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Discrimination of isobaric and isomeric lipids in complex mixtures by
combining ultra-high pressure liquid chromatography with collision and
ozone-induced dissociation

Abstract
The inability of current mass spectrometry techniques to differentiate phospholipid isomers results in a
routine under-estimation of phospholipid molecular diversity in complex biological matrices. Recent
technological advances in tandem mass spectrometry and ion activation are helping to overcome these
limitations, but all rely on tandem mass spectrometry with unit mass-selection and suffer from co-isolation of
isobaric or isomeric species. Accordingly, separation of phospholipid isomers and isobars prior to
characterization is required to fully delve into the complexity of the lipidome. Here we present a novel two-
stage workflow combining reversed-phase ultra-high performance liquid chromatography with ozone-induced
dissociation (OzID) and combined-collision- and ozone-induced-dissociation (COzID) that reduces spectral
complexity and enables discrimination of lipid isomers and isobars. Application of this technique to the
analysis of human red blood cell lipid extracts allowed the separation, or partial separation, of adduct ion and
head group isobars as well as double bond and sn-positional isomers affording near complete structural
characterization of low abundance lipids, e.g. PC 18:0/20:3(n-6), PS 18:0/20:4(n-6) and PS 20:4(n-6)/18:0
all observed at m/z 834.7. We also introduce a software plug-in that automatically annotates OzID mass
spectra to assign the carbon-carbon double bond positions in lipids. This new workflow allows us to delve
deeper into the lipidome and represents another valuable tool for the lipidomics toolbox.
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a b s t r a c t

The inability of current mass spectrometry techniques to differentiate phospholipid isomers results in

a routine under-estimation of phospholipid molecular diversity in complex biological matrices. Recent

technological advances in tandem mass spectrometry and ion activation are helping to overcome these

limitations, but all rely on tandem mass spectrometry with unit mass-selection and suffer from co-

isolation of isobaric or isomeric species. Accordingly, separation of phospholipid isomers and isobars

prior to characterization is required to fully delve into the complexity of the lipidome. Here we present

a novel two-stage workflow combining reversed-phase ultra-high performance liquid chromatogra-

phy with ozone-induced dissociation (OzID) and combined-collision- and ozone-induced-dissociation

(COzID)that reduces spectral complexity and enables discrimination of lipid isomers and isobars. Appli-

cation of this technique to the analysis of human red blood cell lipid extracts allowed the separation, or

partial separation,of adduct ion andhead group isobars aswell as double bondand sn-positional isomers

affordingnear complete structural characterization of low abundance lipids, e.g. PC 18:0/20:3( -6),n PS

18:0/20:4( -6)n and PS 20:4( -6)/18:0n all observed atm z/ 834.7. We also introduce a software plug-in

that automatically annotates OzID mass spectra to assign the carbon–carbon double bond positions in

lipids. This new workflow allows us to delve deeper into the lipidome and represents another valuable

tool for the lipidomics toolbox.

Crown Copyright ©2018 Published by Elsevier B.V. All rights reserved.

1. Introduction

Lipids play important roles in cellular structure and function

and understanding these dynamic interactions is a critical focus of

the field of lipidomics. Critical to such investigations has been the

desire to establish a baseline understanding of what constitutes

a lipidome for a particular cell or organism. That is, how many

lipids are present and what is their absolute or relative concen-

tration? Thisseemingly straightforward ambition is challenged by
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the large differences in concentration of different lipid components

and the sheer molecular diversity of lipids; with estimates rang-

ing from several hundred to several hundred thousand individual

molecular components [1–3].Focusing on phospholipids alone, the

high potential of isobaric and isomeric overlap between individ-

ual lipids is due in part to the numerous combinations of different

headgroups and fatty acids that vary in chain length, number and

position of double bonds, position of substitution on the glycerol

backbone and stereochemistry. These combinations give rise to

extensive chemical diversity of biological lipidomes and highlight

the challenges in differentiating and uniquely identifying lipids in

contemporary workflows [4–9].

Recent advances in mass spectrometry have provided power-

ful new tools to address the challenges of structural lipidomics

[6,10,11]. In particular, enhancements in sensitivity, mass resolv-

ing power, speed of analysis, and multi-stage fragmentation have

https://doi.org/10.1016/j.ijms.2018.05.016

1387-3806/Crown Copyright ©2018 Published byElsevier B.V. Allrights reserved.
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enabled the development of protocols for identification and quan-

tification of hundreds of lipid species per sample [6,11]. In a

recent example, a combination of high resolution mass analysis

and collision-induced dissociation(CID) afforded theidentification

of 300 lipids in one sample [10]. However, even such advanced

instrumentation can be limited in resolution of closely spaced iso-

bars and discrimination of lipid isomers [4]. This ultimately limits

the molecular description of the lipids and thus the complexity of

the lipidome is not fully described. In response, additional mass

spectrometricmethods aimed at differentiating lipid isomers have

evolved; largely targeting double bond positional isomers and sn-

regioisomers. These include, ozone-induced dissociation (OzID)

[8,12,13] alone or coupled with CID [14], electron-induced dis-

sociation (EID) [15], the Patterno-Buchi reaction; [16] and UVPD

[17]. Theadvantages and limitations of these new generation tech-

nologies have been recently reviewed [7] but all rely on tandem

mass spectrometry with unit mass-selection and can thus suffer

from complexity arising from co-isolation of isobaric or isomeric

species. Taken together, the aforementioned methods are capa-

ble of addressing specific questionsin the characterization of lipid

structures; however, no one technology in isolation is yet capable

of fully unravelling the molecular complexity of the lipidome [7].

Chromatographic or mobility-based separations [18] used

in conjunction with new ion activation approaches may offer

solutions to the full description of the lipidome. Previously we

have demonstrated proof-of-principle protocols combining liquid

chromatography (LC) separationswith ozone-induceddissociation

workflows [19–21]. These approaches were successful in affording

partial separation and unique identificationof glycerophospholipid

isomers in mixtures of synthetic lipids, but were less successful

when applied to biological lipid extracts [19,20]. To this point

however, complicated lipid mixtures have not been thoroughly

examined and the full benefits of chromatographic separations

to spectral complexity have not previously been demonstrated.

Here, we expand and improve the information that can be gained

from LC-OzIDworkflows and introduce ahybrid protocol we term,

combined-collision- and ozone-induced dissociation (COzID),

that affords information on both double-bond and sn-position in

glycerophospholipids. Furthermore, we introduce the application

of a novel software plug-in for automating OzID-mass spectral

annotations.

The lipidome ofhuman redblood cells (RBC) haspreviously been

discussed as a model system to explore lipid structural diversity

[5]. Despite numerous studies however, a full description of even

thephosphatidylcholine (PC) class remains elusive [22–25].Under-

standing the baseline complexity of human RBC can have wide

reaching importance as these cells are widely analyzed as carri-

ers of possible lipid biomarkers in clinicalstudies [26–28]. While a

comprehensive study of the full RBC lipidome is beyond the scope

ofthe present investigationitprovides an excellenttargetfor estab-

lishing the performance of our protocols for the discrimination

and identification of isomeric and isobaric lipids in a cellular lipid

extract.

2. Methods

2.1. Materials

All solvents used, including water, were LC–MS grade and

purchased from VWR Inc (Tingalpa, QLD, Australia). Buty-

lated hydroxytoluene (BHT) was purchased from Sigma-Aldrich

(Castle Hill, NSW, Australia). Ammonium acetate and sodium

acetate (analytical grade) were purchased from Ajax Chemicals

(Auburn, NSW, Australia). Industrial-grade compressed oxygen

with 0.5% nitrogen was obtained from BOC (Cringila, NSW,

Australia). Synthetic phospholipids; 1,2-di-(9 -octadecenoyl)- -Z sn

glycero-3-phosphocholine (PC 18:1( -9)/18:1( -9)),n n 1,2-di-(6 -Z

petroselinoyl)- -glycero-3-phosphocholinesn (PC 18:1( -n

12)/18:1( -12)),n 1-octadecanoyl-2-(9Z,12Z-octadecadienoyl)- -sn

glycerol-3-phosphocholine (PC 18:0/18:2( -6, -9)),n n 1-(9Z-

octadecenoyl)-2-octadecanoyl- -glycero-3-phosphocholinesn

(PC 18:1( -9)/18:0)n and 1-octadecanoyl-2-(9Z-octadecenoyl)-

sn-glycero-3-phosphocholine (PC 18:0/18:1( -9))n were acquired

from Avanti Polar Lipids (Alabaster, Alabama, USA).

2.2. Lipid extraction

Blood samples were collected from human subjects in accor-

dance with predefined biobanking standards at the University of

Wollongong and ethics approval was obtained from the Univer-

sity of Wollongong HumanEthics Research Committee (HE16/016

& HE16/018). Lipid extraction from humanred blood cells followed

the methyl tert-butyl ether (MTBE) protocol of Matyash et al. [29]

thatwas adapted toa liquid handling workstation(Hamilton STAR,

Reno,NV, USA)[30]. In brief, 290 Lof aqueous ammonium acetate

(150mMwith 2mM EDTA)was added to the wells ofa 2.0mL, 96-

well plate cooled on ice. A 10L aliquot of packed redblood cells

was added to each well before the platewas vortexed at 800rpm

for10 mins. Sampleplates, solventsand reagentswere loaded onto

the liquid handling workstation where the following steps were

performed. First, 300L of methanol was added and the sample

mixed prior to standing for 10 mins. Next, 1000L of MTBE was

added to the samples and mixed for 30 mins before the mixture

wasallowedto standfor 15mins toallowphase separation.Follow-

ingthis, 500Lof theMTBE topphase was removed,placed in glass

vialswith Tefloncaps andstored at−20 ◦C untilmass spectrometric

analysis.

2.3. Sample preparation

2.3.1. Direct infusion mass spectrometry

For direct infusion experiments, RBC lipid extractswere diluted

1:50 in methanol containing 1M sodium acetate. Mass spectra

wereacquiredusing ahybrid triplequadrupole linear ion-trapmass

spectrometer (QTRAP5500
®
system, SCIEX, Concord, ON, Canada)

previously modified to incorporate ozone, generated online by an

ozonegenerator (Titan, Absolute Ozone, Alberta, Canada), into the

nitrogen collisiongas line [12,31]. For direct infusion experiments,

diluted lipid extracts were infused at a flow rate of 3L min−1

through an ESI source in positive mode. Typical source settings

were: 5500 V ion spray voltage; source temperature 250 ◦C; 100V

de-clustering potential; 10V for the entrance potential; nitrogen

serving as the nebulizing gas at 20 psi; curtain gas 10 psi; and

auxiliary gas 20 psi. Typical OzID experimental conditions uti-

lized anoxygen flow rate through the generator of 250mLmin−1

with the ozonegenerator power output at 40% to obtain approx-

imately 220 gNm−3 of ozone ( .ca 15% v/v ozone in oxygen). The

gas flow from the generator was split to direct the majority of the

flow through an ozone destruct catalyst (IN USA, Norwood, MA,

USA). The remainder waspassed through a variable leak valve (VSE

Vacuum Technology, Lustenau, Austria) for regulating ozone (in

oxygen) introduction into the collision cell (q2 ) via the nitrogen

collisiongas line.An external ambient ozonemonitor (Mini-HiCon,

INUSA,Norwood, MA, USA)was interlocked to the remote shut-off

on the generator and set to disable ozone production if the ambi-

ent ozone concentration rose above 60 ppb. All experiments were

controlled and data acquired using Analyst
®
software (SCIEX, Con-

cord, ON, Canada). Direct infusion COzID spectra were acquired by

mass selecting precursor ions in the first quadrupole (q1) with an

isolation widthof 1 Th and accelerating them into q2withcollision

energy of 37 eV. Ions were trapped in the presence of ozone in q2
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for 4000ms. Product ions were then transferred with a post colli-

sion energy of 8eV and measured in the linear ion trap (q3) with

a fill time of 500 ms. Direct infusion spectra are reported here as

a summation of 200 cycles ( 17.9∼ mins of spectral acquisition as

calculated by Analyst software).

2.3.2. Liquid-chromatography mass spectrometry

For liquid chromatography, a pooled sample from at least

5 different individual RBC lipid extracts was prepared. 200L

aliquots from the pooled extract were dried down and recon-

stituted in 200L methanol prior to analysis Reversed-phase

ultra-high performance liquid chromatography (RP-UHPLC)

runs were performed using an UHPLC system (ACQUITY UPLC,

Waters, Milford, Massachusetts, USA) fitted with a C30 column

(Acclaim 2.1× 150mm, 3 m particle size, Thermo Fisher Scien-

tific, Scoresby, VIC, Australia) held at 25 ◦C. Two mobile phases

were used; A: 5mM ammonium acetate in water, and B: 5 mM

ammonium acetate in methanol/acetonitrile (60/40 v/v). The gra-

dient usedwas 12.5% A to100% B in 25min, hold from 25 to 30min

at 100% B, return to 12.5% A over 1min followed by equilibration

for an additional 9min. For LC–MS operation, 5L of sample was

injected on column with a solvent flow rate of 500 Lmin−1.

Sodium acetate (0.5mM) was infused into the flow path prior to

the ESI source using aT-junction at a rateof 15Lmin−1 . Ion spray

voltage was 5500V, declusteringpotential 90 V, entrancepotential

8V and source temperature set to400◦C. Nitrogen was used as the

nebulizing gas at 60psi pressure, curtain gas 10 psi, and auxiliary

gas 30 psi. OzID (for determining double bond position) used

entrance to q2 collision energy of 5–10 eV, linear ion trap fill time

of 5ms, exit collision energy of 8 eV and residencetime with ozone

of 2000 ms. COzID (for determining sn-position) used similar MS

parameters except for a modified q2 collision energy (38–40eV)

and a residence time with ozone of 250ms.

2.3.3. Data analysis

Spectra were analyzed using PeakView
®
software (SCIEX, Con-

cord, ON, Canada) with an incorporated OzID plug-in, which

allowed for automated annotation of OzID double bond ions. The

plug-in works by highlighting the precursor ion of interest from

which OzIDions were generated, andmanual input ofthe lipid sum

composition into the software (e.g., for [PC 36:1+Na]+,m z/ 810 is

highlighted in the spectrumand PC 36:1 is enteredin thesoftware).

The plug-in searches a database of expected OzID neutral losses

and annotates the OzID spectra. Settings concerning the threshold

and mass tolerance are used to fine-tune the assignments, and to

reduce false annotations. The presence ofthe aldehydeand Criegee

ion pair for each double bond was a requirement for accepting

a positive identification. Output was manually curated for cor-

rect assignments, and incorrect assignments were removed. An

amended nomenclature for labeling the double bond ions as used

in thismanuscript is explained below.

2.3.4. Nomenclature

Lipid structure nomenclature used here isguided by literature

recommendationsofFahyet al.and Liebischet al.[32,33]withmod-

ifications for the OzID plug-in assignments. Double bond location

in the IUPAC annotation is indicated by a number, counting from

the carboxylic acid end, followed with Z/E indicating cis trans/ iso-

merism. In this work, the site(s) of unsaturation is indicated to be

x-positions from the methyl end by the traditional nomenclature

“ -x”,n where“ ”n refers to the number of carbon atoms in the chain

and subtracting “x” provides the location of the double bond, for

example, PC 18 0/18:2 (9Z,12Z) is represented as PC 18:0/18:2( -n

6, n-9). This nomenclature is instructive in OzID analysis as the

observedneutral losses are commonto all lipids with doublebonds

in the sameposition relative tothehighest numbered carbonon the

alkyl chain [34]. The ozone reaction results in a pairof ions (alde-

hyde and Criegee) for each doublebond [8,13], and using the OzID

plug in, this will be indicated in the assignments as “ x,n- aldehyde

or n-x, Criegee”. For double bonds in polyunsaturated fatty acids

(PUFA), there is an additional numberadded in the assignment for

all bonds except the first to indicate their position in the series.

For example: an n-9 doublebond in n-3 20:5 PUFA,would be char-

acterized by ions generated from twoneutral loss (NL) transitions

(–106 Da and −90Da) [8], and the annotation of the double bond

would be( 9,3,n- aldehyde) and ( 9,3,n- Criegee) respectively, where

(9) indicates the site ofunsaturation, (3) indicates that itis the third

double bond in the series from the methyl end after n-3 and n-

6 double bonds. The first double bond in a series has the double

bond site of unsaturation andaldehyde/Criegee. For example,an n-

3 in the n-3 20:5 PUFA would have two NL transitions (–26Da and

−10 Da) and is labelled as ( -3,n aldehyde) and ( 3n- Criegee). Dou-

ble bonds in monounsaturated fatty acids (MUFA) are labelled the

same as the first double bond in a series. The stereochemical con-

figuration of the carbon–carbondouble bonds was notdetermined

and thus isnot indicated.

3. Results and discussion

3.1. Examination of targeted lipid ions from direct infusion of a

red blood cell extract

To examine the potential lipid complexity of red blood cells

(RBC), lipid extractswere spiked with sodium acetate and directly

infused into a specialized electrosprayionization triple quadrupole

mass spectrometer operated in positive ion mode. As expected,

abundant ions were observed in the region m z/ 650–900 corre-

sponding to ionized phospholipids. Nominal mass of the most

abundant ions in this region were consistent with the [M+Na]+

ions of phosphatidylcholines (PC). Previously described modifica-

tions [12,13] to the instrument enable the addition of ozone ( .ca

15% in oxygen) to the collision region and thus the selected ions

were subjected to activation by a combination of collision- and

ozone-induced dissociation (COzID). The resulting product ions

were mass-analyzed by the third quadrupole operating as a linear

ion trapgenerating a composite spectrumwith peaks arising from

both processes. Spectra obtainedfrommass selectionof the m z/ 808

andm z/ 810 precursor ions from the redblood cell extract using the

COzID approach are shown in Fig. 1(A) and (B), respectively.

Shotgun workflows are powerful approaches to lipid structural

assignment. In complex extracts however, they are challenged by

the overlap of multiple lipid isomers and isobars at a given m z/ ,

confounding the data analysis. The spectrum shown in Fig. 1(A)

reveals a rich fragmentationpattern that results fromCID, OzIDand

a combination of these processes that provide critical information

as to the structures of different lipid isobars and isomers. Examin-

ing the low mass end of the spectrum, product ions are observed

at m z/ 147 (loss of C2H5O4NaP) [35,36] and m z/ 184 (phospho-

choline moiety) [37], corresponding to known CID product ions for

PC lipids when ionized in the [M+Na]+ and [M+H]+ forms, respec-

tively. Thesedata indicate the presence of [PC 36:2+Na]+ , and [PC

38:5+H]+. Exact masses of these ions are 808.5827 and 808.5851

such that resolving power of >300,000 would be required to dis-

criminate between themand co-isolation fortandem mass spectral

analysis is inevitable. Similar CID ions are found in Fig. 1(B) for

m z/ 810, indicating the presence of ions originating from both [PC

36:1+Na]+ and [PC 38:4+H]+.

3.1.1. Lipid class isobars
Lipids from different classes can also be presentat bothm/z 808

and 810,which areisobaric onaunit resolutioninstrumentand can-

not be separated due to thesmall differences inmass. For example,
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Fig. 1. Direct infusion COzIDspectra of RBC lipid extracts. Spectra of(A)m z/ 808dominated by [PC36:2+Na]+ ions and (B)m z/ 810 dominated by [PC 36:1+Na]+ ions. Product

ions facilitating the assignment of a fatty acyl chain to an sn-position in the sodium adduct are shown in bold letters. Product ions arising from the oxidative cleavage of

carbon–carbondoublebonds are annotated by a software plug-inwith respect to (A) [PC 36:2+Na]+ and (B)[PC 36:1 +Na]+ . Magnification of these spectraacrossm z/ 620–820

are shown inpanels (C) and (D). OzID product ions are annotated with respect to the precursor ions (C) [PC 38:5+H]+ at m z/ 808and (D) [PC 38:4+H]+ atm z/ 810.
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[PS 36:2+Na]+ ( /m z 810.5256) overlaps with [PC 36:1+Na]+ ( /m z

810.5983). Previous data indicates PS 36:2 is present in human

RBCs [25] and this is supported by the presenceof an ion atm z/ 625

(Fig. 1(Band D)) that may have arisen fromthe loss of the phospho-

serine headgroup (185Da). Nevertheless, thereare no otherunique

ions present in this spectrum to permit theunequivocal identifica-

tion of PS36:2 in this RBC lipid extract. If not addressed, this leads

to underestimation of the diversity ofthe RBC phospholipidome.

3.1.2. sn-Positional isomers

Another challenge faced in direct infusion protocols is the

inability to separate and unambiguously resolve lipid sn-positional

isomerism, i.e., glycerolipid isomers arising from different sites

of substitution of the glycerol backbone. CID of [PC 36:2+Na]+

( /m z 808.5827) produced the [PC 36:2+Na-183]+ ion, atm z/ 625.5,

which, when allowed to react with ozone for 4000ms, produced

ions at m z/ 407 and 423 (Fig. 1A). These ions can be used toassign

18:0 at sn-1, thus identifying the presence of PC 18:0/18:2 in the

extract [20,21]. The presence of low-abundance ions atm z/ 403 and

419 ions, indicate that PC 18:2/18:0 is also present inthe RBC lipid

extract. Ions at m z/ 379, 405 and 447 are a result of predicted neu-

tral losses and enable the assignment of acylchains 16:0, 18:1and

20:2at the sn-1 position, respectively, in agreement with previous

findings (supplementary information, Table S3 and S4) [14,20,21]

Taken together, these data indicate the presence of three addi-

tional isomers for PC 36:2, i.e., PC 16:0/20:2, PC 20:2/16:0 and PC

18:1/18:1, bringing the total to a minimum of 5 fatty acyl chain-

and sn-isomers of PC 36:2 in the RBC lipid extract. The same prin-

ciples canbe applied to interrogating theshotgun spectrum forthe

monounsaturated [PC 36:1+Na]+ shown in Fig. 1(B). Similar lipid

isomer and isobars are observed, where [PC 36:1+Na]+ overlaps

with [PC 38:4+H]+ as shown by the diagnostic product ions m z/

147 and 184, respectively (Fig. 1(B)). Product ions at m z/ 379, 405

407 and 443 indicate the presence of PC 36:1 isomers with 16:0,

18:1, 18:0 and 20:1 fatty acyl chains at the sn-1 position thus indi-

cating that this lipid population is comprised ofa minimum offour

isomers comprised of different acyl chains and sn-positions, i.e., PC

16:0/20:1, PC 20:1/16:0, PC 18:0/18:1 and PC 18:1/18:0. Double

bond positional isomers are also evident as discussed below.

3.1.3. Double bond isomers

OzID ions indicative of double bond position were annotated

using the software plug-in developed for ourworkflow as demon-

strated in Fig. 1. The software plug-in is able to assign the double

bond positions for both the sodiated and protonated OzID product

ions. The spectra were analyzed twice, once for sodiated PC 36:2

or PC 36:1, shown in Fig. 1(A) and (B) respectively, and a second

time for protonated PC 38:5 or PC 38:4, shown in Fig. 1(C) and

(D) respectively. Numerous double bond isomers of [PC 36:2+Na]+

( /m z 808) were detected as shown in Fig. 1(A). The ion pair m z/

740 (–68 Da) and 756 (–52 Da) indicate an n-6 double bond, and

an additional pair of ions at m z/ 700 (–108 Da) and 716 (–92Da)

are indicative of an n-9,2 double bond (refer to Table S2 in Supple-

mentary Information). These ions can be assigned to the fatty acyl

chains 18:2( -6,n n-9) or 20:2( -6,n n-9) for [PC 36:2+Na]+ , as pre-

viously reported [ , ].19 21 Furthermore, double bond isomers from

monounsaturated fatty acids(MUFA) are identifiedbyOzIDproduct

ions observed atm z/ 698 (–110Da) and 714 (–94Da) characteristic

of an n-9 MUFA and m z/ 726 (–82 Da) and 742 (–66Da) ion pair

characteristic of ann-7MUFA (Table S1 in SupportingInformation)

[8,38]. These ions indicate thepossibility of at least two, and possi-

bly three double bond isomers namely, PC 18:1( 9)/18:1( 9),n- n- PC

18:1( 7)/18:1( 7)n- n- and PC 18:1( 7)n- 18:1( 9).n-

Fig. 1(C) shows a magnified view of the m z/ 610–820 region of

the same spectrum displayed in Fig. 1(A). In this instancehowever,

it has been reanalyzed with protonated PC 38:5 as the input pre-

cursor ion for the OzID plug-in. Notably, a series of aldehyde and

Criegee OzID ion pairs originating from m z/ 808, i.e., m z/ 782 and

798,m z/ 742and 758,m z/ 702and 718,m z/ 662and 678andm z/ 622

and 638 are present. These ions cannot be attributed to any fatty

acyl chains inPC 36:2, but can be attributed to a 20:5( 3)n- polyun-

saturated fatty acylchain ofprotonated PC 18:0/20:5 (OzID neutral

loss transitionsare provided in Table S2 in Supporting Information)

[8,19]. It is worth mentioning that the aldehyde ion for the n-6,2

double bond of an n-3 PUFA would overlap with the n-7 Criegee

ion of aMUFA for that same precursor mass in direct infusion pro-

tocols, which would complicate the assignment. Evidence for an

n-9 double bond in a MUFA is found in Fig. 1(C) and can originate

from a monounsaturated fatty acyl chain in PC 38:5 or PC 36:2.

The presence of a PC 18:0/20:5 was verified byCOzID of the sodi-

ated adduct in positive mode and CID of the [PC+OAc]− adduct in

negative mode (data not shown).

3.2. Optimization of LC-OzID/COzID workflow

Fig. 1 demonstrates some of the challenges in obtaining unam-

biguous structural information on lipids derived from complex

biological extracts using a direct infusion COzID approach. To

maximise the lipid structural information that can be derived,

we investigated the advantages of incorporating LC separation to

reduce the complexity. To best match the instrument duty cycle

for the LC workflow, we developed two sets of instrument con-

ditions to enhance the abundance of structural diagnostic ion

populations for double bond position (OzID) and for sn-position

(COzID). Optimization ofozone reactiontimes togenerate diagnos-

tic ions on a chromatographic time scale and acquiring sufficient

data points across the chromatographic peak was required. The

result was to undertake two sample injections in series using the

same RP-UHPLC methodbut operating theMSwith optimized pro-

tocols for OzID and COzID, respectively. The experiments were

first optimized on commercially available synthetic lipids with

representative data shown in Figs. 2 and 3. Fig. 2(A) shows an

LC chromatogram obtained from injecting an equimolar solution

of the three synthetic phosphatidylcholine isomers, PC 18:1( -n

9)/18:1( -9),n PC 18:1( -12)/18:1( -12)n n and PC18:0/18:2( -6,n n-9),

onto a reversed-phase C 30-column with the addition of sodium

acetate post-column.OzID spectrafor the selectedprecursor ionsat

m z/ 808 were obtainedwitha ∼2000msresidence time in the col-

lision cell. The total ion chromatogram (TIC) constructed from the

abundance of all ions detected in OzID scans is shown in Fig. 2(A)

revealing two baseline resolved chromatographic features with

peak maxima at 23.3 and 25.0mins.

The extracted-ion chromatograms (XICs) shown in Fig. 2(B)

were obtained using product ions diagnostic for different dou-

ble bond positions namely, m z/ 698 (–110Da, n-9) labelled peak

1, and m z/ 656 (–152Da, n-12) and m z/ 740 (–68 Da, n-6) both

labelled as peak 2 since they are not fully resolved. In agreement

with previous findings, PC 18:1( -9)/18:1( -9)n n eluted before PC

18:1( -12)/18:1( -12)n n [19,21]. Although the second feature con-

tains two co-eluting isomers that are not chromatographically

resolved, the unique OzIDproduct ions for ( -12)n and ( -6)n double

bonds, allowed generation of distinct XICs that clearly identified

the presence of the two isomers. OzID spectra obtained from inte-

gration across chromatographic peaks 1 and 2 (Fig. 2B) are shown

in Fig. 2(C) and (D), respectively. Product ions atm z/ 698 and 714

dominate the spectrum obtained from the ions eluting at peak 1

(Fig. 2C). These ions are diagnostic for an n-9 double bondand con-

firm PC 18:1( 9)/18:1( 9)n- n- as the lipid eluting at 23.3min. The

integrated spectrum obtained from the second peak (Fig. 2D) con-

tains three pairs of productions, m z/ 740 and 756 andm z/ 700 and

716 that canbe assigned toPC 18:0/18:2( -6,n n-9) as well as an ion
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Fig. 2. (A)UHPLC-OzID chromatogram of a 5L injection of a mixture of synthetic phosphatidylcholine isomers PC 18:1( -9)/18:1( -9),n n PC 18:1( -12)/18:1( -12)n n and PC

18:0/18:2( -6,9).n Total ion current form z/ 808 [PC 36:2+Na]+ precursor ions shows twochromatographic features. (B) XICs are shown for OzIDproduct ions from oxidative

cleavage of n-9 double bond (blue trace) peak #1, two overlapping peaks n-6 (pink trace) and n-12 (redtrace) double bonds, both in peak 2, (expanded in inset). Average

OzIDmassspectra of the chromatographic features between (C) 23.00-23.69mins (peak 1) and (D) 24.72-25.33mins (Peak 2) are shown, and OzID ions for doublebonds are

annotated using the softwareplug in. (For interpretation of the references to colour in this figure legend, the reader is referred to theweb version of this article.)

Fig. 3. (A) UHPLC-COzID chromatogram of a 5 L injection of a mixture of synthetic PC 18:1( -9)/18:0n and PC 18:0/18:1( -9)n isomers. Total ion current for m z/ 810 [PC

36:1+Na]+ precursor ions shows one chromatographic feature. (B)XICs for CID ion atm z/ 147 (red trace)andCOzID diagnostic product ions corresponding to 18:1at sn–1 m z/

405 ion (blue trace), and18:0 at sn–1m z/ 407 ion (pinktrace), expanded ininset. COzIDmass spectra obtained by averaging between(C)25.37-25.51 mins and (D)25.82-26.00

mins are shown. Annotationsofsn-positions are shownin bold letters. Insets in (C) and(D) highlight thedifferent ratios in abundance ofm z/ 405and 407 ionsat thebeginning

of the chromatographic peak versus the end. (For interpretation of the references to colour in this figure legend, the reader is referred to the webversion of this article.)
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Fig. 4. (A) UHPLC-COzID analysis targeting ions at m z/ 808 from generatedfrom a 5L injection of red blood cell lipidextract. XICs for CID ions m z/ 147 (blue trace) and603

[PC 36:2-Na-183]+ (pink trace) show three chromatographic features (see magnification inset). COzIDmass spectra were obtained by integrating between (B) 21.10-21.46

mins, (C) 22.30-22.45 mins and (D) 22.57-22.86 mins. Bold labels show sn-1 assignments. (For interpretation of the references to colour in thisfigure legend, the reader is

referred to the web version of this article.)

pair at m z/ 656 and 672 that correspond to an n-12 double bond

that can be assigned to PC 18:1( -12)/18:1( -12).n n

Fig. 3 shows the data obtained from an equimolar mixture of

synthetic PC 18:0/18:1( 9)n- and PC 18:1( 9)/18:0.n- In these exper-

iments the first quadrupole of the MS was set to transmit ions

at m z/ 810 that were then subjected to conditions optimized for

COzID. The TIC of the precursor ion signal at m z/ 810 is shown

in Fig. 3(A), and reveals a single feature with a maximum at 25.7

mins but with a subtle peak shoulder at ca. 25.5 mins. The chro-

matogram in Fig. 3(B) plots the XICs obtained from the COzID

product ions m z/ 405 (assigning 18:1 to the sn-1 position) and

m z/ 407 (assigning 18:0 to the sn-1 position). Close inspection of

theseXICs reveals twopartially separated peaks with PC 18:1/18:0

eluting slightly earlier than PC 18:0/18:1 (see Fig. 3B, inset). Inte-

grating the spectra obtained at the beginning of the peak (blue

box; RT 25.37-25.51 mins) and towards the end of the peak (pink

box; RT 25.82-26.00 mins) produces the spectra shown in Fig. 3C

and D, respectively. Two COzID product ion pairs at m z/ 405 and

421 and m z/ 407 and 423 are present in both spectra and indicate

both 18:1 and 18:0 at the sn-1 position, respectively. Product ions

indicative of an 18:1 at sn-1 are higher in abundance in Fig. 3(C),

while product ions indicative of an 18:0 at sn-1 are higher in

Fig. 3(D) (see insets). Therefore, COzID ion ratios confirm that PC

18:0/18:1 elutes just prior toPC 18:1/18:0 indicative of partial sep-

aration of these sn-positional isomers on the C30-reversed phase

column.

3.3. LC-COzID and LC-OzID of RBC lipid extracts

3.3.1. Resolving sn-positional isomers

Data presented in Fig. 4 were acquired by loading 5 L of RBC

lipid extract onto a C30-column and introducingthe eluent intothe

MS through an ESI source operated in positive mode. Data were

acquired by mass-selecting ions ofm z/ 808, activating themwith a

collision energy of 38–40eV, and trapping both precursor ions and

CID products in the presence of ozone for 250 ms yielding COzID

mass spectra. The XIC of the m z/ 147 and 603 product ions, that

are characteristic of sodiated PC, are shown in Fig. 4(A) and reveal

three peaks with maxima at 21.3, 22.3 and 22.7 mins (see inset).

Mass spectra obtained by integrating across each of these three

peaks are presented in Fig. 4(B)–(D) and show the expected CID

product ions at m z/ 749 (loss of trimethylamine) and 603 (loss of a

sodiated PC headgroup) confirming the identity of each as a phos-

phatidylcholine. The spectrumobtained from the peakat 21.3mins

(Fig. 4B) shows a single COzID ion pair m z/ 405 and 421 charac-

teristic of 18:1 at sn-1, and can thus be attributed to PC 18:1/18:1.

The second chromatographic featureat 22.3mins (Fig.4C) contains

COzID ionsatm z/ 379and 395 indicativeof 16:0at sn-1and m z/ 301

and 317 revealing the presence of 20:2 at sn-2 and thus identifies

PC 16:0/20:2 (see TablesS3 and S4 in Supporting Information). The

COzID spectrumobtained from the third chromatographic feature

at 22.7 mins contains ions at m z/ 407 and 423 identifying 18:0 at

sn-1 as well as lower abundance m z/ 403 and 419 ions characteris-

tic of 18:2 at sn-1. Taken together, these ions indicate the presence

of at least four isomers for PC 36:2; PC 18:1/18:1, PC 16:0/20:2,
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Fig. 5. (A) UHPLC-OzID chromatogram targeting ions at m z/ 808 from generated

from a 5 L injection of red blood cell extract. [PC 36:2 +Na]+ chromatogram is

visualized using XIC for OzID product ions from oxidative cleavage of n-9 (blue

trace),n-7(pink trace),n-9,2 (redtrace)andn-6 (green trace) doublebonds, showing

multiple features. OzID mass spectra corresponding to chromatographic features

between (B) 21.78-22.64mins and (C) 23.00–24.15 mins are shown. OzID-ion pairs

for double bonds are annotated using the customPeakView software plug in. (For

interpretationof the references to colour in thisfigure legend, thereader is referred

to the webversion of this article.)

PC 18:0/18:2 and PC 18:2/18:0. Similar to the PC 36:2 standards,

PC 18:1/18:1 is chromatographically resolved from PC 18:0/18:2

in RBC lipid extracts, which simplifies the structural analysis by

interrogating each chromatographic peak independently.

3.3.2. Resolving double bond positional isomers

Further analysis of the samepopulation of phosphatidylcholine

isomers was undertaken using identical chromatographic con-

ditions but modifying the mass spectrometric conditions for

amplificationof signals related tocarbon–carbon doublebond loca-

tion. In these experiments them z/ 808 ions from RBC lipid extracts

were mass-selected and delivered to the second quadrupole with

lower collision energy (5–10 eV) with subsequent trapping of the

ions with ozone for 2000ms yielding mass spectra with a greater

proportion of OzID product ions. Fig. 5 shows representative data

acquired under these LC-OzID conditions. XICs of ions diagnos-

tic of PC 36:2 double bond positions are shown in Fig. 5(A) and

reveal two main features with maxima at ca. 22.4 and 23.4 mins.

OzID product ions obtained from the ions eluting at 22.4 mins are

observed at m z/ 698 and 714 in Fig. 5B and correspond to neu-

tral losses of 110 and 94 expected for an n-9 double bond. An

additional ion pair at m z/ 726 and 742 corresponding to neutral

losses of 82Da and 66 Da, respectively identify the presence of an

n-7 double bond. When these data are taken together with the

LC-COzID results (see above) they suggest at least two, but up to

four possible PC 18:1 18:1 isomers are present in the RBC extract,

namely, PC18:1( -9)/18:1( -9),n n PC18:1( -7)/18:1( -7),n n PC18:1( -n

9)/18:1( -7)n and PC 18:1( -7)/18:1( -9).n n Recent work from our

groupreported the existenceof these same four isomers in eggyolk

extract, where despite not being separated chromatographically,

theywere identified using OzID ions [21]. It should be noted that

elution of these PC 36:2 species is centered at 22.4 mins in the LC-

OzID analysis (Fig. 5A) but the corresponding featurehas a maxima

at21.3min inthe LC-COzID analysis (Fig. 4A). Thisshift in retention

time is a consequence of experiments being conducted on differ-

ent days as there is no shift in retention time when LC-COzID and

LC-OzIDexperiments run on the sameday ( .cf Fig. 4A and Fig. S1A).

Regardless, the fidelity of retention time is maintained and there-

fore such shifts do not limit the current analysis. When increasing

thethrougput of thisworkflowhowever, retention time alignment

protocols couldbe implemented to simplify data analysis.

The integrated OzID spectrum produced from the ions eluting

at ca. 23.4 mins (Fig. 5C) contains two pairs of product ions at m z/

740 and 756 as well asm z/ 700 and 716 that identify n-6 and n-9

doublebonds on a common, polyunsaturated acyl chain. Based on

information inboth LC-OzID and LC-COzIDexperiments these ions

canbe attributed to PC 18:0/18:2( -6,n n-9), PC 18:2( -6,n n-9)/18:0

and PC 16:0/20:2( -6,n n-9). While the co-elution of these species

means that the OzIDspectrum shown in 5(C) represents a compos-

ite of the two acyl chain isomers (PC 18:0 18:2 and PC 16:0 20:2)

the clear pattern of OzID product ions indicate that both species

have identical unsaturation relative to the methyl termini of their

respective acyl chains. The presenceof both ( 6)n- speciesis consis-

tent with elongation of diet derived 18:2( 6)n- to form 20:2( 6)n- in

accordance with knownmetabolic pathways in humans. 39 Over-

all, thecombination of LC-OzID and LC-COzID analysis identifiesup

to seven PC 36:2 isomers in RBC lipid extracts. The acquisition of

thedata in an LC-workflow dramatically reducedthe spectral com-

plexity ( .cf direct infusion datain Fig. 1)and lessened the ambiguity

in structural assignments.

3.3.3. Resolving lipid adduction isobars

Another advantage of introducing LC separation is reducing

samplecomplexity by resolving adduct ion isobars. Analysis of LC-

COzID data from red blood cell extracts obtained at m z/ 808 and

810 revealed multiple features corresponding to isobars of differ-

ent lipid composition. Representative data shown in Fig. 6 show

the separate elution of different phosphatidylcholines that, when

adducted with a proton or a sodium share a common precursor

ion nominal mass. For example, [PC 38:5+H]+ and [PC 36:2+Na]+

at m z/ 808.5 (Fig. 6A), and [PC 38:4+H]+ and [PC 36:1+Na]+ at m z/

810.5 (Fig. 6B) show clearly distinct retention time profiles. The

XICs obtained from m z/ 184 (produced by CID of protonated PC)

andm z/ 147 (produced by CID of sodiated PC) are shown in Fig. 6

and clearlydemonstrate theseparation of these lipids. Themultiple

featuresobserved in them z/ 184XICs are consistentwith previous

data identifying a range of isomerspresent for PC 38:5and PC 38:4

[23,25,27,40].

3.3.4. Resolving lipid class isobars

Chromatographic separation of RBC lipidextracts also removed

isobaric interference arising from different phospholipid classes,

e.g., [PC 38:3+Na]+ and [PS 38:4+Na]+ ( /m z 834) as shown in

Fig. 7(A). These data further serve to illustrate the ability of the

COzID protocol to generate structural informative spectra from

a complex lipid extract for PS lipids on a chromatographic time

scale. The XIC ofm z/ 627 and 629 ions representing the loss of the

sodiated headgroups from PS 38:4 and PC 38:3, respectively, were

usedtovisualize thechromatographic features related toeachlipid.

Integrationof the mass spectral data across both chromatographic

features produced the COzID spectra shown in Fig. 7(B) and (C).
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Fig. 6. UHPLC-COzID chromatograms for precursor ions ofm z/ 808and 810 visual-

ized usingCID product ionsm z/ 184 andm z/ 147 andshowthe resolutionof isobaric

overlap originatingfrom different PC adductions. (A) [PC38:5 +H]+ is separatedfrom

[PC 36:2 +Na] + and (B) [PC 38:4 +H]+ is separated from [PC 36:1 +Na] + reducing

interference seen in direct infusion analysis.

Fig. 7. (A) UHPLC-COzID chromatogram of a5L injection of red bloodcell extract

trapping for m z/ 834 ions. LC allowed separation of PS 38:4 from its isobaric PC

38:3m z/ 834 into different chromatographic features. XICs of CID product ions

indicative of the loss of the sodiated phosphoserineheadgroupm z/ 627 (blue trace)

vsm z/ 627(pinktrace), whichisdiagnostic of the lossof thesodiatedphosphocholine

moiety. COzIDmassspectra ofthe integrated chromatographicfeatures between (B)

17.13-18.29mins and (C)23.22-23.5 mins are shown. (For interpretationof the ref-

erences to colour in this figure legend, the reader is referred to the web version of

this article.)

For the low mass ion in these spectra ( /m z < 250), a slight mass

shift is observed indicating poor mass calibration in this region.

Nonetheless, ions m z/ 146 andm z/ 207 can be assigned asm z/ 147

(C2H5O4NaP) [35,36] and m z/ 208 (sodiated phosphoserine moi-

ety [Phosphoserine+Na]+) [41], respectively and are indicative of

the PS moiety. A loss of the serine moiety (–87 DaC3H5NO2) [41]

at m z/ 747 is also observed, confirming the presence of a PS in this

chromatographic feature. The COzID spectrum shown in Fig. 7(B)

contains ions indicative ofthe presenceof18:0 at sn-1 ( /m z407 and

423) and 20:4 at sn-2 ( /m z 297 and 313) that identify PS 18:0/20:4

the most abundant isomer eluting at ca. 17.8min (see Supplemen-

tary Information, Table S4). In Fig. 7C, ions at m z/ 775 and 629

represent neutral losses of 59 and 183Da, respectively, that are

indicative of a sodiatedphosphatidylcholines [42] andconfirm the

presence of PC 38:3. COzID ions identify 18:0 at sn-1 ( /m z 407 and

423) and 20:3 at sn-2 ( /m z 299 and 315) further elucidating the

identity of the lipid eluting at ca. 23.5min as PC 18:0/20:3 (see

Supporting Information, Tables S3 and S4). Notably, the signal-to-

noise ratio is reduced for lower abundance lipid species (Fig. 7A) in

contrast to high abundance lipids (Fig. 4A), however, thesensitivity

of this workflow is demonstrated by its ability to generate COzID

spectra capableof providing structural information forboth PS and

PC species (Fig. 7B and C). When combined with OzID analysis, the

ion at m z/ 834 can be identified as a cluster of isobars, i.e., PC 38:3

and PS 38:4, and their respective double bond- and sn-positional

isomers, specifically PC 18:0/20:3( -6),n PS 18:0/20:4( -6)n and PS

20:4( -6)/18:0.n This structural elucidation would have been diffi-

cult to ascertain for a complex lipid extract without LC separation.

4. Conclusions

The complexity of even ostensibly simple lipidomes, such as the

human RBC analyzedhere, results in the co-isolation of numerous

lipids within the 1 Th isolation window afforded by modern mass

spectrometers when utilising a shotgun approach. The resulting

OzID spectratherefore contain fragment ions from each of the iso-

lated lipids, complicating spectral interpretation. While combining

CID andOzID is effective inobtainingnear completestructural iden-

tification of phospholipids14 it can further complicate spectra and

impair theability to identifylow-abundance lipids.Herewepresent

a new workflow utilising RP-UPLC tomaximise isomer and isobar

separation in combination with a2-stage OzIDand COzIDprotocol.

This approach utilisesserial LC runswithMSparameters optimized

for either double bond ions (OzID) or sn-substitution ions (COzID)

that are relatable, even with shifts in retention time. Wewere also

able to reduce OzID reaction times allowing sufficient data within

the LC timeframe. Additionally, a plug-in for PeakviewTM software

providing automated annotation of OzID spectra has been devel-

oped.

Application of this workflow to lipid extracts fromhuman RBCs

has providednew insightinto thephospholipids present. For exam-

ple, traditional CID of ions observed at m z/ 834 in positive ion

mode in a direct infusion experiment identifies the presence of

both PC 38:3 and PS 38:4 as sodium adducts. The key diagnos-

tic CID/OzID ions produced from these lipids are identical making

it difficult to obtain a definitive structural characterization. The

UPLC-OzID/COzID workflow allowed the unequivocal identifica-

tion of PC18:0/20:3( -6),n PS 18:0/20:4( -6)n andPS 20:4( -6)/18:0,n

which wasnot possible usingadirect injection approach.While the

approach describedhereis notyet applicable toanalysisof all lipids

ina single high-throughput experimentitdoes allowdetailed struc-

ture analysis of phospholipids, even at low concentration and can

be applied across different lipid classes and tissues to provide the

next step towards complete characterization of all phospholipids

within complex lipidomes.
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