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Combined interval training and post-exercise nutrition in type 2 diabetes:
A randomized control trial

Abstract
Background: High-intensity interval training (HIIT) can improve several aspects of cardiometabolic health.
Previous studies have suggested that adaptations to exercise training can be augmented with post-exercise
milk or protein consumption, but whether this nutritional strategy can impact the cardiometabolic
adaptations to HIIT in type 2 diabetes is unknown. Objective: To determine if the addition of a post-exercise
milk or protein beverage to a high-intensity interval training (HIIT) intervention improves cardiometabolic
health in individuals with type 2 diabetes. Design: In a proof-of-concept, double-blind clinical trial 53 adults
with uncomplicated type 2 diabetes were randomized to one of three nutritional beverages (500 mL skim-
milk, macronutrient control, or flavored water placebo) consumed after exercise (3 days/week) during a 12
week low-volume HIIT intervention. HIIT involved 10 X 1-min high-intensity intervals separated by 1-min
low-intensity recovery periods. Two sessions per week were cardio-based (at ~90% of heart rate max) and one
session involved resistance-based exercises (at RPE of 5-6; CR-10 scale) in the same interval pattern.
Continuous glucose monitoring (CGM), glycosylated hemoglobin (HbA1c), body composition (dual-energy
X-ray absorptiometry), cardiorespiratory fitness (V.O2peak), blood pressure, and endothelial function
(%FMD) were measured before and after the intervention. Results: There were significant main effects of time
(all p < 0.05) but no difference between groups (Interaction: all p > 0.71) for CGM 24-h mean glucose (-0.5 ±
1.1 mmol/L), HbA1c(-0.2 ± 0.4%), percent body fat (-0.8 ± 1.6%), and lean mass (+1.1 ± 2.8 kg). Similarly,
V.O2peak (+2.5 ± 1.6 mL/kg/min) and %FMD (+1.4 ± 1.9%) were increased, and mean arterial blood
pressure reduced (-6 ± 7 mmHg), after 12 weeks of HIIT (all p < 0.01) with no difference between beverage
groups (Interaction: all p > 0.11). Conclusion: High-intensity interval training is a potent stimulus for
improving several important metabolic and cardiovascular risk factors in type 2 diabetes. The benefits of HIIT
are not augmented by the addition of post-exercise protein.
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Background: High-intensity interval training (HIIT) can improve several aspects of

cardiometabolic health. Previous studies have suggested that adaptations to exercise

training can be augmented with post-exercise milk or protein consumption, but whether

this nutritional strategy can impact the cardiometabolic adaptations to HIIT in type 2

diabetes is unknown.

Objective: To determine if the addition of a post-exercise milk or protein beverage

to a high-intensity interval training (HIIT) intervention improves cardiometabolic health in

individuals with type 2 diabetes.

Design: In a proof-of-concept, double-blind clinical trial 53 adults with uncomplicated

type 2 diabetes were randomized to one of three nutritional beverages (500mL skim-milk,

macronutrient control, or flavored water placebo) consumed after exercise (3 days/week)

during a 12 week low-volume HIIT intervention. HIIT involved 10 X 1-min high-intensity

intervals separated by 1-min low-intensity recovery periods. Two sessions per week

were cardio-based (at ∼90% of heart rate max) and one session involved resistance-

based exercises (at RPE of 5–6; CR-10 scale) in the same interval pattern. Continuous

glucose monitoring (CGM), glycosylated hemoglobin (HbA1c), body composition (dual-

energy X-ray absorptiometry), cardiorespiratory fitness (V̇O2peak), blood pressure, and

endothelial function (%FMD) were measured before and after the intervention.

Results: There were significant main effects of time (all p < 0.05) but no difference

between groups (Interaction: all p > 0.71) for CGM 24-h mean glucose (−0.5 ± 1.1

mmol/L), HbA1c (−0.2 ± 0.4%), percent body fat (−0.8 ± 1.6%), and lean mass (+1.1

± 2.8 kg). Similarly, V̇O2peak (+2.5 ± 1.6 mL/kg/min) and %FMD (+1.4 ± 1.9%) were

increased, and mean arterial blood pressure reduced (−6 ± 7 mmHg), after 12 weeks of

HIIT (all p < 0.01) with no difference between beverage groups (Interaction: all p > 0.11).

Conclusion: High-intensity interval training is a potent stimulus for improving several

important metabolic and cardiovascular risk factors in type 2 diabetes. The benefits of

HIIT are not augmented by the addition of post-exercise protein.
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INTRODUCTION

Worldwide more than 257 million people have type 2 diabetes,
a figure projected to reach 395 million by 2030 (Shaw et al.,
2010). Of those, 71% have hypertension and 40% have three or
more coexisting chronic conditions, with cardiovascular disease
the leading cause of mortality (Centers for Disease Control
and Prevention, 2014). Accordingly, interventions that improve
both glycemic control and reduce cardiovascular risk factors
are central to reducing the burden of type 2 diabetes (Inzucchi
et al., 2012). Lifestyle interventions, including exercise and
nutrition are at the forefront for the prevention of diabetes
complications (Inzucchi et al., 2012). Intensive glucose lowering
with multiple pharmacological treatments leads to reduced
microvascular complications (UK Prospective Diabetes Study
Group, 1998), but the effect on macrovascular complications is
unclear.

Large controlled trials and numerous experimental studies
reveal the widespread benefits of exercise for people with
type 2 diabetes (Marwick et al., 2009; Lin et al., 2015). The
Look AHEAD (Action for Health in Diabetes) trial showed
that moderate continuous exercise and a caloric restrictive diet
leads to sustained reductions in cardiometabolic risk factors,
diabetes complications, and health costs (Wing et al., 2013).
However, the number of cardiovascular events between the
intervention and control groups was not different. The addition
of vigorous exercise may be required to elicit substantial
changes in cardiovascular function (Baldi et al., 2016), as
it appears that vigorous, but not low-moderate exercise,
reduces cardiovascular disease (Tanasescu et al., 2002; Lee
et al., 2003). Studies using higher exercise intensities, such
as interval and resistance exercise, show strong effects on
cardiometabolic outcomes (Wisløff et al., 2007; Weston et al.,
2014).

Cardiorespiratory fitness is an independent predictor of all-
cause mortality and cardiovascular events (Kodama et al., 2009).
A recent meta-analysis revealed that the increase in fitness after
interval training is ∼2-fold greater than continuous training
(Weston et al., 2014). In the longest trial to date comparing
interval and continuous exercise in diabetes, Karstoft et al. (2013)
randomized participants to 4 months interval walking (n =

12), energy and time-matched continuous walking (n = 12; 60-
min, 5 days/week), or non-exercise control (n = 8). Greater
improvements in fitness, body fat, and glycemic control were
observed after interval compared to continuous walking and
control (Karstoft et al., 2013). These findings clearly support the
benefit of interval exercise, however the volume of exercise (300
min/week) is far greater than usually attained by the general
population, many of whom cite lack of time as a considerable
exercise barrier (Korkiakangas et al., 2009). Emerging evidence
from small short-term trials show that low-volume high-intensity

Abbreviations: HIIT, High-intensity interval training; FMD, Flow mediated
dilation; V̇O2peak , Cardiorespiratory fitness; CGM, Continuous glucose
monitoring; MAGE, mean amplitude of glycemic excursions; QoL, Quality of Life;
HRmax,Peak heart rate; RPE, Rating of perceived exertion; VAT, Visceral Adipose
Tissue.

interval training (HIIT) rapidly improves glycemic control in
type 2 diabetes (Little et al., 2011; Madsen et al., 2015). Low-
volume HIIT involves alternating brief periods of vigorous
exercise with periods of recovery, typically taking ∼20 min per
session and performed three times per week (Little et al., 2011).
Further research is needed to confirm changes in cardiometabolic
health outcomes after several months of low-volume HIIT in
studies with larger sample sizes.

Sarcopenic obesity disproportionately affects people with
type 2 diabetes (Park et al., 2009). Diminished lean muscle
leads to poor physical functioning, glycemic control and
cardiovascular health (Anton et al., 2013). The anabolic effects
of exercise (Robinson et al., 2017) and high-quality protein
(Reitelseder et al., 2011) are important for counteracting the
age-associated decline in muscle, and when combined, provide
synergistic effects on muscle protein synthesis (Esmarck et al.,
2001; Hartman et al., 2007). In particular, it appears that
consuming milk-protein after exercise promotes significant
lean mass accretion and fat loss (Hartman et al., 2007; Josse
et al., 2010). HIIT was recently shown to promote increased
protein synthesis in the skeletal muscle of older adults, an
effect linked to improved insulin sensitivity and mitochondrial
function (Robinson et al., 2017). Combining HIIT with post-
exercise protein supplementation therefore holds potential for
maximizing skeletal muscle adaptations in order to improve
cardiometabolic health outcomes, particularly in older adults.

The purpose of this study was to determine whether post-
exercise milk augments the cardiometabolic benefits of low-
volume HIIT in individuals with type 2 diabetes. The primary
outcome of glycemic control was assessed across 3 days before
and after the intervention using continuous glucose monitoring
(CGM). Secondary outcomes of body composition, HbA1c,
fasting blood parameters, fitness, blood pressure, and endothelial
function were also examined to determine how low-volume HIIT
impacted key cardiometabolic health parameters.

RESEARCH DESIGN AND METHODS

Study Design
This double-blind, randomized clinical trial was conducted at
The University of British Columbia Okanagan between January
2015 andDecember 2016 (clinicaltrials.gov #NCT02251301). The
Clinical Research Ethics Board (CREB #H14-01636) approved
the study and participants provided written informed consent.
Randomization was by a third-party using variable permuted
block sizes with computer-generated random numbers and
sealed envelopes. A researcher not involved in data analysis
prepared the beverages so participants and study personnel were
blinded to the beverage condition.

Participants
Men and women between 40 and 75 years with physician-
diagnosed type 2 diabetes (>6 months) were recruited from
the Kelowna Diabetes Program via mail-out advertisements
and sign-up sheets. Exogenous insulin users, diagnosed
cardiovascular disease and diabetes complications, or
contraindications to exercise (Thompson et al., 2013)
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were excluded. After telephone/email interviews interested
participants attended a screening visit, which included a medical
history questionnaire, physical activity readiness questionnaire-
plus (PARQ+), and informed consent. Eligible participants then
completed a 12-lead stress test using a modified Bruce protocol
and a cardiologist provided clearance for vigorous exercise.

Intervention
Experimental Protocol Overview
Fifty-three participants were randomized to one of three
beverages; (i) low-fat milk, (ii) macronutrient control, or (iii)
placebo, consumed after exercise (details below). Baseline and
post-intervention outcomes were assessed over 5 days before
and after the intervention (48–72 h after the last training
session). Fasted blood and body composition measures were
obtained on day 1 and CGM was performed across days 2–4
while participants followed a standardized diet. Blood pressure,
endothelial function and fitness were assessed on day 5. Body
weight, waist circumference, blood pressure, and endothelial
function were also assessed at 6 weeks (Mid).

Exercise Training
All groups performed supervised low-volume HIIT 3d/week for
12 weeks. To be consistent with exercise recommendations by
the American Diabetes Association and the American College
of Sports Medicine (Colberg et al., 2016) both resistance and
cardio-based exercises were included in the HIIT program.
The first and last sessions per week were cardio-based (cycle
ergometer, treadmill, or elliptical) involving 1-min bursts of
exercise at 85–90% of the participants’ maximum heart rate
(HRmax; obtained during baseline V̇O2peak test) with 1 min of
easy recovery in between. The middle session each week involved
whole-body resistance exercises (using resistance bands or multi-
gym). Similar to cardio-based HIIT, each resistance exercise was
performed for 1 min (as many repetitions as possible) at an
intensity eliciting an RPE of 5 “hard” on the CR-10 scale (Borg,
1962) followed by 1 min of recovery. A 3-min warm-up and
cool-down was performed with all sessions. The number of 1-
min intervals in each session progressed from four in week one
to ten in week six of training. Thereafter, 10 X 1-min intervals
eliciting ∼90% of HRmax (cardio-based) or RPE ∼5 (resistance-
based) were completed in each session. Previous short-term
training studies in individuals with, and at risk for, diabetes, have
shown this low-volume HIIT protocol is effective for improving
cardiometabolic health (Little et al., 2011; Francois et al., 2016).
A heart rate monitor was worn to closely prescribe intensity,
and capillary blood glucose and blood pressure measures were
obtained before and after each exercise session.

Post-exercise Nutrition Supplementation
After each session participants consumed 500 mL of either: (i)
low-fat milk; (ii) milk protein macronutrient-matched control;
or (iii) placebo (water), within 1 h. The beverages were
designed to look and taste similar and distributed in opaque
containers. To accomplish this, one-teaspoon of cocoa powder
and ¼ teaspoon of stevia (Stevia In The Raw R©, Cumberland
Packing Corp; containing ∼28mg stevia) were added to each

beverage. Low-fat milk was prepared from skim-milk powder
(MedallionMilk Co., Canada) providing 187 calories, 19 g
protein, 26 g carbohydrate, and <1 g of fat. Macronutrient-
matched control (milk protein concentrate; Vitalus Nutrition
Inc., Canada plus lactose; NOW R© Foods, IL, US) provided 186
calories, 21 g protein, 24 g carbohydrate, and <1 g of fat; i.e.,
providing the same macronutrient and protein composition as
milk but without the micronutrients and other bioactive factors.
The placebo beverage provided <10 calories from the cocoa
powder.

Outcomes
Continuous Glucose Monitoring (CGM)
A continuous glucose monitor (iPro 2, Medtronic Inc.) was used
to continuously measure blood glucose across 3 days before and
after the intervention. CGM provides valuable insight (that a
one-off fasting blood or HbA1c sample cannot) into glycemic
variability and the magnitude of postprandial excursions across
several days under free-living conditions (Klonoff, 2005). The
CGM continuously samples interstitial fluid from the abdomen,
measuring glucose concentration every 5-min using the glucose
oxidase reaction (Rossetti et al., 2010). Participants took capillary
glucose samples (4X/d), which were used to retrospectively
calculate retrospective blood glucose concentration via an
algorithm within the online software program (CareLink Pro,
Medtronic; Rossetti et al., 2010). All food, drink, and medication
were recorded (including time eaten, amount, brand) for pre-
testing, and then replicated exactly for post-intervention.

The primary outcome was 24-h average glucose (from 00:00
to 23:55), calculated as the mean of the 3 CGM days. Standard
deviation of 24-h blood glucose and mean amplitude of glycemic
excursions (MAGE; Molnar et al., 1970) were calculated from the
same 24-h periods to assess glycemic variability.

Body Composition
Waist circumference (WHO Expert Consultation, 2008), height
and weight (Seca 700, Hamburg, Deutschland) were measured to
the nearest 0.1 cm and 0.1 kg, respectively. Percent fat, visceral
adipose tissue (VAT) and lean body mass (LBM) were measured
by dual-energy X-ray absorptiometry (Hologic Discovery DXA,
MA, USA). All measures were performed and analyzed by the
same researcher, with calibrations and quality control testing
performed daily.

Cardiorespiratory Fitness (V̇O2peak)

V̇O2peak was assessed using a maximal incremental ramp test on
a cycle ergometer (Lode Excalibur, Netherlands) with continuous
sampling of expired gases (Parvomedics TrueOne2400, USA).
Beginning at 30W, the test increased by 1W every 4 s (15W/min)
until volitional exhaustion or contraindication (Fletcher et al.,
2013). V̇O2peak and RER were calculated from the highest 30-s
average, while HRmax was recorded as the highest value obtained
during the test.

Biochemical Analyses
Fasting blood samples were collected by venipuncture into EDTA
containing tubes, centrifuged for 15 min (1,550 g at 4◦C) and
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the plasma stored at −80◦C for subsequent batch analyses.
Medications were withheld the morning of the fasting blood
sample. Fasting glucose was measured by the hexokinase method,
high-sensitivity C-reactive protein by latex particle enhanced
immunoturbidimetric assay and triglycerides by the enzymatic
glycerol kinase and glycerol phosphate oxidase method. Pre
and post-intervention samples were analyzed concurrently in
duplicate (average coefficient of variation 6.8%) on a clinical
chemistry analyzer (Chemwell 2910, Awareness Technologies)
using assays from Pointe Scientific (MI, USA). HbA1c was
analyzed from a separate EDTA tube by a medical laboratory
that routinely performs this analysis according to the National
Glycohemoglobin Standardization Program (NGSP).

Blood Pressure and Endothelial Function
All measures were assessed 4 h postprandial, after abstaining
from alcohol and caffeine for 12 h and, within participants, at
the same time of day with meal and medication standardized.
After 20 min of rest in a supine position, blood pressure was
measured manually using the auscultatory method, at least twice
to the nearest 2 mmHg.

Flow-mediated dilation
Brachial artery flow-mediated dilation (FMD) is an important
prognostic indicator of endothelial function and incident
cardiovascular disease (Yeboah et al., 2007). The ability of
the vessel to dilate (%FMD) is measured in response to a
physiological (shear stress) stimulus (Thijssen et al., 2011). In
the current study, brachial artery FMD was assessed according
to current guidelines (Thijssen et al., 2011). Briefly, simultaneous
measures of diameter and blood velocity were obtained with
high-resolution ultrasound (Terason 3200), 2 cm from the
antecubital fossa. Data were collected over a 1-min baseline, for
the last 30 s of a 5min period of forearm ischemia (pneumatic cuff
inflated 60 mmHg above systolic blood pressure) and for 3min
thereafter.

Brachial artery dilatory capacity
The peak blood flow and diameter response to ischemic handgrip
exercise provides an index of resistance artery size or remodeling
and the maximal dilatory capacity (Naylor et al., 2005). This
is important since changes in artery function (%FMD) with
exercise training are thought to occur rapidly (i.e., first fewweeks)
after which are superseded by changes in structure, potentially
concealing further changes in function (Tinken et al., 2010). After
15 min of rest, following the FMD procedure, baseline diameter
and blood velocity were recorded for 1 min. This was followed by
5 min of forearm ischemia (as above), including 3 min of isotonic
handgrip exercise (1 contraction every 2 s using a dynamometer)
between 1-min periods of ischemia alone (Naylor et al., 2005).
Again recording resumed 30 s before cuff deflation and continued
for 3 min thereafter.

Absolute FMD (peak diameter – baseline diameter), %FMD
(peak – baseline diameter/baseline diameter), and time to
peak diameter were measured using custom designed edge-
detection and wall-tracking software, which minimizes user bias
(Woodman et al., 2001). This protocol is routinely performed

TABLE 1 | Baseline characteristics of participants.

Milk (n = 18) Macronutrient

control (n = 16)

Placebo

(n = 19)

Sex 11 F 12 F 11 F

Age (y) 62 ± 8 56 ± 9 55 ± 9

BMI (kg/m2) 36 ± 7 35 ± 6 33 ± 6

Years of diagnosis 6 ± 6 7 ± 7 5 ± 6

MEDICATIONS

Lifestyle only 5 5 3

Metformin 10 11 13

Sulfonylureas 6 1 3

SGLT2 inhibitors 1 2 3

DPP4 inhibitors 1 2 3

GLP1 analogs 1 2 0

Lipid lowering 9 7 7

Antihypertensive 7 6 8

BASELINE PHYSICAL ACTIVITY

LTPA score 17 ± 15 14 ± 10 21 ± 17

MVPA (min/day) 14 ± 15 13 ± 13 30 ± 19

Dairy intake (servings/day) 2.3 ± 2.4 2.7 ± 2.1 2.1 ± 1.6

F, Females; LTPA, Leisure-Time Physical Activity; MVPA, Moderate-Vigorous Physical

Activity.

in our lab using the methods outlined in Francois et al. (2016);
coefficients of variation for diameter and %FMD are 2.1 and
7.3%, respectively.

Quality of Life (QoL)
Participants completed the Medical Outcomes Study Short Form
36 (SF-36) questionnaire before and after the intervention
(McHorney et al., 1994). The SF-36 is a self-report QoL
questionnaire; the scores are used to provide two norm-based
T scores, physical component summary (PCS) and mental
component summary (MCS).

Diet and Exercise Standardization
Participants maintained their usual diet, lifestyle, and medication
habits throughout the testing and training sessions, verified by
physical activity and diet records. Baseline dairy consumption
was assessed using a food frequency questionnaire, and dietary
intake before and during the study was assessed using 3-
day diet records analyzed using FoodWorks16 (The Nutrition
Company, NJ, USA). Baseline activity was examined using both
accelerometry (Actigraph GT3x, FL, USA) over a 7-day period
to assess minutes of moderate-vigorous physical activity (MVPA,
Freedson et al., 1998 cut-points) and a Godin leisure-time
exercise questionnaire (Godin and Shephard, 1997; Table 1).

Statistical Analyses
Sample Size
Using means and standard deviations from previously published
data on the change in CGM assessed hyperglycemia in type
2 diabetes after HIIT (Little et al., 2011), power calculations
determined that n = 17 per group would be sufficient to detect
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a 30% reduction in glucose (Cohen d = 0.7) with a power of 80%
and alpha of 0.05.

Statistics
Analyses were performed on all participants that completed
the intervention. Characteristics of the intervention groups are
shown in Table 1. Linear mixed models using SPSS 22.0 (SPSS,
Chicago, Illinois) examined changes in trial outcomes (pre-
post or pre-mid-post) between groups. Significant interactions
were probed with pre-planned contrasts comparing the change
within each group, whereas isolated significant main effects
of time were examined by pairwise comparisons with groups
collapsed using Least Significant Difference (LSD) test (Hopkins
et al., 2009). Results are reported as means and standard
deviations with 95% confidence limits. Magnitude based
inferences were used to identify clinically meaningful changes
in major outcomes using techniques described by Batterham
and Hopkins (2006). The threshold for clinically beneficial
changes in 24-h glucose and HbA1c were reductions of 0.5
mmol/l and 0.7%, respectively, based on the reduced risk for
diabetes complications (Mazzone, 2010). For cardiorespiratory
fitness an increase of 1 metabolic equivalent (MET) was used
for a 15% risk reduction in cardiovascular disease (Kodama
et al., 2009). For %FMD +1% was used, based on the 13%
risk reduction in cardiovascular events (Inaba et al., 2010).
In line with previous studies, a 2mmHg reduction in MAP
was considered to be the smallest clinical threshold change for
BP (Cook et al., 1995). The clinically meaningful difference in
QOL was determined as a change >3 points (Warkentin et al.,
2014).

RESULTS

Participant Compliance and Adverse
Events
Figure 1 shows the CONSORT flow diagram of study
progression. Fifty-three participants were eligible after screening;
four required additional 24-h blood pressure monitoring (n =

2) and stress echo (n = 2) cardiologist clearance following the
12-lead ECG stress test. Baseline characteristics of randomized
participants are shown in Table 1. The majority (51/53)
were of European descent, while two were Southeast Asian
(2/53).

Of the 53 participants randomized, 51 successfully completed
36 sessions of HIIT in 12± 1 wk. One participant suffered a non-
fatal myocardial infarction in week eight (after 23 HIIT sessions)
and one dropped out for personal reasons. There were no
reports of hypoglycemia after exercise or at home throughout the
intervention. Exercise sessions were rescheduled on 10 occasions
(n = 6 due to sickness and n = 4 due to systolic blood pressure
>144mmHg prior to exercise). No musculoskeletal injuries were
reported as a result of the training. V̇O2peak testing was truncated
in three participants because systolic pressure exceeded 250
mmHg during the test (Fletcher et al., 2013). For CGM analyses
three participants were excluded due to sensor failure (n = 1)
and medication changes (n = 2; required reduced medication).
All other analyses are reported for n = 51 unless otherwise

FIGURE 1 | Consolidated Standards of Reporting Trials (CONSORT) flow

diagram.

FIGURE 2 | Continuous blood glucose across 24-h (n = 48) before and after

the intervention (groups collapsed, *main effect of time: p = 0.01). Inset:

Change in blood glucose after the intervention in the milk, protein, and water

groups.

stated. Overall the exercise intensity achieved was 88 ± 7% of
HRmax during cardio-based intervals, and an average RPE of
5 ± 1 and 4 ± 1, for cardio- and resistance-based intervals,
respectively.

Glycemic Control
There was a significant reduction in mean 24-h glucose following
12 weeks of HIIT (by −0.5 ± 1.1 mmol/L, Figure 2) with no
difference between groups (Table 2). The probability that the
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TABLE 2 | Body composition, cardiorespiratory fitness, blood pressure, flow-mediated dilation, triglycerides, C-reactive protein, and glycemic control measures before

and after 12 weeks of HIIT and nutritional beverage.

Milk (n = 18) Macronutrient control (n = 16) Placebo (n = 19) P-value

Pre Post Pre Post Pre Post Interaction Time

BODY COMPOSITION

Mass (kg) 97.7 ± 19.3 96.8 ± 20.5 95.9 ± 17.3 94.5 ± 17.3 89.5 ± 21.1 89.1 ± 20.9 0.46 0.03*

VAT (g) 1057 ± 335 1033 ± 316 1007 ± 260 981 ± 212 815 ± 337 802 ± 285 0.75 0.25

CARDIORESPIRATORY FITNESS

V̇O2peak (L/min) 1.7 ± 0.4 2.0 ± 0.7 1.8 ± 0.5 2.0 ± 0.6 1.9 ± 0.5 2.1 ± 0.5 0.53 <0.01*

BLOODS

HbA1c (%; mmol/mol) 7.1 ± 0.8 6.9 ± 0.7 6.9 ± 0.8 7.0 ± 0.7 6.9 ± 0.8 6.6 ± 0.9 0.92 <0.01*

54 ± 9 52 ± 8 54 ± 8 53 ± 8 51 ± 8 49 ± 9

Fasting glucose (mmol/L) 8.6 ± 2.3 8.3 ± 1.7 9.2 ± 1.9 9.5 ± 2.3 8.9 ± 2.7 8.5 ± 2.1 0.35 0.53

Triglycerides (mg/dL) 149 ± 82 152 ± 70 161 ± 62 139 ± 65 152 ± 93 142 ± 80 0.36 0.17

C-reactive protein (mg/dL) 7.1 ± 10.3 4.4 ± 5.3 4.7 ± 4.3 4.9 ± 4.7 3.7 ± 4.1 3.1 ± 3.6 0.33 0.21

CGM GLUCOSE CONCENTRATION

24-h mean (mmol/L) 8.4 ± 1.4 7.7 ± 1.2 8.1 ± 1.4 7.8 ± 1.7 8.4 ± 2.1 7.8 ± 1.5 0.74 0.01*

SD (mmol/L) 1.6 ± 1.0 1.3 ± 0.5 1.6 ± 0.6 1.1 ± 0.4 1.7 ± 0.8 1.5 ± 0.7 0.51 0.01*

MAGE (mmol/L) 4.3 ± 3.5 3.1 ± 1.3 4.1 ± 2.0 2.8 ± 1.3 4.1 ± 2.2 3.7 ± 1.6 0.60 0.02*

BLOOD PRESSURE

Systolic (mmHg) 130 ± 10 119 ± 7 132 ± 13 129 ± 9 128 ± 13 117 ± 11 0.03# <0.01*

Diastolic (mmHg) 79 ± 6 75 ± 5 83 ± 11 79 ± 6 81 ± 7 75 ± 7 0.20 <0.01*

FLOW-MEDIATED DILATION

Absolute FMD (mm) 0.020 ± 0.01 0.027 ± 0.01 0.018 ± 0.01 0.024 ± 0.01 0.019 ± 0.01 0.023 ± 0.01 0.61 <0.01*

Baseline diameter (mm) 0.41 ± 0.10 0.41 ± 0.09 0.41 ± 0.08 0.41 ± 0.07 0.41 ± 0.07 0.42 ± 0.07 0.77 0.71

Time to peak (s) 64 ± 26 57 ± 25 60 ± 30 46 ± 23 56 ± 21 50 ± 21 0.75 0.05*

Total energy intake (Kcal/day) 2053 ± 881 2039 ± 898 1810 ± 525 2017 ± 706 1912 ± 629 1888 ± 710 0.35 0.25

HbA1c, Glycosylated Hemoglobin; BMI, Body Mass Index; VAT, Visceral Adipose Tissue; MAP, Mean Arterial Pressure; FMD, Flow Mediated Dilation; TE, Total Energy.
*Time effect p < 0.05.
# Interaction group*time p < 0.05.

change in glucose was clinically beneficial was 54% (95% CI:
−0.8, 0.1 mmol/L). Glycemic variability assessed by both SD (by
−0.33 ± 0.78 mmol/L) and MAGE (by −0.98 ± 2.27 mmol/L)
was significantly reduced, with no differences between groups
(Table 2). HbA1c was significantly reduced after 12 weeks of HIIT
(by−0.22± 0.39%, Figure 3) with no differences between groups
(Table 2). The probability that the change in HbA1c was clinically
beneficial was 0% (95% CI:−0.33, 0.16%), with the change being
most likely trivial. Fasting glucose was not significantly different
after HIIT in all groups (Table 2).

Body Composition
Body mass was significantly lower after 12 weeks of HIIT (by
−0.9 ± 3.9 kg, Table 2), with no difference between groups.
There was a significant reduction in waist circumference after
12 weeks of HIIT (by −2.9 ± 3.5 cm, main effect of time: p <

0.01) with no difference between groups (Interaction: p = 0.21,
Figure 4). Percent body fat was significantly reduced (by −0.76
± 1.63%, main effect of time: p = 0.02) and lean body mass
significantly increased (by +1.07 ± 2.76 kg, main effect of time:
p = 0.01) after 12 weeks of HIIT, with no difference between
groups (Interactions: all p > 0.83, Figure 3).

Cardiorespiratory Fitness (V̇O2peak) and
Blood Pressure
V̇O2peak significantly increased 9.8% after 12 weeks of HIIT
(main effect of time: p < 0.01, Figure 3) with no difference
between groups (Interaction: p = 0.55). The probability that the
change in fitness was clinically beneficial was 5% (95% CI: 1.8, 3.1
mL/kg/min), with the change being 95% very likely trivial.

Mean arterial blood pressure was significantly reduced after
12 weeks of HIIT (by −5.7 ± 7.0 mmHg, main effect of time:
p < 0.01) with no difference between groups (Interaction: p =

0.11, Figure 4). The probability that the change in MAP pre-post
intervention was clinically beneficial was 99% (95% CI: −9, −2
mmHg).

Flow-Mediated Dilation
%FMD significantly increased after 12 weeks of HIIT (by+1.4±
1.9%, main effect of time: p < 0.01), with no difference between
groups (Interaction: p= 0.72, Figure 4). The probability that the
change in%FMDwas clinically beneficial was 94% likely (95%CI:
0.86, 1.94%). Absolute FMD also increased after HIIT (Table 2),
with no difference between groups. Time to peak dilation was
significantly lower (by 9.1 ± 31.1 s, Table 2) after 12 weeks of
HIIT, with no difference between groups. Peak dilator capacity
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FIGURE 3 | Change from pre intervention for (A) % body fat, (B) lean body mass, (C) cardiorespiratory fitness (V̇O2peak) and (D) glycosylated hemoglobin (HbA1c) in

the milk, protein, and water groups (all main effect of time p < 0.05, no group interaction p > 0.05).

did not change across the intervention; Pre: 9.6 ± 5.2%, Mid: 8.1
± 4.2%, Post: 10.4± 3.6% (main effect of time: p= 0.36).

Quality of Life
PCS scores significantly increased after 12 weeks of HIIT (n= 49,
by 8.1 ± 12.1, main effect of time: p < 0.01) with no difference
between groups (Interaction: p = 0.11). The probability that
the change in PCS pre-post intervention was clinically beneficial
was 99% likely (95% CI: 4.4, 11.8). The change in MCS post-
intervention was different between groups (n= 49, Interaction: p
= 0.02); post hoc testing revealed significant improvements in the
protein group (+12.1 ± 9.69, p < 0.01) but not skim-milk (−1.1
± 13.5, p= 0.79) or placebo (+5.6± 10.7, p= 0.06).

Dietary Intake Records
Analysis of the 3-day diet records collected before and during the
last week of the intervention showed no difference in the total
daily energy intake between groups and/or across time (Table 2).
Macronutrient composition of the diet was not different between
groups (p = 0.32), or across time: for % carbohydrate (Pre: 48.0
± 12.5% vs. Post: 48.4 ± 13.0% of total energy, p = 0.47), %
protein (Pre: 20.4 ± 4.9% vs. Post: 19.9 ± 4.9% of total energy,
p = 0.15) and % fat (Pre: 30.3 ± 12.5% vs. Post: 30.7 ± 13.3% of
total energy, p= 0.49).

DISCUSSION

This study comprehensively examined the cardiometabolic
benefits of HIIT in individuals with type 2 diabetes. We show
for the first time that 12 weeks of low-volume HIIT, with or

without post-exercisemilk or protein, improves glycemic control,
blood pressure, cardiorespiratory fitness, body composition, and
endothelial function. Low-volume HIIT therefore appears to be a
feasible and efficacious lifestyle intervention, involving minimal
time and resource, to improve health in type 2 diabetes. Reducing
the interval length and total exercise time has previously been
shown to increase enjoyment and compliance (Martinez et al.,
2015). To this end, we experienced very low dropout rates and
high compliance to low-volume HIIT. In addition, we show that
12 weeks of HIIT improves quality of life, similar to previous
studies in hypertensive (Molmen-Hansen et al., 2012) and heart
failure (Wisløff et al., 2007) patients.

Exercise interventions generally result in modest weight
loss, however exercise promotes lean mass accretion; which
has important implications for whole-body metabolism, glucose
disposal, and quality of life (Anton et al., 2013). Indeed, in
the current study HIIT significantly increased lean mass and
reduced body fat. Although weight loss was not a goal of the
intervention, participants lost, on average,∼0.9 kg of body mass,
which was a statistically significant change yet small inmagnitude
(∼1%). Generally studies report significant benefits of weight
loss in the magnitude of 5–7% (Wadden et al., 2012) but it is
possible that improvements in some cardiometabollic outcomes
were related to the small amount of weight loss seen. Consuming
high-quality protein after exercise is known to further potentiate
muscle protein synthesis (Esmarck et al., 2001; Hartman et al.,
2007). Despite this, comparable changes in body composition
and cardiometabolic health were seen with post-exercise milk,
milk-protein, or water. In agreement, Parr et al. (2016) found
changes in body composition after a combined resistance training
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FIGURE 4 | Data for (A) mean arterial blood pressure (MAP), (B) percentage

flow-mediated dilation (%FMD), and (C) waist circumference, before (Pre), after

6 weeks (Mid), and 12 weeks (Post) mean for all participants (bar graph, all

main effect of time p < 0.05) and individual data (line and symbols per

beverage group, no group interaction p > 0.05).

and diet intervention were independent of the amount and
type of protein (high/low dairy). Epidemiological data shows
an inverse relationship between low-fat dairy consumption
and the risk of type 2 diabetes (Aune et al., 2013) and the
addition of four servings of low fat dairy per day has been
shown to improve insulin resistance (Rideout et al., 2013).
Therefore, additional milk/protein supplementation (e.g., on
non-exercise days) may have been needed to elucidate effects
of nutritional supplementation. Indeed, some previous studies
showing benefits on lean mass have provided milk/protein after
exercise 5 days per week (Hartman et al., 2007; Josse et al., 2010).
However, ∼20 g of post-exercise protein (similar to the current
study) has been shown to maximize muscle protein synthesis
(Churchward-Venne et al., 2016). To this end, a non-exercising

control group may be required to detect effects of post-exercise
protein added to a potent training intervention such as, HIIT.
However, we feel a non-exercise control group in type 2 diabetes
is unethical since numerous studies have shown worsening of
glycemic control and cardiovascular risk factors in control group
participants (Church et al., 2010; Karstoft et al., 2013).

Current research suggests that HIIT is more effective than
continuous training for improving insulin resistance (Jelleyman
et al., 2015). A recent meta-analysis revealed that absolute
changes in HbA1c are 0.5 and 0.25% greater with HIIT than
control and continuous exercise, respectively (Jelleyman et al.,
2015). The small, yet significant change in HbA1c in the current
study is in line with previous HIIT interventions (Madsen et al.,
2015; Cassidy et al., 2016) yet robust changes in 24-h glucose
were observed (Figure 2). Interestingly, the changes in 24-h
glucose are similar to Karstoft et al. (2013) after 4 months
of high-volume HIIT (300 min/week). This is an important
finding given the perceived time barrier to exercise participation
in type 2 diabetes (Korkiakangas et al., 2009). The use of
CGM is a strength as it allows for additional insight into the
changes in postprandial hyperglycemia and overall glycemic
variability (Klonoff, 2005). Mean 24-h glucose and glycemic
variability were reduced by 7 and 23%, respectively, after
HIIT, regardless of post-exercise nutritional supplementation.
Glycemic variability may be a stronger predictor than HbA1c

for diabetes complications (Praet et al., 2006). Previous research
also shows that HIIT has the potential to improve beta cell
function as Madsen et al. (2015) demonstrated an increase in
the oral disposition index and HOMA-%β after 8 weeks. The
mechanisms underlying the improvements in glycemic control
could not be ascertained from the present study design but likely
involve a combination of improvements in peripheral insulin
sensitivity, beta cell function, and hepatic insulin resistance
(Karstoft et al., 2014; Madsen et al., 2015; Cassidy et al., 2016).
Collectively, these findings show the potential of HIIT to improve
several underlying aspects of glycemic dysfunction in type 2
diabetes.

The added benefits of vigorous exercise for cardiovascular
health are well known (Marwick et al., 2009; Baldi et al., 2016)
and many studies have demonstrated superior cardiovascular
effects of HIIT compared to continuous training (Wisløff et al.,
2007; Marwick et al., 2009; Weston et al., 2014). Extending on
this work, we observed an ∼10% increase in cardiorespiratory
fitness, a 6 mmHg reduction in MAP and ∼1.4% improvement
in FMD following 12 weeks of HIIT in type 2 diabetes.
In itself, cardiorespiratory fitness is a strong predictor for
cardiovascular mortality with each MET increase associated
with a 10–20% improvement in survival (Kodama et al., 2009).
Although only a 0.7 MET increase was observed, this is in line
with previous low-volume HIIT studies (Madsen et al., 2015)
and participants are likely to have gained significant health
benefits given their low baseline fitness (<6 MET). A meta-
analysis showed that the greatest mortality benefits occur for
even small increases in fitness for those progressing from the
least fit category (Kodama et al., 2009). Furthermore, the low-
volume nature of the HIIT protocol involved only 45–78 min of
exercise per week with one session being resistance training. The
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combination of resistance and cardio exercise may be superior
to either type alone for improving health in type 2 diabetes
(Church et al., 2010). Indeed, in hypertensive patients blood
pressure is reduced more with combination training than cardio
alone (Lamberti et al., 2016); the 5–6 mmHg reduction is in
line with the current study. Our findings suggest that HIIT
performed as combined aerobic and resistance exercise clearly
promotes beneficial cardiovascular adaptations in type 2 diabetes
patients.

In conclusion, we show that low-volume HIIT, with or
without post-exercise milk or protein supplementation, improves
metabolic and cardiovascular risk factors in individuals with
type 2 diabetes. The combination of resistance and aerobic-
based HIIT increases lean mass, reduces fat mass, and improves
endothelial function. This study, the largest and longest low-
volume HIIT study in type 2 diabetes to date, provides
further evidence that HIIT is a feasible and efficacious exercise
intervention to improve glycemic control, cardiovascular fitness,
and body composition.
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