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With the high consumption and increasing price of lithium resources, sodium ion batteries 

(SIBs) have been considered as attractive and promising potential alternatives to lithium ion 

batteries, owing to the abundance and low cost of sodium resources, and the similar 

electrochemical properties of sodium to lithium. Nevertheless, the lower energy density and 

limited cycling life of SIBs are still the main challenges impeding their wide application. 

Tremendous work has been done on anode materials for SIBs, and rational structural design 

is considered as an effective way to enhance their electrochemical performance. In this 

review, different types of anode materials for SIBs are summarized according to their 

reaction mechanism, and the problems for each type are pointed out. Specific structural 

design approaches for each type of anode material to improve its sodium storage performance 

are described in detail, and the benefits of different structural design are explained as well.    

1. Introduction 

During the past decade, the global warming effect has always been a hot topic due to our 

extensive use of fossil fuels, which provide the main power supply for human consumption. It 

is extremely important to find alternative energy storage technologies for power generation, 

such as utilization of solar, wind, and tidal energy 1. All of these types of clean energy cannot 

be used directly, however, because they are not stable and continuous. In order to overcome, 

batteries are considered as wonderful devices that could meet the demand for electrochemical 

energy storage owing to their high energy and power density, which are superior overall 

compared to other energy storage systems such as supercapacitors and fuel cells 2. Since the 
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commercialization of lithium-ion batteries (LIBs) in 1990, they have captured the market for 

portable electronic devices, hybrid electric vehicles, large-scale industrial equipment, etc. 3. 

Nevertheless, considering the limited nature of lithium resources in the Earth’s crust, it is 

quite likely that the world might run out of it in the foreseeable future 4. Meanwhile, with the 

price of lithium increasing year by year, finding other cheap types of alternative 

electrochemical batteries is urgently needed, and sodium-ion batteries (SIBs) are part of this 

trend 5.  

        Sodium-ion battery technology is a promising system as a substitute for LIBs for low-

cost applications due to the lower price, natural abundance, and similar intercalation 

chemistry of sodium to lithium 6. So far, tremendous efforts have been made to explore 

suitable Na-host materials with high reversible capacity, rapid Na-ion insertion/extraction, 

and long cycling stability 7. Nevertheless, the electrochemical performance of SIBs is still 

unsatisfactory because the radius of the Na-ion (1.02 Å) is much larger than that of the Li-ion 

(0.76 Å), which causes structural and phase instability, sluggish transport properties, and 

interphase formation 8. In addition, sodium (23 g mol-1) is also heavier than lithium (6.9 g 

mol-1) and has a higher standard electrode potential (-2.71 V vs. standard hydrogen electrode 

(SHE) as compared to -3.02 V vs. SHE for lithium), which reveals another disadvantage of 

SIBs in terms of low energy density. Therefore, it is imperative to seek appropriate electrode 

materials and create new synthesis methods for SIBs to enhance their electrochemical 

performance. 

        Various kinds of cathode materials have been researched, including layered and tunnel 

type transition metal oxides, transition metal sulphides and fluorides, oxyanionic compounds, 

Prussian blue analogues, and polymers 9, 10. Most of them were tested in coin cells using 

metallic sodium as the counterpart anode, and the formation of dendrites has always been a 

safety issue that has inspired researchers to look for new types of anode materials 11, 12. The 

anode materials for SIBs can be categorised into three groups, based on the reaction 

mechanism during sodiation/desodiation processes 13: (1) the insertion reaction materials, 

which include carbonaceous materials and titanium-based oxides; (2) the conversion reaction 

materials, represented by transition metal oxides or transition metal sulphides; and (3) the 

alloying reaction materials, including Na-metal alloying compounds containing elements 

from groups 14 or 15. There are some characteristic drawbacks for each type, however, such 

as low specific capacity and poor rate capability for the insertion type 14, while the conversion 

and alloying reaction materials often suffer from huge volume expansion during 
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charge/discharge processes due to the continuous self-pulverization of the electrode materials 

15. Therefore, the search for anode materials with superior electrochemical performance is 

still an obstacle and challenge for the development of SIBs. There are some summaries of the 

different types of anode materials for SIBs 16, 17, and even some reports on specific types of 

anode materials, such as review of carbon materials 18, alloy based materials 19 and 

phosphorus and phosphide materials 20, but there is no report so far on anode materials for 

SIBs from the structural design perspective. The rational design of structures for anode 

materials plays an important role in enhancing their electrochemical properties. We regard 

nano-sized materials as a big group, which includes nano particles, nano cubes, nano fibers or 

nano sheets, these different structures could also make up 3D network morphology. The 

advantage of nanostructured materials is that they have uniform structures with short 

diffusion path for both Na-ions and electrons. Moreover, as loads of anode materials for SIBs 

showed the sluggish diffusion kinetic, suffer from huge volume expansion, other types of 

complex structures that contain holes inside are also important for improving the 

electrochemical performance because they could provide large contact area for electrolyte 

and holes inside of materials could also be considered as buffer zone for accommodating 

large volume change and facilitate the transfer of electrons and ions as well, such as porous 

and hollow structure. Some other hierarchical structures are also useful such as core-shell or 

yolk-shell structure, which contain shell that could suppress particle aggregation and volume 

change effectively, the space in yolk-shell structure could be considered as wonderful buffer 

zone as well, however, these two kinds of structures are more complicated in synthesis 

process. Therefore, we categorised anode materials for SIBs into these three groups: (1) 

nanostructures; (2) porous or hollow structures; and (3) core-shell or yolk-shell structures. 

The schematic figures of different structures are illustrated in Fig. 1. Sometimes, there are 

combinations of these special structures when fabricating anode materials for SIBs in order to 

achieve better electrochemical performance. In this review, we have summarized different 

types of anode materials for SIBs in sequence of their reaction mechanism and illustrate the 

structural design for each type in sequence of three types of structures above, respectively. 
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Figure 1. Schematic figures of (a) Nanostructures (spheres, cubes, fibers and sheets), (b) porous and hollow 

structures, (c) core-shell and yolk-shell structures. 

2. Anode materials for SIBs and structural design 

2.1 Insertion materials and structural design 

There are mainly two kinds of anode materials based on insertion reaction including carbon-

based materials and titanium-based materials for SIBs. Both of them have been widely 

investigated due to their structure that favourable for intercalation of Na+ ions. Other 

advantages like low cost and low operational potential for each also made them promising 

materials as ideal anode for SIBs. However, the drawbacks such as poor reversibility, rate 

capability and low capacity should not be neglected. Different structural designs have been 

adopted, which could enhance their electrochemical performance and described as below. 

2.1.1 Carbonaceous materials 

Carbon-based materials have been investigated as electrode materials for energy storage and 

conversion devices because they have several important advantages, such as abundant 

resources, renewability, cost effectiveness, and moderate conductivity. Graphite is the most 

common anode material for commercial LIBs, but it is not suitable for SIBs because the large 

Na+ ion cannot be intercalated into graphite and because of the absence of stable Na-C binary 

compounds. In 2000, a hard carbon was first found by Dahn and co-workers that exhibited a 

high reversible capacity of  about 300 mA h g-1 21, owing to its special disordered structure. 

Later on, much further work was done on hard carbon materials, but their low first cycle 

coulombic efficiency and poor reversibility are still problems for them 22-24. 

        During recent years, the investigation of carbonaceous materials for SIBs has been 

basically on hard carbon materials, heteroatom-doped carbon materials, and biomass derived 
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carbon materials. Many of them were designed in nanostructured forms, including carbon 

nanofibers, nanosheets, nanospheres, etc 25-27. Nanostructured carbon-based anode materials 

have provided new opportunities to improve the properties of SIBs because of their structural 

stability and good connectivity for electrical conduction. Cao et al. reported hollow carbon 

nanowires obtained by direct pyrolyzation of a hollow polyaniline nanowire precursor. This 

novel carbon nanostructure displayed a high reversible capacity (251 mA h g−1 at 50 mA g−1) 

and excellent cycling stability over 400 cycles. A reversible capacity of over 200 mA h g−1 

and more than 90 % capacity retention was obtained at 125 mA g−1 after 200 cycles. Even at 

the current density of 500 mA g−1 (2 C), a high reversible capacity of 149 mA h g−1 could be 

observed. The good Na+ insertion properties can be attributed to the short diffusion distance 

because of the nanosized structure 28. In addition, some advanced synthesis methods also can 

be utilized in designing carbon nanofiber materials. Chen and his co-workers fabricated 

carbon nanofibers by adopting the electrospinning method followed by a thermal treatment 29. 

The morphology and electrochemical performance of this nanofiber are shown in Fig. 2. It 

delivered an initial reversible capacity of 233 mA h g-1 at a current density of 50 mA g-1, and 

a capacity of 82 mA h g-1 was maintained even at the high current density of 2 A g-1. It also 

achieved an excellent capacity retention ratio of 97.7 % over 200 cycles. The electrospinning 

technique is one of the most effective ways to synthesize one-dimensional nanostructured 

materials, which are generally considered to be high-capacity and electrochemically stable 

due to their uniform structure and good electrical connectivity. On the other hand, the 

electrospinning method is regarded as an economical way to design binder-free, current-

collector-free carbon nanofiber-based anode materials that could reduce the cost of the 

battery by simplifying the cell packing process and eliminating inactive weight. This special 

design method is also able to improve the mechanical flexibility, energy density, and cycling 

capability of the carbon nanofiber electrode at the same time 30, 31. In addition, many 

researchers also reported that better rate performances of carbon nanofiber materials could be 

achieved if the special structure is combined with heteroatom doping such as with N, P, and S 

32-34. For example, Fu et al. fabricated nitrogen doped porous carbon fibres as anode materials 

for SIBs, and they showed excellent electrochemical performance, especially in their rate 

capability. The specific capacity could remain at 100 and 75 mA h g-1, even at the high 

current density of 5 and 10 A g-1, respectively 33. The superior performance can be attributed 

to their N-doped sites and functionalized groups, which are capable of capturing sodium ions 

rapidly and reversibly through surface adsorption and surface redox reactions 34.  
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Figure 2. (a) Low-magnification and (b) high-magnification FESEM images of the carbon fibres (CFs), (c) low-

magnification and (d) high-magnification HRTEM images of the CFs; (e) cycling performance and (f) rate 

performance of the CFs. Reproduced with permission 29. Copyright © 2014, Royal Society of Chemistry. 

        Multidimensional carbon-based materials have also drawn attention since they show 

excellent electrochemical properties on account of their larger contact area with the 

electrolyte and because they are kinetically favourable for the transport of Na-ions and 

electrons. For instance, a kind of carbon nanosheet framework materials was synthesized by 

Ding et al. They created this special structure by using peat moss as an ideal precursor due to 

its unique cellular cross-linked structure. The resultant material is composed of three-

dimensional (3D) microporous interconnected networks of carbon nanosheets (as thin as 60 

nm). The precursor was calcined at a range of temperatures from 600 to 1400 oC, followed by 

activation under air atmosphere to optimize performance. Finally, the sample (with 

carbonization at 1100 oC) demonstrated a stable cycling capacity of 298 mA h g-1 (after 10 

cycles, 50 mA g-1), with 150 mA h g-1 of charge accumulated between 0.1 and 0.001 V with 

negligible voltage hysteresis in that region, nearly 100 % coulombic efficiency during cycling, 

with superb cycling retention and high rate capacity (255 mA h g-1 at the 210th cycle, and 

stable capacity of 203 mA h g-1 at 500 mA g-1) 35. Designing 3D structures for electrode 

materials is always a good way to improve the performance due to the fast ion and electron 

transportation. 

        Combining the electrospinning technique with N-doping makes it possible to optimize 

the electrochemical properties of carbon nanofiber films as well. For instance, Wang et al. 

used this strategy to fabricate a free-standing flexible N-doped carbon nanofiber film with a 
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three dimensional network structure. It exhibited a cycle life of 7000 cycles with capacity 

retention of 99 % (210 mA h g-1 at a current density of 5 A g-1). The superior performance 

could be ascribed to its flexible and stable structure and the uniform distribution of 

micropores in the matrix 36. This unique nanostructure could effectively facilitate the 

insertion/extraction of sodium ions. Some other novel 3D structured carbon anode materials 

also have been reported, including graphene foams 37, 3D porous carbon frameworks derived 

from carbon quantum dots 38, a 3D hard carbon matrix 39, etc. They all displayed excellent 

electrochemical performance due to their special multidimensional structures. 

        Apart from the carbonaceous nanofiber and nanosheet materials mentioned above, 

another important type of morphology design is spherical carbon-based materials for SIBs, 

which have been widely investigated when it comes to consideration of electrode packing 

density and volumetric energy density. Compared to other types of materials, the spherical 

morphology is regarded as an ideal structure due to the homogeneous particle distribution. It 

is also able to avoid excessive build-up of the solid electrolyte interphase (SEI) and Na 

consumption at sharp edges and irregularities in the morphology. Vilas et al. reported 

spherical carbon as a new high-rate anode materials for SIBs 40. The spherical carbon 

particles were synthesized by an autogenic approach and had an average diameter of 4 μm. 

This feature and the spherical morphology promote low reactivity with the electrolyte, which 

assists in the material’s highly reversible (de)sodiation. Excellent rate capability was obtained 

with capacity of 40 mA h g-1 at current density of 1.5 A g-1. Some modifications of carbon 

sphere materials can be utilized to further enhance their electrochemical properties as well, 

such as hollow structures, nanosized structures, and heteroatom doping. In 2012, hollow 

carbon nanospheres were reported by Tang and his co-workers for the first time 41. The 

advantage of designing hollow structures is that they could boost mass transport by offering a 

large surface area and a short diffusion distance. A template method combined with 

hydrothermal carbonization of glucose was used in creating the unique hollow structure, 

resulting in a thin carbon shell with thickness of 12 nm. The shell was also analysed by high-

resolution transmission electron microscopy (HRTEM), with the images showing that it is 

composed of 2-3 short carbon layers. It was proposed that the hollow nanosphere structure 

endows the materials with excellent sodium storage performance. TEM images, a schematic 

illustration, and the electrochemical performance of these hollow carbon nanospheres are 

shown in Fig. 3. As can be seen, a reversible capacity of 150 mA h g-1 is obtained in the 

voltage range of 0-1.5 V, and this material also demonstrates superior rate capability, with 
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reversible capacities of 168, 142, 120, 100, and 75 mA h g−1 at current densities of 0.2, 0.5, 1, 

2, and 5 A g−1, respectively. In addition, porous nitrogen doped carbon spheres were also 

reported by Li et al. They used the template-assisted method to design porous structures 

combined with N-doping, and they found that the porous structure is a critical factor for 

improving the electrochemical performances of carbon anode materials. The electrochemical 

performance of the as-prepared material showed a superior rate capability of 155 mA h g-1 at 

1 A g-1, and it also exhibited outstanding cycling stability with 206 mA h g-1 after 600 cycles 

at 0.2 A g-1 42. In addition to single heteroatom-doping, two different heteroatom-co-doping 

methods were also used to fabricate a hierarchical sulphur and nitrogen co-doped  carbon 

microsphere material by Xu et al. 43. They designed and fabricated the carbon microspheres 

by the pyrolyzing method combined with N and S dual-doping, leading to enhancement of 

the Na adsorption capability, mobility, and electronic conductivity. The results demonstrate a 

high-performance anode for SIBs, for example, a reversible capacity of 150 mA h g-1 can be 

observed after 3400 cycles, which is much better than for other single heteroatom-doped 

carbon anode materials for SIBs. 

 

Figure 3. (a) TEM image and (b) HRTEM image of hollow carbon nanospheres; (c) Schematic illustration of the 

electrochemical reaction process for hollow carbon nanospheres and carbon spheres; (d) Cycling performance 

and (e) rate performance of hollow carbon nanospheres (HCS) and carbon spheres (CS) at different rates. 

Reproduced with permission 41. Copyright © 2012 WILEY-VCH Verlag Gmbh & Co. KGaA, Weinheim. 

        Many single-type special structures for carbon-based anode materials for SIBs have 

been designed and reported so far. Nevertheless, combining different materials with special 
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structures could yield carbon composites as anode materials for SIBs, which have 

complicated structural design and are expected to achieve better electrochemical performance. 

Yan et al. created a sandwich-like hierarchically porous carbon/graphene (G@HPC) 

composite by combining the advantages of both porous carbon and graphene. The porous 

carbon could enhance the sodium storage capacity by optimizing the transport pathways of 

the Na+ ions, and graphene is one of the best two-dimensional (2D) carbon materials, with 

large surface area, chemical stability, and high electronic conductivity 44. The morphology, a 

schematic illustration, and the electrochemical performance of this composite are displayed in 

Fig. 4. As can be seen, this hierarchical structured material exhibited a remarkable cycling 

stability over 1000 cycles with capacity of 250 mA h g-1 at 1 A g-1. Similarly, N-doped 

carbon/graphene hybrid anode material was prepared by Liu et al. through in-situ 

polymerization followed by pyrolysis. It showed a sandwich-like structure and displayed a 

rate capability of 94 mA h g-1 at 5 A g-1 and good cycling stability with capacity retention of 

89 % over 200 cycles at 50 mA g-1. Its excellent properties were attributed to its unique 

structure, in which the carbon nanosheets could shorten the ion diffusion distance and the 

sandwiched graphene guaranteed fast electron transportation 45. Another complex carbon 

based composite was reported by Qu and co-workers 46. They designed a core-shell-

structured hollow carbon nanofiber@N-doped porous carbon composite material. Ultra-long 

cycling stability over 2500 cycles with capacity around 150 mA h g-1 at 500 mA g-1 was 

obtained. The outstanding electrochemical performance may be attributable to the special 

core-shell and hollow structure that could improve the electrode structure and the capacity at 

the same time. Therefore, constructing anode carbon composites for SIBs involves novel 

structural design and shows a promising direction for development in the future. 
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Figure 4. (a) Schematic illustration of the structure of G@HPC; (b) Schematic illustration of sodium storage in 

the G@HPC, (c, d) SEM images, (e) TEM image, and (f) HRTEM image of the G@HPC composite, (g) 

Charge-discharge curves at a current density of 0.05 A g−1; Cycling performances at (h) 0.05 A g−1 and (i) 1 A 

g−1. Reproduced with permission 44. Copyright © 2014 WILEY-VCH Verlag Gmbh & Co. KGaA, Weinheim. 

2.1.2 Titanium-based oxides 

There are still many concerns about the low operating potential for carbon-based materials, 

which may cause the safety problems when it comes to practical application. Titanium based 

oxides are regarded as another important type of insertion material for SIB anodes due to 

several advantages such as reasonable operation voltage, low cost, and environmental 

friendliness. Most of the studies on them have been focused on titanium dioxide, and some of 
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the structural design work on TiO2 has been reported. In addition, lithium titanate and sodium 

titanate compounds were also investigated 47, but most related works have focused on finding 

the sodiation/desodiation mechanism and improving the electrochemical performance of such 

materials. In this part, we mainly describe some of the structural design work on titanate 

dioxides and discuss a few examples on lithium titanate compounds. 

       Among the different types of titanate dioxides, anatase TiO2 is one of the best anode 

materials for SIBs because its activation barrier is close to that of lithium when large Na+ ions 

are inserted into the anatase lattice. Anatase TiO2 also has a crystal structure featuring 3D 

networks, giving possible interstitial sites for Na+ accommodation and suitable sized 

pathways for Na+ diffusion 48. Designing TiO2 materials in nanostructured form is also a 

good choice for fabricating TiO2 materials in order to improve their electrochemical 

performance. In 2013, anatase TiO2 nanocrystals were successfully employed as anodes for 

rechargeable Na-ion batteries for the first time 49. A template method was used and followed 

by a hydrolysis treatment and annealing process. The particle size of the nanocrystalline TiO2 

was about 10-15 nm, and it also showed a mesoporous structure. It exhibited a highly stable 

cycling performance, with capacity of ~150 mA h g-1 over 100 cycles, and was able to retain 

this capacity after being cycled at the high current density of 2 A g-1. After the first study of 

anatase TiO2 nanocrystals as anode materials for SIBs, other researchers thought that the 

morphology of anatase TiO2 nanocrystals could be controlled in order to improve the charge 

transport properties. Its structural features could also be optimized to enhance its 

electrochemical properties and promote material interaction with the conductive network and 

the electrolyte 50. Gianluca et al. synthesized three different nanostructured TiO2 

morphologies, including rhombic elongated (RE), rhombic (R), and nanobar (NB)-like 

particles, and introduced graphene into the sample to improve the conductivity. The results 

showed that a RE TiO2-based composite electrode was able to deliver outstanding stability 

over long cycling (150 mA h g−1 for more than 600 cycles in the 1.5-0.1 V potential range), 

something never previously achieved with such a low content of carbonaceous substrate 

(5 %). 

        There are also some other nanostructured anatase TiO2 materials that have been reported. 

For example, TiO2 nanofiber was designed by Yeo et al. using the electrospinning technique 

51. The TiO2 nanofiber (NF) was then wrapped in graphene in order to enhance its electrical 

conductivity, which is a main drawback of TiO2. A schematic illustration of the synthesis of 

this material and its electrochemical performance are displayed in Fig. 5. As shown in the 
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figure, the reduced graphene oxide (rGO)@TiO2 NFs exhibited a significantly improved 

initial capacity of 217 mA h g−1 compared to the bare NFs, and 85 % capacity retention was 

obtained after 200 cycles at 0.2 C. The average Coulombic efficiency was as high as 99.7 % 

until the 200th cycle, even at the 5 C rate, except for the initial cycle. Xiong and co-workers 

also synthesized TiO2/C nanofibers by the electrospinning method, and they exhibited a high 

reversible capacity of ~302.4 mA h g-1 and excellent rate performance, with capacity of 164.9 

mA h g-1 at the high current density of 2000 mA g-1. These nanofibers displayed remarkable 

long-term cycling stability with almost no capacity loss over 1000 cycles. The extraordinary 

performance can be attributed to the special structure, in which TiO2 nanocrystals were 

embedded in the carbon matrix, which could prevent them from aggregating and protect them 

from attack by the electrolyte 52. For comparison with TiO2 nanotubes and nanoparticles, 

Yang and his co-workers fabricated TiO2 nanocubes with superior electrochemical 

performance. They showed reversible capacities of ~150 and ~100 mA h g-1 at 2 C and 10 C 

over 1000 cycles, with capacity retention of 94 % and 94.6 %, respectively, and high rate 

performance could be observed as well (50 mA h g-1 at 50 C). The superior cycling stability 

can be attributed to the recoverability of the structure and morphology during 

sodiation/desodiation processes, which was confirmed by ex-situ scanning electron 

microscopy (SEM) and X-ray diffraction (XRD) analysis. After 1000 cycles, the cubic 

morphology of TiO2 particles was retained very well. The excellent rate performance came 

from the 100 exposed facets of TiO2 nanocubes, which is the direction for Na+ transportation. 

Such surface structures endowed the nanocubes with higher reactivity, thus enabling them to 

undertake rapid uptake and release of sodium ions 53. 
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Figure 5. Schematic illustration of the synthesis of graphene-TiO2 NFs. (a) Products at each synthetic step, (b) 

graphene-wrapping mechanism; Charge-discharge capacity and coulombic efficiency vs. the cycle number for 

TiO2 NFs and rGO@TiO2 NFs tested (c) at a rate of 0.2 C (67 mA g−1), (d) at a rate of 1 C (335 mA g−1), and (e) 

at a rate of 5 C (1675 mA g−1), (f) Rate capabilities of TiO2 NFs and rGO@TiO2 NFs evaluated at various rates 

of 0.2 C, 0.5 C, 1 C, 2 C, 5 C, and 10 C. Reproduced with permission 51. Copyright © 2015, Springer Nature. 

        Hollow structures have also been utilized to design TiO2 materials. Yang et al. designed 

TiO2/carbon hollow spheres for the first time by using SiO2 as template, with dopamine used 

as carbon precursor in order to improve the electronic conductivity. SEM analysis showed 

that the hollow TiO2/carbon nanospheres were around 100 nm in diameter, and carbon was 

uniformly distributed on the surface of each sphere. They designed this hollow structure (HS) 
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because it could ensure good contact between the electrode and the electrolyte, facilitate fast 

transport of sodium ion/electrons, and withstand volume expansion, which led to improved 

electrochemical performance. The obtained TiO2/C-HSs showed high reversible capacity of 

140.4 mA h g-1 at 100 mA g-1 after 100 cycles, as well as remarkable rate performance, with 

capacity of 78.5 and 60.3 mA h g-1 at 1 and 2 A g-1, respectively  54.  

        In addition, a yolk-shell TiO2@C nanocomposite was designed by Qiu et al. They 

believed that it was important to control the morphology to prepare the carbon-coated TiO2 

nanoparticles. There are several advantages for porous and hollow yolk-shell nanostructures, 

such as large contact area between the electrolyte and electrode, and short distances for ion 

diffusion, all of which benefit the electrochemical reaction kinetics in the electrode. 

Moreover, the yolk-shell nanoarchitecture is favourable for alleviating the structural strain, 

leading to a stable cycling performance. Most of the time, hollow structures with carbon 

frameworks can be fabricated by the conventional hydrothermal method, but, in this case, the 

metal salts and carbon precursors were mixed together, and the titanium salts would be easily 

hydrolyzed, so that it would be difficult to realize a homogeneous distribution of TiO2. In 

order to overcome this problem, a facile self-catalysed solvothermal method was used to 

synthesize the yolk-shell TiO2@C microspheres, with TiO2 nanoparticles (~10 nm) 

uniformly coated by furfural pyrolytic carbon. The size and structure of the TiO2 

nanoparticles were controlled and aggregation was effectively prevented by carbon-coating. 

The TiO2@C electrode demonstrated a high initial capacity of 210 mA h g−1 at 0.1 C, and 85 % 

capacity retention was obtained after 2000 cycles at 1 C, as well as excellent rate capability, 

with 70 mA g−1 at 40 C 55. The improved electrochemical properties were mainly attributed to 

the unique yolk-shell structure that could enhance the electrical conductivity and 

accommodate the structural strain during sodiation/desodiation processes. Fig. 6 presents a 

schematic illustration of the preparation process, SEM and TEM images, and the 

electrochemical performance of these yolk-shell TiO2@C microspheres. So far, designing 

nanosized TiO2 with carbon coating remains an effective way to improve its electrochemical 

performance 56.  
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Figure 6. (a) Schematic illustration of the preparation process for the yolk-shell TiO2@C microspheres. (b and c) 

SEM images, (d) TEM image, and (e) high-resolution TEM image of the hollow core-shell TiO2@C-4h 

microspheres; (f) CV curves at a scan rate of 0.1 mV s−1; (g) Rate performance at different rates from 0.1 to 40 

C (1 C = 200 mA g−1); (h) Long-term cycling performance at a charge-discharge current density of 1 C (with the 

cell first cycled at 0.1 C for 5 cycles and then cycled at 1 C for 2000 cycles). Reproduced with permission 55. 

Copyright © 2017, American Chemical Society. 

        Li4Ti5O12 is an important anode material for LIBs due to its excellent cycling stability, 

which is considered as a kind of zero volume-change material. It also has been studied as a 

promising anode material for SIBs because Li4Ti5O12 can be a host for Na+ insertion, 

according to a three-phase reaction. In previous works, most investigations on Li4Ti5O12 as 

anode material for SIBs related to fundamental research on such matters as structural 

evolution and phase transformation. More recently, researchers found that downsizing 

Li4Ti5O12 is an effective way to improve the sluggish Na+ ion diffusion kinetics. In 2015, 

Hasegawa et al. designed a hierarchically nanostructured porous Li4Ti5O12 material with 

flower-like morphology as an anode material for SIBs. A sol-gel process accompanied by a 

spinodal decomposition method was used in the synthesis, and the influence of the 
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calcination temperature was intensively studied 57. Finally, the nanostructured Li4Ti5O12 

electrodes (calcined at 700 °C) exhibited high rate performance of 146 mA h g−1 and 105 mA 

h g−1 at 10 C and 30 C, respectively, and a capacity retention of 95 % was achieved after 100 

cycles at 1 C (initial discharge capacity = 160 mA h g-1). The remarkable properties of this 

material can be attributed to the nanostructured crystallites that facilitate Na+ transportation, 

the flowerlike morphology, and the porous structure, which increased the efficiency of 

electrode/electrolyte contact. The low electronic conductivity of Li4Ti5O12 is still a problem, 

however, that has impeded its practical application. For this reason, Chen and his co-workers 

designed and fabricated porous Li4Ti5O12 nanofibers wrapped with graphene (G-PLTO), and 

it showed a high capacity of 195 mA h g−1 at 0.2 C and super-long cycle life up to 12000 

cycles, which is the longest cycling performance reported for a titanium-based material so far 

58. This extraordinary performance can be ascribed to the porous nanostructure combined 

with graphene, which offers high electronic conductivity. The authors also focused their work 

on solid-liquid and solid-solid interfaces, because they thought that it could dramatically 

affect the sodium storage performance. Cyclic voltammetry (CV) and X-ray photoelectron 

spectroscopy (XPS) analysis confirmed that the sodium intercalation not only took place in 

the bulk of the Li4Ti5O12, but also at the interfaces of Li4Ti5O12 and graphene. Fig. 7 displays 

SEM images, a schematic illustration of Na storage, and the electrochemical performance of 

this G-PLTO. By designing a Li4Ti5O12 nanofibers@graphene composite with a unique 

structure, Na storage could take effect simultaneously in different places, which can lead to a 

new strategy for developing high-performance energy-storage performance. 
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Figure 7. (a, b) TEM, (c) HR-TEM, and (d) STEM images, and (e) the corresponding Ti, O, and C element 

mapping images for the G-PLTO composite aerogel; (f) Graphical illustration of the structural merits and the 

integrated Na storage mechanisms in the G-PLTO electrode. Sodium storage performance of the G-PLTO 

electrode: (g) rate performance at various C-rates, (h) cycling performance at 0.2 C after the rate performance 

test in (g), (i) charge-discharge profiles from various C-rates from 0.2-12 C, and (j) long-term cycling 

performance at 3 C for 12000 cycles. Reproduced with permission 58. Copyright © 2016 WILEY-VCH Verlag 

Gmbh & Co. KGaA, Weinheim. 

2.2  Conversion materials and structural design 

Conversion type materials have been considered as potential anode materials for SIBs due to 

their high theoretical specific capacities. There are basically three groups of them including 

some transition metal oxide based anode materials, transition metal sulphides, and transition 

metal phosphides. Compared to insertion or alloying type anode materials, where Na+ ions 

would easily be locked in or out of the bulk of the materials during charge/discharge 

processes, this would not happen for the conversion types of materials, because they could 

accommodate Na+ ions through conversion reactions, which involve chemical transformation 
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of atomic species, incorporating them into a host lattice to form a new compound. 

Nevertheless, the most serious problem for conversion type materials is the large volume 

expansion/contraction during the sodiation/desodiation processes, resulting in structural 

damage to the electrode and rapid capacity fading. In addition, the practical capacity for 

conversion materials is lower than the theoretical one because of the sluggish mobility of 

large Na+ ions. It is worth noting, however, that some transition metal sulphides (e.g. SnS) 

and most transition metal phosphides (eg. SnP, FeP, CoP) are capable of both conversion and 

alloying reactions. In this part, we mainly discuss some transition metal oxide and transition 

metal sulphide based materials as anode for SIBs. So far, much work has been done to 

overcome the problems of these conversion type materials, with most of them designed in 

nanostructured form combined with carbon coating, while porous structures and core-shell 

structures also can be seen in some cases.  

2.2.1 Transition metal oxides 

The first report on a transition metal oxide as anode material for SIBs involved NiCo2O4 
59. A 

reversible capacity of ~200 mA h g-1 was obtained based on coin cell testing, and even 300 

mA h g-1 was achieved when using NaxCoO2 as the cathode materials in the full cell. After 

that, a great many other transition metal oxides were investigated as anode materials for SIBs, 

such as iron oxides (Fe3O4, Fe2O3) 
60, 61, cobalt oxide (Co3O4) 

62, tin oxides (SnO, SnO2) 
63-65, 

manganese oxide (MnO) 66, copper oxide (CuO) 67, etc. 68-74.  

        It is not uncommon to see excellent performance from transition metal oxide anode 

materials that consist of abundant nanosized transition metal oxide particles decorated by 

conductive materials, which is a similar method to the design of TiO2 materials as anode 

materials for SIBs. Wang et al. first reported a SnO2@ multiwalled carbon nanotube 

(MWCNT) nanocomposite as anode material for SIBs. A solvothermal method was utilized, 

and SnO2 nanoparticles were homogeneously distributed on the multiwall carbon nanotubes. 

The initial discharge capacity of this material was 839 mA h g-1, which demonstrates good 

sodium storage capability, and the cycling performance was also better than for any bare 

SnO2 or MWCNTs 75. The same synthesis approach was also used in synthesizing 

Co3O4@carbon nanotubes (CNTs). Jian et al. designed novel unique Co3O4 nanospheres with 

particle size of ~200 nm and mixed them with carbon nanotubes. The as-prepared sample 

exhibited a reversible capacity of 487 mA h g-1, and a high capacity of 184 mA h g-1 was 

obtained at the high current density of 3200 mA g-1 76. Simply mixing a transition metal oxide 

with carbon materials could improve the electronic conductivity to some extent, but the 
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structural expansion during cycling is still serious. A more complex carbon-confined SnO2-

electrodeposited porous carbon nanofiber composite was fabricated by Dirican et al., and two 

kinds of carbon materials were used in this composite. Firstly, porous carbon nanofibers were 

used as template and SnO2 was deposited on them, and then the surface of the SnO2 was 

coated by carbon through the chemical vapour deposition (CVD) method. This complex 

structure could improve the electronic conductivity and stabilize the structure of SnO2 at the 

same time. Hence, this composite exhibited excellent electrochemical performance, including 

high-capacity (374 mA h g−1), good capacity retention (82.7 %), and a high Coulombic 

efficiency (98.9 % after the 100th cycle) 77. Another similar example was reported by Liu et al. 

They also used two kinds of carbon in a decoration method to fabricate SnO2/C materials, 

which displayed a high rate performance, with 342 mA h g-1 and a 144 mA h g-1 capacity at 

10 C and 30 C, respectively 78. Apart from carbon fibers, graphene is another prevalent 

carbon material that has been utilized for synthesizing transition metal oxide/carbon 

composites. Fe2O3 
79, 80 and SnO2 nanoparticles 81, MoO3 nanosheets 82, and many other 

transition oxides decorated with graphene have been studied, and they all show enhanced 

electrochemical performance, which is attributed to the small nanosized nature of the material, 

which can reduce the Na-ion diffusion distance, while carbon-coating could provide a 

continuous electronically conductive network. 

        Designing a mesoporous structure for a transition metal oxide is another effective 

approach to improving its electrochemical performance. It is accepted that the inherent 

properties of anode materials could directly affect the performance of the battery. 

Mesoporous structure inside a material could improve its energy density, cycling stability, 

and rate capability due to its large number of active sites, short sodium and electron diffusion 

paths, and of its ability to accommodate volume changes to some extent. Therefore, much 

work has been done on designing mesoporous transition metal oxides. For example, 

hierarchical mesoporous SnO microspheres were synthesized by Su et al. by a hydrothermal 

method. Field emission SEM (FESEM) testing demonstrated that the SnO microspheres 

consisted of nanosheets with a thickness of ~20 nm, with each nanosheet having a 

mesoporous structure with a pore size of ~5 nm 83. Liu et al. also fabricated mesoporous 

Co3O4 sheets combined with graphene, and the average pore size in this Co3O4 was ~3.8 nm. 

The mesopores mainly originated from the aggregation of primary nanoparticles within a 

single Co3O4 mesoporous nanosheet (MNS), and void spaces between graphene nanosheets 

and the Co3O4 MNSs in the 3D network structure also contributed to the formation of 
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microspores. The mesoporous structure of this material led to a stable cycling performance 

with capacity of ~550 mA h g-1 and almost no capacity loss over 50 cycles 84. Moreover, an 

aerosol spray pyrolysis technique was adopted to design a 3D porous γ-Fe2O3@C 

nanocomposite. There were internally-connected nanochannels in the composite, and the γ-

Fe2O3 nanoparticles (5 nm) were homogeneously distributed in the porous carbon matrix. 

This unique structure could offer synergistic effects to alleviate stress, accommodate large 

volume changes, prevent nanoparticle aggregation, and facilitate the transfer of electrons and 

electrolyte during prolonged cycling. Therefore, this material showed long cycling stability 

with a reversible capacity of 358 mA h g-1 over 1400 cycles at a high current density of 2000 

mA g-1 85. 

        There are also some transition metal oxides that have been designed with hollow 

structures. Jian et al. fabricated bowl-like Co3O4 microspheres by thermally treating a cobalt-

containing resorcinol-formaldehyde composite gel in air. SEM and TEM characterization 

demonstrated that there were hollow internal cavities inside these Co3O4 microspheres with 

multilayer outer shell walls (70 nm thickness). The sodium storage behaviour of hollow-

structured Co3O4 was initially investigate, and it showed a high discharge capacity of ~1400 

mA h g-1 with retained capacity of ~300 mA h g-1 after 10 cycles 62. Another example is 

hollow structured SnO2@C nanospheres, which were inspired by honeycombs. Dual 

templates were used to design the hollow structure, and glucose was utilized as the carbon 

coating source. The diameter of the hollow SnO2 nanopheres was 300-500 nm, and they were 

evenly encapsulated by a carbon shell. This structure could not only provide enough space to 

accommodate the volume changes, but also protected SnO2 from aggregation. Investigations 

of its electrochemical performance showed a stable cycling performance with a reversible 

capacity of ~300 mA h g-1 over 100 cycles at 100 mA g-1, as well as a good rate performance, 

with capacity of 200 mA h g-1 at 100 mA g-1. A schematic illustration, SEM and TEM images, 

and the electrochemical performance of the hollow structured SnO2@C nanospheres are 

displayed in Fig. 8. Some researchers, however, think that the subunits of the hollow structure 

may greatly affect the performance of a material. For instance, Wu and his co-workers 

fabricated α-Fe2O3 multi-shelled core-shell microspheres, and the subunits of the structure 

were investigated. Two Fe2O3 core-shell samples were prepared using ethanol (E-Fe2O3) and 

water (W-Fe2O3), respectively. Compared to the ethanol sample with a normal core-shell 

structure, W-Fe2O3 showed a core with smaller nanoparticles ~50 nm in size, a thicker shell, 

and an exterior surface that featured porous nanorods. They concluded that the core-shell 
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structure of Fe2O3 was dramatically affected by different solvents, and the subunit structure 

played an important role in the electrochemical performance. The W-Fe2O3 had a higher 

specific surface area, greater pore volume, and more voids in small units, which provided a 

larger contact area for the electrolyte and helped to relieve the volume change strain in 

materials. Hence, the W-Fe2O3 displayed better sodium storage performance and cycling 

stability, with capacities of 300 mA h g-1 and 150 mA h g-1 obtained after 80 and 100 cycles 

at 40 and 100 mA g-1, respectively 86. In addition to the core-shell structure, designing 

transition metal oxides with yolk-shell structure could also buffer the volume changes more 

effectively due to its void space inside of the shells. Li et al. designed yolk-shell structured 

SnO2@void@C porous nanowires through the SiO2 template method followed by carbon 

coating, with the SiO2 template removed by NaOH washing. TEM and FESEM showed that 

porous SnO2 nanowires were surrounded by carbon shells with tremendous void space, so 

that the composite exhibited a capacity of 401 mA h g-1 at 50 mA g-1 after 50 cycles and 

excellent rate performance with capacity of ~220 mA h g-1 even at the high current density of 

800 mA g-1 87. 

 

Figure 8. (a, b) SEM, (c, d) TEM, and (e, f) HRTEM images, and (g) EELS elemental mapping analysis images 

of honeycomb-like composites showing the element distributions; (h) Schematic illustration of the fabrication 

procedure for honeycomb-inspired SnO2@C nanospheres embedded in carbon film; (i, j) Cycling performance 

and Coulombic efficiency of the honeycomb-like composites anodes in SIBs at current densities of 100 mA g-1 

and 500 mA g-1, respectively; (k) Rate capabilities of the honeycomb-like composite anode for SIBs. 

Reproduced with permission 64. Copyright © 2017 Elsevier B.V. All rights reserved. 
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2.2.2 Transition metal sulphides 

Compared to transition metal oxides as anode materials for SIBs, transition metal sulphides 

have also drawn researchers’ attention due to their higher theoretical capacity. Moreover, the 

M-S bonds are weaker than M-O bonds (where M is a transition metal), which makes 

conversion reactions with Na+ easier, and as a result, transition metal sulphide is normally 

more mechanically flexible and reversible during sodiation-desodiation processes. Various 

metal sulphides have been investigated as anode materials for SIBs, including MoS2 
88-100, 

Sb2S3 
101-104, SnS2 

105-107, WS2 
108, etc.  

        Although many transition metal sulphides possess a layered structure that is favourable 

for Na+ ion intercalation, however, much work has been done on designing nanostructured 

materials as with transition metal oxides. For example, WS2 nanowire was fabricated with a 

thin diameter of 25 nm and expanded interlayer spacing of 0.83 nm. It demonstrated an ultra-

long cycling stability with capacity around 250 mA h g-1 at 1000 mA g-1 over 1400 cycles 109. 

In addition, nanopheres 110, nanosheets 93, nanoflowers 99 and nanofibers 111  were also 

reported as well. There are many reports on MoS2 nanosheets combined with graphene as 

composite for SIBs due to their similar two-dimensional heterointerfaces. For instance, Xie et 

al. synthesized a MoS2/Graphene composite through a facile one-pot hydrothermal method. 

They found that the heterointerfacial area was affected by the ratio of MoS2 to reduced 

graphene oxide (RGO), and it had an influence on the reversible capacity and electronic 

conductivity of MoS2/Graphene composite. The composite showed the best electrochemical 

performance when the MoS2 weight ratio in the MG-x composites was 68.7 %. These results 

offered a better fundamental understanding for the rational design of layered metal 

sulfide/graphene composites as high-performance electrode materials for sodium-ion batteries 

112. In a similar way, Liu et al. also designed exfoliated-SnS2 restacked on graphene, so that 

the ultra-small SnS2 nanoplates composed of 2-5 layers were homogeneously decorated on 

the surfaces of the graphene, demonstrating a 3D network architecture. The obtained sample 

showed a stable cycling performance with capacity of ~610 mA h g-1 over 300 cycles at 200 

mA g-1, which can be attributed to the unique structure of heterointerfaces between SnS2 and 

graphene that could suppress aggregation and volume fluctuation 113. 

        Instead of investigating the interfaces of transition metal sulphides and graphene, 

another interesting structural design method for transition metal sulphides is to vertically 

grow them on carbon materials. For example, sandwich-like graphene@MoS2@C sheets 

were fabricated by Teng et al. The MoS2 nanosheets were perpendicularly connected with 
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rGO through direct chemical coupling (C-O-Mo bonds), and the chemical bond could 

enhance the structural stability of the electrode. Meanwhile, the vertical nanostructure was 

able to improve the electrode reaction kinetics due to more active sites and short diffusion 

paths for Na+ reactions. The carbon shell and graphene could also buffer the volume changes 

of MoS2 during cycling. The as-prepared sample showed excellent rate capability with 

capacity of 304 mA h g-1 after 200 cycles at 5 A g-1 and stable cycling performance (260 mA 

h g-1 after 300 cycles at 10 A g-1) 114. Another example was reported by Xie et al. They also 

designed MoS2 nanosheets that were vertically aligned on carbon paper as a free standing 

electrode for SIBs. They believed that the hierarchical structure enables sufficient 

electrode/electrolyte interaction and fast electron transportation. Meanwhile, the unique 

architecture could enhance the initial coulombic efficiency through minimizing excessive 

interfaces between carbon and the electrolyte 115.  

        Porous structures can be also used in designing transition metal sulphides. Cho el al. 

reported porous FeS nanofibers with numerous nanovoids as anode material for SIBs, which 

were prepared by electrospinning and subsequent sulfidation. Hollow Fe2O3 nanofibers were 

first prepared through annealing as-spun Fe(acac)3-polyacrylonitrile in air, and then, they was 

transformed into porous FeS by the sulfidation method. A schematic illustration, SEM and 

TEM images, and the electrochemical performance of this material are shown in Fig. 9. In 

comparison to hollow Fe2O3, the stable porous structure of FeS nanofiber displayed a stable 

cycling performance and high rate capability. The discharge capacity increased from 561 to 

592 mA h g-1 during the first 150th cycles, and high capacity of 380 and 353 mA h g-1 was 

achieved even at 3 and 5 A g-1, respectively 116. Another case study of 3D porous 

interconnected WS2/C was reported by Zhu et al., where an electrostatic spray deposition 

technique was used to create the porous structure. This 3D porous WS2/C composite 

exhibited high rate capability (400, 270, 199, and 81 mA h g-1 at 0.2, 1, 2, and 10 C, 

respectively) and stable cycling performance (219 mA h g-1 at 1 C after 300 cycles). This 

excellent performance can be attributed to the 3D porous structure, which could improve 

electron diffusion, buffer the volume change during cycling, and increase the contact area 

with the electrolyte, which ensures fast Na ion transport 117.  
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Figure. 9 (a) Formation mechanism of the porous FeS nanofibers with numerous nanovoids; (b) Detailed 

mechanism for the formation of nanovoids in the surface region of the Fe2O3 shell of the nanofibers by 

nanoscale Kirkendall diffusion; (c, d) SEM and (e, f) TEM images of the porous FeS nanofibers containing 

numerous nanovoids after sulfidation at 400 °C for 8 h; (g) Cycling performance at a constant current density of 

500 mA g-1, and (h) rate performance at different current densities of porous FeS and hollow Fe2O3 nanofibers 

for sodium-ion storage. Reproduced with permission 116. Copyright © 2016, Springer Nature. 

        The fabrication of core-shell structure is another effective approach to designing 

transition metal sulphides. Wang et al. synthesized a composite of core-shell MoS2/C 

nanospheres embedded in foam-like sheets, and it showed high capacity and stable cycling 

performance. The MoS2 core was fabricated by using NaCl and SiO2 as templates, while the 

carbon shell and the carbon sheets came from glucose carbonization. There are many spaces 

between MoS2 nanospheres that could buffer the volume changes and provide fast transport 

of Na+ ions, while the carbon shell could also enhance the electronic conductivity and 

suppress the aggregation of MoS2 as well. As a result, the as-prepared sample displayed a 

high discharge capacity of 523 mA h g-1 after 100 cycles at 0.1 A g-1, and a capacity of 337 

mA h g-1 could be obtained after the 300th cycle, even at 1 A g-1 110. In addition, a more 
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complex ZnS-Sb2S3@C core-double-shell composite was designed by Dong et al. This 

special structure was derived from a metal-organic framework. The ZnS inner core was 

surrounded by a Sb2S3@C double-shell, and the composite demonstrated an excellent 

electrochemical performance. A reversible capacity of ~600 mA h g-1 was obtained after 120 

cycles at 100 mA g-1, and ~300 mA h g-1 can be achieved even at a high current density of 

800 mA g-1. The outstanding performance can be attributed to the unique core-shell structure, 

which not only facilitates facile electrolyte infiltration to reduce the Na-ion diffusion length 

and improve the electrochemical reaction kinetics, but also protects the structure from 

pulverization caused by Na-ion insertion/extraction 118. 

2.3 Alloy based materials and structural design 

Similar to the conversion type materials, alloy based materials are also promising candidates 

for SIB anode because they can accommodate a great number of sodium ions in the host 

structure at an operating voltage below 1.0 V, and high specific capacities could be achieved 

during multiple alloying-dealloying reactions between sodium and the metals. To date, group 

14 and 15 elements in the periodic table have been widely investigated as potential anode 

materials for SIBs. Nevertheless, the large Na+ ions still cause huge volume changes during 

the repeated alloying-dealloying reactions, ultimately leading to fracturing or pulverization of 

the electrode and capacity fade. Many desirable architectures and enhanced electrode designs 

have been investigated, but in this part, we mainly discuss the structural design of alloy based 

materials containing group 14 and 15 elements. 

2.3.1 Alloying compounds in group 14 

Many investigations related to group 14 in the periodic table elements have been focused on 

germanium (Ge) and tin (Sn) due to their high theoretical capacity of 369 and 847 mA h g-1, 

respectively 119-128. Researchers have found that the particle size of alloy based materials is 

vitally important for their electrochemical performance, and therefore, many nanostructured 

alloy based materials have been designed. For example, Seng et al. synthesized Ge 

nanoparticles through a facile self-assembly method, in which the Ge particles are located 

inside the carbon shell. The as-prepared sample displays a stable cycling performance and 

excellent rate capability. The capacity remains at ~900 mA h g-1 over 120 cycles when 

charged and discharged at 1.6 and 0.8 A g-1 respectively, and capacities of ~750 and 450 mA 

h g-1 could be observed even at 30 and 40 C respectively. They concluded that the superior 

electrochemical performance of their material could be ascribed to the unique nanostructure, 

which provides good electrolyte diffusion into/out of the pores and high electronic 
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conductivity via the carbon shells 129. Another example relates to the ultra-small Sn nanodots 

designed by Ying et al. through a simple spray-drying process. In order to improve the 

cycling performance, they also introduced N-doped carbon microcages (NMCs) to form a 

composite with the Sn nanodots. Electrochemical tests showed that the Sn/NMCs could 

deliver an initial reversible capacity of 439 mA h g-1 at 50 mA g-1 and retain 332 mA h g-1 

after 300 cycles 130. Similar to this, there are also some other types of composites of carbon 

materials with nanosized Sn that have been reported, such as Sn@CNT 131, Sn@Porous 

carbon 132, etc. Thanks to the nanostructure and improved electronic conductivity, all of them 

exhibited wonderful electrochemical performances.  

        In addition to the investigation of single element alloy based materials in group 14, some 

binary alloy materials also have drawn attention, and many nanostructured materials have 

been designed. SnSb/C nanocomposites were first studied by Xiao et al. The sample was 

prepared by high-energy mechanical milling under an argon atmosphere and energy 

dispersive spectroscopy (EDS) analysis demonstrated that the Sn and Sb elements were 

distributed homogeneously (ratio of Sn/Sb = 1:1). The electrode could achieve an 

exceptionally high capacity of 544 mA h g-1, good rate capacity, and good cyclability (80 % 

capacity retention over 50 cycles) for Na-ion storage 133. A Sn-Cu nanocomposite (Sn0.9Cu0.1) 

was also fabricated by Lin et al. through a simple wet chemical method, and the nanoparticle-

based electrodes exhibited a stable capacity greater than 420 mA h g−1 at the 0.2 C rate, with 

97 % of the capacity retained after 100 cycles 134. Zhang et al. also synthesized a SnSe/carbon 

nanocomposite via a high-energy ball-milling method. An initial capacity of 748.5 mA h g−1 

was obtained, and a capacity of 324.9 mA h g−1 could be observed at 500 mA g−1 after 200 

cycles 135. 

        In addition to the normal nanostructured design of alloying compounds in group 14, Li 

et al. also created a yolk-shell Sn@C nanostructured material inspired by a famous Hong-

Kong snack: eggette. From the shape of the snack, they thought that the SnO2 nanospheres 

could be wrapped in a carbon layer and distributed on carbon sheets. To be more specific, 

hollow SnO2 nanoparticles were first synthesized by using NaCl as template, and then the 

yolk-shell Sn@C was formed by glucose reduction and carbonization. The yolk-shell 

structure was designed to buffer the large volume expansion during cycling, while the carbon 

sheet acts as an electron-conducting network and could suppress aggregation of Sn particles 

at the same time. As a result, the yolk-shell Sn@C material exhibits superior rate 

performance, with capacity of ~ 200 mA h g-1 at the high current density of 5000 mA g-1. In 
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terms of the cycling performance, the capacity still remained at ~200 mA h g-1 after 1000 

cycles 136. 

2.3.2 Alloying compounds in group 15 

Most work on elements in group 15 has been related to antimony (Sb) and phosphorus (P) 

because of their high theoretical capacity, with 660 and 2596 mA h g-1, respectively. The 

same as with alloy compounds in group 14, however, the huge volume expansion/contraction 

is still the main problem. There are many similar structural designs for alloying compounds 

in group 15. 

        Many investigations on single element based materials in group 15 137-142 have been 

related to nanostructure fabrication 143, 144. Liang et al. designed highly ordered Sb nanorod 

arrays as anode material for SIBs with uniform large interval spacing (190 nm). This 

structural design presents many advantages, such as high ion accessibility, fast electron 

transport, and strong electrode integrity. This material demonstrated a high capacity of 620 

mA h g-1 at the 100th cycle with capacity retention of 84 %, even at 10 and 20 A g-1, and 

reversible capacities of 579.7 and 557.7 mA h g-1 could be achieved, respectively 145. Carbon 

materials are often introduced into the materials synthesis process in order to enhance the 

electronic conductivity. Luo et al. fabricated Sb nanoparticles anchored on a 3D carbon 

network through a template-assisted self-assembly method, followed by freeze-drying and 

carbonization. This composite delivered a high reversible capacity (456 mA h g−1 at 100 mA 

g−1), and 94.3 % capacity retention was obtained after 500 cycles at 100 mA g−1, as well as 

superior rate capability (270 mA h g−1 at 2000 mA g−1) 146. Zhang also synthesized a 

spherical nano-Sb@C composite by an aerosol spray pyrolysis technique, resulting in small 

Sb particles with diameters of about 10 nm. This composite provided a discharge capacity of 

435 mA h g–1 in the second cycle and 385 mA h g–1 after 500 cycles at 100 mA h g–1, with 

high capacity retention of 88.5 % 147. Moreover, Sb-C nanotubes 148 and Sb-C nanofibers 149, 

150 have also been investigated.  

        Similar to Sb based materials, nanostructured forms of phosphorus have been designed 

as well. Xu et al. fabricated nanostructured black phosphorus and mixed it with Ketjenblack 

and multiwalled carbon nanotubes through a high energy ball-milling method. The as-

prepared sample displayed a very high initial Coulombic efficiency (> 90 %), and a capacity 

of ~1700 mA h g-1 also can be observed after 100 cycles at a high current density of 1.3 A g-1 

151. In addition, Sun et al. used the same method to synthesize a composite of black 
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phosphorus nanoparticles and graphite, and the chemical bonds between the phosphorus and 

the carbon were investigated by ab initio density functional theory. The results showed that 

graphite is the best carbon material for stabilizing P-C bonds in phosphorus-nanoparticles- 

carbon composite, which could enable a long cycle life and high-rate capability. Therefore, it 

is not surprising that a reversible capacity of 2000 mA h g–1 was obtained after 100 cycles at 

0.2 C, and 1300 mA h g–1 could be also observed at a high current density of 4.5 C 152. There 

are also some other kinds of composites of  carbon materials with nanosized phosphorus that 

have been reported, such as with graphene 153 and mesoporous carbon matrix 154, where 

superior electrochemical performances were obtained  as well.  

        Apart from fabricating single element materials in nanostructured form, many other 

advanced structural design approaches can be seen in alloying compounds from group 15 

elements, including some binary or ternary alloy based materials, such as NiSb 155, Sn5SbP3 

156, CoP 157, FeP 158, Sn4P3 
159, etc. Some of them were designed in nanostructured form, and 

some of them were just decorated with carbon materials without any special structure. Here, 

we basically discuss some advanced structural designs for both single- and multi-phase based 

materials and their superior electrochemical performance. 

        Liu et al. fabricated a nanoporous (NP)-Sb anode for SIBs through chemical dealloying 

of Al-Sb alloy ribbon, and the morphology of Sb was controlled. Different ratios of Al-Sb 

alloy composition were investigated, and the different ratios gave the porous structures 

different morphology. The coral-like NP-Sb70 (from dealloying of Al30Sb70) delivered the 

best electrochemical properties. It exhibited a high capacity of 573.8 mA h g-1 after 200 

cycles at 100 mA g-1, and there was still a high capacity of over 400 mA h g-1 at a high 

current density of 3300 mA g-1. The excellent electrochemical performance was due to its 

innovative porous structure, which ensures strong structural integrity, high sodium ion 

accessibility, and fast electrode transport 160. In addition, porous Sb/Cu2Sb with 3D structure 

was designed by Nam et al. through electrodeposition on a Cu foam substrate. From SEM 

analysis, it has a three-dimensional porous structure with an apparent pore size of ~ 10 mm 

and an average wall thickness of ~5 mm. The Sb/Cu2Sb electrode exhibited outstanding 

cycling stability and excellent rate capability as well. A charge capacity of 485.64 mA h g-1 

could be obtained after 120 cycles, along with a high coulombic efficiency of ~97 %. 

Furthermore, the capacity still remained at ~400 mA h g-1 at a high current density of 3 C, 

(with about 70 % of the capacity retained at a 0.1 C rate). The excellent electrochemical 

performance can be attributed to the porous structure, which could accommodate the 
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volumetric expansion of the Sb and effectively inhibit the delamination of the anode 

materials 161. Sun et al. also fabricated a red phosphorus@3D porous carbon composite 

through a carbothermic reduction method, in which P4O10 was used as the template to create 

the 3D structure by dehydrating polyethylene glycol (PEG), and also acted as the P source via 

carbothermic reduction. Through this method, the ultrafine red phosphorus particles (~10 nm) 

were embedded in a 3D carbon framework with numerous interconnected nanopores. Fig. 10 

schematically illustrates the structural design, and presents SEM images and the 

electrochemical performance of this P@3D porous carbon composite. As can be seen, it 

delivers a capacity of 920 mA h g-1 at the 160th cycle with high capacity retention of 88 %. 

This superb electrochemical performance can be ascribed to red-P nanoparticles, which could 

shorten the Na+ diffusion length, as well as the 3D porous carbon framework that not only 

functions as an electrical highway in which sodium ions and electrolyte can be transported, 

but also provides buffer space allowing the P particles to expand 162.  

 

Figure 10. SEM and TEM characterization of the P/C composite: (a) low magnification SEM image (Scale bar, 

20 μm), (b) high magnification SEM image of a single sphere (Scale bar, 10 μm), (c) SEM image of a cracked 

P/C sphere (Scale bar, 10 μm), and the corresponding EDS elemental dot-mapping images of (d) P, (e) C, and (f) 

overlay of C and P (Scale bar, 10 μm); (g) Schematic illustration and digital photographs of the synthesis 

procedure for the ultrafine red phosphorus particles embedded in a 3D carbon framework (P/C composite); (h) 

Galvanostatic charge-discharge profiles of red P and P/C electrodes for the first two cycles between 0.01 and 1.5 

V with a current density of 0.2 C; (i) Cycling performance of the carbon framework alone and the P/C 



30 
 

composite at different current densities of 0.2 C, 1 C, and 3.5 C. Reproduced with permission 162. Copyright © 

2016 Published by Elsevier B.V. 

        Hollow structures can be also seen in some alloy based materials in group 15. Liu et al. 

synthesized 3D Ni/Sb intermetallic hollow nanospheres as anode material for high rate SIBs. 

The 3D interconnected hollow structures and Ni matrix encapsulation play important roles in 

stabilizing the structure of this Sb based material. Therefore, it exhibited good cycling 

stability with discharge capacities of 400, 372, and 230 mA h g-1 after 150 cycles at 1 C, 5 C, 

and 10 C, respectively 155. In addition, Zhou et al. fabricated hollow red-phosphorus 

nanospheres with porous shells, and this was considered as an ideal structure to resolve the 

problem of the large volume expansion of P. A wet solvothermal method was used and 

accompanied by a gas-bubble-directed formation mechanism. By taking advantages of both 

hollow and porous structure, the as-prepared sample demonstrated an initial capacity of 

2274.5 mA h g-1 with high Coulombic efficiency of 77.3 %, as well as stable cycling 

performance with capacity of 969.8 mA h g−1 at 1 C over 600 cycles 163. 

        Core-shell structures also have been designed for some alloy based materials in group 15 

because they could provide enough cushion space for volume changes, as well as shortening 

the Na+ ion diffusion paths. For instance, Ge et al. fabricated porous core/shell CoP@C 

polyhedra and combined them with graphene, which was derived from zeolitic imidazolate 

framework-67 (ZIF-67) via a low-temperature phosphidation process. The as-prepared 

sample could deliver a specific capacity of 473.1 mA h g−1 at a current density of 100 mA g−1 

after 100 cycles. The superior electrochemical performance can be attributed to the core/shell 

structure, which could provide a large electrode/electrolyte contact area and shorten the Na+ 

ion diffusion paths, while the volume change was suppressed by the carbon shell and the 

electronic conductivity was also enhanced dramatically by both the carbon shell and the 

graphene 164. Another example relates to core-shell structured CoP/FeP porous microcubes, 

which was synthesized through a low-temperature phosphorization process using Prussian 

blue as reactant template, and the microcubes were also interconnected by reduced graphene 

oxide to improve the electronic conductivity. SEM and TEM observations demonstrated that 

the FeP particles were covered by carbon layers and that all the C-FeP particles were 

distributed inside of the CoP shell. Fig. 11 provides a schematic illustration and shows the 

morphology and electrochemical performance of the as-prepared material. Because of its 

unique core-shell structure, it displays a stable cycling performance and high rate capability. 

The capacity remains at ~500 mA h g-1 after 200 cycles at 100 mA g-1, and there is still a 
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capacity of 341.2 mA h g-1 even at the high current density of 2 A g-1 157. In addition, Liu et al. 

also fabricated a red phosphorus@Ni-P material with core-shell nanostructures. It exhibited 

an ultra-long stable cycling performance, and a capacity of 409.01 mA h g-1 could be 

obtained after 2000 cycles at the high current density of 5 A g-1 165. 

 

Fig. 11 (a-b) SEM images of the RGO@CoP@FeP composites; (c) Typical TEM image of core-shell structured 

CoP@FeP microcube; (d) Electron diffraction pattern corresponding to CoP@FeP microcube in (c); (e) TEM 

image of a FeP microcube; (f) TEM image of a porous C-FeP microcubes with inset corresponding electron 

diffraction pattern; (g) Elemental mapping images of Co, Fe, P, and C for the CoP@C-FeP microcubes; (h) 

Schematic illustration of the formation of the RGO interconnected core-shell structured RGO@CoP@C-FeP 

porous microcubes; (i) Cycling performance and (j) rate capability of the RGO@CoP@C-FeP, CoP@C-FeP, 

and C-FeP electrodes. Reproduced with permission 157. Copyright © 2017 Elsevier Ltd. All rights reserved. 

        Some alloy based materials in group 15 have been designed in yolk-shell structured 

form, and outstanding electrochemical performances were achieved as well. Liu et al. 

fabricated hollow Sb@C yolk-shell spheres through a galvanic replacement method. TEM 

analysis showed that the Sb hollow yolk is covered by a highly-conductive thin shell. The 

internal void space between them could be regarded as a buffer zone for the full expansion of 

Sb nanoparticle units, thus preserving the structural integrity of the Sb@C and a stable SEI 

film. Therefore, these yolk-shell Sb@C particles displayed a reversible capacity of ~280 
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mAh g−1 at 1000 mA g−1 after 200 cycles 166. Another example is the yolk-shell Sn4P3@C 

nanospheres reported by Liu et al. A top-down phosphorized approach was utilized with 

yolk-shell Sn@C precursor, causing the Sn4P3 nanoparticles to be completely protected by a 

thin, conformal, and self-supporting carbon shell. The as-prepared sample exhibited an 

extremely high capacity of 790 mA h g-1, superior rate capability (421 mA h g-1 at 3 C), and 

stable cycling capability with a capacity of 360 mA h g-1 after 400 cycles at 1.5 C. They 

concluded that this rationally designed void space in the yolk-shell structure allows for the 

expansion of Sn4P3 without deforming the carbon shell or disrupting the SEI on the outside 

surface 167.  

3. Conclusion and perspectives 

Research on SIBs has increased rapidly under the trend of searching for alternative 

substitutes for LIBs, much work has been done on anode materials of SIBs, and rational 

structural design is regarded as an effective way to improve their electrochemical 

performances. In this review, we have summarized different types of anode materials for 

SIBs according to their reaction mechanism. The main problems of each type have been 

pointed out, such as low specific capacity and poor rate capability for the insertion type 

materials, and huge volume expansion for the conversion and alloying reaction materials 

during charge/discharge processes. Specific structural designs have been illustrated for each 

type of anode material with unique structure and outstanding electrochemical properties. The 

structural design of anode materials for SIBs can be generally classified into three types: (1) 

nanostructures; (2) porous or hollow structures; and (3) core-shell or yolk-shell structures. 

Sometimes, these special structures are combined when fabricating anode materials for SIBs 

in order to achieve better electrochemical performance. Various anode materials with special 

structures in SIBs have been summarized in Table 1. 

Table 1 Summary of some anode materials with special structures in sodium-ion batteries 
Type of material BET surface area [m2 g-1] Initial C.E. [%] Cyclability [mA h g-1] Rate capability [mA h g-1] Ref. 

Hollow carbon nanowires / 50.5 206.3 at 50 mA g-1 after 400 cycles 150 at 0.5 A g-1 28 

Hollow carbon nanospheres 410 41.5 ~200 at 100 mA g-1 after 100 cycles 50 at 10 A g-1 41 

Carbon nanosheet frameworks 196.6 57.5 225 at 100 mA g-1 after 200 cycles ~50 at 10 A g-1 35 

N-doped carbon nanofibers / 41.8 134 at 200 mA g-1 after 200 cycles 73 at 20 A g-1 34 

N-doped porous carbon fiber 1508 46 222 at 50 mA g-1 after 100 cycles 72 at 10 A g-1 33 

H3PO4-activated porous carbon 1272 27 ~190 at 50 mA g-1 after 225 cycles 71 at 5 A g-1 22 

Sandwich-like hierarchically porous 

carbon/graphene 
825.9 / 250 at 1000 mA g-1 after 1000 cycles / 44 

3D Porous Carbon Frameworks 467 34.7 99.8 at 5000 mA g-1 after 10000 cycles 100 at 20 A g-1 38 

Porous nitrogen doped carbon sphere 95.1 40 200 at 200 mA g-1 after 600 cycles 155 at 1 A g-1 42 

Nitrogen-rich mesoporous carbon 113 49.6 252 at 50 mA g-1 after 100 cycles 49.8 at 2 A g-1 168 
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3D N-doped graphene foams 357 ~42.6 594 at 500 mA g-1 after 150 cycles 51 at 2 A g-1 37 

3D hard carbon matrix 108.9 80 116 at 4000 mA g-1 after 3000 cycles ~150 at 5 A g-1 39 

Graphene-based N-doped carbon 

sandwich nanosheets 
133.8 ~38 154 at 5000 mA g-1 after 10000 cycles 110 at 10 A g-1 27 

Core-shell-structured hollow carbon 

nanofiber@nitrogen-doped porous 

carbon composite 

207.2 47.5 ~140 at 500 mA g-1 after 2500 cycles ~50 at 10 A g-1 46 

Hierarchical porous carbons 2500 34 ~150 at 500 mA g-1 after 200 cycles 47 at 10 A g-1 169 

Hierarchical N/S-codoped carbon / 77 150 at 500 mA g-1 after 3400 cycles 130 at 10 A g-1 43 

Reduced graphene oxide/carbon 

nanotubes sponge 
498 45 138 at 10000 mA g-1 after 10000 cycles 200 at 10 A g-1 25 

3D porous carbon-coated graphene 

composite 
474 43 323 at 1000 mA g-1 after 1000 cycles 207 at 10 A g-1 170 

Nanocrystalline anatase TiO2 323.2 / ~140 at 50 mA g-1 after 100 cycles ~50 at 2 A g-1 49 

Carbon-coated TiO2 nanoparticles / / ~125 at 30 mA g-1 after 100 cycles ~135 at 0.8 A g-1 56 

Anatase TiO2 nanocubes 15.7 ~50 ~100 at 1680 A g-1 after 1000 cycles ~108 at 1.68 A g-1 53 

TiO2/C nanofiber 300.5 ~37.5 ~212 at 200 mA g-1 after 1000 cycles ~164.9 at 2 A g-1 52 

TiO2/carbon hollow spheres 144 58 ~140.4 at 100 mA g-1 after 100 cycles ~60.3 at 2 A g-1 54 

Yolk-Shell TiO2@C nanocomposite 235 25.7 ~150 at 200 mA g-1 after 2000 cycles 70 at 8 A g-1 55 

Fe2O3 nanocrystals anchored onto 

graphene nanosheets 
769 ~44.4 ~400 at 100 mA g-1 after 200 cycles ~100 at 2 A g-1 80 

3D Porous Fe2O3@C nanocomposite 769 ~50 ~400 at 2000 mA g-1 after 1400 cycles ~390 at 8 A g-1 85 

Fe2O3 multi-shelled core-shell 

microspheres 
34.5 51.5 ~1200 at 800 mA g-1 after 200 cycles ~800 at 6 A g-1 86 

SnO2 decorated graphene 

nanocomposite 
273 / ~300 at 100 mA g-1 after 100 cycles 207 at 0.8 A g-1 81 

Yolk-shell SnO2@C nanospheres 231.7 ~50 ~928.9 at 100 mA g-1 after 100 cycles 514 at 1 A g-1 64 

SnO2@void@C porous nanowires / 45.7 401 at 50 mA g-1 after 50 cycles 190 at 0.8 A g-1 87 

Hierarchical mesoporous SnO 

microspheres 
195.2 73 ~300 at 160 mA g-1 after 50 cycles / 83 

MoS2/electrospun carbon nanofiber / 55 ~200 at 1000 mA g-1 after 500 cycles ~160 at 3.2 A g-1 111 

MoS2 nanosheets / 64.37 ~260 at 10000 mA g-1 after 300 cycles ~304 at 5 A g-1 114 

MoS2 nanoflowers / 62.8 ~260 at 1000 mA g-1 after 1500 cycles ~200 at 10 A g-1 99 

3D MoS2-graphene microspheres / 78 322 at 1500 mA g-1 after 600 cycles ~234 at 10 A g-1 95 

Core shell MoS2/C nanospheres 84 72 337 at 1000 mA g-1 after 300 cycles ~200 at 4 A g-1 110 

Sn nanoparticles embedded in carbon 150.4 62 415 at 1000 mA g-1 after 500 cycles ~349 at 4 A g-1 122 

Ultrasmall Sn nanodots embedded 

inside N-doped carbon microcages 
/ 67 332 at 500 mA g-1 after 300 cycles ~200 at 5 A g-1 130 

Sn/Sb@porous carbon nanofiber / 46 ~400 at 500 mA g-1 after 200 cycles ~400 at 1 A g-1 124 

Yolk-Shell Sn@C / 76 ~200 at 1000 mA g-1 after 1000 cycles ~200 at 5 A g-1 136 

Spherical nano-Sb@C composite / / 350 at 100 mA g-1 after 500 cycles ~270 at 4 A g-1 147 

Sb-C nanofiber / 64.3 ~450 at 200 mA g-1 after 400 cycles 337 at 3 A g-1 149 

Sb@C coaxial nanotubes / ~56 240 at 1000 mA g-1 after 2000 cycles 310 at 20 A g-1 148 

Sb nanorod array / ~54 620 at 200 mA g-1 after 100 cycles 557.70 at 20 A g-1 145 

Sb nanoparticles@3D carbon 26 ~75 ~430 at 100 mA g-1 after 500 cycles 270 at 2 A g-1 146 

Nanoporous Al/Sb allloy / ~75 ~578.3 at 100 mA g-1 after 200 cycles ~400 at 3.3 A g-1 160 

3D Ni/Sb hollow nanospheres / 79.1 ~290 at 6000 mA g-1 after 150 cycles 230 at 6 A g-1 155 

Hollow Sb@C yolk-shell spheres / 45 ~280 at 1000 mA g-1 after 200 cycles ~250 at 5 A g-1 166 

P@carbon nanotube / 60.3 1586.2 at 520 mA g-1 after 100 cycles ~850 at 5.2 A g-1 171 

P nanoparticles@graphene scrolls / 72 2172 at 250 mA g-1 after 150 cycles ~1000 at 4 A g-1 153 

P in N-doped microporous carbon / / 450 at 1000 mA g-1 after 1000 cycles ~300 at 8 A g-1 142 

Hollow P nanospheres / 77.3 ~1000 at 2600 mA g-1 after 600 cycles 278.4 at 10.4 A g-1 163 
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P@Ni-P core@shell / 88.2 ~400 at 5000 mA g-1 after 2000 cycles 773 at 5.2 A g-1 165 

Core/shell CoP@C@3D RGO / 52 473 at 100 mA g-1 after 100 cycles ~100 at 1.6 A g-1 164 

Core-shell CoP/FeP porous 

microcubes 
55.6 56.9 ~500 at 100 mA g-1 after 200 cycles ~341.2 at 2 A g-1 

157 

 

Yolk-shell Sn4P3@C nanospheres / ~43.8 ~360 at 1500 mA g-1 after 400 cycles 421 at 3 A g-1 167 

 

Nanostructures are the most common choice for structural design when considering the 

synthesis of high performance anode materials for SIBs, including nano particles, nanowires, 

nanosheets, etc, they could also make up 3D network structures. It can be found that, in all 

types of anode materials, the superior performance of nanostructured anode materials can be 

attributed to the small nanosized material, which can effectively reduce the Na-ion diffusion 

distance and provide high kinetics in the electrode. Porous or hollow structures are also 

popular among all the different kinds of anode materials for SIBs because these structures are 

inside the material and thus could increase the contact area with the electrolyte, providing a 

large number of active sites and also providing short sodium and electron diffusion paths that 

facilitate fast transport of sodium ion/electrons. Core-shell or yolk-shell structures are 

extremely valuable for fabricating conversion type and alloy based anode materials because 

these unique structures not only enable facile electrolyte infiltration to reduce the Na-ion 

diffusion length to improve the electrochemical reaction kinetics, but also prevent 

pulverization of the structure caused by Na-ion insertion/extraction. Especially in the yolk-

shell structure, the voids in materials can be considered as wonderful buffer zones to alleviate 

the structural strain during charge/discharge processes. 

        Although great progress has been achieved on anode materials of SIBs, there are still 

many challenges for their practical application. Most of the time, reports only focus on the 

advantages. The disadvantages of the nanomaterials are also worth to point out. Their low 

initial coulombic efficiency is still a serious problem. The reason is that the high-surface-area 

of nanosized materials that would cause large irreversible capacity loss associated with the 

electrolyte decomposition and the formation of SEI layer on the surface of the electrodes.  In 

addition, the instability of nano particles could be a problem as well, it is highly challenging 

to retain the nanosize as they would easily aggregate together. For the porous and hollow 

structures, they would end up with high volumetric density because of the holes inside of the 

materials. The side reaction and the decomposition of electrolytes due to the high surface area 

are still the big obstacle for the real application. More importantly, the synthesis method for 

hollow structures are still very limited, which are normally based on solution process, the 

yield of product is comparatively low that could not meet the demand of scaling-up mass 
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manufacture, how to control the pore/hollow size and shape are still problems that needs to be 

solved in the future 172. For core-shell and yolk-shell structures, the volume expansion 

problem for high capacity anode materials cannot be fundamentally solved. Some reported 

anode materials with these kinds of complicated structures contain multistep synthetic 

process, but only displayed short cycling performance, which means the long-term cycling 

might finally destroy the hierarchical structures and deteriorate the electrochemical 

performance. How to fabricate the homogenous shell and control their thickness are still the 

challenge in real synthesis process. Therefore, in terms of structural design for anode 

materials, the ideal method for nanostructured materials would be making them to form 

secondary micro-sized particles, which could lower the contact area with electrolyte and 

become more stable in reaction. However, the nanostructured materials with micro-sized 

particle size are still far from ready for industrial manufacture. For porous, hollow, core-shell 

and yolk-shell structures materials, the aim is to simplify the complicated synthesis 

procedures and enhance their product yields. Besides, optimized electrolytes, additives, and 

binders should be explored to help further improve the electrochemical performance of anode 

materials for SIBs. Finding a balance between process costs and energy density is crucial for 

future practical application. This work is still expected to serve as a guide for future design of 

high performance anode materials for sodium-ion batteries. 
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