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Abstract 

The aim of this work is to fabricate and investigate nickel nanowires (NiNWs) as a novel 

magnetorheological material and determine how the aspect ratio of these magnetic particles 

influences its magnetic properties.  The latest methods for synthesizing NiNWs and nickel 

nanospheres (NiNSs) are presented and the corresponding magnetorheological fluids (MRF) 

are obtained. Materials were characterised so that the properties of NiNWs could be 

compared to NiNSs. As different size NiNWs were fabricated, their saturation 

magnetisation values increased as the size increased. Moreover, MRF containing NiNWs 

processed shear stress 15 times as strong as the one with the same volume of NiNSs, 

although the saturation magnetization of NiNWs was smaller than NiNSs. MRF containing 

magnetic particles with more saturation magnetization and smaller coercivity usually has a  

stronger MR effect. Our result is interesting, and further finite element simulations were 



utilized to analyze the possible mechanisms. The simulation indicated that the large aspect 

ratio of NiNWs helped to align the particles into columns and also caused the magnetised 

direction of particles to deviate from the direction of the applied field, thus restoring the 

torque and achieving a large shear stress. Furthermore, MRF with higher fraction of 

NiNWs has a more stable suspension, and NiNWs disperse much better than NiNSs with 

the same volume. 
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1. Introduction 

Magnetorheological fluid (MRF) is a type of smart material, it was discovered in 1948 and until [1], 

has undergone significant amount of development. The physical properties of MRF such as shear 

stress can be controlled continually by an external magnetic field such that the increased shear stress 

can reach several orders of magnitude [2]. Under an external magnetic field this material has a fast and 

reversible transition from a liquid phase to a solid-like state, a process known as the 

“magnetorheological (MR) effect”. [3] This behaviour allows MRF to have many potential 

applications in mechanical systems such as  transportation, safety engineering, civil engineering, and 

one of its most famous applications, the MRF damper for controlling the structural response. [4-6] 

Conventional MRFs commonly consist of ferromagnetic spherical particles and a non-magnetic and 

low viscosity medium. Besides the sphere-based MRFs, magnetic particles with other shapes have 

been fabricated while developing MRF because the morphology and particle size play important roles 

in the properties of MRFs [7]. Furthermore, magnetic materials other than carbonyl iron have also 

been exploited; scientists have developed magnetic particles with a wide range of shapes, such as 

cobalt fibres [8], FeSiB wires [9], iron rods [10], iron plates and flakes [7, 11, 12], in an effort to 

improve the stability of MRF. Within these researches, one dimensional (1D) nano-sized magnetic 

particles, especially nanofibers,  have attracted a great deal of attention because of their ability to 

enhance the yield stress and sedimentation [13]. MRF with good dispersion stability has attracted a lot 

of attention because additives which increase stability usually decrease the shear strength of MRF. [14, 

15] It would be good to find stable MR suspensions which do not need additives to exploit a stronger 

yield stress. MRF with 1D nano-sized magnetic particles are reported to have this desired stability, so 

it would be worthwhile trying to develop more of these types of magnetic particles. . de Vicente et. al. 

[16] synthesized out magnetite nanorods, Antonel et. al. [17] obtained CoFe2O4 nanowires, and Nagtu 

and Bell [13, 18] generated iron nanowires, etc. MRF based on iron nanowires were fabricated and 

compared with MRF based on spheres [13], and a comparison between cobalt nanowire microrod and 



microspheres has also been reported [19].  However, the challenge is wire is much wider than spheres, 

and this difference between width and diameter creates more interference in simulation.  Furthermore, 

templates and Teflon-lined autoclave are commonly used when fabricating these one-dimensional 

magnetic particles, and they would limit the production of more magnetorheological materials due to 

the high cost and arduous conditions. To overcome these gaps,  we have been looking for a facile and 

simple approach to synthesize large amounts of NiNWs to better study 1D MR materials. Although a 

facile method for synthesizing large amounts of nickel nanospheres (NSs) has been developed for a 

more precise comparison to NiNWs, the NiNSs obtained are almost 200 nm, which is much larger than 

the particle for ferrofluid defined as 5-15 nm [20], so the samples containing NiNWs or NiNSs should 

be considered as MRFs. In the preliminary work, NiNWs and NiNSs with an average diameter that is 

similar in size to the mean width of NiNWs have also been obtained, and the particles characterised.  

The comparisons of corresponding MRF samples were also characterised to provide more information 

about how their shape affects the MR effect. Simulations were utilised to confirm that the geometric 

effect of NiNWs’ extreme aspect ratio caused their enhanced MR effect. 
 

2. Experimental details 

2.1 Materials 

Nickel (II) chloride hexahydrate (NiCl2·6H2O; 99.9%) and ethylene glycol (EG; 99.8%), hydrazine 

monohydrate (N2H4·H2O; 98%) were purchased from Sigma-Aldrich, and silicone oil (viscosity 10 

mm2s−1) was purchase from Beijing Sihuan-Antong. Ultrapure deionised water (DI; millipore water 

systems) with a resistivity 18.2 MΩcm−1 was used throughout the work. All the chemicals were used 

as received, without any further purification. 

2.2 Preparation of the MRF 

The method for synthesizing NiNWs was developed from a previous work [21] where, in  a typical 

process, 1 mL 1M NiCl2 aqueous solution is added into 200 mL EG, and then heated to 100 oC. This 

solution is mixed with 2 mL N2H4·H2O and kept at 100 oC for around 30 min until a dark gray product 

eventually floated on the surface. The NiNWs are washed with water by magnetic decantation, and 

dried with a freeze dry system (FreeZone 12, Labconco, United States). Other size NiNWs were also 

synthesized at a reaction temperature of 70 oC for 2 hr and 140 oC for 20 min, respectively.  

Ni nanospheres were obtained by a new approach deferred from NiNWs. 3 mL 1M NiCl2 aqueous 

solution was added into 200 mL EG, which was then heated to 100 oC. This solution is mixed with 6 



mL N2H4·H2O, stirred at 1200 rpm and heated to 100 oC for around 100 min. The washing and drying 

process is the same as NiNWs.  

The MRF samples are prepared by dispersing NiNWs or nickel nanospheres into silicone oil. 

2.3 Characterizations 

SEM images of NiNWs and NiNSs are obtained with JEOL JEM6390 SEM. The average length 

and width of NiNWs were calculated based on 50 individual nanowires, and it equalled the average 

diameter of NINSs. To investigate the behaviour of NiNWs, some NiNWs were dried on a silica 

substrate under weak magnetic field, while others were dried without it. VSM measurements of 

magnetic particles were carried out by LakeShore 7300 VSM at room temperature and with a 

maximum magnetic field of 10 kOe. An Anton Paar MCR301 magnetorheometer was used to 

characterize the MRF. The sedimentation test was carried out by mixing the MRF samples and then 

keeping them steady near a ruler for observation. 

2.4 Simulations 

The nearest neighbour interactions of NiNWs and NiNSs were modelled using COMSOL 

Multiphysics 4.3, a commercial finite element method software package, and the physics module 

of Magnetic Fields, No Currents was utilized, in which the magnetostatic set of equations 
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were solved numerically.  In the simulations, the NiNWs and NiNSs were the average sizes 

obtained from the measurements. Periodic boundary conditions were applied in the x and y 

directions in the simulations. 

3. Results and discussions 

The different conformations of NiNWs with and without a magnetic field were investigated with 

SEM. (Figure 1) When there is no external field, the NiNWs tended to be randomly dispersed in 

silicone oil and formed a network-like structure, but once a weak magnetic field is applied the NiNWs 

preferred to align along the direction of the field. However, the NiNWs were not completely aligned 
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NiNWs increases, which should be considered a drawback of particle loading, but as the volume of 

NiNWs increases, the shear stress under field also increased significantly; this means that as more 

NiNWs are loaded, the MR effect is larger. Although further studies would be carried out to determine 

the optimal loading volume of MRF to achieve ae balance between off-state viscosity and a larger MR 

effect, 3 vol% was selected as a standard volume to compare NiNW-MRF and NiNS-MRF because the 

following test focused on how the particle aspect ratio influenced the MRF. In a 660 mT magnetic 

field, the shear stress in NiNW-MRF was more than 14 times larger than the value of NiNS-MRF, 

which was only 9.07 Pa. The off-state shear stress of NiNS-MRF was as low as 7.29 Pa, which is 

similar to the corresponding value of 1.5 vol% NiNW-MRF. Note that even 1.5 vol% NiNW-MRF had 

more than 3 times stronger shear stress than NiNS-MRF in a 660 mT field. These results suggest that 

the aspect ratio of magnetic particles should serve an important role in having a better MR 

performance of NiNWs. This is consistent with previous published works where, as the concentration 

or aspect ratio of particles increased, the suspension would have increased viscosity in a magnetic field 

[18, 23]. 

Since MRF are expected to have mechanical applications, it was necessary to investigate the 

thixotropy of the samples. The shear stress and viscosity tests were processed with a logarithmic shear 

rate increasing from 0.1 to 200 s−1 at constant magnetic field strengths of 0, 110, 220, 330 mT. 

Considering the concentration of NiNWs, the higher loading amount of NiNWs supported MRF with 

larger thixotropy; for example,  in a 110 mT field, 1.5 vol% NiNW-MRF had a shear stress of 13.5 Pa 

and a shear rate of 60 s-1 and 17.2 Pa with 200 s-1, while 9 vol% NiNW-MRF had 106 Pa and 139 Pa 

respectively. To compare the 3 vol% NiNW-MRF and 3 vol% NiNS-MRF, in a 330 mT field and a 

shear rate of 60 s -1, the shear stress of NiNW-MRF was 75.2 Pa while the NiNS-MRF was only 8.28 

Pa. Moreover, the NiNS-MRF had curves undulating stronger than NiNW-MRF, which might be 

caused by the poor stability of NiNSs suspended in silicone oil. To summarise, the better stability of 

NiNW over NiNS allows NiNW to be a novel MR material. 
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and their sizes were set as the average value obtained from the measurements. (Figure 2. a, d) The 

NiNWs and NiNSs were assumed to align into columns under applied magnetic field and the tilted 

angle between the columns and the applied magnetic field after shear deformation is denoted as θ, 

which was also the shear strain [22]. The magnetic hysteresis loops were averaged and then utilised to 

model the magnetisation of the NiNWs and NiNSs, respectively. The gap between the two nearest 

tilted NiNWs or NiNSs were assumed to be 1 nm and their interactions under an applied magnetic 

field were simulated and the shear stress was then calculated by volume averaging the shear stress 

contributed by one of the NiNW or NiNS [22, 25]. Periodic boundary conditions were applied in the 

simulations. (Figure 5.a) The shear stress calculated under B = 110 mT suggests that NiNW-MRF 

yields at θ = 43° and NiNS-MRF yields at θ = 38°, beyond which the stress-strain is indicated by 

dashed lines as flow begins and the model becomes inappropriate. The calculated shear stress of 

NiNW-MRF is 2.1 times larger than NiNS-MRF under B = 110 mT, while in the experiment it is about 

7 times larger (Figure 3. c, f). This discrepancy could be attributed partly to our assumption that all 

particles aggregate into columns under an applied magnetic field, but in a real system under a magnetic 

field, it is impossible for all the particles in the suspension to align into columns, so there could be 

isolated particles which do not belong to the columns and do not contribute to the overall shear stress, 

especially at lower concentrations [26]. As a result, the real concentration will be smaller than the 

simulated one which assumes that all the particles aggregate into columns (Figure 2. a, d). In fact, as 

the SEM images show, a NiNW could touch with remote NiNSs owing to its extreme aspect ratio, 

which implies the NiNWs are better at attracting each other and aggregating into columns under an 

applied magnetic field than NiNSs which could only touch their nearest neighbours. This phenomenon 

could also explain why NiNW-MRF disperses better than NiNS-MRF since the extreme aspect ratio of 

NiNWs led to strong interactions between one NiNW and many other NiNWs, including the remote 

ones, while one NiNS could only interact with several surrounding NiNSs. Therefore, it is much more 

difficult for NiNWs to become isolated particles than NiNSs and hence more difficult to settle in the 

suspension owing to their attraction to many other NiNWs. (Figure 5.b) The yield stress  of NiNW-

MRF and NiNS-MRF under varying magnetic fields was calculated and indicated that the yield stress 

of NiNW-MRF was always more than NiNS-MRF. This suggests that the increased shear stress of 

NiNW-MRF was due to the extreme aspect ratio of NiNWs, which had a geometric effect. Note also 

that only the nearest-neighbor interactions between NiNWs or NiNSs were considered in the 

simulations. However, the remote interactions for NiNWs should contribute to the shear stress, and to 
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