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In situ construction of yolk-shell zinc cobaltite with uniform 

carbon doping for high performance asymmetric 

supercapacitor 

ABSTRACT  

The zinc cobaltite (ZnCo2O4) is a promising material for supercapacitors with 

appreciable theoretical capacitance. However, it suffers from poor electrical 

conductivity and large volume expansion during charge-discharge process. In this work 

a novel material, ZnCo2O4@C microspheres in a yolk-shell structure is fabricated by a 

facile refluxing process in combination with a calcination treatment. The carbon is in 

situ formed via the pyrolysis of organic species and uniformly dispersed both in the 

core and the shell. Benefiting from the unique structure and the synergistic effect of two 

components, this material exhibits remarkable electrochemical properties such as high 

specific capacitance (1821 F g-1 at 5 A g-1), excellent rate performance, superior cycling 

stability (no capacitance loss over 9000 cycles). The assembled asymmetric 

supercapacitor coupled with an active carbon anode can deliver a high energy density 

of 45.9 Wh kg-1 at a power density of 700 W kg-1 with an excellent cycling stability (i.e. 

a capacitance retention rate over 95% after 9000 cycles). 

KEYWORDS: ZnCo2O4; carbon doping; yolk-shell; refluxing; asymmetric 

supercapacitors 

1. Introduction  

 Compared with batteries, supercapacitors possess merits of long lifetime, high 

power density and fast charge-discharge rate [1-5]. They have attracted significant 



attention in recent years. According to the energy storage mechanism, they can be 

mainly classified into two types: electrical double-layer capacitor (EDLC) and 

pseudocapacitor [6, 7]. The pseudocapacitors using transition metal oxides or 

conducting polymers as electrode materials usually display high specific capacitance 

but with inferior cycling stability. It is highly desirable to develop new materials with 

high specific capacitance and long cycle life as well. 

The nanostructured ternary transition metal oxides are the promising materials due 

to their fascinating electrochemical properties including high electrochemical activities 

and appreciable capacitance [8-10]. Among various ternary transition metal oxides, the 

ZnCo2O4 with different structures has demonstrated impressive performance. For 

example, the mesoporous ZnCo2O4 solid microspheres could attain a specific 

capacitance of 953 F g-1 at 4 A g-1 with a retention rate of 97.8% after 3000 cycles [11]. 

The urchin-like ZnCo2O4 microspheres on nickel foam delivered a specific capacitance 

of 1143 F g-1 at 1.25 A g-1 [12]. The incorporation with a second component such as 

Ni(OH)2 [13]; or even with two components such as ZnO and multiwall carbon 

nanotubes [14], reduced graphene oxide and NiO [15] can even improve the 

supercapacitive performance. The addition of carbon materials in the composite can 

effectively increase the conductivity, decrease the volume expansion of nanostructured 

metal oxides and effectively inhibit the agglomeration of nanoparticles leading to 

enhanced rate and cycling performance [16-20]. Among all the nanostructures, the 

yolk-shell structure is regarded as a promising structure affording high storage 

performance owing to the increased specific area, electroactive sites and short diffusion 



distance [21, 22]. To the best of our knowledge, the yolk-shell ZnCo2O4 microspheres 

with uniform carbon doping has not been reported yet. 

Herein, we have successfully developed a novel ZnCo2O4 composite with the in 

situ formed and uniformly dispersed carbon (ZnCo2O4@C) via a facile refluxing 

process coupled with a thermal treatment. It is of a yolk-shell structure with porous thin 

shell which facilitates ion and electron transport; an interspace which acts as a buffer 

to accommodate the volume changes and in situ formed carbon which not only 

improves the conductivity but prevents the aggregation of ZnCo2O4 nanoparticles 

during charge-discharge process. This material demonstrates an impressive 

performance: a high capacitance of 1821 F g-1 at 5 A g-1, outstanding rate performance 

with the capacitance retention rate of 77.5% when the current density increases from 2 

A g-1 to 20 A g-1 and excellent cycling stability with no capacitance loss over 9000 

cycles. The asymmetric supercapacitor coupled with active carbon anode 

(ZnCo2O4@C//AC) delivers a high energy density of 45.9 Wh kg-1 at a power density 

of 700 W kg-1 with a superior cycling stability. 

2. Experimental Section 

2.1 Material Synthesis:  

All the chemicals were of analytical grade and used without further purification. 

For the synthesis of ZnCo2O4@C microspheres, a facile refluxing method was 

conducted followed by a thermal decomposition process. In a typical procedure, 0.15 g 

of polyvinyl pyrrolidone (PVP, Mw~58000, Alfa Aesar) was dissolved into 50 mL of 

ethylene glycol (EG, Tianjin Fengchuan chemicals) forming a transparent solution; 



followed by the addition of 109.75 mg of Zn(CH3COO)22H2O (Tianjin Guangfu Fine 

chemicals) and 249.08 mg of Co(CH3COO)24H2O (Tianjin Guangfu Fine chemicals). 

The mixture was continuously stirred for 30 minutes to form a clear purple solution. 

The obtained solution was transferred into a flask and refluxed at 170 ºC for 2 h. This 

solution was cooled down to the room temperature naturally. The purple precipitate 

precursor (ZnCo-glycolate) was collected by centrifugation and rinsed with water and 

ethanol for several times; followed by a drying process at 80 ºC for 12 h in a vacuum 

oven. Then it was annealed at 400 ºC for 4 h at a heating rate of 1 ºC min-1 under an air 

atmosphere to form ZnCo2O4@C microspheres. 

2.2 Material characterization: 

The crystal phases were identified with the X-ray diffraction (XRD, Rigaku 

MiniFlex II with Cu Ka radiation). The microstructures were characterized by field 

emission scanning electron microscopy (FESEM, JEOL JSM-6700F) and transmission 

electron microscopy (TEM, JEOL JEM-2100). The thermal behavior of the precursor 

was investigated using thermogravimetric analyzer (TGA, LABSYS EVO) in air. To 

examine the surface composition and chemical state of the elements, X-ray 

photoelectron spectroscopy (XPS, PHI 5000 Versa Probe) was carried out. The specific 

surface area was studied using nitrogen adsorption/desorption measurement on a 

NOVE 2200e. The porous nature of the samples was estimated using the adsorption 

curve according to the Barrett-Joyner- Halenda (BJH) model. 

2.3 Electrochemical characterization: 

The working electrode was fabricated by coating a nickel (Ni) foam substrate with 



a slurry composed of active material (ZnCo2O4@C), acetylene black and 

polyvinylidene fluoride (PVDF) binder in a weight ratio of 7:2:1; followed by a drying 

process at 80 ºC for 12 h in a vacuum oven. All the electrochemical measurements were 

performed in a three-electrode configuration in 2 M KOH electrolyte. A blank Ni foam 

and Hg/HgO electrode were used as counter electrode and reference electrode, 

respectively. Cyclic voltammetry (CV), chronopotentiometry (CP) and electrochemical 

impedance spectroscopy (EIS) measurements were conducted with a CHI 660D 

electrochemical workstation. Galvanostatic charge-discharge (GCD) measurements 

and cycling performance of the material were evaluated with a LAND battery (Wuhan 

LAND electronics Co., Ltd.).  

The specific capacitance can be calculated from the GD curves according to the 

equation (1): 

 (1) 

Where C (F g-1) represents the specific capacitance, I (A) is the discharge current,  

∆𝑡  (s) is the discharge time, m (g) for the mass of the active material, and 

Δ𝑉 represents the potential window. 

2.4 Fabrication and evaluation of the asymmetric supercapacitors: 

The asymmetric supercapacitors were assembled with ZnCo2O4@C cathode and 

active carbon (AC) anode in 2.0 M KOH electrolyte. The mass ratio of the positive 

electrode and negative electrode is determined by the following charge balance 

equation (2): 

 (2) 
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+m  and 
−m  are the mass, 

+C  and 
−C  refer to the specific capacitance, 

+V  

and 
−V  represent the potential window of the positive electrode and negative 

electrode, respectively. 

The specific capacitance of the ZnCo2O4@C//C is calculated based on the total 

amount of active materials on both electrodes. The energy density and power density 

of the asymmetric supercapacitors are calculated according to the equation (3) and (4): 

 (3) 

Where E (Wh kg-1) refers to the energy density, C (F g-1) for the specific 

capacitance calculated from the discharge curve, U (V) represents the potential window, 

respectively. 

 (4) 

Where P (W kg-1) refers to the power density, E (Wh kg-1) for the energy density 

and  (s) is the discharge time. 

3. Results and Discussion 

The formation of the yolk-shell ZnCo2O4@C microspheres is illustrated in Fig. 1. 

It starts with the anchoring of Zn2+, Co2+ on the PVP in the EG solution due to the strong 

interaction between metal ions and the C-N or C=O groups of the PVP [23]. With 

refluxing at 170 ºC, the solution turns purplish grey, representing the formation of 

precursor ZnCo-glycolate (Fig. 1-Ⅱ). A thermal analysis was conducted to verify the 

transform temperature (Fig. S1, Supporting Information). The weight loss below 200 

ºC is mainly ascribed to the evaporation of adsorbed water. The dominating weigh loss 

occurred above 250 ºC can be attributed to the thermal decomposition of the precursor 
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ZnCo-glycolate into ZnCo2O4@C [24]. To ensure the complete transformation, we 

chose 400 ºC as the calcination temperature. After annealing, the organic species 

including PVP, CH3COO- and partial EG are decomposed forming the uniformly 

dispersed carbon in situ. The temperature gradient along the radial direction leads to 

different decomposition and the shrinking rates, resulting in an interspace between the 

out shell and the inner core [25]. The ZnCo2O4@C microspheres with a yolk-shell 

structure are obtained (Fig. 1-Ⅲ). 

The XRD was used to characterize the crystal phase and the results are shown in 

Fig. S2. The purple precursor displays a broad diffraction peak at ~11°, which can be 

assigned to metal glycolates [26, 27]. After the anneal treatment, it exhibits a broad 

peak at ~23°, corresponding to the amorphous carbon phase; the other peaks can be 

well assigned to the cubic spinel ZnCo2O4 phase with a space group of Fd-3m (JCPDS 

card no.23-1390). These results clearly demonstrate the formation of ZnCo2O4@C. 

The microstructure of the ZnCo-glycolate and ZnCo2O4@C was investigated 

using FESEM and TEM (Fig. 2). The ZnCo-glycolate particles are uniform 

microspheres that have a diameter of 600 to 800 nm (Fig. 2a, c) with a solid feature 

(Fig. 2e). After annealing, these microspheres maintain their original shape and size but 

in a yolk-shell structure with a clear interspace (Fig. 2b, d). It is also noticed that the 

microsphere is composed of nanoparticles with a size of ~20 nm. The thickness of the 

out shell is ~20 nm. Notably, abundant interparticle mesopores with a size of 5-25 nm 

are formed (Fig. 2f). This result can be further confirmed by the BET analysis (Fig. S3). 

The ZnCo2O4@C exhibits clear lattice fringes with an interplane spacing of 4.68 Å and 



2.43 Å (Fig. 2g), corresponding to the (111) and (311) plane of ZnCo2O4, respectively. 

The selective area electron diffraction (SAED) pattern contains several well-defined 

diffraction rings (Fig. 2h), which can be indexed to the (111), (220), (311), (400), (511) 

and (440) planes of ZnCo2O4. These results are in accordance with the XRD 

characterization. 

As illustrated by the TEM image and the relevant elemental mapping in Fig. 3, all 

the elements Zn, Co and C are uniformly dispersed, confirming the formation of 

ZnCo2O4@C microspheres. Moreover, the carbon element is not only present in the out 

shell but also in the inner core, further confirming the formation of carbon in situ. 

Element Analysis (EA) was conducted to estimate the weight percentage of carbon in 

the ZnCo2O4@C composite. The result of EA shows the carbon content is 2.9% wt..  

Carbon can improve the electrical conductivity of materials and reduce aggregation 

between nanoparticles [28-30]. Excellent electrochemical properties may be expected 

from this material. 

In order to have an insight into the chemical composition and obtain more detailed 

information about the yolk-shell ZnCo2O4@C microspheres, the XPS measurement 

was conducted. As expected all the elements Zn, Co, O and C are found (Fig. 4). The 

Zn 2p spectrum contains two major peaks at 1020.9 eV and 1044.0 eV (Fig. 4a) in 

accordance with the Zn 2p3/2 and Zn 2p1/2, clearly demonstrating the existence of Zn (II) 

ions [19, 31]. The Co 2p spectrum in Fig. 4b is composed of two spin-orbit doublets 

with two shake up satellites (named as “Sat.”), which can be respectively attributed to 

the Co (II) peaks at 780.5 eV and 796.2 eV, and Co (III) peaks at 779.9 eV and 794.8 



eV [10, 32]. The XPS spectrum of O 1s can be divided into two photoelectron peaks at 

529.7 eV and 531.2 eV, and denoted as O1 and O2 (Fig. 4c). The O1 peak suggests the 

typical metal-oxygen bonds, and the O2 peak reveals the defect sites lacking of oxygen 

coordination [32]. The C 1s curve can be split into three peaks at 284.8 eV, 286.4 eV 

and 288.8 eV, which can be respectively assigned to the C-C bonds, C=O bonds, and 

O-C-O groups (Fig. 4d) [19]. 

The electrochemical properties of the yolk-shell ZnCo2O4@C microspheres as a 

supercapacitor electrode were investigated in 2 M KOH. The contribution from the Ni 

foam substrate is negligible as evidenced by its very low current response over the 

applied potential window of 0-0.6 V compared to the ZnCo2O4@C electrode (Fig. 5a). 

The ZnCo2O4@C exhibits a pair of strong redox peaks at a scan rate range of 1 to 50 

mV s-1 (Fig. 5b). The anodic peak at 0.51 V and cathodic peak at 0.33 V correspond to 

the oxidation of CoOOH to CoO2, as illustrated in the following equations [33, 34]: 

 (5) 

 (6) 

The anodic peak shifts towards positive potential while the cathodic peak shifts 

towards negative potential with the increase of the scan rate. It is common for 

pseudocapacitor materials, which can be ascribed to the slow diffusion rate of ions that 

can not satisfy the electrochemical reaction rate. The presence of clear and pronounced 

redox peaks at a high scan rate of 50 mV s-1 is indicative of fast redox reactions and 

good reversibility of ZnCo2O4@C. This material also displays a good linear 

relationship between the anodic peak current and the square root of the scan rate (Fig. 

CoOOHOHZnOHOHOZnCo 2)(22
2
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5c). Such behavior generally implies a diffusion-controlled reaction for the redox 

reaction [35]. 

To further evaluate the capacitive behavior, the EIS was carried out. The 

impedance spectrum is composed of a semicircle and a nearly vertical line (Fig. 5d). 

The intercept on the real axis in high frequency region represents the bulk resistance 

(Rs), which contains the inherent resistance of active material, electrolyte as well as the 

contact resistance between current collector and active material. It is very small and 

only 0.4 ohm, indicating the good electrical conductivity of this electrode. The 

semicircle reflects the charge transfer resistance (Rct) during redox reactions [13]. The 

smaller the radius of semicircle is, the easier the charge transfers. The very sharp slope 

of the ZnCo2O4@C observed in low frequency region suggests low Warburg impedance 

(Wo). It means that ions in the electrolyte are easier to diffuse to the electrode surface 

achieving a good rate performance [36, 37]. The Rct and Wo are 0.1 ohm and 1.5 ohm, 

respectively, which are smaller than previously reported similar material for 

supercapacitors (Table S1). Such extraordinary small resistances are ascribed to the in 

situ formed and uniformly dispersed carbon, indicating the high electrochemical 

activity.  

To estimate the specific capacitance of the ZnCo2O4@C, galvanostatic charge-

discharge measurements were employed over a potential window of 0.1 to 0.6 V. Fig. 

6a presents the discharge curves at a series of current densities. It delivers a superior 

specific capacitance at the applied current densities of 2 to 20 A g-1: a specific 

capacitance of 2064 F g-1 at 2 A g-1; and 1600 F g-1 at 20 A g-1 with a 77.5% of 



capacitance retention (Table S2, Fig. 6b). The rate performance was also conducted 

after 6000 cycles (Fig. 6c). The specific capacitance is 1674, 1431, 1281 and 1201 F g-

1 at a current density of 2, 5, 10 and 20 A g-1, respectively. When the current density 

reverses to 2 A g-1, the specific capacitance is fully restored with a slight increase to 

1751 F g-1, clearly demonstrating the superior reversibility of this material.  

Lifetime is an important parameter to evaluate the performance of a supercapacitor. 

The cycling performance of ZnCo2O4@C was conducted at 5 A g-1 (Fig. 6d). It exhibits 

an exceptional cycling performance without any capacitance loss over 9000 charge-

discharge cycles but slightly increases instead. Based on some previous reports [38-40], 

the major reason of constant gain in capacitance of the materials can be mainly ascribe 

to the wettability of the active materials and electrochemical active process. With the 

increasing of cycling numbers, the electrolyte ions penetrated deeply into the active 

materials, enhancing the reversible redox reaction. In summary, the electrochemical 

performance of ZnCo2O4@C is far superior to the previously reported ZnCo2O4 

materials for supercapacitors (Table S3). 

Such attractive electrochemical performances can be ascribed to its unique 

structural merits: a permeable thin shell, an interspace between the core and the shell 

and the finely dispersed and highly uniformed carbon. The shell consists of vast small 

nanoparticles and possesses abundant mesopores, which affords a short pathway for ion 

and electron transport [41]. The interspace can store electrolyte and serve as a reservoir 

of ions, which greatly enhances the diffusion kinetics. Moreover, the interspace not 

only provides a buffer to relieve the volume expansion during cycling process, but also 



offers more electroactive sites for redox reactions, contributing to the total specific 

capacitance [42]. The inner core which can move freely gives a mechanical support to 

the outer shell [43]. The in situ formed carbon not only increases the conductivity but 

also restrains the aggregation of ZnCo2O4 nanoparticles [28- 30].  

To increase the electrochemical window of the supercapacitor, an asymmetric 

supercapacitor was fabricated by using the ZnCo2O4@C as cathode coupled with an 

active carbon anode. As discussed above, the ZnCo2O4@C demonstrates a suitable 

potential window over the range of 0 to 0.6 V; and the active carbon is stable over a 

potential window of -0.9 to 0 V (Fig. 7a). Thus the potential window for the 

ZnCo2O4@C//AC asymmetric supercapacitor can be extended to 1.5 V in theory. The 

CV measurements were carried out from 0.0 to 1.5 V at a scan rate of 5 mV s-1 to 

confirm an approximate electrochemical window. When the working voltage reachs 1.5 

V, the electrolyte is slowly decomposed as demonstrated by the appearance of obvious 

oxygen evolution (Fig. 7b). Therefore, a potential window of 0 to 1.4 V is chosen for 

the ZnCo2O4@C//AC. The current response exhibits a similar shape at a scan rate range 

of 1 to 20 mV s-1 (Fig. 7c), demonstrating a good rate performance. The CP tests were 

performed at a serious of current densities (Fig. 7d) and the corresponding specific 

capacitance shows in Fig. 7e. It delivers a specific capacitance of 169, 163, 143 and 93 

F g-1 at 1, 2, 5 and 10 A g-1, respectively. It also displays an extraordinary cycling 

stability with a capacitance retention rate over 95% over 9000 cycles at a current density 

of 1 A g-1 (Fig 7f). The charge-discharge curves of the last 12 cycles during these 9000 

cycles are nearly identical to each other, which is indicative of an excellent 



electrochemical reversibility. 

The energy density and the power density are two important factors for the 

evaluation of the asymmetric supercapacitor. This ZnCo2O4@C//AC asymmetric 

supercapacitor delivers a high energy density of 45.9 Wh kg-1 at a power density of 700 

W kg-1; and it can still present a high energy density of 25.3 Wh kg-1 at a high power 

density of 7 kW kg-1. These results are better than the previously reported zinc-cobalt-

based supercapacitors such as ZnCo2O4/NGN/CNT//NGN/CNT (37.2 Wh kg-1 at 750 

W kg-1) [44] and ZnCo2O4@NiXCo2X(OH)6X//AC (26.2 Wh kg-1 at 511.8 W kg-1) (Fig. 

8) [45]. 

4. Conclusions 

In summary, ZnCo2O4@C microspheres have successfully developed with 

uniform carbon doping in situ via a facile refluxing process coupled with a calcination 

treatment. It is of a yolk-shell structure with porous thin shell which can facilitate ion 

and electron transport; the interspace acted as a buffer which can accommodate the 

volume expansion; the in situ formed and finely dispersed carbon both in the core and 

the shell via the pyrolysis of organic species can improve the conductivity and prevent 

ZnCo2O4 nanoparticles aggregation. The method applied in this work is readily to 

synthesize other carbon-metal oxides as high performance materials for energy storage. 

The ZnCo2O4@C exhibits excellent electrochemical properties including high specific 

capacitance, excellent rate performance and superior cycling performance. The 

combination of the outstanding electrochemical properties and the facile and 

straightforward fabrication method makes ZnCo2O4@C a promising material for 



supercapacitors. 
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Figure Captions 

Fig. 1 Schematic illustration of the formation of ZnCo2O4@C. 

Fig. 2 FESEM images (a-d) and TEM images (e-g) of ZnCo-glycolate precursor (a, c, 

e) and ZnCo2O4@C (d, f, g); SAED pattern (h) of ZnCo2O4@C. 

Fig. 3 TEM image and the relevant elemental mapping of ZnCo2O4@C. 

Fig. 4 XPS spectrums of Zn 2p (a), Co 2p (b), O 1s (c), C 1s (d) of ZnCo2O4@C. 

Fig. 5 Cyclic voltammograms (a, b) of the ZnCo2O4@C electrode at a scan rate of 10 

mV s-1 with blank Ni foam as control (a), and at different scan rates (b); the relationship 

between the anodic peak current and the square root of the scan rate (c); EIS spectrum 

of the ZnCo2O4@C electrode (d) (Inset, expanded view and the equivalent circuit). 

Fig. 6 Galvanostatic discharge curves (a), specific capacitance (b) and rate performance 

(c) at various current densities of ZnCo2O4@C electrode in 2 M KOH; Cycling 

performance of ZnCo2O4@C electrode at 5 A g-1 (d). 

Fig. 7 Cyclic voltammograms (a-c) of the active carbon and ZnCo2O4@C electrode(a), 

the ZnCo2O4@C//AC asymmetric supercapacitor over different potential windows at a 

scan rate of 5 mV s-1 (b), the ZnCo2O4@C//AC asymmetric supercapacitor over a 

potential window of 0 to 1.4 V at different scan rates (c); Charge-discharge curves (d), 

the corresponding specific capacitance at different current densities (e), and the cycling 

performance at 1 A g-1 (f) of the ZnCo2O4@C//AC asymmetric supercapacitor (Inset, 

the last 12 charge-discharge cycles). 

Fig. 8 Ragone plot of the ZnCo2O4AC asymmetric supercapacitor in comparison with 

the previously reported zinc cobaltite-based supercapacitors. 



 

Fig. 1 Schematic illustration of the formation of ZnCo2O4@C. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

Fig. 2 FESEM images (a-d) and TEM images (e-g) of ZnCo-glycolate precursor (a, c, 

e) and ZnCo2O4@C (d, f, g); SAED pattern (h) of ZnCo2O4@C. 

 



 

Fig. 3 TEM image and the relevant elemental mapping of ZnCo2O4@C. 

 

 

 

 

 

 

 

 



 

Fig. 4 XPS spectrums of Zn 2p (a), Co 2p (b), O 1s (c), C 1s (d) of ZnCo2O4@C. 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

Fig. 5 Cyclic voltammograms (a, b) of the ZnCo2O4@C electrode at a scan rate of 10 

mV s-1 with blank Ni foam as control (a), and at different scan rates (b); the relationship 

between the anodic peak current and the square root of the scan rate (c); EIS spectrum 

of the ZnCo2O4@C electrode (d) (Inset, expanded view and the equivalent circuit). 

 

 

 

 

 

 

 

 

 

 



 

Fig. 6 Galvanostatic discharge curves (a), specific capacitance (b) and rate performance 

(c) at various current densities of ZnCo2O4@C electrode in 2 M KOH; Cycling 

performance of ZnCo2O4@C electrode at 5 A g-1 (d). 

 

 

 

 

 

 

 

 

 

 

 

 



 

Fig. 7 Cyclic voltammograms (a-c) of the active carbon and ZnCo2O4@C electrode(a), 

the ZnCo2O4@C//AC asymmetric supercapacitor over different potential windows at a 

scan rate of 5 mV s-1 (b), the ZnCo2O4@C//AC asymmetric supercapacitor over a 

potential window of 0 to 1.4 V at different scan rates (c); Charge-discharge curves (d), 

the corresponding specific capacitance at different current densities (e), and the cycling 

performance at 1 A g-1 (f) of the ZnCo2O4@C//AC asymmetric supercapacitor (Inset, 

the last 12 charge-discharge cycles). 

 

 

 

 



 

Fig. 8 Ragone plot of the ZnCo2O4AC asymmetric supercapacitor in comparison with 

the previously reported zinc cobaltite-based supercapacitors. 
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