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Abstract 

The electroencephalogram (EEG) has been widely used in AD/HD research. The 

current study firstly aimed to replicate a recent trend related to EEG theta/beta ratio (TBR) in 

children and adolescents. Also, the study aimed to examine the value of resting EEG activity 

as biomarkers for executive function (EF) in participants with AD/HD. Method: Fifty-three 

participants with AD/HD and 37 healthy controls were recruited. Resting EEG was recorded 

with eyes closed. Participants with AD/HD additionally completed EF tasks via the 

Cambridge Neuropsychological Test Automated Battery. Results: TBR did not differ between 

groups; however, TBR was positively correlated with inattentive symptoms in AD/HD. Other 

correlations were found between EEG activity and neuropsychological functions including 

spatial planning and decision making in the AD/HD group. Conclusion: The results do not 

support the diagnostic value of TBR. Instead, given the heterogeneous features, the results 

support the prognostic value of EEG in AD/HD. 

1 Introduction 

AD/HD is one of the most common neurodevelopmental disorders in the Diagnostic 

and Statistical Manual of Mental Disorders (4th ed.; DSM-IV; American Psychiatric 

Association [APA], 1994) among children, and involves pervasive symptoms of inattention, 

hyperactivity, and impulsivity (APA, 2000). AD/HD is estimated to have a 5.29% worldwide 

prevalence (Polanczyk et al., 2007). The disorder often causes functional impairments such as 

academic, family, and social problems. It can also increase the risk of other psychiatric 

disorders (Biederman & Faraone, 2005). As it often begins in early childhood, AD/HD is 

commonly regarded as a childhood disorder. However, it has been shown that approximately 

two thirds of those diagnosed in childhood still meet AD/HD criteria in adulthood, leading to 

long-term negative effects for individuals (Karam et al., 2015). 

The electroencephalogram (EEG) allows measurement of brain electrical activity and 

has been used in AD/HD research for decades (for a historical review, see Barry, Clarke, & 

Johnstone, 2003) revealing several abnormalities in those with AD/HD compared to healthy 

controls (Barry & Clarke, 2009). The most commonly used EEG analysis method is spectral 

power analysis in which the raw EEG is decomposed into different frequency bands. In 

childhood, compared to healthy controls, research typically reports that children with AD/HD 

have increased power in slow wave bands (e.g., absolute theta and delta, and relative theta) 

and reduced power in fast wave bands (e.g., relative alpha and beta) (Barry et al., 2003; 



Chabot & Serfontein, 1996). Together, this pattern leads to elevated theta/beta and theta/alpha 

ratios (Snyder & Hall, 2006; Snyder et al., 2008). As age increases toward adolescence, the 

EEG of children with AD/HD shows a typical developmental pattern but the differences 

remain—that is, increased slow wave and reduced faster wave activity (Barry & Clarke, 

2009; Bresnahan, Anderson, & Barry, 1999; Clarke, Barry, McCarthy, & Selikowitz, 2001a). 

In adulthood, the group differences in fast waves are typically absent, whereas the differences 

in slower wave activity remain (Barry & Clarke, 2009; Bresnahan & Barry, 2002). 

Among the observations using EEG, increased theta/beta ratio (TBR) in children with 

AD/HD has been considered to be a robust and reliable group difference. Indeed, the U.S. 

Food and Drug Administration (2013) approved the utilization of theta/beta ratio to aid 

assessment of AD/HD. However, the use of this ratio in aiding diagnosis is debated. A 

systematic review revealed that the year of publication had a substantial influence on the 

reported group difference (Arns et al., 2013). In contrast to earlier findings, recent studies did 

not find a difference in TBR between groups (Loo et al., 2013; Ogrim, Kropotov, & Hestad, 

2012); a result mainly caused by that the TBR is increasing in healthy control groups (Arns et 

al., 2013). In addition, age may be a factor that moderates the effect. A study compared TBR 

between participants with AD/HD and healthy controls in children and adults, and reported 

that TBR differed in adults but not in children (Loo et al., 2013). However, further studies are 

needed as the adult controls were the parents of children with AD/HD in this study. Together, 

these recent findings suggest that the TBR may not be a reliable marker of AD/HD, and that 

an age effect exists—the difference may be more obvious in older groups. As a result, 

concerns about the diagnostic value of TBR are increasing (Arns et al., 2013; Lenartowicz & 

Loo, 2014; Saad, Kohn, Clarke, Lagopoulos, & Hermens, 2015) and more studies are needed 

to address the issue. Thus, in the current study, we firstly aimed to compare the TBR of 

AD/HD participants with healthy controls to determine whether TBR differs between groups. 

Participants were further classified into a child group and an adolescent group to determine 

whether the difference in TBR changes with age. 

The relationship between EEG and behavior/symptoms is another important issue 

related to AD/HD (e.g., Barry et al., 2009a; Clarke et al., 2011). The most influential EEG 

model of AD/HD is the hypo-arousal model (Mann et al., 1992; Satterfield & Cantwell, 

1974). The model proposes that abnormalities in EEG indicate central nervous system (CNS) 

underarousal, which in turn causes behavioral deficiencies. The model can explain the deficit 

in alpha in AD/HD population (Barry, Clarke, Johnstone, & Rushby, 2008; Barry et al., 2004; 



van Dongen-Boomsma et al., 2010); however, empirical results have shown that differences 

in beta (Clarke et al., 2013) and TBR (Barry et al., 2009a) in the AD/HD population cannot 

be explained in terms of arousal. Hence the model, attributing all CNS abnormalities to 

arousal issues, was too simplistic and the pattern of EEG differences between groups may 

indicate separate CNS issues (Clarke et al., 2013). Some studies have explored EEG in terms 

of AD/HD symptoms but the results are inconsistent. In a large sample, TBR was positively 

correlated with inattention symptoms in children, but negatively correlated in adults with 

AD/HD (Loo et al., 2013). This finding is in contrast to a study in which TBR in children was 

not correlated with inattention but theta was positively correlated with inattention (Ogrim et 

al., 2012). A correlation between theta and inattention was also reported by Clarke et al. 

(2011); however, in their study TBR was significantly correlated to hyperactivity/impulsivity 

symptoms rather than inattention in boys with AD/HD. Overall, further studies are needed to 

clarify the behavioral meaning of EEG activity in AD/HD. 

New functional insights are emerging from recent studies which examine the 

behavioral implications of the brain’s spontaneous resting activity. The brain’s resting state 

refers to the state where individuals are awake but not performing any task; this is 

significantly different to a sleep state (Larson-Prior et al., 2011). The nontask-specific 

“idling” EEG activity, which was previously regarded as relatively meaningless, is 

increasingly considered as being as informative as neural activity when engaged in a task 

(Cabral, Kringelbach, & Deco, 2014; Raichle & Snyder, 2007). The relationship between 

resting state and task could potentially be a biomarker of cognitive engagement/load or 

“work” (Cabral et al., 2014). This is supported by neuroimaging studies which reveal that the 

relationship between brain activation at rest and during tasks varies across tasks requiring 

lower- (Cox et al., 2010; Garrett, Kovacevic, McIntosh, & Grady, 2011; Koyama et al., 2011; 

Wang et al., 2010) and higher order cognitive process (Reineberg, Andrews-Hanna, Depue, 

Friedman, & Banich, 2015). In this context, it has been proposed that behavioral deficits in 

AD/HD may stem from an abnormal brain resting state (Castellanos & Proal, 2012; Sonuga-

Barke & Castellanos, 2007). 

To date, little research exists on the association between resting EEG and task 

performance in the AD/HD population. In the limited studies that do exist, most have 

explored the issue in terms of low-level cognitive tasks, for example, theta activity was 

related to performance in a Continuous Performance Task (Hermens et al., 2005; Shi et al., 

2012) and an Oddball task (Hermens et al., 2005). With regard to executive functions (EFs), 



research is rarer and less consistent. EF refers to a set of top-down processes that regulate 

other, lower level cognitive processes (Diamond, 2013). In several models, some behavioral 

abnormalities in AD/HD are thought to result from executive dysfunctions (e.g., Barkley, 

1997; Sergeant, 2005; Sonuga-Barke, 2005). TBR has been related to response inhibition (a 

component of EF), as measured by the Go/Nogo task in children with AD/HD (Loo et al., 

2013; van Dongen-Boomsma et al., 2010); however, the relationship was not found when a 

questionnaire was used to measure inhibition (Ogrim et al., 2012). The relationship between 

EEG and other components of EF has not been studied. Hence, the second aim of this study 

was to examine the relationship between EEG bands and multiple components of EF. 

Given the above literature review, it was predicted that: TBR in participants with 

AD/HD would differ from that of controls in adolescents whilst this may not be the case in 

children. Furthermore, based on the lack of directly relevant previous research, we will 

explore the correlations of EEG outcomes to AD/HD symptoms and task performance of EF 

in participants with AD/HD. 

2 Method 

2.1 Participants 

The AD/HD participants were recruited between June 2014 and June 2015 at Peking 

University Sixth Hospital. They were assessed by experienced psychiatrists. All participants 

met the following inclusion criteria: (a) screened by the Clinical Diagnostic Interviewing 

Scales (Barkley, 1998), a structured clinical interview based on the DSM-IV; (b) no history of 

head trauma with loss of consciousness; (c) no history of neurological illness or other severe 

disease; (d) no history of psychiatric disorders described in the DSM-IV; (e) naive to any 

pharmacological treatment; and (f) an IQ higher than 80 on the Wechsler Intelligence Scale 

III for children. 

Fifty-three children (43 male, age range: 8-15 years, M = 11.24 years, SD = 2.15) 

with AD/HD were selected from 101 AD/HD cases in this study as they were aged from 8 to 

15 years and had full neuropsychological testing reports. Thirty-two children with AD/HD 

were diagnosed with the predominantly inattentive type (ADHD-I) and 21 with the combined 

type (ADHD-C). Two age groups were formed: a child group ranging from 8 to 12 years and 

an adolescent group from 12 to 15 years. For children with AD/HD, 40 children were entered 

into the group analysis after balancing age and sex compared to controls. There were 24 

participants in the child group (13 ADHD-I, 11 ADHD-C, 18 male, M = 10.20 years, SD = 



0.70) and 16 (9 ADHD-I, 7 ADHD-C, 12 male, M = 13.45 years, SD = 0.60) in the adolescent 

group. In the correlational analysis, all children with AD/HD were considered. 

Thirty-seven healthy controls (27 male, age range: 8-15 years, M = 12.09 years, SD = 

1.68) participated in this study. There were 18 participants in the child group (14 male, M = 

10.50 years, SD = 0.77) and 19 participants in the adolescent group (14 male, M = 13.60 

years, SD = 0.38). Healthy controls were recruited from the hospital and local schools and 

were screened by the same psychiatrists with the same inclusion criteria applied but they did 

not meet the diagnostic criteria of AD/HD; they met less than four DSM-IV Inattention 

criteria and four DSM-IV Hyperactivity/Impulsivity criteria. 

2.2 Procedure 

Ethics approval was obtained from the Ethics Committee of Peking University Health 

Science Center and the University of Wollongong Human Research Ethics Committee. 

Informed consent was obtained from the parent or guardian of each participant prior to 

accessing any record or testing. 

Participants were required to complete the testing protocol in 1 day. In the morning, 

participants were in a patient room accompanied by a psychiatrist. They completed 

psychometric assessments and the Cambridge Neuropsychological Test Automated Battery 

(CANTAB). These processes lasted about 2 hr. In the afternoon, resting EEG was recorded in 

a room which was free from distraction, with participants seated on a comfortable chair with 

dimmed lighting. This process lasted about 45 min. 

2.3 CANTAB 

CANTAB is a commercial computerized neuropsychological battery consisting of a 

wide range of cognitive tasks. Based on the research purpose of this study, five tasks related 

to EFs and deficiencies in AD/HD were used; see below. Each task contained several 

outcomes with the main measures reported here. 

The Stockings of Cambridge (SOC) task measures spatial planning. Three colored 

balls are displayed in a spatial pattern and participants are required to move the other set of 

balls to repeat the pattern. Outcomes reported are (a) problems solved in minimum moves 

(PSMM), (b) mean initial thinking time (ITT): the mean time taken before moving the ball, 

and (c) mean subsequent thinking time (STT): the mean time taken after the initial move. The 

task lasts for about 10 min. 



The Intra-Extra Dimensional Set Shift (IED) task measures cognitive flexibility. The 

task is similar to the Wisconsin Card Sorting test, and requires participants to learn a rule and 

then to shift from the well-learned rule to a new rule. Outcomes reported is stages completed 

(SC): the total number of successfully completed stages. The task lasts for about 7 min. 

The Stop Signal task (SST) measures response inhibition. The task firstly builds up a 

tendency for participants to make an A or B response, and on a small percentage (e.g., 25%) 

of trials, participants are required to inhibit the activated response after hearing a tone (which 

is presented at various times poststimulus presentation; for example, 50 ms, 150 ms, and 300 

ms). The primary outcome is stop signal reaction time (SSRT) which is an estimate of the 

time taken to inhibit the response. The task lasts for about 20 min. 

The Spatial Working Memory (SWM) task measures the visuospatial ability of 

working memory. Tokens are spatially hidden in the task and participants need to find the 

token by trying different spatial locations. Outcomes include (a) between errors (BE): defined 

as revisiting the place in which a token has already been found, and (b) within errors (WE): 

defined as revisiting the place in which no token has already been found. 

The Cambridge Gambling Task (CGT) measures decision making. Participants are 

presented with 10 boxes which are red and blue, and are required to guess whether a yellow 

token is hidden in a red box or a blue box. Outcomes are (a) delay aversion (DA): participants 

score higher if they are unable or unwilling to wait, and (b) betting proportion (BP): the 

overall proportion of bets across trials. 

The SOC, IED, SST, and SWM tasks were used to measure differing components of 

EF. CGT was included as it measures decision making as a higher order function based on EF 

(Diamond, 2013). Full illustrations and demonstrations for each task are available in a review 

article (Chamberlain et al., 2011). 

2.4 EEG Recording and Pre-Processing 

Ten minutes of EEG was recorded in an eyes-closed resting condition. The recording 

was paused if the participant showed signs of fatigue or restlessness. The EEG was acquired 

using a 128-channel system (HydroCel Geodesic Sensor Net, Electrical Geodesics, Inc., 

Eugene, OR). The impedance of all electrodes was less than 50 kΩ. All electrodes were 

physically referenced to Cz (fixed by the EGI system). The EEG was amplified with a band 



pass of 0.01 to 200 Hz, which was digitized online at a sampling rate of 1,000 Hz. The EGI 

data were converted to allow analysis using EEGLAB and Neuroscan software Version 4.3. 

Nineteen channels were selected based on the international 10-20 system. All 

channels were offline re-referenced to linked ears, and resampled at 256 Hz, filtered by a 

band-pass filter from 1 Hz to 70 Hz and a 50-Hz notch filter. Visual inspection was used to 

identify and exclude sections of EEG trace containing gross artifacts. The Independent 

Component Analysis function in EEGLAB (Delorme & Makeig, 2004) identified components 

related to eye and muscle movements and there were excluded; this is a semiautomatic 

process aided by a tool box in EEGLAB, ADJUST (Mognon, Jovicich, Bruzzone, & Buiatti, 

2011). Then, in line with earlier resting EEG studies, the first 3 min were extracted from the 

artifact-free EEG data and were segmented into 4-s epochs. These epochs were Fourier 

transformed using a Hamming window.  Summed EEG band power was calculated for four 

frequency bands: delta (1.5-3.5 Hz), theta (3.5-7.5 Hz), alpha (7.5-12.5 Hz), and beta (12.5-

25 Hz). The total power and relative power of four bands were used in the statistical analysis 

as these two indices are reliable to characterize EEG features in participants with AD/HD 

(Clarke et al., 2011). Relative power was calculated by dividing absolute power in each 

frequency band by the total of bands. 

2.5 Statistical Analysis 

ANOVAs with between-subjects factors of Age (child, adolescent) and Group 

(AD/HD, control) and within-subjects topographic factors of Lateral (left, midline, right) and 

Sagittal (frontal, central, posterior) were conducted for the theta/beta ratio, and separately for 

each frequency band in relative power. Topographic effects were examined using an 

established method (Clarke et al., 2001a). All electrodes were divided into nine regions: left 

frontal (F3, F7), midline frontal (Fz), right frontal (F4, F8), left central (T3, C3), midline 

central (Cz), right central (T4, C4), left posterior (T5, P3, O1), midline posterior (Pz), and 

right posterior (T6, P4, O2). The EEG data for each region were calculated by averaging all 

electrode(s) within the area. Planned contrasts were examined within the Sagittal and Lateral 

factors. Within the Sagittal factor, planned contrasts compared the frontal (F) and posterior 

regions (P), and the central region (C) with the mean of the frontal and posterior regions 

(F/P). Within the Lateral factor, the contrasts compared the left hemisphere (L) with the right 

(R), and the midline region (M) with the mean of the hemispheres (L/R). The contrasts are 



planned, and there are no more of them than the degrees of freedom for the effect, so no 

Bonferroni-type adjustment to α is required (Tabachnick & Fidell, 2007). 

To examine the influence of age and IQ on behavioral performance, partial 

correlations separately examined the relationships between EEG band power/percentage and 

scores from the AD/HD Rating Scale (ADHD-RS) and task performance measures from the 

CANTAB with age and IQ co-varied. Only the Sagittal factor was entered into analyses to 

reduce the number of correlations and the risk of Type 1 error from testing multiple 

correlations. The significance level for the correlations was adjusted to a more 

conservative .01; meanwhile, the significance close to .01 is also reported as this is a 

preliminary study (p ≤ .015). 

3 Results 

Demographic information for the groups is shown in Table 1. The children with 

AD/HD and controls did not differ significantly in age. A main effect of Group was 

significant for IQ, and indicated that participants with AD/HD (M = 103.98, SD = 11.36) had 

a lower IQ than controls (M = 123.92, SD = 8.98), F = 70.44, p < .001, ��
� = 0.492. 

Table 1. Demographic Information for the AD/HD and Control Groups. 

 Child AD/HD Adolescent 

AD/HD 

Child control Adolescent 

control 

Gender 8 F; 16 M 4 F; 12 M 4 F; 14 M 5 F; 14 M 

Mean age in years 10.18 (0.70) 13.45 (0.60) 10.49 (0.77) 13.59 (0.38) 

WISC Full Scale IQ 104.42 (12.05) 103.31 (10.57) 121.89 (9.44) 125.84 (8.31) 

AD/HD combined type 11 7 — — 

AD/HD inattentive type 13 9 — — 

Note. Numbers in brackets represent standard deviation. WISC = Wechsler Intelligence Scale III for children. 

 

3.1 Delta 

Fig. 1 and Fig. 2 display brain maps for the two groups for relative power of each 

EEG band, TBR and total power. A Sagittal main effect and planned contrasts (linear: F = 

132.178, p < .001, = 0.644; quadratic: F = 5.459, p = .022, ��
� = 0.070) indicated that delta 

was maximal in the fronto-central region. Main effects of Group (F = 7.501, p = .008, ��
� = 

0.093) and Age (F = 13.776, p < .001, ��
�	= 0.159) indicated that children with AD/HD had 

globally increased delta power compared to controls, and that adolescents showed decreased 



delta power compared to children. An Age × Sagittal interaction (quadratic, F = 3.991, p 

= .049, ��
� = 0.058) revealed that the difference between C and F/P was larger in adolescents 

than children, indicating that the reduction with age was more obvious in frontal and 

posterior regions. 

Fig. 1. Topographic maps for relative power (%), TBR, and total power (µV
2
) for each level 

of Group (top panel), and each level of Age (bottom panel). Note. TBR = theta/beta ratio.  

 

3.2 Theta 

Laterally, theta was maximal in the midline region (quadratic: F = 77.421, p < .001, 

��
� = 0.515). The Sagittal main effect and planned contrasts (linear: F = 82.741, p < .001, 

��
�	= 0.531; quadratic: F = 187.985, p < .001, ��

�	 = 0.720) indicated a fronto-central 

distribution. A main effect of Age (F = 12.171, p = .001, ��
�	= 0.143) indicated that theta 

decreased with increasing age. An Age × Group (F = 4.354, p = .040, ��
�	= 0.056) interaction 

revealed that theta decreased more with age in the AD/HD group compared to controls. A 

Group × Age × Sagittal (linear) interaction (F = 4.305, p = .042, ��
�	= 0.056) indicated the 

Age × Group interaction was less marked at frontal than posterior regions. This was mainly 

driven by the elevated theta power in frontal regions in the AD/HD group. 



3.3 Alpha 

Fig. 2. Topographic maps for relative power (%), TBR, and total power (µV
2
), for each level 

of Age and Group separately. Note. TBR = theta/beta ratio. 

 

The Sagittal effect and contrasts (linear: F = 126.853, p < .001, ��
�	= 0.635; quadratic: 

F = 109.483, p < .001, ��
�	= 0.600) revealed that alpha was maximal in the posterior region. 

Main effects of Group (F = 4.384, p = .040, ��
�	= 0.057) and Age (F = 9.204, p = .003, ��

�	= 

0.112) indicated that children with AD/HD had globally decreased alpha, and that adolescents 

had increased alpha compared to children. An Age × Sagittal interaction (linear, F = 4.480, p 

= .038, ��
�	= 0.058) showed that the difference between F and Pwas larger in adolescents, an 

effect mainly driven by the larger increase in posterior regions in adolescents. 

 

3.4 Beta 

Laterally, beta was maximal in the hemispheres compared to the midline (quadratic, F 

= 192.912. p < .001, ��
�	= 0.725). There was a central maximal distribution along the Sagittal 

dimension (quadratic, F = 32.260, p < 0.001, ��
�	= 0.306). An Age main effect (F = 8.250, p 



= .005, ��
� = 0.102) showed that beta was increased in adolescents compared to children. An 

Age × Sagittal interaction (linear, F = 10.850, p = .002, ��
�	= 0.129) revealed that the 

difference between F and P was increased in the adolescent group with a larger increase in the 

posterior region. No Group effect or any interactions with Group were found. 

3.5 TBR 

TBR had a left-midline distribution along the Lateral dimension (linear: F = 5.519, p 

= .022, ��
�	= 0.070; quadratic: F = 141.927, p < .001, ��

�	= 0.660). The Sagittal analysis 

(linear: F = 24.426, p < .001, ��
�	= 0.251; quadratic, F = 8.752, p = .004, ��

�	= 0.107) 

indicated that TBR was maximal in the fronto-central region. An Age main effect (F = 

12.219, p = .001, ��
�	= 0.143) indicated that TBR decreased with age. An Age × Lateral 

interaction (quadratic, F = 7.064, p = .010, ��
�	= 0.088) indicated that the difference between 

M and L/R was reduced in adolescents, which is mainly caused by the larger reduction in the 

midline region. No Group effect or interaction with Group was found. 

3.6 Total Power 

A Sagittal main effect and planned contrasts (linear: F = 5.846, p = .018, ��
�	= 0.075; 

quadratic: F = 13.176, p = .001, ��
�	= 0.155) indicated that total power was maximal in 

central-posterior regions. Total power was maximal in the middle line (quadratic, F = 84.153, 

p < .000, ��
�	= 0.539. An Age main effect (F = 9.049, p = .004, ��

� 	= 0.112) indicated that total 

power was decreased in adolescents compared to children. An Age × Sagittal interaction 

(linear, F = 7.709, p = .007, ��
�	= 0.097) showed that the difference between F and P was 

larger in adolescents, the effect mainly caused by the larger reduction in the posterior region 

in adolescents. No Group effect or interaction with Group was found. 

3.7 Behavioral Correlates 

Partial correlations were conducted among participants with AD/HD to analyze the 

relationship between EEG and the behavioral measures with age and IQ as covariates. The 

correlations are shown in Table 2. 

 

 

 



Table 2. Correlations Between EEG and Behavioral Measures. 

 Theta Beta TBR Total power 

Inattention 

ADHD-RS 

— F, r = −.373 F, r = .411 — 

SOC 

STT 

C, r = .330 

P, r = .398 

— — — 

CGT 

BP 

— — — F, r = .360 

P, r = .347 

Note. EEG indices (Delta and Alpha) and behavioral measures (Hyperactivity-Impulsivity, 

IED, SST, and SWM) were not listed as no significant correlations were found for them. 

Regional abbreviation: F, frontal; C, central; P, posterior. EEG = electroencephalogram; TBR 

= theta/beta ratio; ADHD-RS = AD/HD Rating Scale; SOC = Stockings of Cambridge; STT = 

subsequent thinking time; CGT = Cambridge Gambling Task; BP = betting proportion; IED = 

Intra-Extra Dimensional Set Shift; SST = Stop Signal task; SWM = Spatial Working 

Memory. 

 

With regard to symptoms, the inattention score measured by the ADHD-RS was 

significantly correlated with frontal beta power (r = .304, p = .027), and frontal TBR ratio (r 

= .379, p = .005). No EEG outcome was related to hyperactivity and impulsivity measured by 

the ADHD-RS. 

For EF, central (r = .330, p = .016) and posterior (r = .398, p = .003) theta power was 

positively correlated with STT in spatial planning (SOC); thus, increased frontal/posterior 

theta and posterior TBR are related to a slower response. For decision making (CGT), frontal 

(r = .360, p = .008) and posterior (r = .347, p = .011) total power were positively related to 

the amount of betting behavior, indicating an increased total power accompanied greater risk 

taking behavior. No relationship was found with the shifting, response inhibition, and 

working memory tasks. 

4 Discussion 

The diagnostic value of TBR has recently been questioned in the literature. Research 

shows that the difference in TBR between participants with AD/HD and healthy controls has 

decreased in recent years, and that age may affect the group difference. To investigate this 

further, the current study compared EEG spectral power, including TBR, between participants 

with AD/HD and healthy controls in child and adolescent groups. Moreover, we explored the 

relationship between resting EEG and a range of neuropsychological functions to further 

understand the behavioral relevance of brain resting activities. 



4.1 Relative and Total Power 

Previous studies report that, as age increases, higher frequency brain activity 

decreases and lower frequency activity increases, with decreased total power (Barry & 

Clarke, 2009). Consistent with previous results, the current study found reduced delta, theta, 

and total power, and increased alpha and beta in adolescents compared to children. With 

regard to the comparison between groups, participants with AD/HD showed more delta and 

less alpha, which is in line with past studies indicating that AD/HD is accompanied by 

increased slow wave activity and reduced faster activity (Barry & Clarke, 2009; Barry et al., 

2003). The interaction between Group and Age for theta, which decreased slower in the 

AD/HD group than control group with increasing age, may indicate a developmental 

deviation. The result is in line with developmental EEG studies in which theta activity was 

still abnormal in adults with AD/HD whereas abnormalities in other bands approached 

normal levels (Barry & Clarke, 2009). 

Frontal beta and frontal TBR were associated with the inattention score measure of 

the ADHD-RS. These results are consistent with recent reports on adults with AD/HD. Roh et 

al. (2015) and Roh, Park, Shim, and Lee (2016) reported that inattention issues were linked to 

theta, beta, and also gamma activity. The multiple relationships between elements of the EEG 

and AD/HD symptoms fits well with comprehensive AD/HD models, such as Cognitive-

Energetic Model (Sergeant, 2005) and multiple pathways model (Sonuga-Barke, 2005). 

These models commonly emphasize that different resources contribute to symptoms. 

The relationship of EEG to EF task performance was also examined in the AD/HD 

group, with correlations found with spatial planning and decision making. These results are in 

line with recent developments in cognitive neuroscience that examine behavioral 

relationships with brain resting activity. The interest stems from the perspective that brain 

resting activity has consistent networks across individuals and the networks are varied when 

relevant tasks are presented (Cabral et al., 2014; Raichle & Snyder, 2007). The point was 

subsequently supported by imaging studies in which the resting networks were correlated 

with some attention and EF tasks (Cabral et al., 2014; Reineberg et al., 2015). Studies further 

classified the brain resting networks as “task-negative” or “task-positive.” The former refers 

to networks that are activated in resting state and will be decreased when tasks emerge, and 

the latter refer to other networks that are activated during rest but will be increased when 

tasks emerge (Cabral et al., 2014). In the present study, the resting state was measured by 



EEG, and correlations were found in AD/HD participants. To summarize (a) central and 

posterior relative theta was positively related to planning time; (b) frontal and posterior total 

absolute power were positively related to betting in decision making. 

4.2 TBR 

In the current study, TBR decreased with increasing age across groups, which is 

consistent with the developmental pattern revealed by other studies (Barry & Clarke, 2009). 

TBR did not differ between ADHD and control groups in either children or adolescents. This 

result contradicts early studies in which a significantly increased TBR was consistently 

observed in participants with AD/HD compared to healthy controls. In 2006, a meta-analysis 

reported that the effect size of the TBR group difference was 3.08 (Snyder & Hall, 2006). 

However, our results support a trend exposed by Arns et al. (2013) in which the effect size of 

the group difference was negatively related to the year of publication. This reduction was 

more obvious for the studies published after 2008. Consequently, two recent studies did not 

report a significant TBR difference between groups (Loo et al., 2013; Ogrim et al., 2012). In 

the current study, the lack of a group difference was replicated within two age-ranges 

(children: 8-12 years, adolescents: 12-15 years) in a Chinese population. Close inspection 

shows that the value of TBR is elevated in our controls whereas it remains similar in AD/HD 

group compared to previous studies, which supports the view that it is a change in controls 

over the years that has reduced the difference between groups (Arns et al., 2013). Arns et al. 

(2013) speculated that changes in living habits, such as decreasing sleep duration, may be 

responsible for this effect. As no data were recorded for sleep, this assumption cannot be 

examined in the current study. 

TBR was positively correlated to inattention symptoms. This result matches the 

studies that support the relationship between TBR and AD/HD symptoms in children (e.g., 

Loo et al., 2013). The result is also in parallel with findings in the normal population. 

Putman, van Peer, Maimari, and van der Werff (2010) reported that higher frontal TBR was 

related to poorer attentional control and response inhibition performance. Although we did 

not find a relationship between TBR and response inhibition, this may be because of the 

difference in the task paradigms. A stop-signal task was used to measure response inhibition 

in the current study, while an emotional Go/Nogo task was used in the Putman study. 

However, the correlation between TBR and inattention is contrary to Ogrim et al. (2012) in 

which the relationship was not found, which may be attributed to methodological differences. 



The EEG was recorded under eyes-open condition and different frequency bands were used 

in our study compared to Ogrim et al. (2012). 

4.3 Implications and Future Studies 

Along with recent findings, our results do not support the diagnostic value of TBR 

among children with AD/HD (Arns et al., 2013; Lenartowicz & Loo, 2014). Given the age 

range of the present study (8-15 years), future studies may extend the findings to the later 

stage of adolescent. AD/HD symptoms are usually varied in children as compared to adults, 

with implications for EEG. The increasing ratio in controls over time is suggested to reduce 

the group difference (Arns et al., 2013). Further studies may examine whether changes of 

lifestyle and habits in healthy control children is leading to the increasing TBR, as suggested 

by Arns et al. (2013). It should be noted that no healthy controls in this study had substantial 

inattention symptoms (they met less than four DSM-IV inattention criteria), which also raises 

a question whether TBR has the same behavioral meaning in AD/HD and healthy 

populations, given the result that TBR was positively related to inattention symptom in 

AD/HD. In addition, the heterogeneous nature of TBR in the AD/HD population may 

contribute to the lack of difference in TBR (Arns et al., 2013). According to a cluster 

analysis, 35% of the AD/HD population was characterized as having a higher TBR and the 

others showed different EEG deficit patterns (Clarke et al., 2011). 

The heterogeneous feature was not only found in EEG studies but also in 

neuropsychological research (Nigg et al., 2005). The neuropsychological deficits in AD/HD 

were initially explained as a core inhibitory deficit (Barkley, 1997). However, researchers 

subsequently found that not all participants with AD/HD showed inhibitory deficits (Willcutt, 

Doyle, Nigg, Faraone, & Pennington, 2005) and a neuropsychological AD/HD subtype was 

suggested (Nigg et al., 2005). Given the neuropsychological correlations found in the current 

study, the heterogeneous EEG may be associated with the heterogeneous neuropsychological 

functions. In other words, individual differences in EEG may indicate differences in 

neuropsychological functions. It should be noted that spatial planning is regarded as a 

component of EF in CANTAB; however, planning ability, as decision making in the 3-

component EF model, is considered a higher level cognitive function based on the three EF 

components (inhibition, shifting and working memory; Diamond, 2013; Miyake et al., 2000). 

In this study, EEG outcomes (theta power and total power) are associated with spatial 

planning and betting in decision making but none of the EEG outcomes are related to 



response inhibition, shifting and working memory. Following the EF model, the resting EEG 

measures are indicative of two higher cognitive functions (planning and decision making) 

rather than EF in AD/HD. 

Practically, the behavioral correlations with EEG support the prognostic value of EEG 

in AD/HD. As EEG is doubtful in diagnosing AD/HD, a prognostic purpose is suggested for 

using EEG in AD/HD (Arns et al., 2013; Lenartowicz & Loo, 2014). The suggestion stems 

from the findings that EEG can predict the efficacy of stimulant treatment in patients with 

AD/HD (Arns, 2012; Clarke, Barry, McCarthy, & Selikowitz, 2002a). Based on current 

results, EEG components may be prognostically used as biomarkers of neuropsychological 

functions. Theoretically, the correlations also support a neurobiological hypothesis in AD/HD 

(Castellanos & Proal, 2012; Sonuga-Barke & Castellanos, 2007). The hypothesis suggests the 

behavioral deficits in AD/HD are neurobiologically rooted in impaired spontaneous activities. 

Recently, Hsu, Benikos, and Sonuga-Barke (2015) and Hsu, Broyd, Helps, Benikos, and 

Sonuga-Barke (2013) reported that the resting state was linked to waiting-related behaviors in 

an AD/HD sample. Here, we have extended this to look at the relationship between resting 

state and EF and higher order cognitive functions. However, the current study used a different 

definition of resting state from that of Hsu and colleagues. Here, the resting state was defined 

in terms of traditional EEG spectrum bands. These bands have been shown to be activated in 

a similar pattern across individuals (Chen, Feng, Zhao, Yin, & Wang, 2008) and to relate to 

resting networks measured by functional magnetic resonance imaging (Mantini, Perrucci, Del 

Gratta, Romani, & Corbetta, 2007). In comparison, Hsu et al. (2015) and Hsu et al. (2013) 

directly adopted a similar methodology to imaging studies and operationalized the resting 

state by measuring the EEG oscillation in a narrow band of ‘very low frequency’ (below 0.2 

Hz). Further studies may explore differences between these two ‘resting state’ measures in an 

AD/HD sample. 

4.4 Limitations 

A limitation of this study is that IQ in controls is higher than the AD/HD group and 

the typical population. Here, we followed a standard methodology that shows little influence 

of IQ in EEG group analyses (Barry et al., 2009; Clarke et al., 2006), and it would have been 

preferable to avoid such a difference. Also, given the preliminary nature of the behavioral 

correlational analysis in AD/HD, the neuropsychological functions were not recorded in the 

control groups and more information may have been obtained by comparing the behavioral 



correlations in the different groups. In addition, although CANTAB is a valid tool to measure 

a wide range of neuropsychological functions (Chamberlain et al., 2011), with regard to the 

complicated features of EF and higher order cognitive functions, measuring the functions by 

only one task in CANTAB leaves open the issue of task impurity (Diamond, 2013; Miyake et 

al., 2000). For example, the individual difference in response time on spatial planning may be 

caused by the variance on the lower order reaction process rather than on the planning per se. 

Factor analysis is accepted as a better way to extract the purer components (Miyake et al., 

2000). Future studies may further explore the behavioral relationships of EEG by using factor 

analysis with a number of different tasks.  

5 Conclusion 

With recent debates on the diagnostic value of TBR in AD/HD, the aim of the current 

study was to compare TBR between AD/HD and control groups of children and adolescents. 

In line with recent studies, we did not find a group difference on TBR across the age range, 

which does not support the diagnostic value of TBR in AD/HD. However, inspired by recent 

findings in cognitive neuroscience, the current study explored the relationship between EEG 

spectral power and a range of neurophysiological tasks in participants with AD/HD. With the 

significant correlations, the results support the prognostic value of resting EEG which may be 

biomarkers of neuropsychological functions. 
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