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Abstract
This thesis consists of three parts. In the first part, we study the gaps between
non-zero Fourier coefficients of cuspdial CM eigenforms in the short intervals. In
the second part, we study the sign changes for the Fourier coefficients of Hilbert
modular forms of half-integral weight. In the third part, we study the simultane-
ous behaviour of Fourier coefficients of two different Hilbert modular cusp forms
of integral weight.

In Chapter 1, we present the definitions and some preliminaries on classical
modular forms. We shall also recall some relevant results from the literature, which
are useful in the subsequent chapters.

In Chapter 2, we show that for an elliptic curve E over Q of conductor N with
complex multiplication (CM) by Q(i), the n-th Fourier coefficient of fE is non-zero
in the short interval (X,X + cX

1
4 ) for all X � 0 and for some c > 0, where fE is

the corresponding cuspidal Hecke eigenform in S2(Γ0(N))new, by the modularity
theorem. As a consequence, we produce infinitely many cuspidal CM eigenforms
f level N > 1 and weight k > 2 for which if (n)� n

1
4 holds, for all n� 0. This is a

generalization of the result of Das and Ganguly [14] to the weight k > 2 situation.

In Chapter 3, we prove a result concerning the sign changes for the Fourier
coefficients of Hilbert modular forms of half-integral weight. Our study focuses
on certain subfamilies of coefficients that are accessible via the Shimura correspon-
dence. This is a generalization of the results of Inam and Wiese [20] to the setting
of totally real number fields.

In Chapter 4, we prove that for two Hilbert cusp forms, say f and g, of same
level and different integral weights, there exists infinitely Fourier coefficients of f
and g having the same sign (resp., having the opposite sign). We show that the
simultaneous non-vanishing of the Fourier coefficients, of two non-zero distinct
primitive Hilbert cuspidal non-CM eigenforms, at the powers of a fixed prime
ideal has positive density. These are generalizations of some results of Gun, Kohnen
and Rath [17] and Gun, Kumar and Paul [16] to the setting of totally real number
fields.

Keywords: Elliptic curves, CM eigenforms, Fourier coefficients, Hilbert modu-
lar forms of integral and half-integral weights, Sign changes, non-vanishing.

MSC 2010: 11F03, 11F30, 11F31, 11F33, 11F37, 11F41, 11G05.
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Chapter 1

Introduction

This thesis broadly comes under the area of Number Theory, and in particular in
the sub-area of modular forms. In this thesis, the basic objects of our interests are
elliptic curves and modular forms.

In number theory, the Fourier coefficients of integral or half-integral weight
modular forms over number fields have been extensively studied because of their
rich algebraic and arithmetic properties that they encompass. In this thesis, we
are interested in studying the algebraic and arithmetic properties of the Fourier
coefficients attached to modular forms.

In this chapter, we shall recall the basic definitions of modular forms and its
properties briefly. We shall also recall the results that we need for the next chapters.
Finally, we recall the concept of old forms, newforms and the notion of complex
multiplication (CM). There is nothing new in this chapter that we have contributed
and we closely follow the exposition in [15].

1.1 Modular forms

Definition 1.1.1. The modular group is the group of 2 × 2 matrices with integer entries
and with determinant 1. The modular group is denoted by SL2(Z).

Each element of modular group is also viewed as an automorphism of the Rie-
mann sphere Ĉ = C ∪ {∞}, via the linear fractional transformation

[
a b
c d

]
.z =

az + b

cz + d
, z ∈ Ĉ.

If c 6= 0, then −d
c

maps to∞ and∞ maps to a
c
, and if c = 0 then∞ maps to∞.
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The identity matrix I and its negative matrix−I both give the identity transforma-
tion.

Observe that the modular group SL2(Z) is generated by
[

1 1
0 1

]
and

[
0 1
−1 0

]
. Hence,

the group of transformations defined by the modular group is generated by the
two matrix generators,

z → z + 1 and z → −1/z.

We define the upper half-planeH as

H = {z ∈ C : Im(z) > 0}.

1.1.2 Congruence subgroups:

Now, let us recall the definition of congruence subgroups of SL2(Z). For any N ∈
N, the principle congruence subgroup of level N is defined by

Γ(N) =
{[

a b
c d

]
∈ SL2(Z) :

[
a b
c d

]
≡
[

1 0
0 1

]
(mod N)

}
.

Definition 1.1.3. A subgroup Γ of SL2(Z) is called a congruence subgroup if Γ(N) ⊆ Γ

for some N ∈ Z+. We say that Γ is a congruence subgroup of level N , when N is minimal
such that Γ(N) ⊆ Γ.

By definition, every congruence subgroup Γ has finite index in SL2(Z), since
Γ(N) has finite index. Now, we define some important congruence subgroups:

Γ0(N) =
{[

a b
c d

]
∈ SL2(Z) :

[
a b
c d

]
≡
[ ∗ ∗

0 ∗
]

(mod N)
}

and

Γ1(N) =
{[

a b
c d

]
∈ SL2(Z) :

[
a b
c d

]
≡
[

1 ∗
0 1

]
(mod N)

}
.

1.1.4 Modular forms:

For any matrix γ =
[
a b
c d

]
∈ SL2(Z), we define the factor of automorphy j(γ, z) ∈ C

for z ∈ H, as
j(γ, z) = cz + d.
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For any γ ∈ SL2(Z) and any integer k ≥ 1, we define weight-k operator |kγ on
function f : H → C by

(f |kγ)(z) = j(γ, z)−kf(γz), z ∈ H.

Since the factor of automorphy is never zero or infinity, if f is meromorphic then
f |kγ is also meromorphic and has the same zeros and poles as of f(γz).

Definition 1.1.5. A function f : H → C is weakly modular form of weight k with respect
to a congruence subgroup Γ, if f meromorphic and weight-k invariant under Γ, i.e., if
(f |kγ) = f for all γ ∈ Γ.

Every congruence subgroup Γ of SL2(Z) contains a translation matrix of the
form [

1 h
0 1

]
: z → z + h,

for some minimal h ∈ Z+. This is because Γ contains Γ(N) for some N , but h may
properly divide N .

Every weakly modular form f : H → C of weight k with respect to Γ is therefore
hZ-periodic. Such a form f has the corresponding function g : D′ → C where D′

is the punctured disk and f(z) = g(qh) where qh = e2πiz/h. If f is holomorphic
on upper half plane then g is holomorphic on the punctured disk and so it has a
Laurent expansion at q = 0. We define such a f to be holomorphic at∞, if g extends
holomorphically to open complex unit disc. Thus f has a Fourier expansion

f(z) = Σ∞n=0af (n)qnh , qh = e2πiz/h where af (n) ∈ C.

We write Fourier coefficients of f by an(f) or af (n) depending on the context.
To keep the space of modular forms to be finite-dimensional, modular forms

need to be holomorphic not only on H but also at limit points. For a congruence
subgroup Γ the idea is to adjoin not only ∞ but also the rational numbers Q to
H, and then identify adjoin points under Γ-equivalence. A Γ-equivalence class of
points Q

⋃
{∞} is called a cusp of Γ.

When Γ = SL2(Z), all rational numbers are Γ-equivalent to∞ and so SL2(Z) has
only one cusp, represented by∞. But when Γ is a proper subgroup of SL2(Z) fewer
points are Γ-equivalent and so Γ will have other cusps as well, represented by
rational numbers. Since each s ∈ Q takes the form s = α(∞) for some α ∈ SL2(Z),
the number of cusps is at most the number of cosets Γα in SL2(Z), but possibly
fewer, a finite number since the index [SL2(Z) : Γ] is finite.
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A modular form with respect to a congruence subgroup Γ should be holomor-
phic at the cusps. Writing any s ∈ Q

⋃
{∞} as s = α(∞), holomorphy at s is

naturally defined in terms of holomorphy at∞ via the operator |kα. Since f |kα is
holomorphic onH and weakly modular with respect to α−1Γα, again a congruence
subgroup of SL2(Z), the notion of its holomorphy at∞makes sense.

Definition 1.1.6. Let Γ be a congruence subgroup of SL2(Z) and let k ≥ 1 be an integer.
A function f : H → C is a modular form of weight k with respect to Γ if

1. f is holomorphic onH,

2. f is weight-k invariant under Γ, i.e., f |kγ = f for all γ ∈ Γ,

3. f |kα is holomorphic at∞ for all α ∈ SL2(Z).

In addition,

4. if the constant term in the Fourier expansion of f |kα is zero, for all α ∈ SL2(Z), then
f is a cusp form of weight k with respect to Γ.

The modular forms of weight k with respect to Γ are denoted by Mk(Γ) and the
cusp forms weight k with respect to Γ are denoted by Sk(Γ).

Definition 1.1.7. For any positive integer N , a Dirichlet character modulo N is a homo-
morphism of multiplicative groups

χ : (Z/NZ)∗ → C∗.

The trivial Dirichlet character is denoted by χtriv.

The group Γ0(N)/Γ1(N) acts on the space of modular forms Mk(Γ1(N)), and
the space decomposes into a direct sum of subspaces, as

Mk(Γ1(N)) =
⊕

χ:(Z/NZ)∗→C∗
Mk(N,χ),

where for any Dirichlet character χ modulo N , the χ-eigenspace of Mk(Γ1(N)) de-
fined as Mk(N,χ) := {f ∈ Mk(Γ1(N)) : f |kγ = χ(dγ)f for all γ ∈ Γ0(N)}, where
dγ denote the lower right entry of γ. In particular, the eigenspace Mk(N,χtriv) is
Mk(Γ0(N)), which we denote by Mk(N), for simplicity. Similarly, for cusp forms,
we have the following decomposition:

Sk(Γ1(N)) =
⊕

χ:(Z/NZ)∗→C∗
Sk(N,χ),
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where Sk(N,χ) := Sk(Γ1(N)) ∩Mk(N,χ). In particular, the eigenspace Sk(N,χtriv)

is Sk(Γ0(N)), which we denote by Sk(N), for simplicity.
In the next section, we shall define a set of linear transformations between the

spaces of modular forms, which respects the subspace of cusp forms.

1.2 Hecke Operators:

Let Γ1 and Γ2 be two congruence subgroups of SL2(Z). Let GL+
2 (Q) denote the

group of 2× 2 matrices with rational entries and positive determinant.

Definition 1.2.1. For each α ∈ GL+
2 (Q), the set

Γ1αΓ2 = {γ1αγ2 : γ1 ∈ Γ1, γ2 ∈ Γ2}

is a double coset in GL+
2 (Q).

Basically, the action of the double coset Γ1αΓ2 transform the space of modular
forms of level Γ1 to modular forms of level Γ2, which we will explain now.

The group Γ1 acts on the double coset Γ1αΓ2 by left multiplication, partitioning
it into orbits. A typical orbit is Γ1β with representative β = γ1αγ2, and the orbit
space Γ1 \ Γ1αΓ2 is thus a finite disjoint union

⋃
Γ1βj for some choice of represen-

tative βj of the form αγj .

Definition 1.2.2. For congruence subgroups Γ1 and Γ2 of SL2(Z) and α ∈ GL+
2 (Q), the

weight-k operator |k(Γ1αΓ2) maps the modular forms f ∈Mk(Γ1) to

f |k(Γ1αΓ2) = Σjf |kβj,

where βj are orbit representative, i.e., Γ1αΓ2 = ∪jΓ1βj is a disjoint union.

The double coset operator is well-defined, i.e., it is independent of how the
representatives βj are chosen, and it maps modular forms with respect to Γ1 to
modular forms with respect to Γ2,

|k(Γ1αΓ2) : Mk(Γ1)→Mk(Γ2).

The double coset operator preserves the subspace of cusp forms, i.e.,

|k(Γ1αΓ2) : Sk(Γ1)→ Sk(Γ2).
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An inclusion of congruence subgroups Γ1(N) ⊆ Γ0(N) induces the reverse in-
clusion

Mk(Γ1(N)) ⊇Mk(Γ0(N)).

Now, we shall introduce two types of operators on Mk(Γ1(N)), which preserves
the subspace of cusp forms.

1.2.3 First type of Hecke operators:

The map Γ0(N) → (Z/NZ)∗ taking
[
a b
c d

]
to d (mod N) is surjective homomor-

phism with kernel Γ1(N). This shows that Γ1(N) is normal in Γ0(N) and induces
an isomorphism

Γ0(N)/Γ1(N) ∼= (Z/NZ)∗ where
[
a b
c d

]
→ d (mod N).

For any α ∈ Γ0(N), consider the weight-k operator |k(Γ1(N)αΓ1(N)) for modular
forms f ∈Mk(Γ1(N)) to

f |k(Γ1(N)αΓ1(N)) = f |kα, α ∈ Γ0(N),

again in Mk(Γ1(N)), since Γ1(N) is a normal subgroup of Γ0(N). Thus, the group
Γ0(N) acts on Mk(Γ1(N)), and since its subgroup Γ1(N) acts trivially, hence this is
really an action of the quotient (Z/NZ)∗.

Definition 1.2.4. The action of α =
[
a b
c d

]
, determined by d (mod N), and denoted by

〈d〉, is
〈d〉 : Mk(Γ1(N))→Mk(Γ1(N))

given by

〈d〉f = f |kα for any α =
[
a b
c δ

]
∈ Γ0(N) with δ ≡ d (mod N).

These are the first type of Hecke operators and also called as diamond operators. These
operators respect the subspace of cusp forms.

Now we can re-interpret the definition of Sk(N,χ) as follows. For any character
χ : (Z/NZ)∗ → C∗, the space Sk(N,χ) is precisely the χ-eigenspace of the diamond
operators,

Sk(N,χ) = {f ∈ Sk(Γ1(N)) : 〈d〉f = χ(d)f for all d ∈ (Z/NZ)∗}.
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This also means that the diamond operators 〈d〉 respects the decomposition

Sk(Γ1(N)) =
⊕

χ:(Z/NZ)∗→C∗
Sk(N,χ).

1.2.5 Second type of Hecke operators:

For every prime p, we shall define the second type of Hecke operators, denoted by
Tp, on the space of modular forms Mk(Γ1(N)).

Definition 1.2.6. For any prime p, the weight k-operator |k(Γ1(N)
[

1 0
0 p

]
Γ1(N)) on the

space of modular forms Mk(Γ1(N)) is denoted by Tp. These operators respect the subspace
of cusp forms.

Observe that, the double coset

Γ1(N)
[

1 0
0 p

]
Γ1(N) =

{
γ ∈M2(Z) : γ ≡

[
1 ∗
0 p

]
(mod N), det γ = p

}
.

So, in fact
[

1 0
0 p

]
can be replaced by any matrix in this double coset to define the

operator Tp. For Γ1 = Γ2 = Γ1(N), we have the following proposition

Proposition 1.2.7. ([15, Proposition 5.2.1]) Let N ∈ N and p be a prime. The opera-
tor Tp = |k(Γ1(N)

[
1 0
0 p

]
Γ1(N)) on Mk(Γ1(N)) is given by

Tpf =

 Σp−1
j=0f |k(

[
1 j
0 p

]
) if p | N,

Σp−1
j=0f |k(

[
1 j
0 p

]
) + f |k(

[
m n
N p

][
p 0
0 1

]
) if p - N,where mp− nN = 1.

Letting Γ1 = Γ2 = Γ0(N) instead and keeping α =
[

1 0
0 p

]
gives the same orbit

representative for Γ1\Γ1αΓ2, but in this case the last representative can be replaced
by β∞ =

[
p 0
0 1

]
, since

[
m n
N p

]
∈ Γ0(N). One can explicitly write down the Fourier

expansion of Tpf with respect to the Fourier coefficients of f (cf. [15, Proposition
5.2.2]). The following proposition says that the Hecke operators commute.

Proposition 1.2.8. ([15, Proposition 5.2.4]) Let d and e be elements of (Z/NZ)∗, and
let p and q be prime. Then

(a) 〈d〉Tp = Tp〈d〉,

(b) 〈d〉〈e〉 = 〈e〉〈d〉,

(c) TpTq = TqTp.
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So far, we have defined the Hecke operators 〈d〉 for d ∈ (Z/NZ)∗ and Tp op-
erators for any prime p. Now, we will generalize these operators to 〈n〉 for n ∈
Z+, (n,N) = 1 and Tn for all n ∈ Z+.

For n ∈ Z+ with (n,N) = 1, 〈n〉 is determined by n (mod N). For n ∈ Z+ with
(n,N) > 1, define 〈n〉 = 0, the zero operator on Mk(Γ1(N)). The mapping n→ 〈n〉
is totally multiplicative. To define Tn, set T1 = 1; for prime powers, the operator is
defined inductively

Tpr = TpTpr−1 − pk−1〈p〉Tpr−2 , for r ≥ 2, (1.1)

and as TprTqs = TqsTpr for distinct primes p and q, one can extend the multiplica-
tively of Hecke operators to Tn for all n,

Tn =
∏

Tprii where n =
∏

prii . (1.2)

By Proposition 1.2.8, we get that Tnm = TnTm if (n,m) = 1. Now, we shall recall a
proposition about the Fourier expansion of Tn(f) with respect to the Fourier coef-
ficients of f .

Proposition 1.2.9. ([15, Proposition 5.3.1]) Suppose f ∈Mk(Γ1(N)) has the Fourier
expansion

f(z) = Σ∞m=0am(f)qm, where q = e2πiz.

Then, for all n ∈ Z+, Tn(f) has Fourier expansion

(Tnf)(z) = Σ∞n=0am(Tnf)qm,

where
am(Tnf) =

∑
d|(m,n)

dk−1amn/d2(〈d〉f). (1.3)

In particular, if f ∈Mk(N,χ) then

am(Tnf) =
∑
d|(m,n)

χ(d)dk−1amn/d2(f). (1.4)

1.3 Old forms and Newforms

In this section, we shall recall the basic theory of old forms and newforms. The
space of cusp forms Sk(Γ1(N)) equipped with an inner product, which is known

8



as the Petersson inner product (cf. [15, Section 5.4]).
By the Spectral theorem for finite-dimensional inner product space V , given a

commuting family of normal operators F on V , the space V has an orthogonal
basis of eigenvectors for all the operators T ∈ F . In our context, we refer to such
eigenvectors by eigenforms.

Theorem 1.3.1. The space Sk(Γ1(N)) has an orthogonal basis of simultaneous eigenforms
for the Hecke operators {〈n〉, Tn : (n,N) = 1}

There is a way to move between levels, i.e., taking modular forms of lower
levels M to higher level N . For example, if M | N then Sk(Γ1(M)) ⊆ Sk(Γ1(N)).
There is another way to embed Sk(Γ1(M)) into Sk(Γ1(N)) is by composing with
multiply-by-d map where d is any factor of N/M . For any such d, let

αd =
[
d 0
0 1

]
.

So f |kαd(z) = dk−1f(dz) for any modular form f . The map |kαd takes Sk(Γ1(M)) to
Sk(Γ1(N)), lifting the level from M to N .

Definition 1.3.2. For each divisor d of N , let id be the map

id : (Sk(Γ1(Nd−1)))2 → Sk(Γ1(N))

given by
(f, g)→ f + g|kαd.

The subspaces of old forms at level N is

Sk(Γ1(N))old =
∑

p|N, prime

ip((Sk(Γ1(Np−1)))2)

and the subspace of newforms at level N is the orthogonal complement with respect to the
Petersson inner product,

Sk(Γ1(N))new = (Sk(Γ1(N))old)⊥.

Since the Hecke operators preserve the spaces Sk(Γ1(N))old and Sk(Γ1(N))new,
the following result is a consequence of the spectral theorem.

Proposition 1.3.3. ([15, Corollary 5.6.3]) The spaces Sk(Γ1(N))old and Sk(Γ1(N))new

have orthogonal bases of eigenforms for the Hecke operators {Tn, 〈n〉 : (n,N) = 1}.
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Definition 1.3.4. A non-zero modular form f ∈ Mk(Γ1(N)) that is an eigenform for the
Hecke operators Tn and 〈n〉 for all n ∈ Z+ is a Hecke eigenform or simply an eigenform.
The eigenform f(z) =

∑∞
n=0 an(f)qn is normalized when a1(f) = 1. A newform, or a

primitive form, is a normalized eigenform in Sk(Γ1(N))new.

Theorem 1.3.5. Let f ∈ Sk(Γ1(N))new be a nonzero eigenform for the Hecke operators Tn
and 〈n〉 for all n with (n,N) = 1. Then

(a) f is a Hecke eigenform, i.e., an eigenform for Tn and 〈n〉 for all n ∈ N. A suitable
scalar multiple of f is a newform.

(b) If f̃ satisfy the same condition as f and has the same Tn-eigenvalues, then f̃ = cf for
some constant c.

The set of newforms is an orthogonal basis of Sk(Γ1(N))new. Each such newform lies in
an eigenspace Sk(N,χ) and satisfies Tnf = an(f)f for all n ∈ Z+, i.e., the n-th Fourier
coefficient coincides with the Tn-eigenvalues, and 〈d〉f = χ(d)f for any d ∈ N.

1.3.6 Elliptic Curves:

Definition 1.3.7. An elliptic curve E over a field K is a non-singular projective plane
curve over k defined by the equation

y2z + a1xyz + a3yz
2 = x3 + a2x

2z + a4xz
2 + a6z

3,

where a1, . . . , a6 ∈ K.

For a number field K, the group of rational points on elliptic curve E defined
over K, denoted by E(K), is a finitely generated abelian group, by the Mordell-
Weil theorem. Hence, one can talk about the rank and torsion group of E(K).

There is a correspondence between the elliptic curves over Q with weight 2

modular forms with rational Fourier coefficients, which is known as the modular-
ity theorem.

Theorem 1.3.8. ([44], [8]) Let E be an elliptic curve over Q with conductor NE .
Then there exist a primitive form f ∈ S2(NE) such that

ap(f) = ap(E) for all primes p,

where ap(E) is p + 1 minus the number of points on the reduced elliptic curve E
modulo p.
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1.3.9 CM forms

In this section, we shall recall the notion of CM modular forms (cf. [19, page 717]).
Let K be an imaginary quadratic field and OK be its integral closure. Let m be an
integral ideal of K and let I(m) be the group of fractional ideals of K co-prime to
m. By definition, a Hecke character Ψ of K is a homomorphism

Ψ : I(m)→ C∗,

such that Ψ((α)) = αr for all α ∈ K∗ with α ≡ 1 (mod m). For such a Hecke
character Ψ, one can associate the function fΨ defined by

fΨ(z) =
∑

a⊆OK ,(a,m)=1

Ψ(a)e2πi(Na)z, (1.5)

where Na denotes the norm of a. We can re-write the function as

fΨ(z) =
∑
n≥1

aΨ(n)e2πinz,

where
aΨ(n) =

∑
(a,m)=1,Na=n

Ψ(a). (1.6)

We see that aΨ(p) = 0, if p is does not split in K. By Hecke’s theorem, the modular
form fΨ ∈ Sr+1(|dK |Nm, ε) is an eigenform, where dK is discriminant of field K, ε
is a character modulo |dK |Nm.

Definition 1.3.10. We say that a cuspidal eigenform f is CM if f = fΨ for some Hecke
character Ψ of some imaginary quadratic field K.
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Chapter 2

On the gaps between non-zero
Fourier coefficients of cuspidal CM
eigenforms

2.1 Introduction

Let f be a primitive form of weight k ≥ 2 and levelN ≥ 1. By definition, every such
eigenform f has a Fourier expansion, say f(z) =

∑∞
n=1 af (n)qn, where q = e2πiz.

A famous conjecture of Lehmer predicts that τ(n) 6= 0 for any n ≥ 1, where

∆(z) =
∞∑
n=1

τ(n)qn

is the unique normalized cuspidal eigenform of weight 12 and level 1. This conjec-
ture motivated many mathematicians to study the vanishing or non-vanishing of
the Fourier coefficients of modular forms.

In order to prove the non-vanishing of Fourier coefficients, a natural way is to
bound the the size of possible gaps between the non-zero Fourier coefficients, and
show that they are arbitrarily small. This problem has been extensively studied by
many mathematicians in several different directions through various approaches
(cf. [5], [7], [34]). Typically, the approaches are either by using Rankin estimates, or
Chebotarev density theorem, or distribution of B-free numbers, etc.

In [41], Serre initiated a general study of estimating the size of possible gaps
between the non-zero Fourier coefficients of modular cusp forms. In fact, for any

13



n ∈ N, he defined a function

if (n) := max {i : af (n+ j) = 0 for all 0 ≤ j ≤ i}.

So, in order to estimate the size of possible gaps between the non-zero Fourier
coefficients, it is enough to find bounds for the function if (n).

Recall that, for two functions f : N → C and g : N → R such that g(n) > 0 for
all n sufficiently large. One writes f(n)� g(n) as n→∞ if there exists an M ∈ R+

and n0 ∈ N such that |f(n)| ≤Mg(n) for all n ≥ n0.

In next section, we shall discuss the history of if (n).

2.2 History

Recall that τ(n) denote the Fourier coefficient of qn in the series

∆(z) =
∞∑
n=1

τ(n)qn,

where ∆(z) is the unique normalized cusp form of weight 12 and level 1. In [41],
Serre showed that τ(n) is non-zero for the vast majority of n. However, Lehmer’s
speculation that τ(n) 6= 0 for every positive integer n remains open till today. In the
same article, Serre proposes the study of the non-vanishing of Fourier coefficients
in short intervals. In particular, if

f(z) =
∞∑
n=1

af (n)qn ∈ Sk(N,χ),

then the study reduces to finding an upper bound for the function if (n). In fact,
in [41], he proved that if f(z) is a cusp form of integral weight k ≥ 2 such that f(z)

is not a linear combination of forms with CM, then

if (n)� n. (2.1)

In view of this estimation, Serre poses the following question:

Question 2.2.1. If f(z) is a non-zero cusp form of integral weight k ≥ 2 such that f(z)

is not a linear combination of forms with CM, then can the estimate (2.1) be improved to
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an estimate of the form

if (n)�f n
δ for some 0 < δ < 1?,

where the symbol�f means that the implied constant depends only on f .

More generally, are there analogous results for the forms with non-integral
weights? Such questions are directly related to some examples founds by Knopp
and Lehner in [25, Theorem 5.3].

2.2.2 By Rankin’s Method:

The first response to Serre’s question occurs in an article of V. Kumar Murty (cf. [35]),
where he observed that the Question 2.2.1 can be answered by using a classical re-
sult of Rankin in [39]. Rankin showed that there is a positive constantAf for which∑

n≤X

|af (n)|2n1−k = AfX +O(X3/5)

holds. As a consequence, we get that

if (n)�f n
3/5.

This answers Question 2.2.1 affirmatively and now the question is to improve the
exponent δ.

2.2.3 Theory of B-free Numbers:

In [12], Balog and Ono considered the stronger forms of the Serre’s question. In
fact, they realized that the theory of B-free numbers shall be useful to answer the
questions related to if (n). Let us recall the definition of B-free numbers.

Definition 2.2.4. Let B := {b1, b2, . . . } be such that

(bi, bj) = 1 for i 6= j and
∞∑
i=1

1

bi
<∞.

A number n ∈ N is said to be B-free if it is not divisible by any element of the set B.

• The set {p2 : p ∈ P} can be taken as B, because
∑

p∈P
1
p2 < ∞. For this choice

of B, a number n ∈ N is B-free if and only if it is square-free.
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• Let f(z) =
∑∞

n=1 af (n)qn be a primitive eigenform of level N ≥ 1, weight
k ≥ 2 and without CM. The set C = {p ∈ P |af (p) = 0} can be taken as B.
This is because ∑

p∈C

1

p
<∞,

which follows from a result of Serre ( [41]). This is one of main reason why
many authors consider only non-CM forms, especially when one uses the
theory of B-free numbers.

In [12], Balog and Ono proved that:

Theorem 2.2.5. ([12]) Suppose that f(z) =
∑∞

n=1 af (n)qn ∈ Sk(N,χ) is a non-zero
cusp form of weight k ≥ 2 such that f(z) is not a linear combination of forms with
CM. For every ε > 0 and X

17
41 ≤ Y , we get

Y �f,ε #{X < n < X + Y : af (n) 6= 0}, (2.2)

the symbol�f,ε means that the implied constant depends on f and ε. In particular,
we have

if (n)�f,ε n
17
41

+ε.

In loc.cit., they have also considered similar questions for weight 1 forms, half-
integral cusp forms of weight≥ 3

2
, that are not a linear combinations of forms with

CM and obtained similar results for the Fourier coefficients in short intervals.
In [1], Alkan has improved the results of [12] and proved the following theorem

for elliptic curves:

Theorem 2.2.6. ([1, Theorem 2]) Let E be an elliptic curve over Q without CM. If
fE(z) =

∑∞
n=1 aE(n)qn is the associated weight 2 newform, then for any ε > 0 and

X
69
169

+ε ≤ Y , we have

#{X < n < X + Y : aE(n) 6= 0} �E,ε Y.

In particular, we have
ifE(n)�E,ε n

69
169

+ε

for every ε > 0.

In the same article, Alkan proved the following conditional result for cusp
forms of integral weight ≥ 2:
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Theorem 2.2.7. ([1, Theorem 3]) Let f(z) =
∑∞

n=1 af (n)qn ∈ Sk(N,χ) be a non-zero
cusp form of integral weight k ≥ 2 such that f(z) is not a linear combination of
forms with CM. Assuming the GRH for Dedekind Zeta functions, for every ε > 0

and X
69
169

+ε ≤ Y , we have

#{X < n < X + Y : af (n) 6= 0} �f,ε Y.

In particular, we have
if (n)�f,ε n

69
169

+ε

for every ε > 0.

In [2], Alkan improved the above results further and proved the following:

Theorem 2.2.8. ([2, Theorem 4])

(a) LetE be an elliptic curve over Q without CM. For every ε > 0 and x51/134+ε ≤ y,
we have

#{x− y < n ≤ x : aE(n) 6= 0} �E,ε y.

In particular,
ifE(n)�E,ε n

51/134+ε.

(b) Let f(z) =
∑∞

n=1 af (n)qn ∈ Sk(N,χ) be a non-zero cusp form with integral
weight k ≥ 2 such that f(z) is not a linear combination of forms with CM. As-
suming the GRH for Dedekind Zeta functions, for every ε > 0 and x51/134+ε ≤
y, we have

#{x− y < n ≤ x : af (n) 6= 0} �f,ε y.

In particular,
if (n)�f,ε n

51/134+ε.

If we drop the assumption of GRH for Dedekind Zeta functions in the above
theorem, one gets a weaker bound for if (n).

Theorem 2.2.9. ([2, Theorem 5]) Let f(z) ∈ Sk(N,χ) be a non-zero cusp form with
integral weight k ≥ 2 such that f(z) is not a linear combination of forms with CM.
For every ε > 0 and x40/97+ε ≤ y, we have

#{x− y < n < x : af (n) 6= 0} �f,ε y.
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In particular,
if (n)�f,ε n

40/97+ε.

Currently, the best bound for if (n) is available due to Kowalski, Robert, and
Wu and they proved that for any holomorphic non-CM cuspidal eigenform f on
general congruence groups

if (n)�f n
7/17+ε (2.3)

holds for all n ∈ N (cf. [27]). They obtained some new results in theory of expo-
nential sums and in theory of B-free numbers to prove the bound (2.3).

There is some interesting theorem in the literature, which is due to Alkan, to
show that most of the times the possible gaps are extremely short. More precisely:

Theorem 2.2.10. ([1, Theorem 1]) Let f(z) =
∑∞

n=1 af (n)qn ∈ Sk(N,χ) be a non-
zero cusp form of integral weight k ≥ 2 such that f(z) is not a linear combination
of forms with CM. If φ(x) is function which tends monotonically to infinity with x
and satisfy φ(2x)� φ(x) for all large x, then for almost all n, we have

#{n < m < n+ φ(n) : af (m) 6= 0} �f,φ φ(n).

In particular, we have
if (n)�f,φ φ(n)

for almost all n.

2.2.11 By Congruences:

For the first time, Alkan and Zaharescu, in [4], have exploited the idea of using
congruences to study if (n). There it was shown that i∆(n) � n

1
4 , where ∆ is

the unique normalized cuspidal eigenform of weight 12. The proof relies on the
existence of sums of squares in short intervals of the form (x, x+ x

1
4 ).

For level N = 1:

Das and Ganguly extended the above idea to show that for any non-zero eigenform
f ∈ Sk(1) with k ≥ 12, one has if (n)� n1/4 ∀ n� 0, where the implied constant
depends only on k. More precisely, they proved that:

Theorem 2.2.12. ([13, Theorem 1]) Given any even positive integer k ≥ 12, there is
positive constant c that depends only on k such that for all non-zero Hecke eigen-
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forms f ∈ Sk(1), af (n) 6= 0 for some integer n ∈ (X,X + cX
1
4 ) for all n ≥ 1154. In

particular, we have
if (n)� n1/4 ∀ n� 0, (2.4)

where the implied constant depends on k.

In this proof, they exploit some congruence relations established by Hatada,
in [18], for eigenvalues of Hecke operators acting on the space Sk(1). In the case
of level 1, this result is sharp when compared with the result of [27]. The implied
constant in the above theorem can be made absolute, but this comes at the cost of
larger exponent. In loc. cit., the authors showed that

Theorem 2.2.13. ([13, Theorem 2]) For any fixed ε > 0, there exist constant c and
X0 that depend only on ε such that for any cusp form f of level one, we have that
af (n) 6= 0 for some n ∈ (X,X + cX131/416+ε), whenever X > X0.

For level N > 1:

If the level N > 1, then there are no similar results are available with if (n) � n
1
4

for all n � 0. However, in [14], Das and Ganguly were able to produce infinitely
many non-isogenous elliptic curves for which (2.4) holds.

For weight k > 2, in [30], Kumar proved that either if a modular cuspidal
eigenform f of weight 2k is 2-adically close to an elliptic curve E over Q, which
has a cyclic rational 4-isogeny or if there is a higher congruence for the prime above
2 holds between them, then (2.4) holds for f as well.

He uses this fact to construct examples of non-CM, as well as CM, cuspidal
eigenforms f of level N > 1 and weight k > 2 for which (2.4) holds for f . To state
these results, we need to recall some definitions.

Higher congruences:

For a ∈ N, a commutative ringR and a formal power series f =
∑∞

n=0 cnq
n ∈ R[[q]],

we define
ordqaf = inf{n ∈ N ∪ 0|qa - (cn)},

where q is a prime ideal of R. Here, the convention that ordqaf = ∞ if qa|(cn) for
all n.

Definition 2.2.14. We say that formal power series f1 and f2 in R[[q]] are congruent
modulo qa, if ordqa(f1 − f2) =∞, and we denote this by f1 ≡ f2 (mod qa).
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We need to a state a lemma before we go on to state the main results of [30].
This lemma shall also be useful in proving our main theorem of this chapter.

Lemma 2.2.15. ([27, Lemma 2.1]) If f =
∑∞

n=1 af (n)qn is a normalized cuspidal
eigenform in S2k(N,χ), then there exists a natural number Mf ≥ 1 such that for
any prime p - Mf , either af (p) = 0 or af (pr) 6= 0 for all r ≥ 1. If χ is trivial and f

has integer coefficients, then one can take Mf = N .

Now, we are in a position to state the main results of [30]. Let f ∈ S2k(N)

be a normalized cuspidal eigenform of weight 2k with k > 1 and level N with
coefficient field K and ring of integer OK . Let Nf := lcm(N,Mf ), where Mf is a
natural number corresponding to f as in Lemma 2.2.15. Let q be a prime ideal of
OK lying above 2 and let e(q/2) denote the ramification index of q.

Let fE be the primitive form corresponding to the elliptic curve E over Q of
conductor NE , which has a cyclic rational 4-isogeny (cf. Theorem 1.3.8).

Theorem 2.2.16. ([30, Theorem 3.2]) Let f and fE be as above. If f ≡ fE (mod qm)

for some m > e(q/2), then
ifE(n)� n1/4

for n� 0 and implied constant depends only on NfNE .

2-adically close:

Define a function α : Z→ Z as follows:

α(n) =


0 if n ≤ 1,

1 if n = 2,

n− 2 if n > 2.

Definition 2.2.17. Let k1 and k2 be positive integers such that 2k1 ≡ 2k2 (mod 2s) for
some integer s ≥ 1. For i = 1, 2, suppose fi are cuspidal eigenforms on Γ0(Ni) of level Ni

and weight ki with coefficients in OK .
We say that f1 and f2 are 2-adically close, if there exist a prime ideal q over 2 in OK

with ramification index e(q/2) and an integer m with s ≥ α
(
d m
e(p)/2

e
)
≥ 1 such that

af1(p) ≡ af2(p) (mod qm),

for all primes p - 2N1N2.
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There is a slight difference between the notion of higher congruence and the
notion of 2-adically close between two modular forms. In the former, we require
that the congruences hold between all the Fourier coefficients of modular forms,
where as in the latter, we require that the congruences hold between the Fourier
coefficients at prime numbers, which are away from the levels. In [30], the author
prove the following theorem:

Theorem 2.2.18. ([30, Theorem 4.3]) Let f and fE be as in Theorem 2.2.16. If f and
fE are 2-identically close, then

ifE(n)� n1/4

for n� 0 and implied constant depends only on NfNE .

By using Theorem 2.2.16 and Theorem 2.2.18, the author has constructed exam-
ples of CM and non-CM cuspidal eigenforms of weight k > 2 and level N > 1 for
which (2.4) holds. A priori, one does not know how to construct infinitely many
cuspidal eigenforms of level N > 1 and weight k > 2 for which (2.4) holds, i.e.,
generalization of results of [14] to higher weights. In this chapter, we shall answer
this question.

2.3 Main theorem

The main theorem of this chapter is

Theorem 2.3.1. Let E be an elliptic curve over Q of conductor N with CM by Q(i) and
f = fE ∈ S2(N)new be the corresponding cuspidal Hecke eigenform. Then,

if (n)� n
1
4

for n� 0, where the implied constant depends on E.

This result is in fact the first result in the direction of elliptic curves E over Q
with CM. In the case of elliptic curves E over Q without CM, Alkan showed that
the bound if (n) �f,ε n

51
134

+ε holds for any ε > 0 (cf. Theorem 2.2.8 in the text). In
comparison with Alkan’s result, our bound is even sharper (i.e., 1

4
< 51

134
). Before

moving to the proof of Theorem 2.3.1, we shall recall the main ingredients of the
proof.
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The following theorem tells us about the existence of a number in a small inter-
val, which can be written as sum of two squares and co-prime to a given number.
More precisely:

Theorem 2.3.2. ([13, Theorem 1]) Given any integer N ∈ N, there exists X0 ∈ R+

and c > 0 (depending only on N ) such that there exists an integer n which is a sum
of two squares and co-prime to N in intervals of type (X,X+cX

1
4 ) for all X � X0.

The following theorem is due to Deuring, which plays a crucial role in the proof
of Theorem 2.3.1.

Theorem 2.3.3. ([32, Chapter 3, Theorem 12]) LetE be an elliptic curve over Q with
CM by K. Let Ψ be the corresponding Hecke character. If p ≥ 5, then the number
aE(p) is zero if and only if either p is inert or ramified inK or divides the conductor
of Ψ (equivalently, the elliptic curve has bad reduction).

Let f be an eigenform of weight 2 with trivial nebentypus with CM by K. Let
Ψ be the Hecke character corresponding to f , i.e., f = fΨ =

∑∞
n=1 aΨ(n)qn. Con-

sider the Hecke character Ψm, for some odd m, then the corresponding fΨm =∑∞
n=1 aΨm(n)qn is an eigenform with CM of weight m + 1 with trivial character.

However, the eigenform fΨm may not be a newform unless Ψm is primitive. Now,
we state a result of Laptyeva and Kumar Murty from [31], which provides an in-
formation about the vanishing of Fourier coefficients between the eigenforms fΨ

and fΨm .

Proposition 2.3.4. ([31, Proposition 5.1]) Let p be a prime number. For any odd
natural number m ∈ N, the following statements are equivalent:

1. aΨm(p) ≡ 0 (mod p),

2. aΨ(p) ≡ 0 (mod p).

Moreover, if p ≥ 5, the above statements are equivalent to the following:

1. aΨm(p) = 0,

2. aΨ(p) = 0,

3. p is inert or ramified in K or divides the conductor of Ψ.

Now, we are in a position to prove Theorem 2.3.1.
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2.3.5 Proof of Theorem 2.3.1

Proof. By the modularity theorem, Theorem 1.3.8 in the text, the elliptic curve E
over Q with CM corresponds to a CM eigenform f with trivial nebentypus . Let Ψ

be the Hecke character corresponding to f .
Take N = 6Mfcond(Ψ), where Mf as in Lemma 2.2.15. By Theorem 2.3.2, there

existsX0 ∈ R and c > 0 (depending only onN ) such that there exists an integer, say
m, which is a sum of two squares and co-prime to N in intervals of type (X,X +

cX
1
4 ) for all X � X0. So, to prove the theorem, it is sufficient to show that af (m) is

non-zero.
Since m is a sum of squares and (m, 6) = 1, m can be written as

m = Π
pi≡1 (mod 4)

prii Π
qi≡3 (mod 4)

q2si
i . (2.5)

By (1.6), we see that for inert primes q of Q(i), the Fourier coefficients af (q) are
zero because there are no ideals of norm q. By the quadratic reciprocity law, the
odd primes q which remain inert in Q(i) are exactly the primes q ≡ 3 (mod 4).
However, the power of qi in m are even and we show that af (q2si

i ) is non-zero. This
is because, the Hecke relations would imply that

af (q
r
i ) = af (qi)af (q

r−1
i )− qiaf (qr−2

i ), (2.6)

as af (qi) = 0, (2.6) would imply that af (q2r
i ) = (−qi)raf (q2r−2

i ). Since af (q2
i ) is non-

zero, we see that af (q2r
i )’s are also non-zero, for all r ≥ 1, i ≥ 1.

For any split prime p of Q(i), the Fourier coefficient af (p) is non-zero, by The-
orem 2.3.3 and (m, 6cond(Ψ)) = 1. This implies that af (pr) 6= 0 for all r ≥ 1, since
(m,Mf ) = 1 and by Lemma 2.2.15. This shows that, for p ≡ 1 (mod 4), we have
af (p

r) 6= 0 for all r ≥ 1, since the odd primes p ≡ 1 (mod 4) are exactly the split
primes of Q(i). Hence

af (m) = Π
pi≡1 (mod 4)

af (p
ri
i ) Π

qi≡3 (mod 4)
af (q

2si
i ) 6= 0.

This finishes the proof of the theorem.

Remark 2.3.6. The crux in the proof of above theorem is Deuring’s theorem. We could
have a theorem similar to that of the above theorem for eigenforms of weight 2k with k > 1,
if we had an analogous result of Deuring for higher weights. But, we are not aware of such
results.
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Remark 2.3.7. One might wonder the reason for working with Q(i), but not with any
other imaginary quadratic fields. This is because, the split (resp., inert) primes of Q(i) are
exactly the primes p which are ≡ 1 (mod 4) (resp., p ≡ 3 (mod 4)). This fact is what
enabled us to use the Deuring’s theorem in the above proof.

Remark 2.3.8. In the above proof, we have chosen m ∈ N in such a way that m and
6Mfcond(Ψ) are relatively prime. We need the condition (m, 6cond(Ψ)) = 1 to make an
effective use of Deuring’s theorem. To apply Lemma 2.2.15, we need (m,Mf ) = 1.

There exists at least one elliptic curve E over Q satisfying the statement of The-
orem 2.3.1. For example, the one parameter family of elliptic curves y2 = x3 + ax,
with a varies over Q∗, are defined over Q and they are with CM by Q(i). However,
all these curves are isogenous, since any two CM elliptic curves with the same en-
domorphism algebra are isogenous. Hence, all of them corresponding to the same
weight 2 eigenform with CM.

We shall finish this chapter with the following proposition in which we con-
struct infinitely many cuspidal CM eigenforms level N > 1 and weight k > 2 for
which the (2.4) holds. This result is a generalization of the result in [14] to the
higher weight case.

Proposition 2.3.9. There exists infinitely many eigenforms f with CM of weight k > 2

and level N > 1 for which
if (n)� n

1
4

holds for all n� 0.

Proof. Take any elliptic curve E over Q with CM by Q(i) and this corresponds to a
CM eigenform f of weight 2 with trivial nebentypus (cf. [8]). Let Ψ be the Hecke
character corresponding to f .

Consider the Hecke character Ψm, for some oddm. By Hecke’s Theorem (cf. [19,
page 717]), the corresponding fΨm is an eigenform with CM of weight m + 1 with
trivial character. However, the eigenform fΨm may not be a newform unless Ψm is
primitive.

By [40, Cor. 3.5], corresponding to the eigenform fΨm , there exists a unique
newform with CM, which we denote with gm =

∑∞
n=1 agm(n)qn. Then, the new-

form gm of weight m + 1 with trivial character and level dividing the level of fΨm .
Moreover, the newform gm(z) has the property that agm(p) = aΨm(p) for primes p
away from the level of fΨm . Therefore, agm(p) = 0 if and only if aΨm(p) = 0 for all
but finitely prime p. By Proposition 2.3.4, if p ≥ 5, we see that aΨm(p) = 0 if and
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only if aΨ(p) = 0. Hence, agm(p) = 0 if and only if aΨ(p) = 0, for all but finitely
many primes p. In fact, by Lemma 2.2.15, we have

agm(pk) = 0 ⇐⇒ aΨ(pk) = 0, (2.7)

for all but finitely many primes p and for all k ≥ 1. Now, arguing as in the proof of
Theorem 2.3.1, i.e., if we takeN = 6Mfcond(Ψ)

∏
p∈B p, whereB is the set of primes

for which (2.7) does not hold and Mf is as in Lemma 2.2.15. By Theorem 2.3.2,
there exists X0 ∈ R and c > 0 (depending only on N ) such that there exists an
integer, say n, which is a sum of two squares and co-prime to N in intervals of
type (X,X + cX

1
4 ) for all X � X0. Then, we have aΨ(n) 6= 0 and hence

igm(n)� n
1
4

holds for all n� 0.
As a consequence, we see that there exists infinitely many eigenforms with CM

of different weights for which (2.4) holds. The levels of the eigenforms gm’s are> 1

because the eigenforms in Sk(SL2(Z))(k ∈ N) are without CM.

The proof of the above proposition would also imply that, for every integer
k ≥ 1, there exists an integer N > 1 (may depend on k) and an eigenform f with
CM of weight 2k and level N for which

if (n)� n
1
4

holds for all n� 0.
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Chapter 3

Sign changes for the Fourier
coefficients of Hilbert modular forms
of half-integral weight

3.1 Introduction

The Fourier coefficients of integral or half-integral weight modular forms over
number fields have been extensively studied because of rich arithmetic and alge-
braic properties that they encompass. In recent years, many problems addressing
the sign changes of these Fourier coefficients have been studied by various authors.
In this chapter, we are interested in the sign changes of these Fourier coefficients.

In [20], Inam and Wiese showed the equi-distribution of signs for certain sub-
families of coefficients for half-integral modular forms that are accessible via the
Shimura correspondence. It is natural to ask similar questions for modular forms
defined over number fields, in particular, over totally real number fields, say F .
There are not many results available in this setting as compared to the classical
case (over Q).

This chapter is a modest attempt to show that the ideas of Inam and Wiese
in [20] generalize to the case of Hilbert modular cusp forms of half-integral weight.
We show that sign change results holds for certain subfamilies of Fourier coef-
ficients that are accessible via the Shimura correspondence. The proof uses the
Sato-Tate equidistribution theorem for non-CM primitive Hilbert modular forms.
As a consequence, we see that the Fourier coefficients change signs infinitely often.

As we mentioned above, the study of the Fourier coefficients of modular forms
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over number fields has a long history. In the next section, we shall recall the known
results in the literature briefly.

3.2 History

In literature, the study of sign changes for the Fourier coefficients of integral weight
cusp forms over Q has been initiated by Ram Murty in [36]. There, he proved that
the Fourier coefficients of a cusp form of integral weight has infinitely many sign
changes.

Theorem 3.2.1. ([36, Theorem 5]) If

f(z) =
∞∑
n=1

af (n)qn

is a non-zero cusp form belonging to any congruence subgroup, then either Re af (p)

or Im af (p) change signs infinitely often.

For primitive forms of integral weight without CM, the equidistribution of
signs is a consequence of the Sato-Tate equidistribution theorem due to Barnet-
Lamb, Geraghty, Harris, and Taylor. They proved that:

Theorem 3.2.2. ([10, Theorem B]) Let f be a primitive form of weight k ≥ 2 and
level N and nebentypus character ψ : (Z/NZ)∗ → C∗. Write

f(z) = q +
∞∑
n=2

af (n)qn.

Suppose that f is non-CM. If ζ is a root of unity with ζ2 in the image of ψ, then as
p varies over primes with ψ(p) = ζ2, the numbers af (p)/(2pk−

1
2 ζ) ∈ R are equidis-

tributed in [−1, 1] with respect to the measure µ = (2/π)
√

1− t2dt. In other words,
for any subinterval I of [−1, 1], we have

lim
x→∞

#{p ∈ P : p ≤ x, af (p)/(2p
k− 1

2 ζ) ∈ I}
#{p ∈ P : p ≤ x}

= µ(I) =
2

π

∫
I

√
1− t2dt,

where P denotes the set of all prime numbers.

Recently, the study of sign changes has been extended to the Fourier coefficients
of cusp forms of half-integral weight over Q (cf. [29], [11]). To state the result of
[11], we need to recall some notations.
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Let D denote the set of square-free positive integers. Let N be a positive integer
divisible by 4, and let χ be a Dirichlet character modulo N . Let Sk+ 1

2
(N,χ) be the

space of cusp form of weight k + 1
2

for the group Γ0(N) with character χ. Let
f =

∑∞
n=0 af (n)qn ∈ Sk+ 1

2
(N,χ) be a non-zero cusp form with Fourier coefficients

af (n) ∈ R.

Theorem 3.2.3. ([11, Theorem 2.1]) Let t ∈ D such that af (t) 6= 0, and write χt,N
for the quadratic character χt,N = ( (−1)kN2t

.
). Assume that Dirichlet L-function

L(s, χt,N , N) has no zeros in the interval (0, 1). Then the sequence (af (tn
2))n∈N has

infinitely many sign changes.

In the case of Hecke eigenforms, they proved a stronger theorem. More pre-
cisely:

Theorem 3.2.4. ([11, Theorem 2.2]) Suppose that the character χ of f is real, and
suppose that f is an eigenform of all Hecke operators T (p2). Let t ∈ D such that
af (t) = 1. Then, for all but finitely many primes p such that (p,N) = 1, the se-
quence (af (tp

2m))m∈N has infinitely many sign changes.

In loc. cit., they conjectured an equidistribution of signs for Fourier coefficients
of half-integral weight modular forms over Q, i.e.,

lim
x→∞

#{n ≤ x : af (n) ≶ 0}
#{n ≤ x : af (n) 6= 0}

=
1

2
,

(cf. [26] for more details). In [20], Inam and Wiese showed an equidistribution of
signs for certain sub-families of coefficients for half-integral modular forms that
are accessible via the Shimura correspondence. Before, we state the results of [20],
we shall recall the definition of natural density. Let P denote the set of all prime
numbers.

Definition 3.2.5. Let S ⊆ P be a subset. We define the natural density of S to be

lim
x→∞

#{p : p ≤ x, p ∈ S}
#{p : p ≤ x, p ∈ P}

.

If the limit exists, then we denote it by d(S).

Let k ≥ 2, N be an integer divisible by 4, χ be a Dirichlet character modulo N
such that χ2 = 1. Let f(z) =

∑∞
n=1 af (n)qn ∈ Sk+ 1

2
(N,χ) be a non-zero cuspidal

Hecke eigenform of weight k + 1
2

with real coefficients. Let t be a square-free in-
teger such that af (t) 6= 0. Let Ft(z) =

∑∞
n=1 At(n)qn ∈ S2k(N/2, χ

2) be the Hecke
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eigenform of weight 2k corresponding to f under the Shimura lift (cf. [20, §3]).
Define the set of primes

P>0 = {p ∈ P|af (tp2) > 0}

and similarly P<0, P≥0, P≤0 and P=0.

Theorem 3.2.6. ([20, Theorem 4.1]) If Ft is without CM, then P>0, P<0, P≥0, P≤0

have natural density 1/2 and the set P=0 has natural density 0.

For non-zero Hilbert cusp forms of integral weight, in [33], Meher and Tanabe
proved the following theorem:

Theorem 3.2.7. ([33, Theorem 1.1]) Let f be a Hilbert cusp form of weight k =

(k1, . . . , kn) and level n, and let C(m, f) be a Fourier coefficient of f at each integral
ideal m (as defined in (3.7)). If {C(m, f)} are all real, then there are infinitely many
sign changes on {C(m, f)}.

Furthermore, an equidistribution of signs for the Fourier coefficients of prim-
itive Hilbert forms of integral weight without CM can be obtained as, similar to
the case of classical forms, a consequence of the Sato-Tate equidistribution theo-
rem due to Barnet-Lamb, Gee, and Geraghty [9] (cf. Theorem 3.5.4 in the text). To
the best of authors knowledge, similar results are not available in the literature for
Hilbert modular forms of half-integral weight.

In this chapter, we prove sign change results for the Fourier coefficients of
half-integral weight by using Shimura correspondence between the half-integral
weight modular forms and the integral weight modular forms. The chapter is or-
ganized as follows.

In §3.3.1, we recall the half-integral modular forms followed by integral weight
Hilbert modular forms. In §3.4, we state the Shimura correspondence between
them. In §3.5, we recall the Sato-Tate equidistribution Theorem for automorphic
representations of GL2(AF ). In §3.6, the main result of this chapter is stated as
Theorem 3.6.1 with its proof immediately after.
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3.3 Hilbert modular forms

3.3.1 Half-integral weight:

Let k = (k1, . . . , kn) be an integral or a half-integral weight, i.e., kj ∈ Z>0 for all j
or kj = 1

2
+mj with mj ∈ Z>0 for all j, respectively. Both cases together, we denote

k = u/2 + m while it is understood that u ∈ {0, 1} and m = (m1, . . . ,mn) ∈ Zn>0.
Given a holomorphic function g on hn and an element γ = (γ1, . . . , γn) of SL2(R)n

with γj =
[ aj bj
cj dj

]
, define

g||kγ(z) = h(γ, z)−u
∏
j

(cjzj + dj)
−mjg(γz) (3.1)

where z ∈ hn and h(γ, z) is some non-vanishing holomorphic function on hn. See
[43, Proposition 2.3] for the precise definition for h. We note that the function h

is only defined when γ is in a “nice” subgroup of SL2(R), but we shall not worry
about the details as we only consider such a congruence subgroup Γ of SL2(R) as
in (3.2). We refer the reader to Shimura [43, Section 2] for the details.

For the rest of this section, we assume k is half-integral and DF denote the
absolute different of F . Let c be an integral ideal of F that is divisible by 4 and
define a congruence subgroup Γ = Γ(c) of SL2(R) by

Γ(c) =

{[
a b
c d

]
∈ SL2(R) :

a ∈ OF , b ∈ 2D−1
F

c ∈ 2−1cDF , d ∈ OF

}
. (3.2)

Let us take a Hecke character ψ on the idele group A×F of F whose conductor di-
vides c and infinite part ψ∞ =

∏
j ψηj satisfies the following condition;

ψ∞(−1) = (−1)
∑
j mj . (3.3)

Such a character ψ can be extended to a character of Γ(c), which is again denoted
by ψ, as ψ(γ) = ψ(a) where γ =

[
a b
c d

]
. We denote by Mk(Γ(c), ψ) the set of all

holomorphic functions g on hn satisfying

g||kγ = ψc(γ)g

for all γ ∈ Γ(c), where ψc is the “c-part” of ψ, i.e., ψc =
∏

p|c ψp. In other words
Mk(Γ(c), ψ) is the space of Hilbert modular forms of half-integral weight k with
respect to Γ(c) with character ψ. It should be noted that our choice of Hecke char-
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acter ψ only depends on finitely many places, namely at archimedean places and
the c-part. However, we will keep the notation Mk(Γ(c), ψ) without replacing ψ

with ψc, as the choice of characters become more crucial in §3.6.

Such a form g ∈ Mk(Γ(c), ψ) is known to have the Fourier expansion corre-
sponding to any given fractional ideal a. Its coefficients are denoted by {λg(ξ, a)}ξ,a
where ξ varies over totally positive elements in F . One can treat {λg(ξ, a)} as a two
parameter family of Fourier coefficients for g, as varies over ξ in F and fractional
ideals a. It should be noted that λg(ξ, a) = 0 unless ξ ∈ (a−2)+ or ξ = 0. A modular
form g is said to be a cusp form if λg|γ (0, a) = 0 for every fractional ideal a and
every γ ∈ SL2(F ). The space of such g is denoted by Sk(Γ(c), ψ). For more details,
we refer the reader to [43, Proposition 3.1].

Our aim in this chapter is to study a signs change result for a family of Fourier
coefficients {λg(ξ, a)} with a varying over a certain family of fractional ideals. In
the next section, we shall recall the definition and basic properties of Hilbert mod-
ular forms of integral weight. This section is essentially a summary of Raghuram
and Tanabe [38, Section 4.1] with some modifications following Shimura [43, Sec-
tion 6].

3.3.2 Integral weight:

We assume that k = (k1, . . . , kn) ∈ Zn>0 throughout this section. For a non-archimedean
place p of F , let Fp be a completion of F . Let a and b be integral ideals of F , and
define a subgroup Kp(a, b) of GL2(Fp) as

Kp(a, b) =

{[
a b
c d

]
∈ GL2(Fp) :

a ∈ Op, b ∈ a−1
p D−1

p ,

c ∈ bpDp, d ∈ Op, |ad− bc|p = 1

}

where the subscript p means the p-parts of given ideals. Furthermore, we put

K0(a, b) = SO(2)n ·
∏
p<∞

Kp(a, b) and W (a, b) = GL+
2 (R)nK0(a, b).

In particular, if a = OF , we simply write Kp(b) = Kp(OF , b) and W (b) = W (OF , b).
Then, we have the following disjoint decomposition of GL2(AF ),

GL2(AF ) = ∪hν=1GL2(F )x−ιν W (b), (3.4)
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where x−ιν =
[
t−1
ν

1

]
with {tν}hν=1 taken to be a complete set of representatives of

the narrow class group of F . We note that such tν can be chosen so that the infinity
part tν,∞ is 1 for all ν. For each ν, we also put

Γν(a, b) = GL2(F ) ∩ xνW (a, b)x−1
ν

=

{[
a t−1

ν b
tνc d

]
∈ GL2(F ) :

a ∈ OF , b ∈ a−1D−1
F ,

c ∈ bDF , d ∈ OF , ad− bc ∈ OF

}
.

It is understood that Γν(b) = Γν(OF , b) as before.

Let ψ be a Hecke character of A×F such that its conductor divides b and its infi-
nite part ψ∞ is of the form

ψ∞(x) = sgn(x∞)k|x∞|iµ

where µ = (µ1, . . . , µn) ∈ Rn with
∑n

j=1 µj = 0. We let Mk(Γν(b), ψb, µ) denote the
space of all functions fν that are holomorphic on hn and at cusps, satisfying

fν ||kγ = ψb(γ) det γiµ/2fν

for all γ in Γν(b). We note that such a function fν affords a Fourier expansion, and
its coefficients are denoted as {aν(ξ)}ξ where ξ runs over all the totally positive
elements in t−1

ν OF and ξ = 0. Similar to the case of half-integral weight forms,
a Hilbert modular form is called a cusp form if, for all γ ∈ GL+

2 (F ), the constant
term of f ||kγ in its Fourier expansion is 0, and the space of cusp forms with respect
to Γν(b) is denoted by Sk(Γν(b), ψb, µ).

Now, put f = (f1, . . . , fh) where fν belongs to Mk(Γν(b), ψb, µ) for each ν, and
define f to be a function on GL2(AF ) as

f(g) = f(γx−ιν w) := ψb(w
ι) detwiµ/2∞ (fν ||kw∞)(ii) (3.5)

where γx−ιν w ∈ GL2(F )x−ιν W (b) as in (3.4), wι = ω0(tw)ω−1
0 with ω0 =

[
1

−1

]
, and

i = (i, . . . , i). The space of such f is denoted as

Mk(ψb, µ) =
∏
ν

Mk(Γν(b), ψb, µ).
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Furthermore, the space consisting of all f = (f1, . . . , fh) ∈Mk(ψb, µ) satisfying

f(xg) = ψ(x)f(g) for anyx ∈ A×F and g ∈ GL2(AF )

is denoted as Mk(b, ψ), which denotes the space of Hilbert modular forms of inte-
gral weight k of level b and character ψ.

In particular, if each fν belongs to Sk(Γν(b), ψb, µ), then the space of such f is
denoted by Sk(b, ψ). A cusp form f is called primitive if it is a normalized new
form and a common eigenfunction of all Hecke operators.

Let m be an ideal of F and write m = ξt−1
ν OF with a totally positive element ξ

in F . Then the Fourier coefficient of f at m is defined as

c(m, f) =

aν(ξ)ξ−(k+iµ)/2 if m = ξt−1
ν OF ⊂ OF

0 if m is not integral.
(3.6)

To make the calculation simpler at a later point, we re-normalize c(m, f) as fol-
lows: define

C(m, f) = N(m)k0/2c(m, f), (3.7)

where k0 = maxj{kj}with k = (k1, . . . , kn) being the weight of f .

3.4 Shimura correspondence

In this section, we shall recall the Shimura correspondence, which states that, given
a non-zero half-integral weight cusp form, there is an integral automorphic form
associated with it.

For any integral ideal a in OF , we introduce a formal symbol M(a) satisfying
that M(OF ) = 1 and M(ab) = M(a)M(b) for all a, b ⊆ OF . Then one can consider
the ring of formal series in these symbols, indexed by integral ideals.

The following result is the Shimura correspondence for Hilbert modular forms [43,
Theorems 6.1 and 6.2]. We assume for simplicity that ψ is a quadratic character, as
it will be the case in our setting.

Theorem 3.4.1. Let 0 6= g ∈ Sk(Γ(c), ψ) with a half-integral weight k = 1
2

+ m with
m ≥ 1, an integral ideal c of F divisible by 4, and ψ being a Hecke character of F such
that it satisfies (3.3) and its conductor divides c. Further, we assume that ψ∞(x) = |x|iµ

for any totally positive element x in A×F,∞ with some µ ∈ Rn such that
∑

j µj = 0.
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Let τ be an arbitrary element in O+
F , and write τOF = a2r for some integral ideal a

and a square free integral ideal r. Then the following assertions hold.

1. Let b be a fractional ideal of F and define Γ = GL2(F ) ∩W (b, 2−1cb). Then there
exists f ∈M2m(Γ, ψ2

2−1c, µ) so that∑
ξ∈b/O×,+F

a(ξ)ξ−m−iµM(ξb−1) =
∑

m⊆OF

λg(τ, a
−1m)M(m)

∑
nmb∼1

(ψετ )
∗(n)N(n)−1M(n),

(3.8)
where λg(τ, a−1m) is the Fourier coefficient of g at a cusp corresponding to a−1m,
ψ{2−1c} =

∏
p|2−1c ψp, ετ is the Hecke character of F corresponding to F (

√
τ)/F ,

and (ψετ )
∗ is the character induced from ψετ . In the second sum of the right hand

side in (3.8), n runs through all the integral ideal of F that are prime to cr and
equivalent to (mb)−1.

2. Let fτ = (f1, . . . , fh) where fν is of the form given in (1) with b = tνOF for all
ν = 1, . . . , h. Then fτ ∈M2m(2−1c, ψ2) and it satisfies

∑
m

c(m, fτ )M(m) =
∑
m

λg(τ, a
−1m)M(m)

∏
p-cr

(
1− (ψετ )

∗(p)

N(p)
M(p)

)−1

(3.9)

where m runs over all the integral ideals of F and p over all the prime ideals which
do not divide cr.

3. The function f given in (1) is a cusp form if mj > 1 for some j.

3.5 Sato-Tate equidistribution theorem for Hilbert mod-

ular forms

In this section, we shall recall the Sato-Tate equidistribution Theorem due to Barnet-
Lamb, Gee, and Geraghty in [9].

Theorem 3.5.1. ([9, Corollary 7.1.7]) Let F be a totally real number field of de-
gree n and Π a non-CM regular algebraic cuspidal automorphic representation of
GL2(AF ). Write µ = (µ1, . . . , µn) for an integral weight for the diagonal torus of
GL2(R)n with µj = (aj, bj) and aj ≥ bj for all j. We note that the values aj + bj are
the same for all j, and therefore we may put ωΠ = aj + bj . Let χ be the product of
the central character of Π with | · |ωπ , so that χ is a finite order character. Let ζ be a
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root of unity such that ζ2 is in the image of χ. For any place p of F such that Πp is
unramified, let λp denote the eigenvalue of the Hecke operator

GL2(Op)
($p

1

)
GL2(Op) (3.10)

on Π
GL2(Op)
p , where $p is a uniformizer of Op.

Then as p ranges over the unramified places of F such that χp($p) = ζ2, the
number given by

λp
2N(p)(1+ωΠ)/2ζ

belongs to [−1, 1], and furthermore they are equidistributed in [−1, 1] with respect
to the measure (2/π)

√
1− t2dt.

Now, we rewrite the above theorem in terms of the Fourier coefficients of prim-
itive Hilbert modular eigenforms. The following lemma provides the relation be-
tween the Fourier coefficients and the eigenvalues. More precisely,

Lemma 3.5.2. Let f ∈ Sk(c, 11) be a primitive form in the new space, and Π = Πf an
irreducible cuspidal automorphic representation corresponding to f . Let p be a prime ideal
of F such that p - cDF . Let c(p, f) be the Fourier coefficients at p defined as in (3.6), and
λp be the eigenvalue of the Hecke operator defined as in (3.10), then

λp = c(p, f)N(p).

Proof. For a proof, please refer to [38, Page 305-306].

Let P denote the set of all prime ideals of OF . Now, we recall the notion of
natural density for a subset of P.

Definition 3.5.3. Let F be a number field and S be a subset of P. We define the natural
density of S to be

d(S) = lim
x→∞

#{p : N(p) ≤ x, p ∈ S}
#{p : N(p) ≤ x, p ∈ P}

, (3.11)

provided the limit exists.

The following theorem is a consequence of Theorem 3.5.1 above:

Theorem 3.5.4. Let f ∈ Sk(c, 11) be a primitive form of weight k = (k1, . . . , kn) such
that k1 ≡ · · · ≡ kn ≡ 0 (mod 2) and each kj ≥ 2. Suppose that f does not have complex
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multiplication. Then, for any prime ideal p of F such that p - cDF , we have

B(p) :=
C(p, f)

2N(p)
k0−1

2

∈ [−1, 1].

Furthermore, {B(p)}p are equidistributed in [−1, 1] with respect to the measure µ =

(2/π)
√

1− t2dt. In other words, for any subinterval I of [−1, 1], we have

lim
x→∞

#{p ∈ P : p - cDF ,N(p) ≤ x,B(p) ∈ I}
#{p ∈ P : N(p) ≤ x}

= µ(I) =
2

π

∫
I

√
1− t2dt,

i.e., the natural density of the set {p : B(p) ∈ I} is µ(I).

Proof. Let Π = Πf be the non-CM irreducible cuspidal automorphic representation
corresponding to f . Since k1 ≡ · · · ≡ kn ≡ 0 (mod 2) and each kj ≥ 2, it follows
that Π is algebraic and regular (cf. [38, Theorem 1.4]). By Lemma 3.5.2, we have

λp
2N(p)(1+ωΠ)/2

=
N(p)c(p, f)

2N(p)(1+ωΠ)/2
=

c(p, f)

2N(p)(ωΠ−1)/2
.

Given that the highest weight vector µ = (µ1, . . . , µn) of Π being µj = ((kj −
2)/2,−(kj − 2)/2), we have ωΠ =

kj−2

2
− kj−2

2
= 0. Hence, we get

λp
2N(p)1/2

=
c(p, f)

2N(p)
−1
2

=
C(p, f)

2N(p)
k0−1

2

.

Now, the theorem follows from Theorem 3.5.1 by taking ζ = 1.

3.6 Main theorem

Let τ be an element of O+
F and a be an integral ideal of F . We are interested in

studying sign change results over a certain family of Fourier coefficients of a half-
integral cusp form g, namely {λg(τ, a−1p)}p where p varies over prime ideals. For
a fixed g, we put

P>0(τ, a) = {p ∈ P : p - cDF , λg(τ, a
−1p) > 0},

and similarly P<0(τ, a), P≥0(τ, a), P≤0(τ, a), and P=0(τ, a). We also write Pc for the
set of all prime ideals not dividing c. We are now ready to state the main result of
this chapter.
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Theorem 3.6.1. Let 0 6= g ∈ Sk(Γ(c), ψ) with a half-integral weight k = 1
2

+ m with
mj > 1 for some j, an integral ideal c of F divisible by 4, and ψ a Hecke character of AF

satisfying the following conditions:

a. the conductor of ψ divides c,

b. ψ∞(−1) = (−1)
∑
j mj , and

c. for any totally positive element x in A×F,∞, ψ∞(x) = |x|iµ with some µ ∈ Rn such
that

∑
j µj = 0.

Furthermore, we suppose that the Fourier coefficients of g are real and the character ψ of g
is quadratic.

Let τ be an arbitrary element inO+
F , and write τOF = a2r for some integral ideal a and

a square free integral ideal r. Then, there is a lift fτ of g under the Shimura correspondence
(as in Theorem 3.4.1). Assume that fτ is a non-CM primitive Hilbert modular form.

Then, the natural density of P>0(τ, a) (resp., of P<0(τ, a) ) is 1/2, i.e., d(P>0(τ, a)) =

1/2 (resp., d(P<0(τ, a)) = 1/2 ), and d(P=0(τ, a)) = 0.

The rest of this chapter is devoted to proving the theorem. From now on, we
simply write P>0 for P>0(τ, a), etc. Let us also define

π(x) = #{p ∈ P : N(p) ≤ x} and π>0(x) = #{p ∈ P>0 : N(p) ≤ x}.

Then we have the following proposition.

Proposition 3.6.2. Assume that all the hypotheses in Theorem 3.6.1 hold. Then, we have

lim inf
x→∞

π>0(x)

π(x)
≥ µ([0, 1]) =

1

2
and lim inf

x→∞

π≤0(x)

π(x)
≥ µ([0, 1]) =

1

2
.

Proof. The equality of the formal sums in (3.9) can also be re-interpreted as

∏
p-cr

(
1− (ψετ )

∗(p)

N(p)
M(p)

)∑
m

c(m, fτ )M(m) =
∑
m

λg(τ, a
−1m)M(m).

For any non-zero prime ideal p - cr, comparing the coefficients of M(p) on both
sides gives

c(p, fτ )−
(ψετ )

∗(p)

N(p)
= λg(τ, a

−1p) (3.12)
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since fτ is primitive (i.e., c(OF , fτ ) = 1). There are exactly two terms on the left side
of (3.12) because the unique factorization of ideals holds inOF , and hence the only
integral ideals which divides p are p and OF itself.

Since ψ is a quadratic character, the primitive Hilbert modular form fτ has triv-
ial nebentypus. Hence, the Fourier coefficients c(p, fτ ) are real numbers (cf. [42,
Proposition 2.5]). This implies that (ψετ )

∗(p) ∈ {±1} since, by our assumption,
(ψετ )

∗(p) is a root of unity and λg(τ,m) is real for all fractional ideals m.

By (3.12), we have

λg(τ, a
−1p) > 0⇔ c(p, fτ ) >

(ψετ )
∗(p)

N(p)
,

which gives us

λg(τ, a
−1p) > 0⇔ B(p) >

(ψετ )
∗(p)

2N(p)
1
2

since B(p) = C(p,fτ )

2N(p)
k0−1

2

.

For any ε > 0, we have the following inequality:

π>0(x) + π

(
1

4ε2

)
≥ #{p ∈ PcrDF : N(p) ≤ x and B(p) > ε}

since | (ψετ )∗(p)

2N(p)1/2 | = 1
2N(p)1/2 < ε if N(p) > 1/4ε2. Now divide the above inequality by

π(x) to obtain

π>0(x)

π(x)
+
π
(

1
4ε2

)
π(x)

≥ #{p ∈ PcrDF : N(p) ≤ x and B(p) > ε}
π(x)

.

The term π
(

1
4ε2

)
/π(x) tends to 0, as x → ∞, since π

(
1

4ε2

)
is finite. On the other

hand, Theorem 3.5.4 gives

#{p ∈ P : N(p) ≤ x and B(p) > ε}
π(x)

→ µ([ε, 1])

as x→∞, and therefore we have

lim inf
x→∞

π>0(x)

π(x)
≥ µ([ε, 1]) for all ε > 0.

38



Hence, we can conclude that

lim inf
x→∞

π>0(x)

π(x)
≥ µ([0, 1]) =

1

2
.

A similar proof shows that

lim inf
x→∞

π≤0(x)

π(x)
≥ µ([0, 1]) =

1

2
.

Proof of Theorem of 3.6.1. By Proposition 3.6.2, we have

1

2
≤ lim inf

x→∞

π>0(x)

π(x)
.

Since π>0(x) = π(x)− π≤0(x), we have

lim sup
x→∞

π>0(x)

π(x)
≤ µ([0, 1]) =

1

2
.

Hence,
1

2
≤ lim inf

x→∞

π>0(x)

π(x)
≤ lim sup

x→∞

π>0(x)

π(x)
≤ µ([0, 1]) =

1

2
,

and therefore, limx→∞
π>0(x)
π(x)

exists and equals 1
2
. Thus, the set P>0 has natural den-

sity 1
2
. The same argument yields that P<0 has natural density 1

2
as well. This

proves that P=0 has natural density 0.

Corollary 3.6.3. Assume that all the hypotheses of Theorem 3.6.1 hold. Then, the set
{λg(τ, a−1p)}p∈P changes signs infinitely often. In particular, there exist infinitely many
primes p ∈ P for which λg(τ, a−1p) > 0 (resp., λg(τ, a−1p) < 0).
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Chapter 4

Simultaneous behaviour of the
Fourier coefficients of two Hilbert
modular cusp forms

4.1 Introduction

The sign changes and non-vanishing of the Fourier coefficients of modular forms
over number fields has been an interesting area of research in the recent years.
In this chapter, we study the simultaneous sign changes and simultaneous non-
vanishing of the Fourier coefficients of distinct Hilbert cusp forms.

In [28], the authors show that, if f and g are two normalized cusp forms of the
same level and different weights with totally real algebraic Fourier coefficients,
then there exist a Galois automorphism σ such that fσ and gσ have infinitely many
Fourier coefficients of the opposite signs. Their proof uses Landau’s theorem on
Dirichlet series with non-negative coefficients, the properties of the Rankin-Selberg
zeta function attached to cusp forms, and the bounded denominators argument.

In [17], the authors, by using an observation about real zeros of Dirichlet series
instead of bounded denominators argument, strengthen the results of [28] by do-
ing away with the Galois conjugacy condition. In fact, they extended the result to
cusp forms with arbitrary real Fourier coefficients.

In [16], the authors investigated simultaneous non-vanishing of the Fourier co-
efficients at the powers of a prime ideal of two different Hecke eigenforms of in-
tegral weight over Q. They proved that if f and g are two Hecke eigenforms of
integral weights and af (n) and ag(n) are Fourier coefficients of f and g, respec-
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tively, then for all primes p, the set {m ∈ N|af (pm)ag(p
m) 6= 0} has positive density.

In [24], we extended some results of Gun, Kohnen and Rath [17] and Gun,
Kumar and Paul [16] to the Hilbert modular forms case. Firstly, we show that two
Hilbert cuspidal forms of different integral weights and same level have infinitely
many Fourier coefficients of same sign (resp., of opposite sign). Secondly, we show
that the simultaneous non-vanishing of the Fourier coefficients, of two non-zero
distinct primitive Hilbert cuspidal non-CM eigenforms, at the powers of a prime
ideal has positive density.

4.2 Statements of the main results

In this section, we shall state the main results of this chapter. Firstly, we prove a
result on the simultaneous sign changes of the Fourier coefficients of two Hilbert
cuspidal forms of different integral weights. More precisely, we prove:

Theorem 4.2.1. Let f and g be non-zero Hilbert cusp forms over F of level c and different
integral weights k = (k1, . . . , kn), l = (l1, . . . , ln), respectively. For each ideal m ⊆ OF , let
C(m, f) and C(m,g) denote the Fourier coefficients (as defined in (3.7)) of f and g, respec-
tively. Further, assume thatC(m, f),C(m,g) are real numbers. IfC(OF , f)C(OF ,g) 6= 0,
then there exist infinitely many ideals m ⊆ OF such that C(m, f)C(m,g) > 0 and in-
finitely many ideals m ⊆ OF such that C(m, f)C(m,g) < 0.

The second result is about the simultaneous non-vanishing of the Fourier coef-
ficients, of two non-zero distinct primitive Hilbert cuspidal eigenforms, at powers
of a prime ideal has positive density. More precisely, we prove:

Theorem 4.2.2. Let f and g be distinct primitive Hilbert cuspidal non-CM eigenforms
overF with trivial nebentypus and of levels c1, c2 and with integral weights k = (k1, . . . , kn),
l = (l1, . . . , ln), respectively. We further assume that k1 ≡ · · · ≡ kn ≡ l1 ≡ · · · ≡ ln ≡ 0

(mod 2) and each kj, lj ≥ 2.
For each ideal m ⊆ OF , let C(m, f) and C(m,g) denote the Fourier coefficients of f

and g, respectively. Then, for any prime ideal p ⊆ OF such that p - c1c2DF , the set

{m ∈ N|C(pm, f)C(pm,g) 6= 0}

has positive density.

Corollary 4.2.3. Assume that the hypothesis of the above theorem holds. Then, for any
prime ideal p - c1c2DF , there exists infinitely m ∈ N such that C(pm, f)C(pm,g) 6= 0.
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4.3 Proof of Theorem 4.2.1

For the proof of Theorem 4.2.1, we need the following basic results.

Lemma 4.3.1. Let s ∈ C and
R(s) =

∑
n≥1

a(n)

ns

be a Dirichlet series with real coefficients a(n)(n ∈ N). Assume that a(n) ≥ 0 or a(n) ≤ 0

for all n ≥ 1. If R(s) has a real zero α in the region of convergence, then R(s) is identical
zero.

Proof. Without loss of generality, we can assume that a(n) ≥ 0 for all n ≥ 1. Denote
the sequence of partial sums of R(α) by si =

∑i
n=1

a(n)
nα

, for i ≥ 1. Since a(n) ≥ 0,
the sequence {si} is a monotonically increasing sequence. Hence, the sequence
{si} converges to its least upper bound. Since, R(α) = 0, we get that, for i ≥ 1, si is
zero. We can deduce that each a(i) = 0 for each i. Hence, R(s) is identical zero.

Now, if a(n) ≤ 0 for all n ≥ 1, then we get the required result by applying above
argument with −R(s).

Lemma 4.3.2. ([17, Lemma 6]) Let s ∈ C and a(n) ∈ R. For m ≥ 1, consider the
Dirichlet polynomial

Rm(s) :=
∑

1≤n≤m

a(n)

ns
.

If Rm(s) has infinitely many real zeros, then Rm(s) is identically zero.

Proposition 4.3.3. ([42, Proposition 2.3]) For any integral ideal q ⊆ OF and every
f ∈ Sk(c, ψ), there exists an unique element of Sk(qc, ψ), written as f |q, such that

C(m, f |q) = C(q−1m, f) (4.1)

Proposition 4.3.4. ([37, Page 124]) For any integral ideal q ⊆ OF and every f ∈
Sk(c, ψ), there exists an unique element of Sk(qc, ψ), written as f |U(q), such that

C(m, f |U(q)) = C(qm, f) (4.2)

We need the following proposition in the proof Theorem 4.2.1.

Proposition 4.3.5. Let f ∈ Sk(c, ψ) and q be an integral ideal of OF . Then g = f −
(f |U(q))|q is a Hilbert cusp form of weight k and level q2c. Further, it has the property
that C(mq,g) = 0 and C(m,g) = C(m, f), if (m, q) = 1.
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Proof. Observe thatC(mq,g) = C(mq, f−(f |U(q))|q) = C(mq, f)−C(mq, (f |U(q))|q).
Now, let us computeC(mq, f |U(q)|q) = C(m, f |U(q)) = C(mq, f). Hence,C(mq,g) =

0.

Now, let us look at the expression when (m, q) = 1.

C(m,g) = C(m, f − (f |U(q))|q) = C(m, f)− C(m, (f |U(q))|q).

However, C(m, f |U(q)|q) = C(q−1m, f |U(q)) = 0, since q−1m is not an integral ideal.
Hence, C(m,g) = C(m, f), if (m, q) = 1.

Now, we are in a position to prove Theorem 4.2.1.

Proof. By hypothesis, we haveC(OF , f)C(OF ,g) 6= 0. First, we will show that there
exist infinitely many m ⊆ OF such that

C(m, f)C(m,g)

C(OF , f)C(OF ,g)
< 0. (4.3)

Without loss of generality, we can assume that C(OF , f)C(OF ,g) > 0 as otherwise
we replace g by −g.

If (4.3) is not true, then there exist an ideal m′ ⊆ OF such that

C(m, f)C(m,g) ≥ 0 (4.4)

for all m ⊆ OF withN(m) ≥ N(m′). Set n :=
∏

N(p)≤N(m′) p, where p are prime ideals
of OF .

Suppose f1 and g1 are Hilbert modular cusp forms obtained from f and g re-
spectively, by applying the Proposition 4.3.5 to f and g with the ideal n. Clearly, f1
and g1 are also Hilbert cusp forms of level k and l respectively, and of level c1. We
just say that the level is c1, because as such we do not need the explicit level in the
further calculations.

For s ∈ C with Re(s)� 1, the Rankin-Selberg L-function of f1 and g1 is defined
by

Rf1,g1(s) :=
∑

m⊆OF ,(m,n)=1

C(m, f)C(m,g)

N(m)s
. (4.5)

In above summation C(m, f)C(m,g) ≥ 0, since, if N(m) ≤ N(m′) then m =
∏

pi|n p
ei
i
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implies (m, n) 6= 1. For Re(s)� 1, we set

Lf1,g1(s) := ζc1F (2s− (k0 + l0) + 2)Rf1,g1(s),

where ζc1F (s) =
∏

p|c1,p:prime(1 − N(p)−s)ζF (s), where ζF (s) =
∑

m⊆OF N(m)−s is
Dedekind zeta function of F . By the Euler expansion of Dedekind zeta function
of F , we get that

ζc1F (s) =
∏

p|c1,p:prime

(1−N(p)−s)
∏

p:prime

(1−N(p)−s)−1

=
∑

m⊆OF ,(m,c1)=1

1

N(m)s
=
∞∑
n=1

an(c1)

ns
,

where an(c1) is the number of integral ideals of norm n that are co-prime to c1.
Hence, we can write

Lf1,g1(s) =
∞∑
n=1

an(c1)nk0+l0−2

n2s
×

∑
m⊆OF ,(m,n)=1

C(m, f)C(m,g)

N(m)s
.

Now, we can re-write

Lf1,g1(s) =
∞∑
m=1

bc1m(f1,g1)

ms
,

where

bc1m(f1,g1) =
∑
n|m

an(c1)nk0+l0−2
∑

(m,n)=1,N(m)=m/n2

C(m, f)C(m,g)

 .

In the above summation bc1m(f1,g1) ≥ 0 for all m because C(m, f)C(m,g) ≥ 0, for all
(m, n) = 1, by (4.4). Observe that bc11 (f1,g1) = C(OF , f)C(OF ,g).

Denote k0 := max{k1, k2, . . . , kn} and l0 := max{l1, l2, . . . , ln}. Define, for any j,
k′j := k0 − kj , and similarly, define l′j .

Now, look at the complete L-function, defined by the product

Λf1,g1(s) =
n∏
j=1

Γ

(
s+ 1 +

kj − lj − k0 − l0
2

)
Γ

(
s−

k′j + l′j
2

)
Lf1,g1(s)

can be continued to a holomorphic function on the whole plane, since the weights
are different (cf. [42, Proposition 4.13]). As the Γ-function is extended by analytic
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continuation to all complex numbers except the non-positive integers, where the
function has simple poles, we get that the function Lf1,g1(s) is also entire.

By Landau’s Theorem it follows that the Dirichlet series Lf1,g1(s) converges ev-
erywhere. Observe that the function Lf1,g1(s) has real zeros because the Γ-factors
have poles at non-positive integers. By Lemma 4.3.1, we have that bc1m(f1,g1) = 0

for all m. This contradicts the assumption that C(OF , f)C(OF ,g) 6= 0 This com-
pletes the proof of (4.3).

In order to complete the proof of the Theorem 4.2.1, we need to show that there
exist infinitely many m ⊆ OF such that

C(m, f)C(m,g)

C(OF , f)C(OF ,g)
> 0.

It is sufficient to assume that C(OF , f)C(OF ,g) > 0. We then have to show that
there exist infinitely many integral ideals m such that C(m, f)C(m,g) > 0. If
not, then C(m, f)C(m,g) ≤ 0 for all ideals m ⊆ OF with N(m) � 0. Note that,
C(m, f)C(m,g) cannot be equal to zero for almost all ideals m ⊆ OF . For in this
case

∑
m⊆OF

C(m,f)C(m,g)
N(m)s

is a Dirichlet polynomial and

Λf ,g(s) =
n∏
j=1

Γ(s+ 1 +
kj − lj − k0 − l0

2
)Γ(s−

k′j + l′j
2

)Lf ,g(s)

is entire. The presence of the multiple Γ-factors ensures that
∑

m⊆OF
C(m,f)C(m,g)

N(m)s
has

infinitely many zeros. Hence, by Lemma 4.3.2, we get that C(OF , f)C(OF ,g) = 0,
which is a contradiction. Hence, there exists an integral ideal d ⊆ OF such that
C(d, f)C(d, g) < 0.

Now, by Proposition 4.3.4, f |U(d) and g|U(d) are Hilbert cusp forms of weights
k1, k2, respectively and weight dc. Observe that

C(OF , f |U(d))C(OF ,g|U(d)) = C(d, f)C(d,g) < 0.

Now, by (4.3), we have C(m, f |U(d))C(m,g|U(d)) > 0 for infinitely many m ⊆ OF .
This proves our claim.
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4.4 Proof of Theorem 4.2.2

By [42, (2.23)], the Fourier coefficients C(m, f) of f satisfy the following Hecke re-
lations

C(m, f)C(n, f) =
∑

m+n⊂a

N(a)k0−1C(a−2mn, f),

where k0 = max{k1, . . . , kn}. In particular, for any m ≥ 1, the following relation
holds:

C(pm+1, f) = C(p, f)C(pm, f)−N(p)k0−1C(pm−1, f). (4.6)

For any integral ideal a ⊆ OF , define

β(a, f) :=
C(a, f)

N(a)
k0−1

2

.

For any prime ideal p ⊆ OF , by (4.6), we have the following

β(pm+1, f) = β(p, f)β(pm, f)− β(pm−1, f). (4.7)

It is well-known that for a primitive Hilbert cuspidal eigenform f over F , there
is an irreducible cuspidal automorphic representation Π = Πf of GL2(AF ) corre-
sponding to it. For any place p of F such that Πp is unramified, let λp denote the
eigenvalue of the Hecke operator

GL2(Op)

(
$p

1

)
GL2(Op) (4.8)

on Π
GL2(Op)
p , where $p is a uniformizer of Op. For such a prime p, by [23, Lemma

3.2], we see that the eigenvalues λp and the Fourier coefficient C(p, f) are related
by

λp =
C(p, f)

N(p)
k0−2

2

.

For any fixed prime ideal p - c1c2DF , by [23, Theorem 3.3], we have

β(p, f) :=
C(p, f)

N(p)
k0−1

2

=
λp

N(p)
1
2

∈ [−2, 2]. (4.9)

Since β(p, f) ∈ [−2, 2], we can write β(p, f) = 2 cosαp, for some 0 ≤ αp ≤ π. Before
getting into the proof of Theorem 4.2.2, we need the following proposition.
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Proposition 4.4.1. For any fixed prime ideal p - c1c2DF and for any m ≥ 1, we have

β(pm, f) =


(−1)m(m+ 1) if αp = π;

m+ 1 if αp = 0;

sin(m+1)αp

sinαp
if 0 < αp < π.

(4.10)

Proof. The first two cases are easy to prove by induction. So WLOG assume that
0 < αp < π. When m = 1, we have β(p, f) = sin 2αp

sinαp
= 2 sinαp cosαp

sinαp
= 2 cosαp. Assume

that β(pm, f) = sin(m+1)αp

sinαp
for some m ≥ 1. By (4.7), we have

β(pm+1, f) = β(p, f)β(pm, f)− β(pm−1, f)

= 2 cosαp
sin(m+ 1)αp

sinαp

− sinmαp

sinαp

=
2 sin(m+ 1)αp cosαp − sinmαp

sinαp

=
sin(m+ 2)αp + sinmαp − sinmαp

sinαp

=
sin(m+ 2)αp

sinαp

.

Now, we are in a position to prove Theorem 4.2.2. Let p - c1c2DF be a prime
ideal. By (4.9), one can write

β(p, f) = 2 cos αp and β(p,g) = 2 cos βp

with 0 ≤ αp, βp ≤ π. Now, the proof of Theorem 4.2.2 follows from following cases.

Case (1): When αp = 0 or π and βp = 0 or π, then by Proposition 4.4.1, we see
that

{m ∈ N|C(pm, f)C(pm,g) 6= 0} = N.

In this case all elements of the sequence {C(pm, f)C(pm,g)}m∈N are non-zero.

Case (2): Suppose that exactly one of αp, βp is 0 or π, say αp = 0 or π and
βp ∈ (0, π). If βp/π /∈ Q, there is nothing to prove. If βp/π ∈ Q, say βp = r

s
, where

r, s ∈ N and (r, s) = 1, then we have sin mαp = 0 if and only if m is an integer
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multiple of s, then we have

#{m ≤ x|C(pm, f)C(pm,g) 6= 0} = #{m ≤ x|C(pm,g) 6= 0} = [x]−
[x
s

]
.

Hence the set {m ∈ N|C(pm, f)C(pm,g) 6= 0} has positive density.
Case (3): Suppose that αp = βp ∈ (0, π), i.e., αp/π = βp/π ∈ (0, 1). If αp/π /∈ Q,

then C(pm, f)C(pm,g) 6= 0 for all m ∈ N as sin mαp 6= 0 for all m ∈ N. If αp/π ∈ Q,
say αp = r

s
, where r, s ∈ N and (r, s) = 1, then we have sin mαp = 0 if and only if m

is an integer multiple of s and hence

#{m ≤ x|C(pm, f)C(pm,g) 6= 0} = [x]−
[x
s

]
.

Hence the set {m ∈ N|C(pm, f)C(pm,g) 6= 0} has positive density.
Case (4): Suppose that αp, βp ∈ (0, π) with αp 6= βp. If both αp/π, βp/π /∈ Q,

then there is nothing to prove. Next suppose that one of them, say αp/π = r
s

with
(r, s) = 1 and βp/π /∈ Q. Then we have

#{m ≤ x|C(pm, f)C(pm,g) 6= 0} = #{m ≤ x|C(pm, f) 6= 0} = [x]−
[x
s

]
.

Hence the set {m ∈ N|C(pm, f)C(pm,g) 6= 0} has positive density.
Now let both αp/π, βp/π ∈ Q. If αp/π = r1

s1
and βp/π = r2

s2
with (ri, si) = 1, for

1 ≤ i ≤ 2, then

#{m ≤ x|C(pm, f)C(pm,g) 6= 0} = #[{m ≤ x|C(pm, f) 6= 0}∩{m ≤ x|C(pm,g) 6= 0}].

Since

#{m ≤ x|C(pm, f)C(pm,g) = 0} = #[{m ≤ x|C(pm, f) = 0} ∪ {m ≤ x|C(pm,g) = 0}]

≤
[
x

s1

]
+

[
x

s2

]
.

Hence the set {m ∈ N|C(pm, f)C(pm,g) 6= 0} has positive density. This completes
the proof of Theorem 4.2.2.
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