
University of Wollongong University of Wollongong 

Research Online Research Online 

Australian Institute for Innovative Materials - 
Papers Australian Institute for Innovative Materials 

1-1-2018 

Microscopic origin of highly enhanced supercurrent in 122 pnictide Microscopic origin of highly enhanced supercurrent in 122 pnictide 

superconductor superconductor 

Jincheng Zhuang 
University of Wollongong, jincheng@uow.edu.au 

Wai Kong Yeoh 
University of Sydney, University of Wollongong, wyeoh@uow.edu.au 

H W. Yen 
University of Sydney 

Xun Xu 
University of Wollongong, xun@uow.edu.au 

Yi Du 
University of Wollongong, ydu@uow.edu.au 

See next page for additional authors 

Follow this and additional works at: https://ro.uow.edu.au/aiimpapers 

 Part of the Engineering Commons, and the Physical Sciences and Mathematics Commons 

Recommended Citation Recommended Citation 
Zhuang, Jincheng; Yeoh, Wai Kong; Yen, H W.; Xu, Xun; Du, Yi; Liu, H; Yao, Chao; Ma, Yanwei; Wang, Xiaolin; 
Ringer, Simon Peter; and Dou, Shi Xue, "Microscopic origin of highly enhanced supercurrent in 122 
pnictide superconductor" (2018). Australian Institute for Innovative Materials - Papers. 3087. 
https://ro.uow.edu.au/aiimpapers/3087 

Research Online is the open access institutional repository for the University of Wollongong. For further information 
contact the UOW Library: research-pubs@uow.edu.au 

https://ro.uow.edu.au/
https://ro.uow.edu.au/aiimpapers
https://ro.uow.edu.au/aiimpapers
https://ro.uow.edu.au/aiim
https://ro.uow.edu.au/aiimpapers?utm_source=ro.uow.edu.au%2Faiimpapers%2F3087&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/217?utm_source=ro.uow.edu.au%2Faiimpapers%2F3087&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/114?utm_source=ro.uow.edu.au%2Faiimpapers%2F3087&utm_medium=PDF&utm_campaign=PDFCoverPages
https://ro.uow.edu.au/aiimpapers/3087?utm_source=ro.uow.edu.au%2Faiimpapers%2F3087&utm_medium=PDF&utm_campaign=PDFCoverPages


Microscopic origin of highly enhanced supercurrent in 122 pnictide Microscopic origin of highly enhanced supercurrent in 122 pnictide 
superconductor superconductor 

Abstract Abstract 
By a combination of microstructure analysis techniques, we reveal the structural origin of the extremely 
high supercurrent (up to the practical level of 0.1 MA/cm 2 at 10 T, 4.2 K) in Sr 0.6 K 0.4 Fe 2 As 2 (122) 
tape. Transmission Kikuchi diffraction analysis reveals that hot pressing promotes a very high fraction of 
low-angle grain boundaries and texturing of the crystals, which is beneficial for the intergrain physical 
properties. Moreover, the unique characteristics of low-angle grain boundaries favor both long-range 
dislocations and short-range dislocations that totally change the pinning mechanism of the bulk 122 
system. These defects combined with the grain texturing are not only effective for pinning vortices in the 
superconducting state, but also improve inter-granular supercurrent degradation, leading to substantially 
enhanced supercurrent over a wide range of magnetic fields. 

Disciplines Disciplines 
Engineering | Physical Sciences and Mathematics 

Publication Details Publication Details 
Zhuang, J., Yeoh, W., Yen, H., Xu, X., Du, Y., Liu, H., Yao, C., Ma, Y., Wang, X., Ringer, S. & Dou, S. (2018). 
Microscopic origin of highly enhanced supercurrent in 122 pnictide superconductor. Journal of Alloys and 
Compounds, 754 1-6. 

Authors Authors 
Jincheng Zhuang, Wai Kong Yeoh, H W. Yen, Xun Xu, Yi Du, H Liu, Chao Yao, Yanwei Ma, Xiaolin Wang, 
Simon Peter Ringer, and Shi Xue Dou 

This journal article is available at Research Online: https://ro.uow.edu.au/aiimpapers/3087 

https://ro.uow.edu.au/aiimpapers/3087


Microscopic origin of highly enhanced supercurrent in 122 pnictide
superconductor

J.C. Zhuang a, W.K. Yeoh a, b, c, *, H.W. Yen d, X. Xu a, Y. Du a, H.W. Liu c, C. Yao e, Y.W. Ma e,
X.L. Wang a, S.P. Ringer b, S.X. Dou a

a Institute for Superconducting and Electronic Materials, University of Wollongong, Wollongong, New South Wales 2500, Australia
b School of Aerospace, Mechanical and Mechatronic Engineering, University of Sydney, Sydney, New South Wales 2006, Australia
c Australian Centre for Microscopy & Microanalysis University of Sydney, Sydney, New South Wales 2006, Australia
d Department of Materials Science & Engineering, National Taiwan University, Taipei, People's Republic of China
e Key Laboratory of Applied Superconductivity Institute of Electrical Engineering, Chinese Academy of Sciences, Beijing 100190, People's Republic of China

a r t i c l e i n f o

Article history:
Received 17 January 2018
Received in revised form
24 April 2018
Accepted 25 April 2018
Available online 26 April 2018

Keywords:
Grain boundaries
Supercurrent
Weak-link
Iron-based superconductors

a b s t r a c t

By a combination of microstructure analysis techniques, we reveal the structural origin of the extremely
high supercurrent (up to the practical level of 0.1MA/cm2 at 10 T, 4.2 K) in Sr0.6K0.4Fe2As2 (122) tape.
Transmission Kikuchi diffraction analysis reveals that hot pressing promotes a very high fraction of low-
angle grain boundaries and texturing of the crystals, which is beneficial for the intergrain physical
properties. Moreover, the unique characteristics of low-angle grain boundaries favor both long-range
dislocations and short-range dislocations that totally change the pinning mechanism of the bulk 122
system. These defects combined with the grain texturing are not only effective for pinning vortices in the
superconducting state, but also improve inter-granular supercurrent degradation, leading to substan-
tially enhanced supercurrent over a wide range of magnetic fields.

© 2018 Published by Elsevier B.V.

1. Introduction

The competitive advantage of superconducting materials is the
ability to carry high current, thus generating strong magnetic fields
in significant volumes. Due to the small size of a single crystal, the
superconductors used for applications are polycrystalline wires or
tapes, where many grain boundaries (GBs) are inevitable. The GBs
coexist with the superconducting matrix in the form of a network,
across which, long-range supercurrent has to pass, evoking the
importance of GB superconducting properties. It is universally
found that the critical current density, Jc, is proportional to the
density of GBs for type-I low temperature superconductors, such as
Nb-Ti, SnMo6S8, and MgB2 [1e4]. In this type of superconductor,
GBs are not intrinsic barriers to supercurrent flow, and the low
binding energy of vortices to GBs leads to the enhancement of
vortex pinning capacity [5e7]. Nevertheless, type-II high temper-
ature superconductors, which are expected to have a larger appli-
cation market, suffer from obvious weak-link behaviour of GBs. The

weak-link behaviour is caused by the quasi-two-dimensional (2D)
phase, which produces weak growth texture, with almost
randomly distributed values of the GB misorientation angle, q. The
GB critical current density (Jcgb(q)) falls off exponentially when the
GB misorientation angle q exceeds the critical angle qc, which has a
value of 3e5� [8,9]. Recently, in the newly discovered iron-based
superconductors (IBSs), in the BaFe2As2-122 system and the
Fe(Se,Te)-11 system, the value of qc could be improved up to 9�,
making IBSs more promising materials for application in high Jc
superconducting tapes [10,11]. Since high Jc of more than 1MA/cm
[2] has been reported in single crystal and epitaxial thin films of
IBSs, the next step is achieving special grain-to-grain low-angle
misorientation and improving the texture of the whole sample
[12e15]. In a recent breakthrough, transport Jc at a practical level
(0.1MA/cm2) at 4.2 K and 10 T was realized by the improvement of
c-axis textured superconducting tape [15,16]. Detailed analysis of
the microstructure to reveal the origin of the high Jc is still
ambiguous, however.

In this work, we carried out transmission Kikuchi diffraction
(TKD) using a Zeiss Auriga scanning electron microscope to quan-
titatively describe the crystal phase formed at each point of the
micrographwith high resolution. It was found that special GBs with
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low angle misorientation combined with high texture along the c-
axis are promoted by using the hot pressing (HP) method. Trans-
mission electron microscopy (TEM) with weak beam dark field
(WBDF) images reveals that both long-range dislocations and
short-range dislocations are assembled in low-angle GBs, which
totally change the pinning mechanism of the bulk 122 system.
Textured crystal structure, special low-angle GBs, and a high den-
sity of defects are leading to the improvement of supercurrent to a
practical level over a wide range of magnetic fields.

2. Experimental section

Preparation of Sr-122 tape: Ag-clad Sr0.6K0.4Fe2As2 tapes con-
taining Sn as an additive were fabricated by the ex-situ powder-in-
tube (PIT) method. Sr filings, K pieces, and Fe and As powders in the
ratio of Sr: K: Fe: As¼ 0.6: 0.5: 2: 2.05 were mixed for 12 h by the
ball-milling method. The milled powders were packed into Nb
tubes and then sintered at 900 �C for 35 h. The as-prepared Sr-122
superconducting precursors were then ground into powders under
Ar atmosphere. In order to increase the grain connectivity, the
precursors were mixed with 5wt% Sn by hand with an agate
mortar. Then, the fine powders were packed into Ag tubes with
outer diameter (OD) of 8mm and inner diameter (ID) of 5mm.
These tubes were sealed and then cold worked into tapes (~0.4mm
thickness) by swaging, drawing, and flat rolling. Finally, hot
pressing was performed on the 60mm long tapes under ~30MPa at
the sintering temperature of 850 �C for 30min. More detailed in-
formation on the fabrication can be found elsewhere [16,19].

Superconducting properties measurements and microstructure
characterization of Sr-122 tape: Transport and magnetization mea-
surements under different magnetic fields were carried out on a
14 T physical properties measurement system (PPMS). The trans-
mission Kikuchi diffraction was carried out using a Zeiss Auriga
scanning electron microscope, which enabled us to quantitatively
describe the crystal phase formed at each point of the micrograph
with a minimum resolution of about 1 nm. The orientation of the
crystals at each point was determined by using a HKL Nordlys 2
system. Electron microscopy studies were carried out using a JEOL
2200FS instrument equipped with electron energy loss spectros-
copy, with a 200 kV field emission gun and an in-column omega
type energy filter.

3. Results and discussion

3.1. Superconducting properties of HP Sr-122 tape

Fig. 1(a) displays the comparative results of investigations of the
magnetic field dependence of transport Jc at 4.2 K for tapes or wires

fabricated by different methods. The (Sr,K)Fe2As2 wires produced
by the simple rolling technique exhibit the lowest Jc (less than 104

A/cm2) among all the results [17]. The value of Jc was improved up
to more than 104 A/cm2 by cold pressing with enhanced pressure in
tape samples [17]. For the wires synthesised by cold isostatic
pressure combined with a hot isostatic pressure process, the self-
field Jc reached as high as 0.1MA/cm2, which is a criterion for
practical application [18]. Jc shows a rapid decrease in low field,
however, reflecting the typical weak-link behaviour between GBs
[11]. Such a dip could be related to the large GB misorientation
induced by randomly distributed grains and the FeAs wetting phase
formed in the GBs, both of which decrease the Jc in GBs [18]. Jc of
0.1MA/cm2 at 10 T has been realized in hot pressed tapes with high
density and c-axis orientation [19]. It should be noted that this is
the first time that Jc of IBS tapes has reached the practical level of
0.1MA/cm2 at 10 T. Another significant phenomenon is that Jc
shows almost field independence in the measured field range,
indicating strong pinning in the tape. Fig. 1(b) shows the temper-
ature dependence of the upper critical field, Bc2, for both B//ab and
B//c. A small anisotropy is calculated by using g¼ Bc2

B//ab/Bc2B//c ~1.5,
which is comparable to the value for 122 single crystals, but larger
than that for polycrystalline samples (~1) [20], indicating that the
tape has textured structure. Moreover, the smaller anisotropy value
compared to those of other Fe-based superconductors (>3) is
suitable for potential magnetic applications.

3.2. Grain orientation map of HP Sr-122 tape

The transmission Kikuchi diffraction (TKD) technique is used to
analyse the distribution of grain orientations. Fig. 2(a)-(c) provides
examples of microstructure, band contrast, and inverse pole figure
images derived from the TKDmap after noise removal, respectively.
The grain size variation is huge, from 2 mm down to as small as
10 nm. Nevertheless, the smaller grains are the dominant group,
with average grain size of 200 nm, which is similar to the findings
of a previous report on Ba-122 wires [18]. There is a strong corre-
spondence between the different coloured regions (representing
different orientations) in the inverse pole figures and the band
contrast image.

The angles of GB misorientation are classified into three types:
high-angle GBs with � 10� misorientation with respect to adjacent
grains are denoted by the red lines; low-angle GBs denoted by the
green lines exhibit only 2e10� misorientation; and super low-angle
GBs denoted by grey lines show very low (<2�) misorientation. A
quantitative analysis reveals that around 66% of grains have
misorientation angles below 15�. Furthermore, nearly half of the
GBs possess misorientation angles less than the critical angle qc (9�)
in iron-based superconductors. Since these GBs (misorientation

Fig. 1. (a) Comparative study of transport Jc as a function of magnetic field at 4.2 K for tapes or wires fabricated by different methods [17�19]. The black arrow points at the criterion
for practical application. (b) Temperature dependence of the upper critical field Bc2 for both B//ab and B//c.
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angle� 9�) show almost the same Jcgb as the intragrain Jc, the low-
angle GBs and super low-angle GBs could be treated as “special”
GBs. Such a high value for the fraction of “special” GBs means that a
“special” GB network could form, which would favour the passage
of current, improving the connectivity and inter-grain Jc of the
whole sample. Fig. 2(d) displays the degree of preferred orientation
in the {001} and the {100} pole figures along the x0 and y0 di-
rections. There is only one preferred orientation in the intensity
distribution of the {001} pole figure, suggesting a high c-axis
textured structure in the tape. Although the intensity distribution
in the {100} pole figure does not exhibit the fourfold symmetry
observed in the pole figures of thin films [21], three preferred ori-
entations could be identified, indicating alignment in the ab plane
rather than the randomly distributed grains found in the poly-
crystalline samples. All these results imply that the hot pressing
technique not only promotes low-angle GBs, but also constrains the
grain growth of the sample to specific orientations in both the c-
axis direction and the ab plane.

3.3. Microstructure characterization of low-angle grain boundaries
and dislocations crossing the grain boundaries

To find the microstructure of GBs, we conducted a high-
resolution transmission electron microscope (HRTEM) investiga-
tion of the GBs between nanocrystals, as shown in Fig. 3(a). Two
grains with different orientations are mapped in the microscope
image, which is confirmed by the fast Fourier transform (FFT)
patterns, as shown in Fig. 3(b) and (d), respectively, corresponding
to the areas connected by red arrows in Fig. 3(a). A clean boundary
without a secondary impurity phase is observed in the GB labelled
by the green line in Fig. 3(a). In order to make a quantitative
analysis of the value of the GB angle, the indexed results for the two
FFT images have been plotted in Fig. 3(c) and (e), respectively. By
simulating the diffraction pattern for the tetragonal structure of
SrFe2As2 crystal, it was found that the two grains are very close to
[001] orientation. The grain on the left has the [001] orientation
and the grain on the right is in the [027] direction. The [027] di-
rection could be obtained by tilting the [001] direction along the
(020) plane by about 5�. Fig. 3(h) displays the inverse FFT image of
the GBmarked by the red square in Fig. 3(a) to show the dislocation
array at this low-angle tilt boundary. It can be seen clearly that the
low-angle GB is comprised of an array of dislocations, which is

marked by the red circles, and channels of slightly distorted crystal.
It is well known that the low-angle GBs with q< 10� are treated as a
simple system because the GB dislocation spacing D is given by the
Frank formula D ¼ (b/2)/sin(q/2), where b is the norm of the cor-
responding Burgers vector [22,23]. Taking the lattice constant
c¼ 1.26 nm for the SrFe2As2 sample into account [24,25], the
dislocation spacing D is estimated to be around 1.44 nm, which is in
agreement with the experimental distance (~1.46 nm) in Fig. 3(h).
This validates the small q between the two grains obtained from the
TEM results. In general, a GB is mainly composed of distorted
nanocrystals, and the closure of the channel by the distorted
crystals is regarded as the onset of weak-link behavior [26]. In the
current study, clean low-angle GBs without impurity phase are
friendly to the current flow.

Fig. 4 (a), (c), and (d) displays TEM images for different grains in
the hot-pressed tape. Notably, there are a high density of disloca-
tions and dislocation lines, labelled by white arrows, which are
distributed in all three grains. All these dislocations have sizes on
the nanometer scale, giving rise to almost perfect pinning centres
for iron-based superconductors [12,27]. The weak beam dark field
(WBDF) technique is used to provide a clear view of the distribution
of these dislocations. Fig. 4(b) is the WBDF image of the grain
measured in Fig. 4(a). Interestingly, due to the well-developed
texture and small misorientation, as revealed by the TKD results
in Fig. 2, the dislocation lines penetrate through the GB, improving
the interaction of the vortices in the GBs with the pinned vortices in
the grains (Abrikosov vortices). The GB and adjacent two grains in
superconductors act as a Josephson junction. The vortices could be
pinned by the dislocations in low-angle GBs, which are denoted as
Josephson vortices [23]. When current flows through the GBs, the
vortices form in the direction parallel to the GB. Such vortices flow
much more easily than the Abrikosov vortices, however, reflecting
the result that Jcgb is always smaller than the intragrain Jc. The
highly dense dislocation lines are made up of nanosized defects
elongated along the direction perpendicular to the GB, pinning the
vortices parallel to the GB in a single-vortex model, even in high
magnetic field with a small spacing of vortices [27]. In this case, a
high barrier is induced by enhanced Abrikosov-Josephson vortex
hybridization to prevent the flux of GB vortices. The power-law
dependence of Jc(B) up to 14 T without a magnetic granularity
transition in Fig. 1 is strong evidence for the improved grain vor-
tex�GB vortex interaction [28].

Fig. 2. (a)e(c) Microstructure, band contrast, and inverse pole figure images derived from the TKD map after noise removal, respectively. (d) The degree of preferred orientation in
the {001} and {100} pole figures along the x0 and y0 directions.
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3.4. Pinning mechanisms of grain boundaries and dislocations

It is important to explore the role of dislocations in both GBs and
grains in the pinning mechanism for the enhancement of Jc. All
these defects produce strains and change the local doping level as
well as the structural parameters, such as the bond angle in
tetragonal structures, suppressing superconductivity at distances
on the order of a few Burgers vectors [29]. According to the phase
diagram of the K doped 122 system, the K composition x¼ 0.4 is the
optimal doping level [30]. Thus, the dislocation cores in our sample
could be either superconducting phase with low superconducting
critical temperature, Tc, or non-superconducting phase. Either the
dislocation cores or lattice strain could induce the shift of the
chemical potential by a value of around 100meV for a q ~9� GB [23].
This shift is much larger than the range of Fermi energies,
EF¼ 25e50meV in the 122 system, making the GB non-
superconducting or insulating [31]. The scaling behaviour of Jc in
both the B//ab and the B//c directions was investigated to under-
stand the pinning mechanism of these dislocations. The critical
current densities are scaled by following the theoretical approach
proposed by Griessen et al. [32] In the case of dl pinning, evoked by
the spatial fluctuation of the charge-carrier mean free path, l, the
normalized critical current density can be described as:

JcðtÞ=Jcð0Þ ¼ ð1� t2Þ5=2ð1þ t2Þ�1=2 (1)

while for the dTc pinning associated with the spatial fluctuation of
the Ginzburg parameter caused by the variation of the Tc, it is

JcðtÞ=Jcð0Þ ¼ ð1� t2Þ7=6ð1þ t2Þ5=6 (2)

where t¼ T/Tc. Fig. 5 shows the normalized Jc(t) for both B//ab and
B//c, alongwith the theoretical curves for the scenarios of dl pinning
and dTc pinning. A remarkable agreement between the normalized
results and the theoretical dl pinning fitting results, demonstrating
that the dominant pinning in this sample is dl pinning, which is
associated with spatial fluctuation of the charge-carrier mean free
path.

According to the Dew-Hughes model, dl pinning is evoked by
non-superconducting particles with diameters larger than the
superconducting coherence length, x, that are embedded in the
superconducting matrix [33]. It should be noted, in K-doped 122
with similar composition and underdoped single crystals, compe-
tition between antiferromagnetism (AFM) and superconductivity
(SC) results in the coexistence of dl pinning and dTc pinning.
Therefore, the dominant dl pinning in our tape is likely due to the
non-superconducting phase defects such as dislocations or the
low-angle GBs [34]. A similar phenomenon has been observed in Jc
enhancement by irradiation, where the pinning mechanism
changes from dTc pinning to dl pinning after introducing non-
superconducting defects [35]. Research on the effects of the
doping level on the pinning mechanism shows that stronger
pinning and higher critical current densities emerge in an under-
doped sample, in which the pinning centres originate from non-
superconducting defects, such as orthorhombic/antiferromagnetic
domains [36]. These investigations imply that non-
superconducting defects could be more effective pinning centres

Fig. 3. TEM investigations of grain boundaries between SrFe2As2 nanocrystals by means of HRTEM imaging. (a) HRTEM image showing the low angle boundary between two
adjacent grains, both of which are used for generating fast Fourier transform (FFT) patterns from the areas marked by the corresponding red squares, in order to reveal the crystal
orientation. (b) and (d) are the FFT patterns corresponding to the areas connected by arrows in panel A. (c) and (e) are the indexed results for the FFT patterns in panel (b) and panel
(d), respectively. (f) and (g) Simulated electron diffraction patterns of SrFe2As2 for the [001] direction and the [027] direction, respectively. (h) Inverse FFT image generated by the
(110) plane to show the dislocation array at this low-angle tilt boundary. (For interpretation of the references to colour in this figure legend, the reader is referred to the Web version
of this article.)
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compared with dTc pinning centres. It has been reported that the
critical value of the effective pinning fraction is around 10%, above
which, the pinning force starts to decrease due to the current
blocking effect of defects [37]. The concentration of defects is much
smaller than the critical value, as can be viewed from Fig. 3, so the Jc

of our tape could be further increased withmore pinning centres by
an optimised GB engineering technique. It should be noted that
nematic fluctuations in K-doped 122 system show the strong
dependence on the concentration of K, which may affect the
pinning mechanism [38,39]. Nevertheless, the nematic fluctuations
disappear in the optical K-doped case (Sr0.6K0.4Fe2As2) [39], which
is expected to make negligible effect on the pinning mechanism.

4. Conclusion

In summary, the practical level of Jc is realized in a
Sr0.6K0.4Fe2As2 (122) tape produced by the hot pressing technique.
The GB engineering process facilitates textured crystal structure
along the c-axis direction and a high ratio of special GBs, improving
the intergrain connectivity. A high density of dislocations was
formed in the grains, and dislocation lines crossed the GBs in our
tape, enhancing the coupling between grains and preventing the
degradation of Jc in high magnetic field. Our investigation of the
pinning mechanism implies that primary dislocations and dislo-
cation lines are non-superconducting phase, acting as dl pinning
centres and effectively increasing Jc. Our work presents an effective
way to further improve pinning strength and critical current den-
sity by introducing more effective defects by GB engineering
techniques.
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