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Positive severity feedback between consecutive fires in
dry eucalypt forests of southern Australia

JAMES W. BARKER � AND OWEN F. PRICE

Centre for Environmental Risk Management of Bushfires, University of Wollongong, Wollongong, New South Wales 2522 Australia

Citation: Barker, J. W., and O. F. Price. 2018. Positive severity feedback between consecutive fires in dry eucalypt forests
of southern Australia. Ecosphere 9(3):e02110. 10.1002/ecs2.2110

Abstract. Fire regimes have long-term effects on ecosystems which can be subtle, requiring study at a
large spatial scale and temporal scale to fully appreciate. The way in which multiple fires interact to create
a fire regime is poorly understood, and the relationship between the severities of consecutive fires has not
been studied in Australia. By overlaying remotely sensed severity maps, our study investigated how the
severity of a fire is influenced by previous fire severity. This was done by sampling points at 500-m spacing
across 53 fires in dry eucalypt forests of southeast Australia, over a range of time since fire spanning every
major fire season for 30 yr. Generalized additive models were used to determine the influence of previous
severity on the probability of crown fire and understory fire, controlling for differences in time since fire,
topography, and weather. We found that a crown fire is more than twice as likely after a previous crown
fire than previous understory fire, and understory fire is more likely after previous understory fire. Our
findings are in line with the results of studies from North America and suggest that severe fire promotes
further fire. This may be evidence of a runaway positive feedback, which can drive ecological change, and
lead to a mosaic of divergent vegetation, but research into more than two consecutive fires is needed to
explore this. Our results also suggest that a low-severity prescribed fire may be a useful management
option for breaking a cycle of crown fires.
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INTRODUCTION

Wildfires are a heavily studied natural phe-
nomenon, but many studies treat them as discrete
disturbance events, when they are an ongoing nat-
ural process (Bowman et al. 2009). This process is
termed the fire regime, which represents the his-
tory of all fire at a location, comprising the number,
severity, and seasonality of fires (Gill 1975). Most
studies of fire regimes have looked only at the fre-
quency of fires (Bradstock et al. 1997, Enright et al.
2015, Fairman et al. 2016, Hammill et al. 2016), at
the expense of the other aspects of fire regimes
(Morgan et al. 2001). Fire severity is a component
of the fire regime for which we lack knowledge,
especially in the context of broader processes.

Severity is a measure of the vegetation con-
sumed by a fire, making it useful for examining
the impact of fire on ecosystems. The severity of a
fire affects the ecosystem response and recovery.
Fire can result in changes to the relative abun-
dances of species, as well as structural changes in
the fuel strata and stand density (Schwartz et al.
2016). High-severity fire can lead to a reduced abil-
ity for the vegetation to recover (Ireland and Petro-
poulos 2015), compared to low-severity fire, but
this depends on the recovery method of the spe-
cies. High-severity fire will be more damaging to
resprouting plants than low-severity fire and may
result in plant death. This would be expected to
reduce post-fire recovery. However, high-severity
fires can also stimulate germination in some
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re-seeding species through smoke or heat cues
(Gill 1981). Some of these species require severe
fire events to germinate seeds (Ooi et al. 2006), as
has been clearly demonstrated for Acacia linifolia
(Liyanage and Ooi 2015). This stimulation may
result in very vigorous plant growth after a severe
fire (Gordon et al. 2017), leading to high fuel loads
some time after a fire.

These responses may then influence the sever-
ity of subsequent fires. There are two possibili-
ties: a negative (stabilizing) feedback between
fires, whereby high severity in the previous fire
leads to slow plant recovery (Godwin 2011,
Lydersen et al. 2014), and therefore low fuel
loads, and ultimately lower severity if a second
fire occurs. Alternatively, there may be a positive
(runaway) feedback between fires, where initial
high-severity fire leads to rapid and dense plant
growth, and hence high fuel load (Williams et al.
2012, Clarke et al. 2015), resulting in an increased
risk of further high severity if a second fire is to
occur. In the negative feedback scenario, plant
(and fuel) dynamics are driven mostly by fire-
caused mortality which increases with severity.
In the positive feedback scenario, dynamics are
driven mostly by post-fire recovery and recruit-
ment which increase with severity. These alterna-
tives are illustrated in Fig. 1.

These feedbacks have implications for risk
management strategies, as prescribed fire and
other fuel reduction processes are commonly
used for fire management in Australia (Ellis et al.
2004). The effectiveness of low-intensity pre-
scribed fires on fuel loads has not been fully
explored (Bradstock et al. 2010), and while pre-
scribed burning does have a quantifiable effect
on subsequent wildfire, these effects can be sub-
tle and dependent on how burning is applied
(McCaw 2013). The type of feedback occurring in
the system would determine the effect of pre-
scribed burning.

Few studies have examined the effect of the
severity of previous fires on the severity of subse-
quent fire. The handful of studies looking at this
have been in North America (Thompson et al.
2007, van Wagtendonk et al. 2012, Harris and
Taylor 2017), with most only having one response
fire, and occurring mostly in conifer forests. These
studies have consistently found that fires reburn
at the same or higher severity as the previous fire,
supporting the idea of a positive feedback.

The long-term effects of fire severity on Aus-
tralian ecosystems are unknown, as few studies
have examined this aspect of fire regimes. If the
positive feedback effect occurs, then there is a
potential spatial divergence in plant communities
where some patches would experience a regime
of repeated severe fire, with resulting increase in
vegetation density, while other patches experience
a regime of repeated low-severity fire and lower

Fig. 1. A conceptual model of forest understory life
history, with four processes: gradual inter-fire replace-
ment, post-fire pulsed recruitment, plant growth, and
mortality. In a negative fire feedback, growth and mor-
tality dominate: Severe fires kill many plants, and
recruitment is weak, so plant density decreases, and
hence, future severe fire becomes less likely. Con-
versely, low-severity fires kill few plants so continued
growth increases the likelihood of future severe fire. In
a positive feedback, recruitment is more influential,
and mortality is less. Severe fire will kill a proportion
of the plants, but there is vigorous recruitment,
increasing the probability of subsequent severe fire. A
low-severity fire does not trigger such a recruitment
pulse and so leaves the forest less likely to experience
subsequent severe fire. This process would not affect
the canopy species unless there is an extremely severe
fire, resulting in basal resprouting.
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vegetation density. Positive feedbacks may also
benefit risk management strategies. A low-sever-
ity prescribed burn may be able to be used to
interrupt a cycle of extreme severity, and reduce
the chance of crown fire in subsequent wildfires.

The length of time since the previous fire influ-
ences severity due to a gradual recovery of fuel,
meaning that the probability of high-severity fire
increases over time (Bradstock et al. 2010, Lyder-
sen et al. 2014). This recovery process varies due to
differences between vegetation types, the severity
of the fire, and the characteristics of the location.

The focus of this study was to determine the
relationship between the severity of a fire and
severity of previous fires for 53 forest fires in
New South Wales (NSW), Australia. The fires
spanned a range of years, with differing intervals
between the fires. Our two main questions
addressed in this study are as follows:

1. How is the severity of a fire influenced by
the severity of the previous fire?

2. How is this relationship influenced by the
amount of time between the fires?

We hypothesized that initially, severity in the
previous fire has a negative effect on severity in
the subsequent fire, because high-severity fires
remove more fuel, leaving less available for subse-
quent fires. However, this effect would only be
present for a short time (<10 yr) following fire. As
the interval between fires increases, the relation-
ship will reverse, and a positive feedback will
occur. This is because high-severity fires stimulate
more vigorous growth, leading to dense vegeta-
tion over time, creating more fuel (i.e., we hypoth-
esize a positive severity feedback).

METHODS

Study area
The study was conducted in a 1.1 million ha

area of the Sydney region of New South Wales,
Australia. The area encompassed a large part of
the Greater Blue Mountains World Heritage
Area, extending from Singleton in the north, to
Wollongong in the south, reaching as far as Lith-
gow to the West (Fig. 2). The study area has a
temperate climate, with cool winters and warm
summers, influenced by proximity to the ocean.
Average temperatures range from 16°C in July to

26°C in December (Australian Bureau of Meteo-
rology). The area receives an average rainfall of
1100 mm per year, with late summer months gen-
erally having the highest level (Tozer et al. 2010).
There is a gradient of rainfall, decreasing from
north to south, with orographic effects from the
Illawarra escarpment and the Blue Mountains.
The region is characterized by periodic drought
conditions and extreme fire weather (Bradstock
et al. 2009). Elevations range from 0 m to 1215 m
across sandstone geology (Doerr et al. 2006). The
fire season in this area runs through spring and
summer, from October to March.
The vegetation of the region is dominated by

dry sclerophyll forests and woodlands, primarily
composed of Eucalyptus species (Tozer et al.
2010). This is interspersed by smaller areas of
wet sclerophyll forest and rainforests, which
mainly occur in moister areas such as gullies or
south-facing slopes (Keith and Simpson 2010).

Fire severity data
The study was conducted using historical fire

severity mapping from a variety of sources,
spanning 1982–2013 (Table 1). This dataset repre-
sents ~90% of all wildfires that occurred in the
study area between 1982 and 2014, but some fires
did occur in the intervals between the fires
(mostly prescribed burns).
The delta Normalized Difference Vegetation

Index (NDVI) was used to measure fire severity
in the data used in this study. This index is com-
monly used for the measurement of fire severity
(Escuin et al. 2008, Keeley 2009). The source
severity maps were pre-classified from NDVI
into severity classes based on the definitions of
Keeley (2009) and Ryan and Noste (1985): (1) low
to moderate, with little to no effect on the canopy
and fire restricted to the lower strata of vegeta-
tion; (2) high, with crown scorch and extensive
understory burning; (3) very high, for fire involv-
ing extensive crown scorch and defoliation; and
(4) extreme, for the highest severity, involving
complete crown consumption.
We simplified this classification into two

binary response variables: very high-/extreme-
severity occurrence (severity classes 3 and 4),
and low-severity occurrence (severity class 1).
High severity was excluded from the analysis as
its effects would not be as strong as the two
extremes. This approach has been commonly
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applied in Australian studies of fire severity
(Bradstock et al. 2010, Price and Bradstock 2012,
Storey et al. 2016). The method also relates to fire
management, since low-severity fires are gener-
ally amenable to suppression, while high-sever-
ity fires are not (Gill et al. 1987).

The severity maps were intersected to identify
areas burned in two fires. The second fire was
the study fire, while the first fire, referred to as
the previous fire, was a predictor. Unburnt areas
in the study fires and areas with a fire between
the first and second severity maps were also

Fig. 2. Map of the study area, with the hatched areas representing the fires. The area is in the Sydney region of
NSWand is bounded by Singleton in the north and Wollongong in the south, reaching West to Lithgow. The dark
gray area is the Greater Blue Mountains World Heritage Area (mostly intact eucalypt forest).
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removed. There were a total of 53 study fires.
These data spanned inter-fire intervals from 4 to
33 yr, with most cases being between 7 and 12 yr
(Fig. 3). The study fires occurred in four fire sea-
sons, with the most fires occurring in 2002/03.

Ancillary data
Weather has a profound effect on fire severity

(Price and Bradstock 2012), and Forest Fire Dan-
ger Index (FFDI; McArthur 1967) is often used as

a predictor of risk in bushfires and is a function
of wind speed, temperature, humidity, and
drought factor (Bradstock et al. 1998). The daily
maximum FFDI was used as a summary for fire
weather effects for each day of the fires. Forest
Fire Danger Index has been used previously in
the study of fire severity and other aspects of fire
behavior (Price et al. 2015, 2016). Fire progres-
sion maps and hotspots were used to estimate
the day on which the points in a fire burned.

Table 1. The GIS severity data which were used in the study.

Data Sensor Method Resolution References

2013/14 severity Landsat 7 dNDVI 30 m Hammill (unpublished data)
Aerial photo dNDVI 2 m Price (unpublished data)

2006/7 severity Landsat 7 dNDVI 30 m Hammill et al. (2010)
2002/3 severity Landsat 7 dNDVI 30 m Hammill et al. (2010)
2001/2 severity Landsat 7 dNDVI 30 m Hammill and Bradstock (2006)

SPOT 2 dNDVI 10 m Hammill and Bradstock (2006)
1997/8 severity Landsat 5 dNDVI 30 m Hammill et al. (2010)
1993/4 severity Landsat 5 dNDVI 30 m Hammill et al. (2010)
1982/3 severity Landsat 4 dNDVI 30 m Hammill et al. (2010)

Note: Table shows source data layers and reference for the author of the data.

Fig. 3. The data for (a) previous severity, (b) FFDI, and (c) topographic position, all plotted against three levels
of severity and jittered to represent the density of points. Slope (degrees; d) is plotted against solar radiation, as
the range of values for solar radiation is dependent on slope. The histogram (e) shows the number of sample
points for each time since fire.
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Progression maps were available for the 2006/7
fire season and some of the 2013/14 fires (Office
of Environment and Heritage, unpublished data).
Moderate-resolution imaging spectroradiometer
(MODIS) active fire data (Giglio et al. 2003) were
used to determine the dates for the remaining
fires. The dates were then used to assign daily
maximum FFDI data to each progression poly-
gon. These data were taken from the records of
the closest weather station to each fire, adjusted
for elevation. Weather data more accurate than
daily values were not obtainable from the avail-
able data, because the time of day at which each
point burned was unknown.

The vegetation classes for each point were
extracted from an updated vegetation map for
NSW (Keith and Simpson 2010). The data were
restricted to include only the shrubby sub-forma-
tion of dry sclerophyll forests, to control for the
effect different vegetation may have on severity.
This formation was the most common vegetation
type in the study area. Wet sclerophyll or the
grassy sub-formation of dry sclerophyll forests
may be expected to have lower severity than
shrub dominated dry sclerophyll forest, so this
might cause an apparent positive feedback.

Slope, topographic position, and exposure
were all derived from the 30-m resolution digital
elevation model (DEM) of NSW from Geoscience
Australia (available at http://www.ga.gov.au).
Exposure was calculated using the solar radia-
tion function in ArcMap 10.3 (ESRI 2010) to
determine the maximum amount of sunlight
received at a point, based on topography. Expo-
sure influences the moisture content of fuels and,
combined with slope, may influence the growth
of vegetation. Topographic position is the local
landscape position, expressed as the percentage
elevation in a 500-m window around each cell on
the DEM. 100% represents the highest local
point. These variables have been found to be
related to localized variation in fire severity
(Bradstock et al. 2010, Storey et al. 2016).

Analysis
A grid of sample points, 500 m apart, was cre-

ated over the study area. The 500-m separation
used has been found to counter spatial autocorre-
lation, as it is similar to the ridge–valley distance
in landscapes throughout the Sydney region and
has been used in previous severity studies

(Bradstock et al. 2010, Price and Bradstock 2012).
The severity levels of each overlapping fire, the
time between fires, as well as slope, topographic
position, FFDI, and exposure to solar radiation,
were recorded for each point (Fig. 3).
High severity dominated several fires, with little

variation across the fire; low severity similarly
dominated others. This may have caused a lack
of independence between points within fires. To
account for this, the identities of individual fires
were included as a random factor in the mixed
model method.
The data were split up for the analysis, with 70%

used for the training data and the remaining 30%
used as testing data. Generalized additive mixed
models were used to quantify the effects of previ-
ous fire severity, fire interval, and the ancillary
variables, FFDI and topography. All possible addi-
tive model combinations were examined, and the
best model and supported alternatives were identi-
fied using the statistical model selection method,
based on Akaike weights (Burnham and Anderson
2002). For the best model, all two-way interactions
were tested and retained if they increased the
weighting. Non-linearity in the response to the pre-
dictor variables in the best model was tested by
comparing linear terms with smooth terms, which
were retained if they increased the explanatory
power of the model. Smooth terms were used with
the default number of knots (k = 10) for most vari-
ables, but fewer knots were used for fire interval
(k = 4) to prevent overfitting.
Although our method minimized spatial auto-

correlation, we tested the degree to which it
occurred by using variograms and Moran’s I, a
statistical measure of autocorrelation, to ensure
that the proximity of points would not bias the
results. All statistical analyses were performed
using R 3.3.1 (R Development Core Team 2013).
The data are accessible in the Dryad Digital
Repository (Barker and Price 2018).

RESULTS

Very high-/extreme-severity fire represented
15.7% of the data, while low-severity fire con-
sisted of 53.2% and the remaining 31.1% of the
data were high severity, which was not analyzed.
The proportion of very high-/extreme severity
was more than double with previous very high/
extreme severity than with previous low severity
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(Fig. 4a). Likewise, the proportion of low-sever-
ity fire occurring was a third lower with previous
very high/extreme severity than with previous
low severity (Fig. 6a). The Moran’s I test also
indicated a low level of spatial autocorrelation
(I = 0.162, Z = 13.061, P < 0.001). This suggests
that autocorrelation did not substantially influ-
ence the models.

Very high/extreme severity
The statistical model determined to be the

most meaningful in determining the probability
of very high/extreme severity, using Akaike
weights, contained every measured predictor
variable (Table 2), and explained 14.0% of the
deviance. There were no supported alternative
models. Previous fire severity was the strongest
predictor of crown fire probability (P < 0.001;
Fig. 4d). The model had an accuracy of 84.6% in
the training data, compared to 84.8% in the test
data (Fig. 5a, b).

Forest Fire Danger Index had a positive rela-
tionship with the occurrence of very high/extreme
severity (P < 0.001, Fig. 4b). Topographic position
had a slight positive effect, but it was not statisti-
cally significant (P = 0.09; Fig. 4c). Fire interval
had a non-linear effect on the likelihood of very
high/extreme severity (P < 0.05), with a decrease
in likelihood after 16 yr; however, the overall

Fig. 4. (a) The proportion of very high/extreme severity for each level of previous severity in the raw data. The
model predictions for the independent effect of the variables; (b) FFDI, (c) topographic position, (d) previous
severity, and (e) fire interval (in years), and (f) the interactive effect of solar radiation and slope on the probability
of very high-/extreme-severity occurrence. The shaded areas on the line graphs represent 95% confidence inter-
vals. Values of solar radiation were restricted to those which were physically possible.

Table 2. The GAM model for very high/extreme sever-
ity included all variables.

Variable df v2 P

Prev. severity 1 125.99 ���

topos 1 2.90 0.09
FFDI 1 29.78 ���

Interval 2.99 10.70 �

Slope 9 solrad 8.38 68.36 ���

Note: Prev. severity is the previous severity, Interval is the
length of time between fires, topos is topographic position,
solrad is solar radiation, and FFDI is Forest Fire Danger Index.

�P < 0.05, ���P < 0.01.
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effect of interval was small (Fig. 4e). There was an
interactive effect of slope and solar radiation on
the occurrence of very high/extreme severity
(P < 0.001). As slope increased, solar radiation
had an increasingly negative relationship with
very high/extreme severity (Fig. 4f).

Low severity
The low-severity fire model with the highest

Akaike weight contained the variables: previous
severity, slope, topographic position, fire interval,
and FFDI (Table 3), and explained 14.4% of the
deviance. This model contained no interactions
between variables and there were no supported
alternative models. Previous fire severity was the
strongest predictor of low severity (P < 0.001;
Fig. 6d). The model had an accuracy of 67.9% in

the training data, compared to 67.7% in the test
data (Fig. 5c, d).
Topographic position, FFDI, and fire interval all

had negative effects on the occurrence of low-

Fig. 5. Predicted values (y-axis) from the fitted models, plotted over the observed values (x-axis) of very high/
extreme severity (a, b) and low severity (c, d) for the training and testing data. Violin plots show the probability
density, and the dashed line is the median.

Table 3. The best GAM model for low-severity fire
likelihood.

Variable df v2 P

Prev. severity 1 85.32 ���

topos 1 4.56 �

Interval 1 7.12 ��

FFDI 1 75.83 ���

Slope 4.97 71.48 ���

Note: Prev. severity is the previous severity, Interval is the
length of time between fires, topos is topographic position,
solrad is solar radiation, and FFDI is Forest Fire Danger Index.

�P < 0.05, ��P < 0.01, ���P < 0.001.
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severity fire (P < 0.05, P < 0.001, P < 0.01, respec-
tively; Fig. 6c, e, f), while slope had a positive and
slightly non-linear relationship with the probabil-
ity of low severity (P < 0.001; Fig. 6b).

DISCUSSION

The effect of previous severity
The likelihood of very high/extreme severity

was low compared to low severity, but it was sig-
nificantly more likely after previous very high/
extreme severity. Conversely, the probability of
fire restricted to the understory decreased with
increasing severity in the previous fire. These
results support our hypothesized response of a
positive feedback and match the relationships
found in previous studies from North American
conifer forests (Thompson et al. 2007, Thompson
and Spies 2010, van Wagtendonk et al. 2012).

Thompson and Spies (2010) found that the pat-
tern of severity was strongly influenced by the
shrub layer of vegetation, while the distribution

of the canopy had no effect. The influence of one
fire on another may also be mediated through the
shrub layer in our Australian Eucalypt forests.
Very high-/extreme-severity fire has been found
to stimulate rapid regrowth in eucalypt species
(Williams et al. 2012), and in species from the
shrub layer (Clarke et al. 2015, Gordon et al.
2017). Clarke et al. (2005) found that there is a
mass recruitment of understory species after a
severe fire in eastern Australian vegetation, and
these plants reach maturity within ten years of the
fire. A study in Warrumbungle National Park by
Gordon et al. (2017) found that shrub growth
after a fire was more vigorous in high-severity
patches than in low-severity patches. Similarly, in
California, Coppoletta et al. (2016) also found an
increase in shrub vegetation after severe fire,
which promoted further high severity in a subse-
quent fire. Shrubs may act as ladder fuels, allow-
ing the vertical spread of fire from the understory
into the canopy, creating a crown fire (Menning
and Stephens 2007). While it may be assumed that

Fig. 6. (a) The proportion of low severity for each level of previous severity in the raw data. The model predic-
tions for the independent effect of each variable; (b) slope, (c) topographic position, (d) previous severity, (e)
FFDI, and (f) fire interval (in years), on the probability of low-severity occurrence, with the shaded areas of the
line graphs representing 95% confidence.
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rapid growth in the shrub layer after a fire results
in higher fuel loads, leading to an increased prob-
ability of future crown fire, the specific effect of
shrub cover on fire severity has not been quantita-
tively examined.

It is unknown if the positive feedback found in
our study continues after the second fire, or if
there are limits. It may be the case that continued
successive crown fire would reduce plants’ abil-
ity to recover, leading to a reduction in fuel over
time. A continued positive effect could lead to
patches with divergent fire regimes and ulti-
mately different species next to each other, dri-
ven entirely by their fire history. Liyanage and
Ooi (2015) found high levels of variation in the
germination of individual plants from heat treat-
ments. This suggests that, while the shrub layer
may facilitate the relationship between fires, the
composition of the vegetation may also introduce
further variation.

There is evidence that the fire regime does
influence the species composition (Morrison
et al. 1995), though only frequency and interval
(not severity) have been studied in the past. If
plant species composition changes, it might pro-
vide further impetus for high-severity fires, like
the postulated grass–fire cycle, whereby flam-
mable grasses gradually replace less flammable
shrubs through repeated burning (Rossiter et al.
2003, Bowman et al. 2014). Alternatively, the
new species might be less flammable and so limit
the runaway severity effect. Further studies are
required to examine the influence the severity of
multiple fires has on subsequent severity, and the
effects of severity on vegetation regrowth.

The positive feedback we found in this study
also has management implications for the impact
of fire on human lives and property, especially
with the trends in increasing fire frequency, short-
ened intervals between fires, and increasing fire
extent, due to climate change (Cary et al. 2006,
Bradstock 2010, Moritz et al. 2012, Enright and
Fontaine 2014). Although the promotion of suc-
cessive severe fires may potentially increase risk,
this study has also revealed a process through
which this may be mitigated. Our results suggest
that low-severity fire promotes more low-severity
fire, so it may be possible to use low-severity pre-
scribed fire to interrupt cycles of high severity
and reduce human risk. This may be somewhat
dependent on the properties of location, but the

relationship between severities was found to be
strong in this study, so there is potential for this to
be an effective method.

Fire interval
There was some evidence of a weak non-linear

effect of fire interval on very high/extreme sever-
ity, and a linear effect on low severity. This is
counter to the hypothesis, which predicted an
interactive effect between fire interval and sever-
ity. The most likely reason for the lack of a strong
effect is that the minimum fire interval was four
years, so the immediate reduction in severity that
was expected was not captured by the data. Gor-
don et al. (2017) found dense shrub growth
18 months after a fire, and a study of planned
burns in Eucalypt forests found that understory
vegetation returned to 77% of the pre-fire bio-
mass one year after fire (Jenkins et al. 2016), indi-
cating that much of the revegetation would have
already occurred at the four-year interval in the
current study. Bradstock et al. (2010) found very
little crown fire at time since fire < 5 yr, though
Price and Bradstock (2012) found an effect of pre-
vious burning lasting up to ~7 yr.
In our study, the probability of very high/ex-

treme severity was low from 4 to 10 yr since the
previous fire, after which there was a slight
increase. There was then a decrease in very high/
extreme severity from 17 to 30 yr. However, this
may be an artifact of the data and requires fire
occurrence data to validate. However, the curve
of the relationship between fire interval and very
high/extreme severity does match the relation-
ship found using a fire behavior model (Zylstra
et al. 2016). The likelihood of low-severity fire
decreased linearly with increasing fire interval.
The overall effect of fire interval on severity
remained small. Storey et al. (2016) also found a
non-linear effect of time since the previous fire
on severity in the Sydney region. That study
found that severity peaked around ten years
since the previous fire, with a distinct decrease
after this time. A study in the USA also found
that fire severity remained low with less than
four years since the previous fire, increasing
afterward (Coppoletta et al. 2016). Lydersen
et al. (2014) found that severity was also low up
to fourteen years since the previous fire, in mixed
conifer forests. Neither of these studies found a
decline in severity over time. The most likely
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explanation of the decline over time in our study
and Storey et al. (2016) is that shrubs in dry euca-
lypt forests begin to thin after about 10 yr, and
so gradually reduce the likelihood of very high/
extreme severity.

Other variables
The topographic effects suggest that the sever-

ity of fires is linked to the inherent properties of a
site. This is supported by previous research in
NSW (Bradstock et al. 2010, Clarke et al. 2014,
Storey et al. 2016).

The probability of low severity increased with
slope. This has also been found previously in the
Sydney region (Bradstock et al. 2010, Storey et al.
2016). Bradstock et al. (2010) suggest that this is
due to rock outcrops being common on steeper
slopes, reducing fuel continuity and preventing
fire from reaching the canopy. Greater values of
topographic position had a reduced probability of
low severity, though there was no effect on very
high/extreme severity. This provides weak evi-
dence that severity is higher on ridge tops, than in
valleys or on hillsides, which has also been found
previously (Bradstock et al. 2010, Price and Brad-
stock 2012). Topographic position is a surrogate
for tree height, fuel moisture, and wind exposure.
Ridges have shorter trees than valleys and are
more exposed to wind (Bradstock et al. 2010), cre-
ating a greater chance of fire reaching the crowns
of trees. Valleys have higher fuel moisture than
ridges, reducing fire risk.

There was an interaction between slope and
solar radiation, which affected the probability of
very high/extreme severity. At low slopes, solar
radiation had a weak positive relationship with
very high/extreme severity. As slope increased,
this relationship reversed, becoming a distinct
negative relationship at a slope of 40°. Generally,
it is thought that fires are more intense on uphill
runs (Gould et al. 2007). However, slopes are also
associated with low moisture (due to rockiness
and high runoff). This, in combination with high
exposure to solar radiation, may have reduced
vegetation cover, compared to flatter areas.

While the effect of previous fire severity was
strong, with clear trends, the models only cap-
tured a small percentage of deviance (14% for sev-
ere fire, 14.4% for low severity). This indicates that
other factors, which were not explored, play a role
in the observed patterns. The most likely missing

factor was fine-scale variation in weather condi-
tions. The models in this study only included daily
maximum FFDI values for weather data, which
positively affected very high/extreme severity and
negatively affected low severity. While this did
have a strong influence, variation in the weather
over each day, such as changes in wind speed and
temperature, may have affected patterns of sever-
ity. Weather has been consistently found to have a
strong influence on the behavior of fires (Hammill
and Bradstock 2009, Bradstock et al. 2010, Pen-
man et al. 2013, Storey et al. 2016). Fine-scale vari-
ation within the vegetation structure caused by
topography and soil could also explain additional
variability in fire severity. Simple topographic
variables do not well describe this variation.

CONCLUSION

There was a positive feedback effect between
fires, where high-severity fire increased the likeli-
hood of subsequent severe fire, which has the
potential for causing a runaway effect, like the
self-reinforcing grass–fire cycle (Rossiter et al.
2003, Bowman et al. 2014). This has ecological and
management implications, as a consistent positive
feedback across many fires could lead to a change
in vegetation communities. The occurrence of a
runaway effect cannot be concluded from this
study alone, and several consecutive fires would
have to be examined to support this hypothesis.
Three key areas have been highlighted, which

should be the focus of further study: (1) the ongo-
ing feedback effects in more than two fires, and
the impact of the feedbacks on vegetation; (2) the
changes in fire regimes due to climate change and
other processes; and (3) the potential effect of pre-
scribed burning, and other fuel treatments, to
break the feedback effects found in this study.
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