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Abstract We apply the generalized Lomb–Scargle (LS)
periodogram to independently confirm the claim by Stur-
rock et al. (Astropart Phys 84:8. https://doi.org/10.1016/j.
astropartphys.2016.07.005, 2016) of an oscillation at a fre-
quency of 11/year in the decay rates of 90Sr/90Y from
measurements at the Physikalisch Technische Bundesanstalt
(PTB), which however has been disputed by Kossert
and Nahle (Astropart Phys 69:18. https://doi.org/10.1016/
j.astropartphys.2015.03.003, 2015). For this analysis, we
made two different ansatze for the errors. For each peak in
the LS periodogram, we evaluate the statistical significance
using non-parametric bootstrap resampling. We find using
both of these error models evidence for 11/year periodicity
in the 90Sr/90Y data for two of the three samples, but at a
lower significance than claimed by Sturrock et al. [1].

1 Introduction

In the past two decades, there have been a number of
works starting with Falkenberg [3] pointing out that the beta
decay rates are variable and depend on various environmen-
tal parameters. Some of the environmental influences pro-
posed for this variability include solar rotation, other ancil-
lary dynamics in the inner solar core [4,5], solar flares [6],
Earth–Sun distance [7], lunar influence etc [8]. However,
these results have been disputed by other authors (eg. [9–
12]) and no common consensus has emerged. A summary of
some of these claims as well as their rebuttals are reviewed
in Refs. [1,2,9].

In this work we concentrate on settling the contentious
claim of one such result regarding the decay rates of 90Sr/90Y
from one specific experiment, between two groups of authors.
Parkhomov [8] and Sturrock et al. [4] found evidence
for annual and monthly oscillations in the decay rates of
90Sr/90Y measured at Institute for Time Nature Explorations,
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Moscow State University. Furthermore, Sturrock et al. [4]
also found correlations between these decay rates and r-mode
oscillations inside the Sun.

These results were contested by Kossert and Nahle [2]
(hereafter, KN15). They showed using long-term measure-
ments of the decay rates with a custom-built liquid scintilla-
tor at the Physikalisch-Technische Bundesanstalt (PTB), that
there is no evidence for any periodic modulations in the decay
rates of 90Sr/90Y. The results of KN15 were in turn rebuked
by Sturrock et al. [1] (hereafter, S16), who reanalyzed the
same PTB data from KN15 and found evidence for statisti-
cally significant peaks at 11/year. S16 further argued that this
oscillation frequency is indicative of a solar influence.

S16 used a likelihood procedure [13] analogous to the
Lomb–Scargle periodogram to analyze the data and found
peaks at the same location as KN15. However, the p-values
they obtained (of the peaks been a random fluctuation) were
much smaller than in KN15, implying an enhanced statis-
tical significance for the peaks. One criticism of the KN15
paper by S16 was that KN15 incorrectly calculated the sig-
nificance of each peak as exp(−√

S), instead of exp(−S),
where S is the LS power. The significance of the peaks was
also independently validated by S16 using a shuffle test [14].

Here, we focus on adjudicating the above conflict between
KN15 and S16 regarding the oscillations in the decay rates of
90Sr/90Y at PTB, which remains unresolved, using an inde-
pendent analysis and with a slight variant of their analysis.
For this purpose, we use a modified version of the Lomb–
Scargle periodogram called “Generalized Lomb–Scargle
periodogram” (or floating-mean periodogram) to analyze
the same dataset and evaluate the significance using boot-
strap resampling. The same procedure was previously used
in particle physics to assess the significance of periodicity in
solar neutrino flux measured in Super-Kamiokande and SNO
experiments [16]. However, this generalized periodogram is
routinely used throughout astronomy (for example, see [17]).
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The outline of this paper is follows. The generalized
Lomb–Scargle periodogram is introduced in Sect. 2. Our
analysis of the PTB is described in Sect. 3. A comparison
of our results with those of Sturrock et al. can be found in
Sect. 4. We then address the question of whether the observed
data is purely stochastic in Sect. 5. We conclude in Sect. 6.

2 Generalized Lomb–Scargle periodogram

The Lomb–Scargle (hereafter, LS) [18,19] (see Ref. [20] for
a recent review) periodogram is a widely used technique in
astronomy and particle physics to look for periodicities in
unevenly sampled datasets, and has been applied to a large
number of astrophysical datasets. Here, for our analysis, we
shall apply a slight variant of the normal LS periodogram. We
first provide a bare-bones introduction to the normal LS peri-
odogram and then briefly outline the modification proposed
by Zechmeister and Kurster [21], which is known in the liter-
ature as the generalized LS periodogram [21,22] or the float-
ing mean periodogram [20,23,24] or the Date-Compensated
Discrete Fourier Transform [25]. More details are outlined
in Refs. [20,26] and references therein.

The goal of the LS periodogram is to determine the angular
frequency (ω) of a periodic signal in a time-series dataset y(t)
given by:

y(t) = a cos(ωt) + b sin(ωt). (1)

It can be obtained as an analytic solution, while solving the
problem of fitting for a sinusoidal function by χ2 minimiza-
tion, and hence is a special case of the maximum likelihood
technique for symmetric errors [27]. The LS periodogram
calculates the power as a function of frequency, from which
one needs to infer the presence of a sinusoidal signal.

One premise in calculating the LS periodogram [18,19]
is that the data are pre-centered around the mean value of
the signal. This pre-centering is done using the sample mean,
which is computed from the existing data. One ansatz implic-
itly made is that this is a good estimate for the mean value of
the fitted function. This assumption breaks down if the data
does not uniformly sample all the phases, or if the dataset is
small and does not extend over the full duration of the sam-
ple. Such errors in estimating the mean can cause aliasing
problems [21]. Therefore, to circumvent these issues, the LS
periodogram was generalized to add an arbitrary offset to the
mean values [21] as follows:

y(t) = y0( f ) + a cos(ωt) + b sin(ωt), (2)

where y0( f ) is an offset term added to the sinusoidal model
at each frequency We refer to this modification as the “gener-
alized” LS periodogram in the remainder of this work. But as

mentioned earlier, this modification is also referred elsewhere
in literature as the floating-mean periodogram. The resulting
equations for the generalized LS power can be found in Eq.
20 in Ref. [21]. It has been shown that the generalized LS
periodogram is more sensitive than the normal one in detect-
ing periodicities, in case the data sampling overestimates the
mean [20,21,28]. In this work, we shall use the generalized
LS periodogram for all the analyses.

If the observed data show any sinusoidal modulations
at a given frequency, one would expect a peak in the LS
periodogram at that frequency. To assess the significance
of such a peak, we use the bootstrap method, in which for
the same temporal coordinates as the data, we draw points
randomly with replacements from the observed values and
recompute the periodograms. Such a non-parametric boot-
strap resampling procedure can reproduce any empirical dis-
tribution along with extreme-value methods to account for
the tails [29]. To assess the significance of any peak, we shall
compute the significance using 1000 bootstrap resamples of
the data.

3 Analysis

3.1 Dataset

The PTB dataset consists of three samples of 90Sr/90Y
denoted as S2, S3, and S4. This is supplemented by a blank
sample (S1) for monitoring the background effects. The
radioactivity estimates have been made using the Triple-To-
Double coincidence ratio method [2]. The beta decay rates
are parameterized by the normalized activity rates as shown
in Figures 4, 5 and 6 of KN15. The normalization takes into
account the triple coincidence rate and counting efficiency.
More details of the sample preparation and the PTB mea-
surements can be found in KN15.

3.2 Power spectrum analysis

We have used the generalized Lomb–Scargle periodogram to
detect a possible periodicity in the unevenly sampled activity
data. The activity data from PTB contain many time periods
without any data. The data were organized into bins and clus-
tered. Contiguous data points were grouped into a single bin.
All the data points in a bin were clustered, that is, the data
points were replaced with a single value representative of all
the points in that bin. After clustering the data, we obtained
240 time bins. Since there were no error bars provided per
data point, we computed the periodogram by positing two
different error models: For the first analysis we assumed that
the error in each bin is given by the standard error of the
mean, which is similar to the analysis done in S16. A time
series representation of the data for all the three samples with
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Fig. 1 Plot showing representative activity values and representative time instances of all the 240 bins for each of the three samples. The plot also
shows the error in each bin assuming standard error of the mean

Table 1 A summary of the results from the generalized LS analysis
carried out on S2, S3, and S4 datasets using two different models for
the errors per data point. The last two columns indicate the position of
the peak frequency and FAP. We note that only S2 shows a marginally
significant peak close to 11 per year when standard error of mean is
used for the error per data point

Sample Error model Peak frequency FAP

S2 0.03% 11.40 year−1 17.2%

S3 0.03% 17.57 year−1 28.2%

S4 0.03% 17.36 year−1 20.5%

S2 Std. error of Mean 11.22 year−1 2.6%

S3 Std. error of Mean 11.03 year−1 41.4%

S4 Std. error of Mean 1.33 year−1 74.1%

this error model is shown in Fig. 1. We also redid this analysis
assuming an error of 0.03% per data point. This is the average
error estimated by KN15 (Table 1), from a quadrature sum
of the different sources of systematic errors. We note how-
ever that it is not explicitly stated in KN15 as to whether this
particular error budget has been used for their periodograms
for the three samples. We also couldn’t find any information
on the bin size used for the periodogram analysis carried out
in KN15. On the other hand, S16 grouped the data into 50
bins of equal occupancy.

We computed the generalized LS periodogram using the
lomb_scargle routine from the astroML [26] Python
library. From the LS power at different frequencies, we need
to estimate the significance at that frequency. The minimum
and maximum frequencies have to be carefully chosen. The
spacing between the frequencies has to be chosen so as to
not miss any peaks. The choice of minimum frequency is
straight-forward, fmin = 1/T , where T is the total time
spanned by the set of observations. For all practical pur-
poses, the minimum frequency is chosen to be zero. The
maximum frequency is suggested as (1/Tmed), where Tmed

is the median of the difference of the representative time
instances of each bin [20]. The median time between con-
secutive bins after choosing a time bin to be the contiguous
data is equal to approximately 1.006 days. The reason for
the slight variation in this value for different samples is due
to a very small variation in the bin sizes and time instances
corresponding to the different data points.

Since our main goal is to resolve the conflicting claims in
two papers, we restrict ourselves to a maximum frequency
of 20 year−1, as in KN15 and S16 instead of the maximum
permissible frequency. The spacing between the successive
frequencies is chosen to be 1/(5T ) and is equal to 5.87 ×
10−9 Hz. Note that there is a slight variation of this value for
different samples due to a very small variation in the bin sizes
and time instances corresponding to these data points. (For
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more details on these recommendations, see Vanderplas [20]
and references therein).

So, the recommended minimum and maximum values of
angular frequency ω, which we use are: ωmin = (2π/T )

and ωmax = 2π fmax , where fmax = 20 year−1. We choose
the value of ωmin very close to zero (1 × 10−9 rad/s) here,
instead of zero exactly, because the LS routine does not
return a valid value for zero frequency. The total number
of frequencies at which the power is computed is equal to
(ωmax − ωmin)/(2π/5T ). The total number of frequencies
at which power is computed corresponds to 108, 108 and 107
for samples S2, S3 and S4 respectively.

We now report results from both these analyses.

3.2.1 Analysis assuming 0.03% error per data point

For the first error model, the representative activity value
of each bin was calculated from the weighted mean of the
observed data, wherein each data point is weighted by the
inverse square of the error. The representative activity value
(ab) and time instance (tb) of a given bin are computed as:

ab =
∑

i di/(ei )
2

∑
i 1/(ei )2 (3)

ei = 0.03

100
di (4)

tb = 1

N

∑

i

ti (5)

where N is the number of data points in the bin; ei is the error
per data point; and ti is the time instance corresponding to
data point di .

The average activity error in each time bin (σi ) is computed
by propagating the uncertainty in each data point:

σ 2
i = 1

∑
i

(
1
ei

)2 . (6)

Using the above error budget, we then construct the LS
periodogram for each of the three samples S2, S3, and S4.
For each of these samples, we show the LS power and a hor-
izontal line representing the False-Alarm Probability (FAP)
of the most significant peak using 1000 bootstrap resamples.
From the FAP, one can obtain an assessment of the statistical
significance of any peak in the periodogram. For a peak to
be statistically significant indicative of any oscillations, FAP
should be as small as possible.

Figures 2, 3 and 4 show the corresponding LS periodogram
(power vs frequency in units of year−1) with these assump-
tions for samples S2, S3, and S4 respectively. A tabular sum-
mary of these results can be found in Table 1.

This normalization of the LS power (which follows the
convention originally proposed by Lomb [18]), differs from

Fig. 2 Power spectrum of PTB Sample 2, assuming an error of 0.03%
per data point. Note that the periodograms have been normalized accord-
ing to Ref. [26]. To recover the LS powers in KN15 [2] and Sturrock [1],
one needs to multiply by (N − 1)/2. The dotted horizontal line corre-
sponds to a false alarm probability (FAP) of a random fluctuation equal
to 17.2% and represents the FAP of the largest peak in the LS peri-
odogram. In this case, this peak is at about 11.4 year−1. However, the
FAP at this peak is consistent with it been a noise fluctuation

Fig. 3 Power spectrum of PTB Sample 3, assuming an error of 0.03%
per data point. See Fig. 2 for more details about the labels. The dotted
horizontal line corresponds to a FAP 28.2% and is not significant

Fig. 4 Power spectrum of PTB Sample 4, assuming an error of 0.03%
per data point. See Fig. 2 for more details about the labels. The dotted
horizontal line corresponds to a FAP of 20.5% and is consistent with
noise. Here, there is no observed peak at 11.5 year−1

that used in KN15 and S16, (which follows Scargle’s con-
vention [19]) by a factor of (N−1)/2 for N data points. With
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this assumption, the values for the LS power fall between 0
and 1. A tabular summary of these results can be found in
Table 1.

Despite using different bin sizes, the locations of the peak
frequencies in all the periodograms with this error model is
same as in KN15 and S16. For S2, the periodogram is peaked
at about 11.4 /year (with FAP of about 17.2%). S3 and S4
show peaks at 17 per year with FAPs of 28.2 and 20.5%
respectively. Therefore, the significance of all these peaks
(based on the FAP) is marginal and cannot be construed as
statistically significant evidence for oscillations at any fre-
quency. If there is any influence from the solar interior on
the beta decay rates, then all the three samples should show
statistically significant peaks around 11 per year, which we
do not find. The FAPs we obtain are much higher than S16
and are consistent with noise.

3.2.2 Analysis assuming standard error of mean

We now re-calculate the periodogram by positing that the
error in each bin is the standard error of the mean, which is
similar to the analysis done in S16. However in S16, 50 bins
were chosen in such a way that the number of data points
in each bin were the same, whereas for our analysis, the
bins represent contiguous periods of data. In this case, the
representative activity value (ab) as well as the central time
in each bin (tb) were taken to be the mean of the activity
values in a bin:

ab = 1

N

∑

i

di (7)

tb = 1

N

∑

i

ti (8)

We note that tb is calculated in the same way as in our
previous analysis. The error in each bin, which in this case
is the standard error SE is computed as follows:

SE = σ√
n

(9)

σ =
√

1

N

∑

i

(di − μ)2 (10)

where σ is the standard deviation of the data points in a given
bin, μ is the mean of the data points in a given bin and N is
the total number of data points in a given bin.

Using this error budget for each data point, we then con-
struct the LS periodograms in the same way as before. These
periodograms can be found in Figs. 5, 6 and 7 respectively.
A tabular summary of the results with this model for the
error budget can be found in Table 1. This time, we find that
both S2 and S3 show peaks at a frequency of approximately
11/year. S4 shows a peak at about 1.3 per year. Therefore,
the location of the peak frequencies in samples S3 and S4 is

Fig. 5 Power spectrum of PTB Sample 2, assuming standard error of
mean. See Fig. 2 for more details about the labels. The dotted horizontal
line corresponds to a FAP of 2.6% and corresponds to a significance of
1.94σ

Fig. 6 Power spectrum of PTB Sample 3, assuming standard error of
mean. See Fig. 2 for more details about the labels. The dotted horizontal
line corresponds to a FAP of 41.4% and is consistent with noise

Fig. 7 Power spectrum of PTB Sample 4, assuming standard error of
mean. See Fig. 2 for more details about the labels. The dotted horizontal
line corresponds to a FAP of 74.1% and is consistent with noise

different than our previous analysis in Sect. 3.2.1 as well as
with the results from KN15 and S16. However, even in this
case none of the peaks are statistically significant. The FAP
of the peaks for S2, S3, and S4 are 2.6, 41.4 and 74.1%. The
lowest FAP is for the S2 equal to 2.6%, which corresponds
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to 1.94σ (using Gaussian one-sided significance [30]) and is
therefore only marginally significant.

Therefore, even with this model for the errors, we do not
see any uniformity in the location of the peak frequencies
across the three samples. However, in the S2 sample we do
see a peak at 11/year similar to S16 and KN15, but with a
lower significance than S16.

4 Comparison with Sturrock et al

In this section, we check if we can reproduce the results in
Section 2 of S16, where they dispute the significance calcu-
lation of KN16. For this purpose, we only focus on the data
from only the S2 sample, since this sample has the largest
LS power at 11/year. We used the same binning procedure
as our earlier analysis. Since the exact error model or the
binning used to obtain LS power of 8.42 is not specified,
we used both the error models. To compare our results with
theirs, we use the same normalization for the LS power as
in KN15 and S16 (which follows Scargle’s convention [19]),
by multiplying the power shown Figs. 2, 3, 4, 5 and 6 by
(N − 1)/2. We also calculate significance in the same way
as Sect.2 of S16, which is given by exp(−S), where S is the
LS power using this normalization. This significance quan-
tifies the false alarm probability of the null hypothesis and
is equivalent to a p-value. In addition to the generalized LS
periodogram, we also calculate the normal LS power and its
significance, to mimic the results of S16 as closely as possi-
ble.

Our results are shown in Table 2. By positing an error
model of 0.03% per data point, we get a value for our sig-
nificance about 100 times larger than that obtained in S16.
The results don’t differ much between normal and LS peri-
odogram. However, using standard error of the mean, we get
a significance value about one order of magnitude smaller
than that in S16 of about 1.6 × 10−5. Taken at face value,
this would correspond to 4.1σ significance. Therefore, the

Table 2 Significance values of the peak computed at about 11year−1

for the S2 data sample using a generalized as well as normal LS peri-
odogram. For comparison, S16 [1] (cf. Section 2 therein) finds a value
of LS power of 8.42 with significance of 2 × 10−4

Sample Error
model

Periodogram LS power
(scargle
normalization)

Significance

S2 0.03% Generalized 5.57 0.0038

S2 0.03% Normal 5.52 0.0040

S2 Std. error
of mean

Generalized 11.04 1.6 × 10−5

S2 Std. error
of mean

Normal 11.04 1.62 × 10−5

actual value of the significance is also sensitive to the choice
of the error model used. Since the actual error model used in
Section 2 of S16 is not explicitly specified, we cannot do a
direct comparison of our significance with theirs.

However, we can see that the statistical significance of the
peak at 11/year becomes enhanced compared to S16, using
the second error model.

5 Is the data completely stochastic?

Although our FAP is higher than S16, from Figs. 2 and 5, we
do find a peak visible to the naked eye in the S2 data sample
for both the choice of error models at the same frequency as
S16. This raises the question of whether the observed data
are purely stochastic.

Therefore, to test if the data is consistent with pure noise
without any sinusoidal modulations, we carried out numer-
ical experiments with synthetic data, using both the error
models. We replaced the activity data of the sample S2 with
Gaussian distributed random numbers (which are proxy for
the activity counts) at the same time instances when S2 had
data, and carried out the power spectrum analysis and calcu-
lation of FAP in the same way as for real data. We generated
random numbers with mean of zero and standard deviation
of unity. We then replicated the above procedure of generat-
ing synthetic data and analyzing using LS periodogram 1000
times and constructed a histogram of the LS power from each
such realization. The LS power for each iteration was chosen
as the maximum LS power in the frequency range between
11/year and 11.5/year. Figures 8 and 9 depict the histograms
of the LS power with 0.03% error per data point and with
standard error of the mean respectively. We also note that
our results do not change much, if we use the standard devi-
ation of the original data.
We found that the random LS power rarely crosses the
observed LS power. After 1000 trials, we find that this max-
imum LS power value exceeds the observed LS power at
11/year, for about 8 and 10 different realizations, for the
0.03% error model and the standard error of mean error mod-
els respectively. Therefore, these numerical experiments with
synthetic noise data demonstrate that the observed data are
not completely stochastic and the observed LS power in the
S2 data sample are indicative of marginal hints for periodicity
of 11 years.

6 Conclusions

The aim of this work was to resolve the controversy between
two groups (S16 and KN15) regarding the influence of solar
processes on nuclear beta decay rates of 90Sr/90Y measured
at the PTB. We would like to verify using these measure-
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Fig. 8 Histogram representing the distribution of LS powers over 1000
iterations with random data. The black vertical dotted line represents
the observed LS power with the data of sample S2. The above plot
represents the analysis with 0.03% error per data point as the error
model. The probability of getting a peak larger than the observed value
from these simulations is about 0.8%

Fig. 9 Histogram representing the distribution of LS powers over 1000
iterations with random data. The black vertical dotted line represents
the observed LS power with the data of sample S2. The above plot
represents the analysis with Standard error of the mean as the error
model. The probability of getting a peak larger than the observed value
from these simulations is about 1%

ments, whether this decay mode shows sinusoidal variations
with a frequency of 11/year as claimed by S16 (but disputed
by KN15), which could be indicative of a solar influence.

For this purpose, we have used the generalized or floating-
mean LS periodogram to search for periodicity in the PTB
activity data for three different samples, for which measure-
ments span a period of 400 days. This generalized LS peri-
odogram has been shown to be more sensitive than the nor-
mal periodogram, in case the data do not encompass the
full phase coverage of a putative periodic signal [20]. We
grouped the activity data into 240 bins, with each bin con-
taining contiguous activity data points. We obtained the peri-
odograms using two different assumptions about the errors
as follows:

– 0.03% error per data point (in accord with the error budget
calculated in KN15).

– Standard error of mean in each bin (similar to the analysis
done in S16).

The significance of each peak was evaluated using bootstrap
resampling with 1000 samples, using the method proposed
by Suveges [29]. The generalized LS periodograms for all the
three samples are shown in Figs. 2, 3, 4, 5, 6 and 7. Table 1
summarizes the results of the generalized LS analysis car-
ried out on S2, S3, and S4 using the above mentioned error
models.

To compare our results with Sturrock et al., we then esti-
mated the significance of the peak in the S2 sample using the
same method as S16 with both the error models. Our results
from this exercise are shown in Table 2. We then addressed
the question of whether the data are purely stochastic by con-
ducting 1000 numerical experiments of activity time series,
which are drawn from a normal distribution using the same
time-binning as the observed data. Histograms of the LS
power at frequencies close to 11/year can be found in Figs. 8
and 9.

Our conclusions about these analyses are as follows:

– The peak frequencies and their significances slightly
change for some of the samples with different error mod-
els.

– We do not find a peak in the periodograms close to 11/year
in all the three samples using either of the two error mod-
els.

– The sample S2 has a peak at about 11 year−1 with FAP
values of 17.2 and 2.6% assuming 0.03% error per data
point and standard error of mean respectively. The FAP
of 2.6% corresponds to a significance of 1.94σ , and its
statistical significance is smaller than that claimed in S16.

– The only other sample with a peak frequency close to
11/year is S3, assuming a standard error of the mean.
However, its FAP of 41.4% is consistent with a noise
fluctuation.

– None of the remaining peaks found in the other sam-
ples have FAP less than 10% with either of the two error
budgets. Therefore, none of them can be considered as
evidence for sinusoidal variations in the beta decay rates.

– We obtain a significance of 0.4 and 0.0016%, using the
same formula used by S16 for the 0.03% error per point
and standard error of the mean models respectively. These
values are about ten times larger and smaller respectively
than the significance of 0.02% estimated in Section 2 of
S16.

– For purely stochastic time-series, we would obtain the
probability of getting the LS power greater than the one
observed at 11/year to be about 1%.

Hence in conclusion, we see that the differently prepared
chemical samples S2, S3, and S4 do not exhibit any consistent
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periodic oscillations in their activity. However, we do see a
marginally significant peak in the S2 data sample at the same
frequency as S16 (11 per year), but with a higher false alarm
probability. More data is needed for the S2 sample, along
with a detailed error budget to ascertain if this peak at 11/year
persists and is significant.
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24. J.T. VanderPlas, Ž. Ivezić, Astrophys. J. 812, 18 (2015). https://
doi.org/10.1088/0004-637X/812/1/18

25. S. Ferraz-Mello, Astron. J. 86, 619 (1981). https://doi.org/10.1086/
112924
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