzr - loadzr;

 //Calulate the difference between our current zrot and the required zrot

 //Rotate the excavator towards the dump position

 traveltime = addkinematic(bodykinlabel, 0, 0, dzr, getlabelnum(body, 1),

getlabelnum(body, 2), getlabelnum(body, 3), 0, 0, time() + timetotravelto + timetodig, KINEMATIC_ROTATE);

 yr = getlabelnum(arm1, 6) - yrot(arm1);

 temptimetotravel = addkinematic(arm1kinlabel, 0, yr, 0, getlabelnum(arm1, 1),

getlabelnum(arm1, 2), getlabelnum(arm1, 3), 0, 0, time() + timetotravelto + timetodig, KINEMATIC_ROTATE);

 timetotravel = max(traveltime - time(), temptimetotravel - time());

 yr = getlabelnum(arm2, 6) - yrot(arm2);

 temptimetotravel = addkinematic(arm2kinlabel, 0, yr, 0, getlabelnum(arm2, 1),

getlabelnum(arm2, 2), getlabelnum(arm2, 3), 0, 0, time() + timetotravelto + timetodig, KINEMATIC_ROTATE);

 timetotravel = max(timetotravel, temptimetotravel - time());

 yr = getlabelnum(dozer, 6) - yrot(dozer);

 temptimetotravel = addkinematic(dozerkinlabel, 0, yr, 0, getlabelnum(dozer, 1),

getlabelnum(dozer, 2), getlabelnum(dozer, 3), 0, 0, time() + timetotravelto + timetodig,

KINEMATIC_ROTATE);

 timetotravel = max(timetotravel, temptimetotravel - time());

Appendices

254

 yr = getlabelnum(clam, 6) - yrot(clam);

 temptimetotravel = addkinematic(clamkinlabel, 0, yr, 0, getlabelnum(clam, 1),

getlabelnum(clam, 2), getlabelnum(clam, 3), 0, 0, time() + timetotravelto + timetodig, KINEMATIC_ROTATE);

 timetotravel = max(timetotravel, temptimetotravel - time());

 return timetotravelto + timetotravel + timetodig;

 //Return the amount of time it will take to complete the process

 }

 }

 else
 //We are dumping into a truck

 {

 if(digtype == 1)

 //We are going based on a given time

 {

 //Get the basic parameters needed

 double timetodump = getlabelnum(current, "fs_DumpTime");

 //This is the time that will be used in the dumping motion

 double traveltime = getlabelnum(current, "fs_TravelTime");

 //This is the time that we have to swing each way

 double halftravel = traveltime / 2;

 //Rotate the excavator through the dumping motion

 yr = getlabelnum(arm1, 7) - getlabelnum(arm1, 6);

 addkinematic(arm1kinlabel, 0, yr, 0, fabs(yr) / timetodump, 0, 0, 0, 0, time(),

KINEMATIC_ROTATE);

 yr = getlabelnum(arm2, 7) - getlabelnum(arm2, 6);

 addkinematic(arm2kinlabel, 0, yr, 0, fabs(yr) / timetodump, 0, 0, 0, 0, time(),

KINEMATIC_ROTATE);

 yr = getlabelnum(dozer, 7) - getlabelnum(dozer, 6);

 addkinematic(dozerkinlabel, 0, yr, 0, fabs(yr) / timetodump, 0, 0, 0, 0, time(),

KINEMATIC_ROTATE);

 yr = getlabelnum(clam, 7) - getlabelnum(clam, 6);

 addkinematic(clamkinlabel, 0, yr, 0, fabs(yr) / timetodump, 0, 0, 0, 0, time(),

KINEMATIC_ROTATE);

 senddelayedmessage(current, timetodump / 2, current, 3, 0, 0);

 //Send a message to set the DrawDirt label to 0

 return timetodump;//Return the amount of time it will take to complete the process

 }

 else
 //We are going based on the rotation speeds

 {

 //Setup the variables

 double timetodump;

 double temptimetodump;

 double timetotravel;

 double temptimetotravel;

 double traveltime;

 double halftravel;

 //Rotate the excavator through the dumping motion

 yr = getlabelnum(arm1, 7) - getlabelnum(arm1, 6);

 timetodump = addkinematic(arm1kinlabel, 0, yr, 0, getlabelnum(arm1, 1),

getlabelnum(arm1, 2), getlabelnum(arm1, 3), 0, 0, time(), KINEMATIC_ROTATE);

 yr = getlabelnum(arm2, 7) - getlabelnum(arm2, 6);

 temptimetodump = addkinematic(arm2kinlabel, 0, yr, 0, getlabelnum(arm2, 1),

getlabelnum(arm2, 2), getlabelnum(arm2, 3), 0, 0, time(), KINEMATIC_ROTATE);

 timetodump = max(timetodump - time(), temptimetodump - time());

 yr = getlabelnum(dozer, 7) - getlabelnum(dozer, 6);

 temptimetodump = addkinematic(dozerkinlabel, 0, yr, 0, getlabelnum(dozer, 1),

getlabelnum(dozer, 2), getlabelnum(dozer, 3), 0, 0, time(), KINEMATIC_ROTATE);

 timetodump = max(timetodump - time(), temptimetodump - time());

 yr = getlabelnum(clam, 7) - getlabelnum(clam, 6);

 temptimetodump = addkinematic(clamkinlabel, 0, yr, 0, getlabelnum(clam, 1),

getlabelnum(clam, 2), getlabelnum(clam, 3), 0, 0, time(), KINEMATIC_ROTATE);

 timetodump = max(timetodump, temptimetodump - time());

Appendices

255

 senddelayedmessage(current, timetodump / 2, current, 3, 0, 0);

 //Send a message to set the DrawDirt label to 0

 return timetodump;

 //Return the amount of time it will take to complete the process

 }

 }

}

else
//We need to park

{

 //Calculate the required z rotation of the excavator

 double dzr = radianstodegrees(atan2(y, x));

 //Calculate a preliminary z rotation for the item

 double loadzr;

 //Create variable to hold our loaded rotation

 if(y <0)

 {

 dzr = 360 + dzr;

 //If the y is negative then we need to add it to 360 to get the rotation in positive values

 }

 loadzr = dzr;

 //Save the loading position

 dzr = dzr - (zrot(body) + zr);

 //Calulate the difference between our current zrot and the required zrot

 if(digtype == 1)

 //We are going based on a given time

 {

 //Get the basic parameters needed

 double digtime = executefsnode(label(current, "DigTime"), current, NULL, 1); //This is the

time it will take to make one pass

 double timetodig = getlabelnum(current, "DigPercent") * digtime;

 //This is the time that will be used in the digging motion

 double timetodump = getlabelnum(current, "DumpPercent") * digtime;

 //This is the time that will be used in the dumping motion

 double traveltime = (digtime - (timetodig + timetodump)) / 2;

 //This is the time that we have to swing each way

 double timetotravelto = traveltime;

 //This is one of the travel times we need to include in loading

 double halftravel = traveltime / 2;

 setlabelnum(current, "fs_TravelTime", traveltime);

 //Set the fs_TravelTime label so that we know how long to dravel for the dump

 setlabelnum(current, "fs_DumpTime", timetodump);

 //Set the fs_DumpTime label so that we know how long to dump for

 //Rotate the excavator towards the load and move the arms and dozer into the digging

position

 addkinematic(bodykinlabel, 0, 0, dzr, fabs(dzr) / traveltime, 0, 0, 0, 0, time(),

KINEMATIC_ROTATE);

 yr = getlabelnum(arm1, 8) - yrot(arm1);

 addkinematic(arm1kinlabel, 0, yr, 0, fabs(yr) / halftravel, 0, 0, 0, 0, time() + halftravel,

KINEMATIC_ROTATE);

 yr = getlabelnum(arm2, 8) - yrot(arm2);

 addkinematic(arm2kinlabel, 0, yr, 0, fabs(yr) / halftravel, 0, 0, 0, 0, time() + halftravel,

KINEMATIC_ROTATE);

 yr = getlabelnum(dozer, 8) - yrot(dozer);

 addkinematic(dozerkinlabel, 0, yr, 0, fabs(yr) / halftravel, 0, 0, 0, 0, time() + halftravel,

KINEMATIC_ROTATE);

 yr = getlabelnum(clam, 8) - yrot(clam);

 addkinematic(clamkinlabel, 0, yr, 0, fabs(yr) / halftravel, 0, 0, 0, 0, time() + halftravel,

KINEMATIC_ROTATE);

 return traveltime;

 //Return the amount of time it will take to complete the process

 }

 else
 //We are going based on the rotation speeds

Appendices

256

 {

 //Setup the variables

 double timetodig;

 double temptimetodig;

 double timetotravel;

 double temptimetotravel;

 double traveltime;

 double halftravel;

 //Rotate the excavator towards the load and move the arms and dozer into the digging

position

 traveltime = addkinematic(bodykinlabel, 0, 0, dzr, getlabelnum(body, 1), getlabelnum(body,

2), getlabelnum(body, 3), 0, 0, time(), KINEMATIC_ROTATE);

 halftravel = (traveltime - time()) / 2;

 yr = getlabelnum(arm1, 8) - yrot(arm1);

 temptimetotravel = addkinematic(arm1kinlabel, 0, yr, 0, getlabelnum(arm1, 1),

getlabelnum(arm1, 2), getlabelnum(arm1, 3), 0, 0, time() + halftravel, KINEMATIC_ROTATE);

 timetotravel = max(traveltime - time(), temptimetotravel - time());

 yr = getlabelnum(arm2, 8) - yrot(arm2);

 temptimetotravel = addkinematic(arm2kinlabel, 0, yr, 0, getlabelnum(arm2, 1),

getlabelnum(arm2, 2), getlabelnum(arm2, 3), 0, 0, time() + halftravel, KINEMATIC_ROTATE);

 timetotravel = max(timetotravel, temptimetotravel - time());

 yr = getlabelnum(dozer, 8) - yrot(dozer);

 temptimetotravel = addkinematic(dozerkinlabel, 0, yr, 0, getlabelnum(dozer, 1),

getlabelnum(dozer, 2), getlabelnum(dozer, 3), 0, 0, time() + halftravel, KINEMATIC_ROTATE);

 timetotravel = max(timetotravel, temptimetotravel - time());

 yr = getlabelnum(clam, 8) - yrot(clam);

 temptimetotravel = addkinematic(clamkinlabel, 0, yr, 0, getlabelnum(clam, 1),

getlabelnum(clam, 2), getlabelnum(clam, 3), 0, 0, time() + halftravel, KINEMATIC_ROTATE);

 timetotravel = max(timetotravel, temptimetotravel - time());

 return timetotravel;

 //Return the amount of time it will take to complete the process

 }

}

Appendices

257

APPENDIX D

FlexSim Scripts: Dumping Procedure

/**Create a coordinated task sequence*/

treenodecurrent = ownerobject(c);

treenode TDisp = node("/Truck Dispatcher", model());

treenode sink = node("/Sink", model());

treenode truck = msgsendingobject;

double dumptime = uniform(20, 30);

double dumpdelay = (dumptime * .66) / content(first(truck));

int dumpstate = 8; // releasing

int index;

treenode newts = createcoordinatedtasksequence(current); // Create the coordinated task sequence

int traveler = insertallocatetask(newts, truck, 0, 0);// Allocate the truck

insertproxytask(newts, traveler, TASKTYPE_SENDMESSAGE, truck, truck, 99,

MINING_STATE_QUEUE_AT_DUMPZONE, 0);// Send a message to the truck to change its state

int dumpspot = insertallocatetask(newts, current, 0, 0);// Allocate the dump

int sync0task = insertproxytask(newts, traveler, TASKTYPE_CALLSUBTASKS, dumpspot, NULL, 0, 0, 0);

// Allow the Break to requirement on the dump spot to tell the truck how to dump

insertsynctask(newts, sync0task);// Sync

insertproxytask(newts, traveler, TASKTYPE_SENDMESSAGE, truck, truck, 99, MINING_STATE_DUMPING,

0);// Send a message to the truck to change its state

insertproxytask(newts, traveler, TASKTYPE_SENDMESSAGE, truck, truck, 3, dumptime, 0);

// Send a message to the truck to do the dumping action

for(index = 1; index <= content(first(truck)); index++)

// For each load in the truck

{

 insertproxytask(newts, traveler, TASKTYPE_DELAY, NULL, NULL, dumpdelay, dumpstate);

 // Delay for the dump time

 insertproxytask(newts, traveler, TASKTYPE_UNLOAD, rank(first(truck), index), sink, 0);

 // Unlaod the loads

}

insertproxytask(newts, traveler, TASKTYPE_DELAY, NULL, NULL, dumptime * .34, dumpstate);

// Delay for the dump time

insertproxytask(newts, traveler, TASKTYPE_SENDMESSAGE, truck, truck, 99,

MINING_STATE_EXIT_DUMPZONE, 0);// Send a message to the truck to change its state

int sync1task = insertproxytask(newts, traveler, TASKTYPE_TRAVEL, centerobject(current, 2), NULL, 0, 0);

// Travel to the dump exit

insertsynctask(newts, sync1task);

// Sync

insertdeallocatetask(newts, dumpspot);

// Deallocate the Dump

insertdeallocatetask(newts, traveler);

// Deallocate the Truck

returntonum(newts);

// Dispatch the task sequence

Appendices

258

APPENDIX E

Determining Average Speed of CAT789C

Both the performance chart and the retarder chart for the CAT 789C are provided in

Figure AE-1 and AE-2, respectively.

Figure AE-1 Performance chart for CAT 789C

Appendices

259

Figure AE-2 Retarder chart for CAT 789C

The performance curve for the CAT 789C is transformed into the following piece-

wise function:

{

 6

 9

 6 6
 6 6

 9
 9

 6

 (AE.1)

Appendices

260

where

 maximum velocity from the performance chart, km/h

The average speed is calculated by multiplying the maximum speed taken from the

performance chart by a speed factor:

 (AE.2)

where

 average velocity, km/h

 speed factor, determined by experience, shows the influence of the truck

acceleration and deceleration by considering the distance of the haul section. The

speed factor used in the TSJSim model is derived from Table AI-2 of Appendix I.

The retarder curve for CAT 789C can be transformed into the following piece-wise

function:

{

 6
 6

 9 6

 6
 9

 9 6

 6 6 6

 6 6
 9 6

 (AE.3)

where

 maximum velocity from the retarder chart, km/h

Appendices

261

Based on Equation (AE.3), the CAT 789C retarder curve can be summarised in

Table AE-1.

Table AE-1 Rimpull, gear and maximum velocity for CAT 789C retarder curve

Rimpull range(kg) Gear Maximum velocity (km/h)

-12000 < RP 6
th

 gear 56.0

-16000 RP -12000 5
th

 gear 41.0

-22000 RP -16000 4
th

 gear 31.0

-28800 RP -22000 3
rd

 gear 23.2

-36000 RP -28800 2
nd

 gear 18.4

RP -36000 1
st
 gear 13.8

According to Hays (1990), as the retarder curve indicates the maximum retarding

capability, a truck is usually operated at one gear lower than indicated by the retarder

chart. Thus the velocities from the CAT 789C retarder curve are shown in Table AE-

2.

Table AE-2 Rimpull, gear and velocity for CAT 789C retarder curve

Rimpull range(kg) Gear Velocity (km/h)

-12000 < RP 5
th

 gear 41.0

-16000 RP -12000 4
th

 gear 31.0

-22000 RP -16000 3
rd

 gear 23.2

-28800 RP -22000 2
nd

 gear 18.4

RP -28800 1
st
 gear 13.8

In TSJSim, an input parameter, RetarderCalibrateFactor, is used to account for the

acceleration and deceleration when the retarder chart is used. The average speed for

a truck hauling on a downgrade route is based on the retarder chart and can be

adjusted with the RetarderCalibrateFactor input, as given by Equation (AE.4):

 𝑤 𝑏 𝑟 (AE.4)

where

Appendices

262

 𝑤 average velocity when hauling on a downgrade route section, km/h

 velocity indicated by the retarder chart, km/h

 𝑏 𝑟 velocity before the truck enters the downgrade route section, km/h

 retarder calibrate factor, ranged between 0 and 1, decimal

The actual truck hauling speed is also limited by the speed limitation for each route

section. The speed limitation varies according to the grade of the route section, as

shown in Table AE-3.

Table AE-3 Speed limitation table (Hays, 1990)

Grade

resistance, %

Speed

limitation, km/h

0-6 60

6-8 30

8-10 25

10-12 20

12- 15

Appendices

263

APPENDIX F

Route Information of Easter Ridge OB23/25

Haul section Distance(m) Grade(%) Haul section Distance(m) Grade(%)

P3WCB to WC1 57.9 0.6 P3EC to EC1 50.8 -10.2

WC1 to WC2 47.7 9.8 EC1 to EC2 117.7 -9.9

WC2 to WC3 38.4 10.5 EC2 to EC3 65 -2.2

WC3 to WC4 109.3 2.8 EC3 to EC4 199.2 -0.7

WC4 to WC5 89.5 7.8 EC4 to EC5 226.8 0.4

WC5 to WC6 209.5 9.5 EC5 to EC6 111.6 0.1

WC6 to WC7 169 1.4 EC6 to EC7 66.9 0.3

WC7 to WC8 170.3 10 EC7 to EC8 127.6 0.6

WC8 to INT1 41.8 0.2 EC8 to EC9 182 0.8

INT1 to WC9 181.1 1.3 EC9 to EC10 124.2 0.7

WC9 to P3WD 106.5 0.6 EC10 to EC11 153 1.7

WC4 to ROM1 294.1 -0.7 EC11 to EC12 122 1.3

ROM1 to ROM2 86.5 0.7 EC12 to S4C5 46.6 -2

ROM2 to ROM3 457.2 0.9 S4C5 to WC3 125.7 1.7

ROM3 to ROM4 178.5 6.5 P4 to P41 100.2 -10.4

ROM4 to ROM5 320.2 1.2 P41 to INT2 133.2 -7.9

ROM5 to ROMdump 303.7 -0.2 INT2 to LGD1 121.1 3.1

P4lobe2 to P4L1 184.8 -10.5 LGD1 to LGDdump 133.9 -1

P4L1 to WD 303.3 -0.9 INT2 to P42 115.8 -3.3

WD to P45 241.5 0.3 P42 to P43 213.7 -1.3

P45 to P44 122.4 -10.2 P43 to ROMdump 514.9 -2.1

P44 to INT2 132.3 0.7 P3EC-2 to P3EC2.1 182.6 -9.9

INT1 to P1E1 207.2 9.5 P3EC2.1 to P3EC2.2 87.8 -0.2

P1E1 to P1E2 89.7 1.3 P3EC2.2 to EC5 142.7 0.4

P1E2 to P1E3 293 6.7

P1E3 to P1E4 390.1 0.4

P1E4 to P1E5 309.7 -6.8

P1E5 to P1E6 17.5 -1.2

P1E6 to P1E7 161.2 2.4

P1E7 to P1E8 59.1 -6.8

P1E8 to P1Edump 136.7 -8.3

Appendices

264

APPENDIX G

Truck Cycle Times from Time & Motion Study (s)

Cycle

No.

P3WC-

ROM

P4-

ROM

P4-

P4WD

S4C-

P1E(785)

S4C-

P1E(789)

P3EC-

P3WD

1 750 831 1023 1557 1213 1468

2 775 896 629 1637 1232 1575

3 1157 795 670 1294 1622 1482

4 749 824 745 1276 1802 1321

5 862 962 634 1381 1324 1352

6 1618 892 651 1248 1401 1443

7 913 867 704 1157 1741 1249

8 1511 864 1157 1115 1439 1807

9 865 816 792 1338 1917

10 810 1097 661 1413 1365

11 716 790 671 1300 1342

12 712 788 823 1246 1830

13 875 876 549 1245 1315

14 857 792 1336 1367

15 935 1302 1279 2197

16 661 901 1383 1494

17 872 1399 1275

18 938 1382 1544

19 999 1432 1105

20 1098 2108 1185

21 1096 1105

22 929 1216

23 1127

24 1049

25 942

26 1056

27 1023

28 1132

29 948

30 1032

31 1014

32 957

Appendices

265

APPENDIX H

Truck Cycle Times from Simulation Results (s)

Experiment

No.

P3WC-

ROM P4-ROM P4-P4WD

S4C-

P1E(789)

P3EC-

P3WD

1 815 1047 541 1435 1418

2 856 901 873 1406 1486

3 832 894 707 1457 1445

4 825 1031 608 1460 1431

5 806 1017 515 1418 1406

6 829 986 647 1394 1440

7 849 889 845 1458 1475

8 831 919 652 1429 1434

9 837 870 710 1361 1457

10 839 881 749 1408 1460

11 841 875 749 1406 1459

12 836 928 634 1454 1436

13 844 891 841 1424 1470

14 818 1043 548 1373 1421

15 851 884 852 1410 1482

16 824 1004 575 1389 1515

17 843 879 828 1424 1466

18 823 976 571 1467 1429

19 859 900 892 1430 1497

20 818 1014 539 1459 1415

21 827 953 671 1430 1439

22 802 989 501 1426 1396

23 849 914 803 1350 1460

24 799 983 498 1392 1394

25 827 919 921 1414 1510

26 834 953 698 1459 1440

27 838 880 793 1444 1452

28 808 1026 519 1390 1405

29 851 899 861 1462 1474

30 833 885 780 1438 1447

31 813 1040 527 1400 1408

32 856 894 875 1344 1477

33 809 1032 522 1440 1409

34 815 1050 554 1419 1417

35 856 899 901 1416 1489

36 805 1012 512 1406 1411

37 795 976 493 1393 1391

Appendices

266

38 825 941 670 1406 1431

39 833 925 733 1402 1441

40 864 904 906 1370 1500

41 821 1031 585 1416 1424

42 800 998 504 1389 1396

43 826 1034 602 1412 1429

44 831 947 691 1434 1443

45 846 900 843 1451 1472

46 810 1032 529 1390 1409

47 824 1015 618 1406 1435

48 805 1019 516 1398 1405

49 827 996 635 1426 1435

50 847 865 851 1443 1453

51 861 912 914 1493 1503

52 837 918 760 1374 1445

53 853 896 877 1446 1475

54 822 988 618 1419 1426

55 820 1041 582 1402 1427

56 839 910 784 1445 1454

57 821 1036 579 1387 1516

58 806 1023 516 1396 1406

59 819 1024 571 1412 1420

60 831 944 696 1433 1445

61 845 886 848 1457 1466

62 820 1029 575 1416 1425

63 840 898 806 1445 1454

64 860 897 898 1459 1487

65 846 865 847 1401 1455

66 844 889 816 1449 1457

67 853 904 865 1335 1473

68 832 897 745 1390 1438

69 821 1044 584 1423 1432

70 812 1053 533 1438 1411

71 810 1025 526 1430 1409

72 795 1043 535 1380 1389

73 855 878 859 1461 1470

74 810 1015 521 1404 1404

75 838 895 772 1436 1446

76 826 929 685 1414 1434

77 819 1020 586 1403 1422

78 812 1017 551 1405 1417

79 805 1012 512 1383 1400

80 818 1067 548 1407 1418

Appendices

267

81 811 1044 536 1398 1410

82 809 1037 532 1393 1412

83 852 899 860 1447 1477

84 857 893 895 1440 1484

85 834 908 747 1440 1449

86 853 888 889 1371 1484

87 798 976 494 1393 1391

88 832 935 714 1432 1440

89 806 1017 515 1489 1402

90 861 909 912 1373 1503

91 848 884 886 1369 1478

92 820 1027 590 1415 1423

93 848 914 820 1369 1464

94 801 992 508 1415 1396

95 830 961 679 1408 1439

96 807 1022 517 1358 1511

97 842 891 818 1382 1464

98 840 910 768 1387 1451

99 825 1012 616 1421 1430

100 808 1030 521 1383 1408

Appendices

268

APPENDIX I

Parameter tables and Arena/FlexSim simulation results

Table AI-1 Coefficient of traction for various haulage road surface (Hays, 1990)

Haulage Road Surface

Coefficient of traction

(Rubber tyres)

Concrete, new 0.80-1.00

Concrete, old 0.60-0.80

Concrete, wet 0.45-0.80

Asphalt, new 0.80-1.00

Asphalt, old 0.60-0.80

Asphalt, wet 0.30-0.80

Gravel, packed and oiled 0.55-0.85

Gravel, loose 0.35-0.70

Gravel, wet 0.35-0.80

Rock, crushed 0.55-0.75

Rock, wet 0.55-0.75

Cinders, packed 0.50-0.70

Cinders, wet 0.65-0.75

Earth, firm 0.55-0.70

Earth, loose 0.45

Sand, dry 0.2

Sand, wet 0.4

Snow, packed 0.20-0.55

Snow, loose 0.10-0.25

Snow, wet 0.30-0.60

Ice, smooth 0.10-0.25

Ice, wet 0.05-0.10

Coal, stockpiled 0.45

Appendices

269

Table AI-2 Speed factor table (Bishop, 1972)

Distance of each

route section, m

When making a

start

When running

into each section

0-100 0.25-0.50 0.50-0.70

100-250 0.35-0.60 0.60-0.75

250-500 0.50-0.65 0.70-0.80

500-750 0.60-0.70 0.75-0.80

750-1000 0.65-0.75 0.80-0.85

1000- 0.70-0.85 0.80-0.90

Table AI-3 Utilisation of shovels and trucks in Arena simulation model

Location
Average

utilisation (%)

Shovel P3WC 89

Shovel P4lobe2 94

Dump P3WD 14

Dump ROM 30

Dump WD 9

Table AI-4 Truck trips of fleets in Arena simulation model

Route
Truck

No.

Average

trips

Shovel P4lobe2 -

Dump WD

1 29.3

2 29

Shovel P4lobe2 -

Dump ROM

3 22

4 22

5 22

6 21.4

Shovel P3WC -

Dump ROM

7 28

8 28

9 27.8

10 27.1

Shovel P3WC -

Dump P3WD

11 31.4

12 31.0

13 31.0

Total loads 349.8

Appendices

270

Table AI-5 Accumulated operational time (s) in FlexSim simulation model

Route
Truck

No.

Travel to

Loadzone

Travel to

Dumpzone

Queue at

Loadzone

Queue at

Dumpzone

Spot at

Loadzone

Spot at

Dumpzone

P4lobe2

- WD

1 9499 9019 2 0 1426 2703

8 9601 8988 155 0 1309 2561

P4lobe2

- ROM

9 9964 9223 288 220 1106 1469

10 9778 9022 429 586 1066 1455

11 10018 9264 70 206 1110 1468

12 9622 9284 224 491 1064 1462

P3WC -

ROM

2 8980 8968 232 261 1332 1846

3 8922 8968 384 436 1301 1848

4 9181 8968 208 365 1390 1837

13 8903 9338 137 142 1383 1869

P3WC -

P3WD

5 8223 9378 17 29 1994 1997

6 8091 9429 203 170 1753 2023

7 7966 9378 336 320 1555 2019

Route
Truck

No.

Wait for

Load
Loading Dumping

Exit

Loadzone

Exit

Dumpzone

P4lobe2

- WD

1 53 2668 787 1086 1513

8 198 2561 756 1113 1434

P4lobe2

- ROM

9 1124 2169 672 819 1448

10 1220 2156 652 818 1416

11 1114 2264 684 880 1453

12 1265 2161 675 801 1475

P3WC -

ROM

2 624 1994 874 1382 1944

3 665 1914 883 1317 1952

4 678 1963 885 1299 1964

13 635 2001 893 1346 1970

P3WC -

P3WD

5 286 2313 1043 1485 1824

6 282 2279 1045 1550 1829

7 277 2269 1035 1650 1794

Appendices

271

Table AI-6 Trips of trucks in FlexSim simulation model

Route
Truck

No.
Mean trips

P4lobe2 -

WD

1 58.2

8 56

P4lobe2 -

ROM

9 47.6

10 46.4

11 48.4

12 47.2

P3WC -

ROM

2 57

3 56.2

4 56.6

13 58.2

P3WC -

P3WD

5 60.8

6 61

7 60.2

Total loads 713.8

References

272

REFERENCES

AFRAPOLI, A. M. and ASKARI-NASAB, H. 2017. Mining fleet management systems: a

review of models and algorithms. International Journal of Surface Mining,

Reclamation and Environment, DOI: 10.1080/17480930.2017.1336607, 1-19.

ALARIE, S. and GAMACHE, M. 2002. Overview of solution strategies used in truck

dispatching systems for open pit mines. International Journal of Surface Mining,

Reclamation and Environment, 16(1), 59-76.

ARMACOST, A., BARNHART, C. and WARE, K. 2002. Composite variable formulations

for express shipment service network design. Transportation Science, 36(1), 1-20.

ASKARI-NASAB, H., FRIMPONG, S. and SZYMANSKI, J. 2007. Modelling open pit

dynamics using discrete simulation. International Journal of Surface Mining,

Reclamation and Environment, 21(1), 35-49.

ATAEEPOUR, M. and BAAFI, E. Y. 1999. ARENA simulation model for truck-shovel

operation in dispatching and non-dispatching modes. International Journal of

Surface Mining, Reclamation and Environment, 13(3), 125-129.

BAAFI, E. Y. and ATAEEPOUR, M. 1998. Using ARENA® to simulate truck-shovel

operation. Mineral Resources Engineering, 7(3), 253-266.

BANKS, J., CARSON, J. S., NELSON, B. L. and NICOL, D. M. 2010. Discrete-event

system simulation, Pearson Education, Inc. Upper Saddle River, NJ, USA.

BASTOS, G. S. 2013. Decision making applied to shift change in stochastic open-pit mining

truck dispatching. In: 16th IFAC Symposium on Automation in Mining, Mineral and

Metal Processing, San Diego, California, USA. 34-39.

BEN-AKIVA, M. 1996. Development of a deployable real-time dynamic traffic assignment

system. Task D Interim report: analytical developments for DTA system, MIT ITS

Program, Cambridge (MA).

BEN-AKIVA, M., CUNEO, D., HASAN, M., JHA, M. and YANG, Q. 2003. Evaluation of

freeway control using a microscopic simulation laboratory. Transportation Research

Part C: Emerging Technologies, 11, 29-50.

BISHOP, T. S. 1972. Trucks. In: PFLEIDER, E. P. (ed.) Surface Mining. 1st ed. New York:

The American Institute of Mining, Metallurgical, and Petroleum Engineers, Inc.,

553-588.

BISSIRI, Y., DUNBAR, W.S. and HALL, A. 2014. Swarm-based truck-shovel dispatching

system in open pit mine operations. [Online]. Available:

https://www.researchgate.net/publication/242147702_Swarm_Based_Truck-

Shovel_Dispatching_System_in_Open_Pit_Mine_Operations [Accessed

15.06.2018].

BLACKWELL, G. H. 1999. Estimation of large open pit haulage truck requirements. CIM

Bulletin, 92(1028), 143-148.

References

273

BONATES, E. and LIZOTTE, Y. 1988. A computer simulation model to evaluate the effect

of dispatching. International Journal of Surface Mining, Reclamation and

Environment, 2(2), 99-104.

BONATES, E. J. L. 1996. Interactive truck haulage simulation program. In: AYRES DE

SILVA, L. A., CHAVES, A. P. and HENNIES, W. T., eds. Mine Planning and

Equipment Selection 1996, CRC Press, 51-57.

BRACKSTONE, M. and MCDONALD, M. 1999. Car-following: A historical review.

Transportation Research Part F: Traffic Psychology and Behaviour, 2(4), 181-196.

BURGHOUT, W. 2004. Hybrid microscopic-mesoscopic traffic simulation. Doctoral

Dissertation, Royal Institute of Technology.

BURKE, J. 2011. In the hot seat [Online]. Available: https://www.australianmining.com.au/

features/in-the-hot-seat/ [Accessed 02.03.2018].

BURT, C. N. and CACCETTA, L. 2007. Match factor for heterogeneous truck and loader

fleets. International Journal of Mining, Reclamation and Environment, 21(4), 262-

270.

BURT, C. N. and CACCETTA, L. 2014. Equipment selection for surface mining: A review.

Interfaces, 44(2), 143-162.

BUSNACH, E., MEHREZ, A. and SINUANY-STERN, Z. 1985. A production problem in

phosphate mining. Journal of the Operational Research Society, 36(4), 285-288.

BYURCKERT, H. J., FISCHER, K. and VIERKE, G. 2000. Holonic transport scheduling

with teletruck. Applied Artificial Intelligence, 14(7), 697-725.

CACCETTA, L. and HILL, S. P. 2003. An application of branch and cut to open pit mine

scheduling. Journal of Global Optimization, 27(2-3), 349-365.

CARVER, R. 2010. Practical Data Analysis with JMP®, SAS Institute Inc. Cary, NC, USA.

CATERPILLAR INC. 2018a. Surface Mining Primary Loading Tool Selection Guide

[Online]. Available: https://www.witraktor.com/sites/ default/files/media/Finland/

Koneet/Kaivoskoneet/PDFs/valintaopas_kaivoslastauslaitteet.pdf [Accessed

02.03.2018].

CATERPILLAR INC. 2018b. Caterpillar Performance Handbook [Online]. Available:

http://nees.ucsd.edu/facilities/docs/Performance_ Handbook_416C.pdf [Accessed

02.03.2018].

CHANGE, Y., REN, H. and WANG, S. 2015. Modelling and optimizing an open-pit truck

scheduling problem. Discrete Dyn. Nat. Soc., 1-8.

DAGDELEN, K. and JOHNSON, T. 1986. Optimum open pit mine production scheduling

by Lagrangian parameterization. In: Proceedings of 19th APCOM Symposium -

Application of Computers and Operations Research in Minerals Industry, 1986.

Littleton, Colorado: SME, 127-141.

DATAMINE. 2018. NPV schedular [Online]. Bedfordshire, UK. Available: https://www.

dataminesoftware.com/open-pit-planning/ [Accessed 02.03.2018].

References

274

DOUGLAS, J. 1964. Prediction of shovel-truck production: A reconciliation of computer

and conventional estimates. Technical report. Department of Civil Engineering,

Stanford University, Stanford.

DOWD, P. and ONUR, A. 1993. Open-pit optimization, part 1: Optimal open-pit design.

Mining Technology, Transactions of the Intitute of Mining and Metallurgy part A.,

102, 95-104.

DUNCAN, G. and LITTLEJOHN, J. K. 1997. High performance microscopic simulation for

traffic forecasting. In: Proceedings of the 1997 IEE Colloquium on Strategic

Control of Inter-Urban Road Networks. London, UK: IEE Stevenage Engl, 41-44.

EBRAHIM, T., JOHN, S., VIRGINIA, I. and DANNY, T. 2015. Simulation and animation

model to boost mining efficiency and enviro-friendly in multi-pit operations,

International Journal of Mining Science and Technology, 25(4), 671-674.

ELBROND, J. and SOUMIS, F. 1987. Towards integrated production planning and truck

dispatching in open pit mines. International Journal of Surface Mining, 1, 1-6.

ERARSLAN, K. 2005. Modelling performance and retarder chart of off-highway trucks by

cubic splines for cycle time estimation. Transactions of the Institutions of Mining

and Metallurgy, A: Mining Technology, 114(3), 161-166.

FIORONI, M.M., FRANZESE, L.A.G., BIANCHI, T.J., EZAWA, L.R.P. and MIRANDA,

G. 2008. Concurrent simulation and optimization models for mining planning. In:

Proceedings of the 2008 Winter Simulation Conference, IEEE, 2008 Miami, FL.

FISCOR, S. 2007. Productivity Considerations for Shovels and Excavators [Online]. Womp

The Mining E-Journal Published in Association with E&MJ. Available: http://www.

womp-int.com/story/2007vol6/story024.htm [Accessed 02.03.2018].

FLEXSIM SOFTWARE PRODUCTS INC. 2018. FlexSim Simulation Software [Online].

Available: https://www.flexsim.com/ [Accessed 02.03.2018].

FRIMPONG, S., ASA, E. and SZYMANSKI, J. 2002. Intelligent modeling: Advances in

open pit mine design and optimization research. International Journal of Surface

Mining, Reclamation and Environment, 16(2), 134-143.

GARGI, M. and REDDY, V. 2014. A case study of static and dynamic models using

simulation in Matlab. In: Proceedings of 2014 International Conference on Control,

Instrumentation, Communication and Computational Technologies (ICCICCT),

IEEE, 2014 Kanyakumari, India. 269-272.

GOSAVI, A. 2015. Simulation-based Optimization: Parametric Optimization Techniques

and Reinforcement Learning, Springer, New York, USA.

GURGUR, C.Z., DAGDELEN, K. and ARTITTONG, S. 2011. Optimisation of a real-time

multi-period truck dispatching system in mining operations. Int. J. Applied Decision

Sciences, 4(1), 57-79.

HASHEMI, A. S. and SATTARVAND, J. 2015. Simulation based investigation of different

fleet management paradigms in open pit mines-a case study of Sungun copper mine.

Archives of Mining Sciences, 60(1), 195-208.

http://www.flexsim.com/

References

275

HAUCK, R. F. 1973. A real-time dispatching algorithm for maximizing open-pit mine

production under processing and blending requirements. In: Proceedings, Seminar

on Scheduling in Mining, Smelting and Metallurgy, 1973 Montreal. Canada Institute

of Mining and Metallurgy.

HAYS, R. M. 1990. Trucks. In: KENNEDY, B. A. (ed.) Surface Mining. 2nd ed. Littleton,

Colorado: Society for Mining, Metallurgy, and Exploration, Inc., 672-691.

HELBING, D. 2001. Traffic and related self-driven many-particle systems. Reviews of

Modern Physics, 73(4), 1067-1141.

HOCHBAUM, D. S. and CHEN, A. 2000. Performance analysis and best implementations

of old and new algorithms for the open-pit mining problem. Operations Research,

48(6), 894-914.

HOLMAN, P. 2006. Caterpillar
®
 haul road design and management [Online]. Available:

http://www.directminingservices.com/wp-content/uploads/2010/06/CAT-Haul-

Road-Design.pdf [Accessed 02.03.2018].

JAAMSIM. 2018. JaamSim software [Online]. Available: http://jaamsim.com/ [Accessed

02.03.2018].

 JAOUA, A., GAMACHE, M. and RIOPEL, D. 2008. Comparaison d’approches de

modélisation de problèmes tests pour le pilotage du transport. 7ème Conférence

Internationale de Modélisation. Paris, France: Optimisation et Simulation des

Systèmes MOSIM 08., 24.

JAOUA, A. 2009. Discrete event simulation modelling for real-time control of complex

system. Ph.D. Thesis, Polytechnic School of Montreal.

JAOUA, A., RIOPEL, D. and GAMACHE, M. 2009. A framework for realistic microscopic

modelling of surface mining transportation systems. International Journal of Mining,

Reclamation and Environment, 23(1), 51-75.

JAOUA, A., GAMACHE, M. and RIOPEL, D. 2012a. Specification of an intelligent

simulation-based real time control architecture: Application to truck control system.

Computers in Industry, 63(9), 882-894.

JAOUA, A., RIOPEL, D. and GAMACHE, M. 2012b. A simulation framework for real-time

fleet management in internal transport systems. Simulation Modelling Practice and

Theory, 21(1), 78-90.

KARARA HEMATITE PROJECT. 2013. Overtaking [Online]. Available:

http://www.suppliers.brierty.com.au/policies-and-procedures.html?/Project-

Planning-%26-Execution-_-Mining/Karara-Load-and-

Haul/33PR006M_Karara%20Overtaking.docx [Accessed 02.03.2018].

KARMIS, M. 2001. Mine health and safety management, Society for Mining, Metallurgy,

and Exploration, Inc. (SME) Littleton, Colorado, USA, 402-403.

KAPPAS, G. and YEGULALP, T. 1991. An application of closed queuing networks theory

in truck-shovel systems. International Journal of Surface Mining, Reclamation and

Environment, 5(1), 45-53.

http://jaamsim.com/

References

276

KING, D. H. and HARRISON, H. S. 2013. Open-source simulation software JAAMSIM. In:

Proceedings of the 2013 Winter Simulation Conference, IEEE, 2013 Piscataway,

New Jersey. 2163-2171.

KOLONJA, B., KALASKY, D. R. and MUTMANSKY, J. M. 1993. Optimization of

dispatching criteria for open-pit truck haulage system design using multiple

comparisons with the best and common random numbers. In: Proceeding of the

1993 Winter Simulation Conference, 1993 Piscataway, New Jersey. IEEE, 393-401.

KRAUSE, A. J. 2006. Shovel-truck cycle simulation methods in surface mining. Ph.D.

Dissertation, University of The Witwatersrand.

LARRY, E. O., YUNLONG, Z., LEI, R. and GENE, M. 2000. Street and traffic simulation:

traffic flow simulation using CORSIM. In: Proceedings of the 32nd conference on

Winter simulation, 2000 Orlando, Florida. Society for Computer Simulation

International., 1143-1147.

LAURICH, R. 1990. Planning and design of surface mines. In: KENNEDY, B. A. (ed.)

Surface Mining. 2nd ed. Littleton, Colorado: Society for Mining, Metallurgy, and

Exploration, Inc., 465-469.

LEONARD, D. R., POWER, P. and TAYLOR, N. B. 1989. CONTRAM: structure of the

model. Transportation Research Laboratory, Crowthorn.

LERCHS, H. and GROSSMANN, I. 1965. Optimum design of open-pit mines. Canadian

Mining Metallurgical Bull, 58, 17-24.

LI, Z. 1990. A methodology for the optimum control of shovel and truck operations in open-

pit mining. Mining Science and Technology, 10(3), 337-340.

LIGHTHILL, M. J. and WHITHAM, G. B. 1955. On Kinematic Waves: II. A Theory of

Traffic Flows on Long Crowded Roads. In: Proceedings of the Royal Society, 1955.

London, 317-345.

LIU, R., VAN VLIET, D. and WATLING, D. 1996. Dracula-microscopic, day-to-day

dynamic modelling of traffic assignment and simulation. In: Proceedings of the

1995 4th International Conference on Applications of Advanced Technologies in

Transportation Engineering, ASCE, New York, 1996 Capri, Italy. 444-448.

LIZOTTE, Y. and BONATES, E. 1987. Truck and shovel dispatching rules assessment

using simulation. Mining Science and Technology, 5(1), 45-58.

MACHINERY TRADER. 2016. Construction equipment for sale. [Online]. Sydney,

Australia. Available: https://www.machinerytrader.com.au/listings/construction-

equipment/for-

sale/list/?Mdltxt=785&mdlx=contains&Manu=CATERPILLAR&FullText=CAT+7

85&byp=1 [Accessed 02.03.2018].

MAPTEK SOFTWARE LTD. 2018. Maptek Software Pty Ltd. [Online]. Sydney, Australia.

Available: http://www.maptek.com/products/vulcan/ [Accessed 02.03.2018].

MENA, R., ENRICO, Z., FREDY, K. and ADOLFO, A. 2013. Availability-based

simulation and optimization modeling framework for open-pit mine truck allocation

under dynamic constraints. Int. J. Min. Sci. Techno. 23(1), 113-119.

http://www.maptek.com/products/vulcan/

References

277

MORGAN, W. and PETERSON, L. 1968. Determining shovel-truck productivity. Min.Eng.,

76-80.

MUNIRATHINAM, M. and YINGLING, J. C. 1994. Review of computer-based truck

dispatching strategies for surface mining operations. International journal of surface

mining & reclamation, 8(1), 1-15.

NAGEL, K. and SCHRECKENBERG, M. 1992. A cellular automaton model for freeway

traffic. Journal de Physique I, 2(12), 2221-2229.

NEL, S., KIZIL, M. S. and KNIGHT, P. 2012. Improving truck-shovel matching. In: 35th

APCOM Symposium - Application of Computers and Operations Research in

Minerals Industry, 2012 Wollongong. Australasian Institute of Mining and

Metallurgy, 381-391.

NEWMAN, A. M., RUBIO, E., CARO, R., WEINTRAUB, A. and EUREK, K. 2010. A

review of operations research in mine planning. Interfaces, 40(3), 222-245.

ORAEE, K. and ASI, B. 2004. Fuzzy model for truck allocation in surface mines. In:

Proceedings of 13th International Symposium on Mine Planning and Equipment

Selection (MPES), 2004 Wroclaw, Poland. 585-591.

OUELHADJ, D. and PETROVIC, S. 2009. A survey of dynamic scheduling in

manufacturing systems. Journal of Scheduling, 12(4), 417-431.

PATNAYAK, S., TANNANT, D. D., PARSONS, I., DEL VALLE, V. and WONG, J. 2008.

Operator and dipper tooth influence on electric shovel performance during oil sands

mining. International Journal of Surface Mining, Reclamation and Environment,

22(2), 120-145.

PEGDEN, C. D. 2010. Advanced tutorial: overview of simulation world views. In:

Proceeding of the 2010 Winter Simulation Conference, 2010 Baltimore, M. D.,

USA., IEEE, 210-215.

PETERSON, B. 2008. Mining Demo Models [Online]. Available: http://www.flexsim.com/

community/forum/showthread.php?t=304 [Accessed 02.03.2018].

PFEIFFER, A., KADAR, B., MONOSTORI, L. 2007. Stability-oriented evaluation of

rescheduling strategies, by using simulation. Computers in Industry, 58(7), 630-643.

QUE, S., ANANI, A. and AWUAH-OFFEI, K. 2016. Effect of ignoring input correlation on

truck–shovel simulation. International Journal of Mining, Reclamation and

Environment, 30(5-6), 405-421.

RAMANI, R. V. 1990. Haulage systems simulation analysis. In: KENNEDY, B. A. (ed.)

Surface Mining. 2nd ed. Littleton, Colorado: Society for Mining, Metallurgy, and

Exploration, Inc., 724-739.

ROCKWELL AUTOMATION. 2017. Arena Simulation Software [Online]. Available:

https://www.arenasimulation.com [Accessed 02.03.2018].

RPMGLOBAL HOLDINGS LTD. 2018a. Haulage&Loading-TALPAC [Online]. Available:

http://www.rpmglobal.com/software/talpac [Accessed 02.03.2018].

http://www.rpmglobal.com/software/talpac

References

278

RPMGLOBAL HOLDINGS LTD. 2018b. Haulage Simulation-HAULSIM [Online].

Available: http://www.rpmglobal.com/software/haulsim [Accessed 02.03.2018].

SARGENT, F. R. 1990. Loading. In: KENNEDY, B. A. (ed.) Surface Mining. 2nd ed.

Littleton, Colorado: Society for Mining, Metallurgy, and Exploration, Inc., 620-633.

SCOTT, B., RANJITH, P. G., CHOI, S. K. and KHANDELWAL, M. 2010. A review on

existing opencast coal mining methods within Australia. Journal of Mining Science,

46(3), 280-297.

SHAW, G. 2012. Proactive production estimation and fleet management of a surface mining

operation. Unpublished BE(Mining) Thesis, University of Wollongong.

SHISHVAN, M.S. and BENNDORF, J. 2017. Operational decision support for material

management in continuous mining systems: from simulation concept to practical

full-scale implementations. Minerals 2017, 7(116), DOI:10.3390/min7070116, 1-26.

SMITH, S. D. 1999. Earthmoving productivity estimation using linear regression techniques.

Journal of Construction Engineering and Management, 125(3), 133-141.

SMITH, S. D., WOOD, G. S. and GOULD, M. 2000. A new earthworks estimating

methodology. Construction Management and Economics, 18(2), 219-228.

SOFRANKO, M., WITTENBERGER, G. and SKVAREKOVA, E. 2015. Optimisation of

technological transport in quarries using application software. International Journal

of Mining and Mineral Engineering, 6, 1-13.

SOUMIS, F., ETHIER, J. and ELBROND, J. 1990. Evaluation of the new truck dispatching

in open pit mines. In: 21st APCOM Proceedings, 1990. 674-682.

SUBTIL, R.F., SILVA, D.M. and ALVES, J.C. 2011. A practical approach to truck dispatch

for open-pit mines. In Proceedings of 35st APCOM Symposium - Application of

Computers and Operations Research in Minerals Industry, Wollongong, NSW,

Australia. 765-777.

TA, C.H., KRESTA, J.V., FORBES, J.F. and MARQUEZ, H.J. 2005. A stochastic

optimization approach to mine truck allocation. Int. J. Surf. Min. Reclam. Environ.

19(3), 162-175.

TA, C.H., INGOLFSSON, A. and DOUCETTE, J. 2013. A linear model for surface mining

haul truck allocation incorporating shovel idle probabilities. Eur. J. Oper. Res.

231(3), 770-778.

TAN, S. and RAMANI, R. V. 1992. Optimization models for scheduling ore and waste

production in open pit mines. In: KIM, Y. C. (ed.) 23rd application of computers

and operations research in the mineral industry. Littleton, Colorado: Society for

Mining, Metallurgy, and Exploration., 781-791.

TEMENG, V. A. 1997. A computerized model for truck dispatching in open pit mines. Ph.D.

Dissertation, Michigan Technological University.

TRIMBLE INC. 2018. SketchUp 3D Builder Online Software [Online]. Available:

https://www.sketchup.com/products/sketchup-free [Accessed 02.03.2018].

References

279

UNDERWOOD, R. and TOLWINSKI, B. 1998. A mathematical programming viewpoint

for solving the ultimate pit problem. European Journal of Operational Research,

107(1), 96-107.

UPADHYAY, S.P. and ASKARI-NASAB, H. 2017. Dynamic shovel allocation approach to

short-term production planning in open-pit mines. International Journal of Mining,

Reclamation and Environment, DOI: 10.1080/17480930.2017.1315524, 1-20.

UPADHYAY, S.P. and ASKARI-NASAB, H. 2017. Simulation and optimization approach

for uncertainty-based short-term planning in open pit mines. International Journal

of Mining Science and Technology, 28(2018), 153-166.

WEINTRAUB, A., BARROS, L., MAGENDZO, A., IBARRA, F. and ORTIZ, C. 1987. A

truck dispatching system for a large open pit mine. In: Proceedings of 11th

International Conference of Operations Research, 1987 Amsterdam, North Holland.

650-662.

WESTCOTT, P. 2004. Dragline or truck/shovel? Some technical and business

considerations. Lecture, University of New South Wales. Available:

https://www.engineering.unsw.edu.au/mining-engineering/sites/mine/files

/u12/unsw_mitsubishilect_notes_2004.pdf [Accessed 02.03.2018].

WHITE, J. W. and OLSON, J. P. 1986. COMPUTER-BASED DISPATCHING IN MINES

WITH CONCURRENT OPERATING OBJECTIVES. Mining Engineering, 38(11),

1045-1054.

WHITE, J. W. and OLSON, J. P. 1993. On improving truck/shovel productivity in open pit

mines. CIM bulletin, 86(973), 43-49.

WHITTLE CONSULTING SOFTWARE. 2018. Whittle Consulting global optimization

software [Online]. Melbourne, Australia. Available: http://www.whittleconsulting.

com.au/ [Accessed 02.03.2018].

WRIGHT, E. 1989. Dynamic programming in open pit mining sequence planning:A case

study. In: WEISS, A., ed. Proceedings of 21st APCOM Symposium - Application of

Computers and Operations Research in Minerals Industry, 1989 Littleton, Colorado.

SME, 415-422.

ZENG, W., BAAFI, E. Y. and WALKER, D. 2017. A simulation model to study bunching

effect of a truck-shovel system. International Journal of Mining, Reclamation and

Environment, DOI: 10.1080/17480930.2017.1348284, 1-16.

ZHANG, L. and XIA, X. 2015. An integer programming approach for truck-shovel

dispatching problem in open-pit mines. Energy Proc. 75(2015), 1779-1784.

	A simulation model for truck-shovel operation
	Recommended Citation

	ZENG, Weiguo - 4481197 - Final Thesis

