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Abstract- This paper analytically derives the bandwidth limitations of Disturbance Observer (DOB) when plants have Right Half 

Plane (RHP) zero(s) and pole(s). If the plant is non-minimum phase, then the bandwidth of DOB should be set at a lower value than 

its upper bound to improve the robust stability and performance. If the plant is unstable, then the bandwidth of DOB should be set 

at a higher value than its lower bound to achieve the robust stability. The upper and lower bounds are analytically derived by using 

Poisson integral formula. It is shown that the bandwidth limitation of DOB is directly related to the locations of the RHP zero(s) and 

pole(s) and becomes more severe as they get close each other. A minimum phase approximation of the non-minimum phase nominal 

plant model is proposed by using Genetic Algorithm (GA) to tackle the internal stability problem of the DOB-based robust control 

systems. Simulation results are given to verify the proposed robust controllers. 

Index Terms: Disturbance Observer; Non-minimum Phase Systems; Robust Control; Robustness and Performance Trade-off; 

Unstable Systems. 

I. INTRODUCTION 

It is a well-known fact that plants with RHP zero(s) and pole(s), i.e., non-minimum phase and unstable plants, have several 

constraints, such as bandwidth limitation and achievable sensitivity reduction, in the design of feedback control systems [1, 2]. 

As it is pointed out by G. Stein in 1989 Bode lecture, control of such systems is quantifiably harder than minimum phase stable 

systems, and special consideration is required due to their fundamental characteristics such as local stability [3, 4]. The control 

problem of non-minimum phase and/or unstable plants becomes more severe when they suffer from plant uncertainties. 

Goodwin et al. showed that the average performance of such systems in the presence of model uncertainties can significantly 

depart from the best achievable nominal performance, i.e., the performance without model uncertainties [5]. Therefore, the 

robust control problem of plants with RHP zero(s) and pole(s) is a very challenging problem in the literature.  
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DOB is a robust control tool that is used to estimate plant uncertainties and external disturbances [6, 7]. In DOB-based 

robust control, the estimations of disturbances are fed back through control input in an inner-loop so that the robustness of the 

system is simply obtained by cancelling disturbances with their estimations. An outer-loop controller is designed to achieve 

performance goals by considering only the nominal plant dynamics as DOB cancels disturbances in the inner-loop [8, 9]. A 

DOB-based robust controller has two-degrees-of-freedom; i.e., its robustness and performance can be independently adjusted 

in the inner and outer loops, respectively. Although DOB has been applied to many different applications, such as industrial 

automation, robotics and automotive, in the last three decades, it still suffers from insufficient control techniques [10] – [12]. 

Therefore, in general, its applications highly depend on designers‘ own experiences [13, 14]. 

Since a DOB can precisely estimate disturbances within the frequency range of its low-pass-filter (LPF), the robustness 

against disturbances of a DOB-based control system can be simply improved by increasing the bandwidth of the LPF [7, 14]. 

However, it is limited by practical design constraints, such as noise and sampling time, in real implementations. The bandwidth 

limitations of DOB become more severe when plants have RHP zero(s) and/or pole(s) [15, 16]. Furthermore, the inverse of the 

nominal plant model, which is required in the design of DOB, causes internal stability problem in DOB-based robust control if 

the plant has non-minimum phase zero(s) [17] – [19]. Therefore, DOB-based robust control of systems with RHP zero(s) 

and/or pole(s) is also quantifiably harder than that of minimum phase stable systems. 

This paper proposes DOB-based robust controllers for plants with RHP zero(s) and/or pole(s). The design limitations of the 

robust controller, i.e., the upper and lower bounds of the bandwidth of DOB, are analytically derived by using Poisson integral 

formula. It is shown that if the plant is non-minimum phase and the bandwidth of DOB is set at a higher value than its upper 

bound, then the peaks of the sensitivity and co-sensitivity functions may dramatically increase; i.e., the robust stability and 

performance may dramatically deteriorate. On the other hand, if the plant is unstable, then the peaks of the sensitivity and co-

sensitivity functions can be simply lessened by increasing the bandwidth of the LPF of DOB. The upper and lower bounds of 

the bandwidth of DOB are directly related to the locations of the RHP zero(s) and pole(s), and the bandwidth limitations 

become stricter as they get close each other. When DOB is applied to a non-minimum phase system, it suffers from internal 

stability problem as the inverse of the nominal plant model is required in the design of DOB. In this paper, the internal stability 

problem is tackled by proposing a minimum phase approximate model for the non-minimum phase nominal plant. The 

approximate nominal plant model is obtained by minimizing the differences between the magnitude and phase responses of 

minimum and non-minimum phase plant models within the limited frequency range of DOB. When DOB is applied to an 

unstable system, the outer-loop controller is designed to stabilize the inner-loop. Therefore, a feedforward controller is 

proposed to adjust the performance of the robust controller in this paper. The validity of proposals is verified by giving 
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simulation results of the robust control of a non-minimum phase plant with unstructured uncertainties and an unstable plant 

with parametric uncertainties.  

The rest of the paper is organized as follows. In section II, feedback control limitations of systems with RHP zero(s) and 

pole(s) are briefly explained. In section III, a DOB-based robust control system is presented, and the bandwidth limitations of 

DOB are analytically derived when plants have RHP zero(s) and pole(s). In section IV, the minimum phase approximate model 

of a non-minimum phase plant is obtained by using Genetic Algorithm (GA). In section V, simulation results of the robust 

control of non-minimum phase and unstable systems are presented. The paper ends with conclusion given section VI.  

II. LIMITATIONS OF CONTROL SYSTEMS WITH RIGHT HALF PLANE ZERO(S) AND POLE(S) 

In this section, the fundamental limitations of control systems with RHP zero(s) and pole(s) are briefly explained. The reader 

is invited to refer to [2,] [20–22] for further details. 

A. Performance and Phase-Margin Limitations of Control Systems with RHP Zero(s) and Pole(s) 

It is a well-known fact that RHP zero(s) and pole(s) cause undershoot and overshoot in feedback control systems, 

respectively. They are directly related to the bandwidth of the closed loop system, and its constraints are defined by using 

            
  1

2.1991

log 1 0.9

RHP

B

undershoot

z
w

y





                                                   (1) 

            
  

2.1991
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B
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


                                                   (2) 

where
Bw represents the bandwidth of the closed-loop system, 

RHPz and 
RHPp  represent the RHP zero and pole of the system, 

respectively, and 
undershooty and 

overshooty represent the infimum and supremum of the system‘s step response, respectively [2, 20].  

To obtain a good phase-margin, the crossover frequency of a non-minimum phase system should be smaller than its RHP 

zero, i.e., 

             C RHPw z                                                    (3) 

where
Cw represents the crossover frequency, and 0.5 1   [20]. 

B. Bode and Poisson Integral Formulas 

The fundamental feedback control limitation of a stable minimum phase system can be described by using Bode integral 

formula as follows: 
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         
0

log 0S jw dw



                        (4) 

where  S jw  represents the sensitivity function of the system in frequency domain, j represents complex number and w

represents frequency [21].  

Eq. (4) shows that the sensitivity function of a control system cannot be freely shaped. For example, as the robustness 

against disturbances is improved by decreasing the sensitivity function at low frequencies, the system may become more noise 

sensitive since the peak value of the sensitivity function     sup log 0dBS jw  may increase to satisfy Eq. (4). However, 

the noise sensitivity may not be a serious problem as low peak values of the sensitivity function can still balance the integral 

equation in infinite frequency range. 

Let us now consider systems with RHP zero(s) and pole(s) and define an open loop transfer function by using 

            1

S TL s L s B s B s                   (5) 

where  L s  represents a minimum phase stable transfer function, and  
1

k
i

S

i i

p s
B s

p s





  and  

1

l
i

T

i i

z s
B s

z s





  represent 

Blaschke products in which 
iz  and 

ip  are the RHP zero and pole of  L s , respectively, and 
iz  and 

ip  are conjugates of 
iz  

and
ip , respectively [20].  

The fundamental feedback control limitations of systems with RHP zero and/or pole are more severe than that of minimum 

phase stable systems. They can be similarly described by using Poisson integral formula as follows [2, 20]: 

 

        

       1log logz S RHPS jw W jw dw B z
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(6) 

                1log logp T RHPT jw W jw dw B p
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
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(7) 

where  
 

1

1
S jw

L jw



 and    1T jw S jw   respectively represent the sensitivity and co-sensitivity functions of the 

system in frequency domain; RHP z zz jw  represents the RHP zero of the system in which z and zw are real and imaginary 

parts of 
RHPz , respectively;

RHP p pp jw   represents the RHP pole of the system in which 
p and 

pw are real and imaginary 

parts of RHPp , respectively;  1

SB s
and  1

TB s
 are the inverse of the Blaschke products which are given in Eq. (5); and  
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 
are weighting functions. 
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Against the Bode integral formula, the Poisson integral equations should balance in a finite frequency range as the weighting 

functions  zW jw  and  pW jw  decay with the increasing frequency. Therefore, the peak values of the sensitivity and co-

sensitivity functions can be high, e.g., the system may become very sensitive to noise, as the robustness against disturbances is 

improved by decreasing the sensitivity function at low frequencies. 

III. DESIGN OF DISTURBANCE OBSERVER-BASED ROBUST CONTROL SYSTEMS  

In this section, DOB-based robust controllers are proposed for systems with RHP zero(s) and pole(s) by considering their 

fundamental feedback control limitations. Let us first explain the general structure of a DOB-based robust control system. 

A. A DOB-based Robust Control System 

Block diagram of a DOB-based robust control system is illustrated in Fig. 1 [7, 14]. In this figure,  G s and  nG s represent 

uncertain and nominal plant models, respectively;  r s and  s represent reference and noise exogenous inputs, respectively; 

 y s represents output of the system; d  represents exogenous disturbance input; dis  represents disturbances due to model 

mismatch and d , i.e.,       1 1

dis n dG s G s y s      when   0s  ; ˆ
dis  represents the estimation of dis ;  Q s  represents 

the LPF of DOB; and  FBC s  and  FFC s  represent the feedback and feed-forward outer-loop controllers, respectively. 

Let us first assume that   1FFC s  . The open-loop, sensitivity and co-sensitivity transfer functions of a DOB-based robust 

control system can be directly derived from Fig. 1 as follows: 

Inner Loop: 

 
   

    1
i

n

G s Q s
L s

G s Q s



                    (8)           

 
 

Fig. 1. Block diagram of a DOB-based robust control system.  

+

+

+
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ˆ
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 s

DOB

Inner loop

 w s
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Outer loop dis
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    
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 

   

        
,

11

1 11 1

n i

i i

n ni i

G s Q s L s G s Q s
S T

G s Q s G s Q s G s Q s G s Q sL s L s 


   

  
                        (9) 

Outer Loop:

   

 
     

        1

FB n

o

n

C s G s G s
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G s Q s G s Q s



                                          (10) 
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,
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1 11 1

n o n FB

o o

n n FB n n FBo o

G s Q s G s Q s L s G s G s C s
S T

G s Q s G s Q s G s G s C s G s Q s G s Q s G s G s C sL s L s


   

      
  (11)

 

where ,L S
and T

represent the open loop, sensitivity and co-sensitivity transfer functions, respectively.  

If the bandwidth of the LPF of DOB goes to infinite and/or the frequency of disturbances goes to zero, i.e.,   1Q s  , then 

Inner-loop 

   , 0i iL s S   and 1iT                  (12) 

Outer Loop:

   

                                                  o FB nL s C s G s , 
   

1

1
o

FB n

S
C s G s




and 
   

   1

FB n

o

FB n

C s G s
T

C s G s



            (13) 

Eq. (12) shows that a DOB-based robust control system can precisely suppress constant disturbances in the inner-loop. 

However, many control systems are influenced by not only constant but also variable disturbances. Although the robustness 

against variable disturbances can be simply improved by increasing the bandwidth of the LPF of DOB, it is limited by practical 

design constraints such as sampling time and noise. In other words, a DOB-based control system can provide high-robustness 

within a limited frequency range which is determined by the bandwidth of the LPF of DOB [14].  

Eq. (13) shows that  FBC s  can be designed by considering only the nominal model of the plant so that the outer-loop 

transfer functions can be shaped to achieve performance requirements. A DOB-based robust control system has a 2-DOF 

control structure; i.e., its robustness and performance can be independently tuned via DOB and performance controllers in the 

inner and outer loops, respectively [7]. 

B. Limitations of Non-Minimum Phase Systems in DOB-based Robust Control 

For the sake of simplicity, let us assume that  
g

Q s
s g




 is the first order LPF of DOB. Let us also assume that  G s and

 nG s are the uncertain and nominal plant models which have RHP zero(s) and  ˆ
nG s  is the approximate nominal plant 
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model of  G s which has stable inverse [19].  G s  can be defined in terms of  nG s   or ˆ
nG s  and a multiplicative 

unstructured uncertainty as follows: 

                         ˆ1 1n T n err TG s G s W s G s r s W s                   (14) 

where       
1

ˆ
err n nr s G s G s



 ;   1s  ; and  TW s  is the weighting transfer function of the multiplicative unstructured 

uncertainty. The approximate minimum phase nominal plant model of  G s  is used to satisfy internal stability of the robust 

control system [19]. 

If Eq. (14) and the first order LPF of DOB are substituted into Eq. (8-11), then the inner and outer loop transfer functions are 

derived as follows: 

Inner Loop: 

      
 
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When a DOB-based robust controller is applied to a non-minimum phase system, the bandwidth limitations of the LPF of 

DOB can be analytically derived by using the following theorems.  

Theorem 1: If  G s  has a RHP zero at
RHPz , then the DOB-based robust control system should satisfy the following design 

constraint to obtain a good phase margin. 

                1

c

err T RHP

w w

g r jw W jw z



 
                        

(19) 

where
Cw represents the crossover frequency, and 0.5 1  (see Eq. (3)).  

Proof: Eq. (19) is derived by directly applying Eq. (15) to Eq. (3).             Q.E.D 
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Theorem 2: If  G s has a RHP zero at 
RHPz , then the bandwidth of DOB should hold Eq. (20) to satisfy the robustness and 

performance goals which are respectively defined by   ,
i ii S SS jw w w    and   ,

i ii T TT jw w w   . 
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 where   
         

    

  

    
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    
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       
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                        1
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

 

 



 
     

  
  . 

Proof: If   ,
i ii T TT jw w w   ,then   1 ,

i ii T TS jw w w    [20]. Let us consider the Poisson integral formula which is 

given in Eq. (6). If   ,
i ii S SS jw w w   and   ,

i ii T TT jw w w   are applied to Eq. (6), then  

                    1log 1 log log max log

T S S Ti i i i

i i
S Ti i

T S T Si i i i

w w w w

T z z S z i z z S RHP
w w w

w w w w
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 



 
  

   
          

    
   
         (21) 

If the integral of the weighting function   zW w  is applied to Eq. (21), then  

               
 
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    
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    (23) 

 
         

     
  

     

1
1

1

1 1

log 1 2 log log max
log

2 log max log 1 2 log max log 1

i i i
S Ti i

i

i i
S T S Ti i i i

T S i S
w w w S RHP

T

i T i T
w w w w w w

S jw w
B z

w

S jw S jw

    


 





 

 

   

  
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         

      

(24) 
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1  and 
2 can be derived by using Eq. (23) and Eq. (24). The constraints on the LPF of DOB can be derived by using 

  ,
i ii S SS jw w w    and   ,

i ii T TT jw w w   as follows: 

           
    

1

1

1

i

i

i
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S err T

w
g w w z
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   


  and  
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1 1
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T RHP

T err T

w
g w w z

r s W s





   

 

      

     (25) 

Let us assume that
i iT Sw k w where 1k  . Hence, Eq. (25) can be rewritten as follows: 

          

         

1

1 1

1

11 1

i i i i

i i
i i i i

S T T S

S T
err T T T err S T S

k w k w
g

r k w W k w r k w W k w

 

 



 


 

  
                       (26) 

If 1iS RHPw z   and 2iT RHPw z  are substituted into Eq. (26), then Eq. (20) is derived.                             Q.E.D 

In Theorem 1 and Theorem 2, the upper and lower bounds of the bandwidth of DOB are analytically derived to achieve the 

robustness and performance goals which are defined by   ,
i ii S SS jw w w   and   ,

i ii T TT jw w w   . For example, as

iS is decreased and/or 
iSw is increased, the robustness of the system improves. However, the sensitivity and co-sensitivity 

functions of a DOB-based control system cannot be freely shaped due to the RHP zero of the plant.  

Eq. (22) shows that the peak of the sensitivity function is in the frequency range of 
i iS Tw w w  . The peak value is directly 

related to the shapes of the sensitivity and co-sensitivity functions, i.e., , ,
i i iS S Tw  and 

iTw . For example, as the robustness of 

the control system is improved by decreasing the sensitivity function at low frequencies, i.e., using lower 
iS , or keeping the 

sensitivity function low in a larger frequency range, i.e., using higher 
iSw , the peak of the sensitivity function increases. 

Therefore, there are lower and upper bounds for 
iS and

iSw , respectively. Eq. (22) also shows that the peak value of the 

sensitivity function is larger if the plant has RHP pole as well. Higher peak values appear as the RHP pole gets closer to the 

RHP zero. 

Eq. (25) shows that the sensitivity and co-sensitivity functions can be directly shaped by tuning the bandwidth of the LPF of 

DOB. For example, as it is increased, lower values of the sensitivity function can be achieved in a larger frequency range, i.e., 

the robustness against disturbances of the control system is simply improved. However, as shown in Eq. (22), the bandwidth of 

DOB is limited by the RHP zero of the plant.  
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 Theorem 2 is conservative due to the ideal sectionally constant constraints of the sensitivity function. Therefore, the peak 

value of the sensitivity function can be lower than the derived one in Theorem 2. The conservatism can be lessened by using 

more realistic constraints for the sensitivity and co-sensitivity transfer functions [22].  

 
The performance controller can be designed by considering the performance constraint given in Eq. (1). 

C. Limitations of Unstable Systems in DOB-based Robust Control 

Let us now consider systems with RHP poles. If the nominal plant model is unstable, then the inner-loop of the DOB-based 

robust control system is also unstable when disturbances are precisely suppressed. Therefore, the outer-loop feedback 

controller should be designed to stabilize the overall system. In this paper, a feed-forward controller, which is illustrated as 

 FFC s  in Fig. 1, is proposed to achieve the performance goals of systems with RHP poles.   

When a DOB-based robust controller is applied to an unstable system, the bandwidth limitations of the LPF of DOB can be 

analytically derived by using the following theorem.  

Theorem 3: If  G s has a RHP pole at 
RHPp , then the bandwidth of DOB should hold Eq. (20) and Eq. (21) to satisfy the 

performance goal which is defined by   ,
o oo T TT jw w w   . 
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(27)  
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
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   
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where 
     

    

1 1
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 
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 

 
 

. 

Proof: If   ,
o oo T TT jw w w   is applied to Eq. (7), then 
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    

                        

(29)  

 If the integral of the weighting function is applied to Eq. (29), then 

        
 

 
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              (31) 

where   2 2

0 0

arctan

T To o

o

o

w w

TRHP
T p

RHPRHP

wp
w W dw dw

zp w


 
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  
  .             

  is derived by using Eq. (31). It shows that 
oT RHPw p  . The constraint on the LPF of DOB and the outer-loop stabilizing 

controller can be derived by using   ,
o oo T TT jw w w    as follows: 

       
  

     
,

1
o oT T

T

CG jw jw g
w w

jw g W jw CG jw jw g



  

   

                             

(32) 

Eq. (27) and Eq. (28) are derived by applying 
oT RHPw p   to Eq. (32).                                                  Q.E.D 

Eq. (30) shows that the peak of the co-sensitivity function increases as 
oT and 

oTw decrease. To improve the robust stability 

and performance of the system, the co-sensitivity function should be smoothly decreased by limiting either 
oT or 

oTw . Eq. (30) 

also shows that the peak value of the co-sensitivity function is larger if the plant has RHP zero as well. Higher peak values 

appear as the RHP zero gets closer to the RHP pole. 

Eq. (32) shows that the co-sensitivity function can be directly shaped by tuning the bandwidth of DOB and/or outer-loop 

stabilizing controller. Eq. (27) and Eq. (28) show that the bandwidth of DOB and the outer-loop stabilizing controller should 

have upper bounds to achieve the performance goal which is defined by   ,
o oo T TT jw w w   . However, if their upper 

bounds are not high enough, i.e., if 
oT gets smaller in a narrow frequency range, then high peak values of the co-sensitivity 

function may appear as shown in Eq. (30). Either the bandwidth of DOB or the gain of the outer-loop stabilizing controller 

should be increased to improve the robust stability and performance of the system. Increasing the gain of the outer-loop 

stabilizing controller causes higher energy consumption than increasing the bandwidth of DOB. Therefore, shaping the co-

sensitivity function via DOB improves energy efficiency.   

Theorem 3 is also conservative due to the ideal sectionally constant constraints of the co-sensitivity function. The 

conservatism can be similarly lessened by using more realistic constraints for the co-sensitivity transfer function [22].  

The performance controller can be designed by considering the performance constraint given in Eq. (2).
 

IV. MINIMUM PHASE APPROXIMATE MODEL OF A NON-MINIMUM PHASE PLANT 
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To achieve internal stability, the minimum phase approximate model of the non-minimum phase nominal plant is used in the 

design of DOB. Similar solutions can be found in the literature; e.g., the approximate model is obtained by using least mean 

square error in [19]. In general, the approximation problem of non-minimum phase systems is hard to solve since an infinite 

dimensional stable filter is required in principle to get an exact inverse system model [23]. In this paper, the approximate 

minimum phase model is obtained by using GA so that the effect of the model mismatch between  nG s and  ˆ
nG s , i.e.  errr s , is 

minimized within a limited frequency range. This frequency range is determined by the bandwidth limitation of the robust 

controller, i.e., DOB. The approximate minimum phase plant model is designed by using GA as follows: 

Let us consider a non-minimum phase nominal plant model, which has RHP zeros, by using 

              
 

 
n

N s
G s

D s
                        (33) 

where  N s and  D s represent the numerator and denominator polynomials of  nG s , respectively. 

Let us assume that n  and  d n d  are respectively the degrees of  N s  and  D s  polynomials and l n  is the number 

of RHP zeros which cause the non-minimum phase behavior. Let us also define an error polynomial to derive the approximate 

minimum phase model of the non-minimum phase plant by using 

      
       e s N s A s B s                                  (34) 

where  A s and  B s are the polynomials with left-half-plane (LHP) zeros, and the degrees of  A s and  B s are m and m n , 

respectively.  

If   0e s  , then  

               
 

 

 

B s
N s

A s


                     
(35) 

where    B s A s is a non-casual minimum phase transfer function. 

Let us define a quadratic integral performance index by using Eq. (34).  

    

      
  

     

  

min Re
22

0

min: arg ,

, are Hurwitz polynomials
s.t. :

arg

RHPz

amp phase

err

e jw e jw dw

A s B s and s g r s

e jw

 

 



   
 

    



                           
(36) 

where 
amp  and

phase represent the relative weighting factors for the magnitude and phase errors, respectively. Since the 

bandwidth of the robust control is limited by the location of RHP zero(s) as shown in Theorem 2, the optimization range is 
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bounded by   0 min Re RHPw z  in Eq. (36). In other words, the model mismatched between  nG s  and  ˆ
nG s  is 

minimized within the frequency range of DOB‘s bandwidth.  

Eq. (36) is not convex so the analytical solution of the optimization problem is not straightforward. In this study, GA which 

is a powerful evolutionary algorithm in terms of global numerical optimization is preferred to determine the coefficients of the 

approximation polynomials [24, 25]. 

V. CASE STUDIES: DOB-BASED ROBUST CONTROL OF SYSTEMS WITH RHP ZERO AND POLE 

 In this section, DOB-based robust controllers are designed for systems with RHP zero and pole. The validity of the 

proposals is verified by giving simulation results. 

A. DOB-based Robust Control of a System with a RHP Zero 

Let us consider a non-minimum phase system by using 

            1n TG s G s W s                                (37) 

where  
2

25

15 50
n

s
G s

s s

 


 
,  

3.75 400

1500
T

s
W s

s





and 1  .  

Let us first design the approximate minimum phase nominal plant model of  G s  to achieve internal stability. GA 

calculations are carried out by using the Global Optimization Toolbox of Matlab   2014b. A Matlab routine is created to 

implement the cost function and the constraints that is given Eq. (36). In the problem formulation, GA parameters are selected 

as follows: population size is 20, maximum number of generations is 100, fitness scaling is rank, selection function is 

stochastic uniform, crossover type is scattered, mutation function is Gaussian and stopping criteria is 10
-6

. 

If it is assumed that 1amp  , 1phase  ,   1 0A s a s a   and   2

1 0B s s b s b   , then the minimum phase nominal plant 

model is obtained by using Eq. (36) and GA as follows: 

                    
2

2

350 25 1ˆ
14.04 1 15 50

n

s s
G s

s s s

 


  
                                                  (38) 

where 
 

 

2 350 25
25

14.04 1

B s s s
s

A s s

 
   


. 

Fig. 2 illustrates the frequency responses of the RHP zero polynomial, i.e., 25s  , and its non-casual minimum phase 

approximation, i.e.,      2 350 25 14.04 1B s A s s s s     . It is clear from the figure that similar frequency responses are 
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achieved within the limited frequency range, i.e., 25 rad/s. Therefore, the effect of the model mismatch between  nG s and 

 ˆ
nG s can be ignored within the bandwidth of DOB.  

Let us now consider the bandwidth limitations of DOB by using Theorem 1 and Theorem 2. The former directly shows that 

the bandwidth of DOB should be smaller than 25 rad/s to achieve a good phase margin. The sensitivity and co-sensitivity 

function constraints should be determined to derive the bandwidth limitations of DOB via Theorem 2. Let us assume that the 

robustness and performance goals of the control system are   1 2iS jw  ,
iSw w  and   1 2iT jw  ,

iTw w  , respectively, 

and the peak of the sensitivity function is 2iS

 . The bandwidth limitation of DOB is derived by using Eq. (20) as follows: 

                 6.46 21.27g   and 34  rad s
iSw                                                   (39) 

The frequency range of the control goal, i.e.,
iSw and

iTw , depends on practical applications. For example, if the control system 

is noise sensitive or has unmodeled dynamics at low frequencies, then lower
iTw should be used.  

Fig. 3 illustrates the frequency responses of the sensitivity and co-sensitivity functions of the inner-loop. As the bandwidth 

of DOB is increased, the robustness against disturbances is improved by decreasing the sensitivity function in a larger 

frequency range. However, the robust stability and noise sensitivity deteriorate as the peak values of the sensitivity and co-

sensitivity functions are increased. Small changes in the bandwidth of DOB may cause high peaks in the frequency responses 

of  iS s and  iT s . Fig. 3 shows that the control goal and robust stability can be achieved if the bandwidth of DOB is between 8 

and 11 rad/s. The difference between Fig. 3 and Eq. (39) is due to the conservatism in Theorem 2. More realistic bandwidth 

limitations can be derived by lessening the conservatism.  

                  
 

  a) Amplitude Response                         b) Phase Response 

 
Fig. 2. Bode diagrams of the RHP zero polynomial (Black Curve) and its nan-casual minimum phase approximation (Blue Curve). 
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   Fig. 4 illustrates the step response of the robust control system when it is disturbed by    sin 2d t u t    . The outer loop 

controller   1.125 0.1 6FBC s s s    is designed by considering the bandwidth constraint of the system which is given in Eq. 

(1). It is clear from the figure that the system can precisely follow the step reference input by cancelling the disturbances via 

DOB. The undershoot due to RHP zero is suppressed by satisfying Eq. (1). It can be lessened by decreasing the bandwidth of 

the closed-loop system, yet the performance of the step response deteriorates. There is a trade-off between the undershoot 

response and performance of the system as shown in Eq. (1).   

B. DOB-based Robust Control of a System with a RHP Pole 

Let us consider the uncertain and nominal plant models by using 

               0

2

2 1

n

d d

G s
s s



 



 and  

2

1
nG s

s s



                            (40) 

where 0 10.1 1.4, 0.6 2n d      and 20.1 1.6,d  are the uncertain parameters, which have upper and lower bounds, of 

the system.  

   
 

          a) Frequency responses of the co-sensitivity function.                               b) Frequency responses of the sensitivity function. 
 

Fig. 3. Frequency responses of the inner-loop sensitivity and co-sensitivity functions. Red curves: Inverses of weighting functions; green curves: g = 8 rad/s; 

blue curves: g = 11rad/s; black curves: g = 14 rad/s 

 
 

Fig. 4. Step response of the robust control system when the plant has a RHP zero at 25. 
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Let us first ignore DOB-based robust control and stabilize the unstable plant by using only the outer-loop feedback 

controller. Two stabilizing feedback controllers can be designed for the nominal plant model of the system by using  

          

  10 6FBC s s                                                       (41) 

     
  20 40FBC s s                                                           (42) 

Fig. 5 illustrates the pole spreads of the closed-loop system when Eq. (41) and Eq. (42) are used to stabilize the unstable 

plant with parametric uncertainties. It is clear from the figure that the robust stability cannot be achieved when low control 

gains are used. Although the robust stability can be achieved by increasing the gains of the stabilizing controller, the system 

response may still suffer by the low stability margin, i.e., the poles which are close to imaginary axis in Fig. 5b. Furthermore, 

the energy consumption highly increases as the gains of the stabilizing controller are increased (see Fig. 6). 

Let us now consider the DOB-based robust control of the unstable plant. Fig. 7 illustrates the pole spread of the robust 

control system when DOB is used to suppress disturbances due to parametric uncertainties in the inner-loop and Eq. (41) is 

used to stabilize the outer-loop. It is clear from the figure that the robust stability can be achieved by using Eq. (41) when DOB 

 

           
         

  a)   10 6FBC s s                                                                                                     b)   20 40FBC s s   
 

Fig. 5. Pole spread of the closed-loop system when different stabilizing controllers are implemented.   
   

 

 
 

Fig. 6. Control signals for different controller designs. 
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is implemented in the inner-loop. As the bandwidth of DOB is increased, the poles get closer to their nominal values. 

However, the bandwidth of DOB cannot be freely increased in real applications.  

Fig. 8 illustrates the step responses of the robust control system when it is disturbed by not only parametric uncertainties but 

also    sin 5 2d t u t    . The proposed robust controller can precisely follow step reference input by cancelling disturbances 

via DOB. The overshoot of the system response can be suppressed by using the proposed feed-forward controller. Fig. 6 and 

Fig. 8 show that DOB-based robust control system can suppress disturbances by using low control signals. Therefore, it is 

more energy efficient than high gain robust control methods.  

Fig. 9 illustrates the frequency responses of the sensitivity and co-sensitivity functions of the outer-loop when the bandwidth 

of DOB has different values. As it is increased, the peak values of the sensitivity and co-sensitivity functions are lessened; i.e., 

the robust stability and performance of the system are improved.   

 

 
 

Fig. 7. Pole spread of the robust control system. The outer-loop stabilizing controller is   10 6FBC s s  and the bandwidth of DOB is 100 rad/s. 
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Fig. 8. Step responses of the robust control system when the plant has an uncertain RHP pole. 
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Fig. 10 illustrates the stability margin of the robust control system when the bandwidth of DOB has different values. It is 

plotted by using Tsypkin-Polyak theorem [26, 27]. In this figure, unit circle represents the boundary of stability and the 

minimum distance between the unit circle and a curve represents the robust stability margin. Fig. 10 shows that the stability 

margin of the roust control system improves as the bandwidth of DOB is increased.  

VI. CONCLUSION 

This paper has proposed DOB-based robust controllers for plants with RHP zero(s) and pole(s). In DOB-based control, the 

robustness against disturbances is directly related to the bandwidth of the LPF of DOB. However, its bandwidth cannot be 

freely tuned if plants have RHP pole(s) and zero(s). It is shown in this paper that if the plant is non-minimum phase, then the 

       
 

    a) Co-Sensitivity function responses                                                                                      b) Sensitivity function responses  
 

Fig. 9. Frequency responses of the outer-loop sensitivity and co-sensitivity functions. Red curves: Bounds of sensitivity and co-sensitivity functions, i.e., 

( ) 2S jw   and ( ) 2T jw  ; green curves: g = 10 rad/s; blue curves: g = 30 rad/s; black curves: g = 100 rad/s. 

 
Fig. 10. Stability margin of the DOB based robust control system. Red curve: g = 10 rad/s; blue curve: g = 52 rad/s; black curve: g = 100 rad/s; green curve: g 

= 250 rad/s. 
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bandwidth of DOB has an upper bound to achieve robust stability; however, if the plant is unstable, then the robust stability 

can be achieved when the bandwidth of DOB is set at higher than its lower bound. The bandwidth limitation becomes more 

severe if the plant has RHP zero(s) and pole(s) and they are close each other. The upper and lower bounds are analytically 

derived by using Poisson integral formula in Theorem 2 and Theorem 3. Although the analytical bounds suffer from 

conservatism, they provide basic insights regarding the bandwidth limitations of DOB when plants have RHP zero(s) and 

pole(s). The internal stability problem is tackled by proposing a minimum phase approximation of the non-minimum phase 

nominal plant model within a limited frequency range. This frequency range is determined by the RHP zero of the plant. The 

validity of proposals is verified by giving simulation results. 
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