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Abstract

The interaction of rigid or deformable solids with an internal or surrounding fluid are complex
non linear multi-physics problems and are considered of great importance in the design of many
engineering systems. The fictitious domain method is a widely used numerical method for solving
fluid structure interaction problems and has been sucessful in obtaining solutions for FSI problems
dealing with incompressible flow. The objective of this work is to implement the fictitious domain
method in solving fluid structure interaction problems involving compressible flow. This work uses
Eulerian and Lagrangian finite element formulation for describing the solid domain and fluid domain
respectively. The coupling between the two is provided using a Lagrangian multiplier. This multiplier
lets the solid and fluid mesh to sweep across each other or in other words the mesh will be non
conforming. This avoids the requirement of mesh update as in the case of other numerical methods

for FSI problems.
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Chapter 1

Introduction

1.1 Fluid-Structure Interaction

Fluid-structure interaction problem involves a coupling between a fluid dynamics problem and a
structural dynamics problem. In fluid mechanics problems, we have a fixed computational grid
across the boundary of which flow occurs. That is, we use the Eulerian description (refer Appendix
A.1) of motion. However, in solid mechanics problems, the solid particles and the computational
grid experiences the same amount of deformation. That is, we follow the Lagrangian description of
motion (refer Appendix A.1). When a structure interacts with a fluid, it imposes a velocity on the
fluid, and as a result of the reaction force, it experiences the fluid drag force, which may be either
inertial or viscous. The structural deformation occurs due to this drag force which in turn alters the
velocity field. This cycle repeats until the system reaches equilibrium.

Thus fluid-structure interaction refers to the interaction of rigid or deformable structure with an
internal or surrounding flow. It is a coupled nonlinear multi-physics problem in which forces and
velocity have to be determined simultaneously. This interaction has been a crucial consideration for
many engineering applications which includes aircraft, engines, bridges, parachute dynamics, arterial
blood flow, etc.

Obtaining an analytical solution for FSI problem is too complicated. Hence we have to rely on
experimental and numerical solutions. Numerical methods are classified according to the solution

approach used and also based on the treatment of meshes.

1.1.1 Classification
According to the solution approach followed

Based on the solution approach followed we can classify the FSI problems as:

e Monolithic approach
Monolithic approach is the one in which the equations governing the flow (Fluid dynamics
equations) and the displacement of structure (solid dynamics equations) are solved simultane-

ously for each time step with a single solver. These methods are unconditionally stable.

e Partitioned approach

Partitioned approach is the one in which the equations governing the flow (Fluid dynamics



equations) and the displacement of structure (solid dynamics equations) are solved alterna-

tively. Also, the kinematic and dynamic conditions are enforced asynchronously.

Based on the treatment of meshes

e Conformal mesh method
In conforming mesh method, the finite element meshes located at the interface of solid and
fluid meshes are assumed to be conforming. i.e., there is an interconnection between each node
of solid and fluid mesh at the interface. Hence the interface will remain intact. Due to this
property, any movement of solid boundary results in displacement of the fluid boundary which
in turn is transmitted through the fluid domain. This displacement will lead to the requirement
of simultaneous mesh refinement of fluid mesh. Also if the solid undergoes large deformation,
the fluid mesh will experience excessive distortion and remeshing is the only remedy. FSI
methods with conformal mesh include three fields describing the fluid dynamics, structural
dynamics and mesh movement respectively. In this method, the focus is on the coordination
of data transfer and the consistency between the fluid and structural nodes. Here we solve
the fluid equations at a given time instance using the assumed initial interface location. The
resulting drag forces are then imposed on the structural interface as external forces. Solid
dynamics equations are solved to update the position of the structural surface. Finally, fluid
remeshing is performed to accommodate the new interface location which is used for the next
time instance. The process is continued iteratively until the convergence criteria are attained.
One popular example is the Arbitrary Lagrangian-FEulerian method where the normal Eulerian
fluid mesh is transformed into a moving Eulerian fluid mesh by incorporating an extra convec-
tive term into the fluid dynamics equation. Since the moving Eulerian fluid mesh is connected
to a Lagrangian solid mesh at the interface, the nodes at the fluid-solid interface will move in a
Lagrangian manner. This lets the interface remain intact and accurate solutions are obtained

near the interface.

Fluid Domain Fluid Domain

[ 4 -

- Solid ~.Solid
Domain Domain

(a) (b)

Figure 1.1: shows schematic representation of conformal mesh method where (a) the solid at rest is
given an (b) angular displacement. Reproduced from [1]



e Non-conformal mesh method

In the non-conforming mesh method, the fluid mesh is fixed in space, and the solid mesh
sweeps across the fluid domain. In this case, there is no matching between the fluid and solid
nodes at the interface, and hence the fluid and solid mesh are allowed to overlap. Since the
nodes at the interface are not conforming, there is no distortion of the fluid element. Hence
mesh refinement not required. In FSI methods with non-conformal meshing, the coupling is
done with the help of Lagrange multiplier. This multiplier will impose a kinematic condition
at the fluid-structure interface in an approximate manner. So the fluid mesh near the interface
requires interpolation for coupling with the solid mesh. This leads to inaccurate solutions
near the interface. But at regions away from the interface the solution appears to have good
accuracy.

Fictitious domain method is an example which uses non-conforming mesh. Here the compu-

tation time will be lesser compared to ALE method since mesh refinement is not needed.

Fluid Domain Fluid Domain
. °

- Solid -~ Solid
Domain Domain

(a) (b)

Figure 1.2: shows schematic representation of Non conformal mesh method where (a) the solid at
rest is given an (b) angular displacement. Reproduced from [1]

1.2 Objective and Scope

The objective of this work is to develop a numerical model to solve fluid structure interaction
problems where deformable solid bodies come in contact with a fluid domain. In this work we first

concentrate on the interaction between the fluid domain and rigid solids.

1.3 Outline

The outline of the thesis is as discussed below. Chapter 2 focus on the finite element formulation
where the variational formulation,its linearisation, finite element formulation and coupling of solid
and fluid equations is discussed. Chapter 3 discuss on the bench mark problems solved for validating
fluid formulation and also the coupled numerical problem solved using the FSI solver. Chapter 4

presents the conclusions.



Chapter 2

Formulation

2.1 Solid dynamics model

We consider the structure member as a thin Euler-Bernoulli beam with plane strain conditions in
the z-directions. Also we assume that the solid material is isotropic and linearly elastic. Using the

principle of virtual work we can write,

/ (06e + pliidu + i60v))dV = / (fobu + f,00)dV + / (t.0u + t,0v)dA (2.1)
\4

where, u and v denotes the axial and transverse displacements, and p represents the mass density
of beam. o and e represents the axial stress and the corresponding non linear strain. Axial and
transverse body forces are denoted as f, and f, respectively; and ¢, and t, represents the surface
tractions. For discretization , we use a beam element with two node at the ends each having three
degrees of freedom which are u (axial displacement), v (transverse displacement) and ¢ = % (ro-
tation) where x denotes the axial cordinates along the beam. Axial displacement is given linear
interpolation and cubical interpolation is provided for transverse displacement.The finite element
formulation for solids used in this work closely follows Reference [2] and in the following we review
this in detail.

Let u= Ny, pand ; v= N, p

where, N,, and N, are the interpolation matrices and p = { uy v1 ¢1 lo u2 v2 @2 Iy }T. The sub-
scripts 1 and 2 are the node numbers and [ is the reference length.

We have the formula for non linear axial strain in the beam as:

ou N 1002 ((‘92@)
€= — -
or 20z o2
=€ —Yx

A body is said to be in equilibrium if the virtual work done by the internal forces are equal to that

done by external forces. Hence we can write as follows.

5w?f+At — 6W}H—At

int ext



We have

int

SWEEAL — / (o€ + p(idu + 9dv))dV
v

We define [ 0dA = P and — [oydA = M and substitute this along with the strain into the above
equation. We get,

int

SWitAt _ / (Pt+At(;Et+At +Mt+Atc5x—|—pA(iit+At5u—|—i)t""AtcSv))dm
J T

SWEEAL — / [(P'6E" + M'6x) + (APJE + AMdx) + P'ASE + pA(iit T2 0u + ' T2 60)|da

int
o

SWELAY = opT £l + op" K Ap + opT Mp' T4

int

where
fouc= [IP'BY + MCY)dn
K= /EAB{{Buder /EICvTC@dx+/Pth)Bvdx

M= /pA(N[{Nu + NI'N,)dx

exrt

WA = [176u+ gy MaulAde + [ 3400 + 1 50)bda

y / [(FEHAENT  fEFAENT)A 4 p(ErANT 1+t NT )y

o T pt+A
=op" feat

Since Jp is arbitrary, we can write

KAP + M8 = L8 — gl (2.2)

ext

Newmark’s Algorithm can be used to solve the above equations after applying appropriate initial

and boundary conditions.

2.2 Fluid dynamics model

Numerous finite element formulations are available for the analysis of compressible fluid flow. Most
among these are stabilised formulations where variational formulation is provided with additional
stabilising terms such as lest square operators and shock capturing terms. Addition of these terms
lets the formulation attain improved stabilising properties and also field variables cn be given equal
order interpolation. Least square finite element method [3, 4] follows a distinct approach where in
governing equations are converted to equalent st order equations which allow C° continuity to be
maintained across the element boundaries. Reference [5, 6] uses a characteristics based split method
in which a numerical technique is developed with the help of theory of characteristics. This formu-
lation also requires the addition of stabilising terms.

In Bristeau’s [7] work a different strategy was proposed which makes use of the primitive variables

namely velocity, density and temperature. Inf-sup conditions were satisfied by using lower order in-



terpolations for density term compared to velocity. Capon [8] also used a similar scheme and found
that even though low Reynolds number problems can be dealt with sucessfully using this scheme but
as the Reynolds number is increased the oscillations starts to reappear. This problem was solved by
the implementation of state equation in a weak form and also pressure interpolation is chosen such
that it obeys inf-sup conditions.

The Finite element formulation used for fluids model used in this work is closely related to the one
used in Reference [9]. Let © denote the domain and I' denote its boundary. Let Iy, T'g and T’y
denote respectively the portions of I' where velocity, temperature and heat flux are prescribed. The
fluid flow should satisfy the three governing equations : Mass balance , Momentum balance and

Energy balance.These governing equations (refer Appendix A.2) are :

.y (u-) -0 (2.4)
ot = '
00 ]

PCU[E‘FU'(VQ) = —pV-u+0:D—-V-q+ pQp- (2.5)

where p, u, 6 and p represents density, velocity, temperature and pressure respectively. o = A(p, 0)(trD)I
+ 2u(p,0)D, is the Cauchy stress and o is the deviatoric or viscous stress. q=-kV#@ is the heat flux
and k is the thermal conductivity. Heat input per unit mass is denoted by Qp and C), is the specific
heat at constant volume.D is the rate of deformation tensor.

So we have five unknowns (u, p, 6, p) but only 4 governing equations. In order to complete the set

of equations, we use the following equation of state for the pressure

p=0(p0). (26)

where p represents the function form for the pressure. This set of non-linear equations are to be
solved after applying appropriate initial and boundary conditions on the field variables. The weak

form of these governing equations is obtained ( after performing integration by parts ) as

/ pul {@ + (Vu) u] o — / V - us p dQ —l—/ D, (us)]" C.D,
0 ot Q Q

:/pu?b dQ+/ ult dl' Vus,
Q Iy

0
/p5 {—p-FpV-u—l—u-(Vp)] dQ =0,
Q ot

/pCUGO- [%—I—u-(VG)—I—pV-u—a’:D]dQ—I—/kV&;-V@dQ
Q Q

- / PB5Qn — / 6sqadl’ 6y,
Q T

q



/Qpa[p—ﬁ(p,ﬁ)] Q=0 Vps.

where D, and C. represents the rate of deformation and the material constitutive tensor and is

expressed as

D, A+2u A 0
D.=| Dy, C.= A A+2n 0
2D,, 0 0 u

t = 7n are the prescribed tractions, and g, = q - n is the prescribed normal heat flux on T.
Generalized trapezoidal rule is used for carrying out the time discretization on the time interval
[t",t" 1], we have ataal = ut" —ut”

for density and temperature fields also .

— (1 —a)tau'”. Similar descritisation for time is used

Let (u™, p™, 6™, p™) denote the values of the velocity, density, temperature and pressure field variables
at the n iterative step and (u"t!, pnt1 g7+l prtl) denotes the corresponding values at n + 1t
iterative steps at time step t,11, and let (Au, Ap, A8, Ap) denote the change in the velocity, density,
temperature and pressure fields at ¢,,41 and ¢, time step .

The linearization and variational formulation of Continuity, Momentum, Energy and State equations

are described below.

Variational formulation

Continuity equation

/ {gf V. (pu)} ) — 0

/Qép [% +p(V.u) + u.(Vp)} dQ =0

/Q 5p[p(V.u)+u.(Vp)]dQ2 = /Q [0ppusj; + 0pp jus] dS)
/ [[6pp"™u ; + Spp"sull] + dp[Apluf ; + dpp™ [Auy 5] + dplAp sluf + 5pp[Auy]] dS)
/[[5pp i+ 6"l 4 Splp™ T — p"ult s + Sppful Tt —ult ]
+oplp™ Tt = Pl + Spp[uf T — wl]dQ
= [ [6plp™uf; + p"ult] + dplp — p"ul;] + dplp — ptuf
/Sl[a[nn+nn]+5[n+ln ]+5[nn+1 ]
+oplp il — plult] 4 Splplul T — plu]]dQ

:/Q[M MG PG = M TG T = pd]] A



ap ' dp
= for [
:/ p [ph Tt = pln — (1 — @) Atpin] dQ
Q

The variational formulation is obtained as:

/ Splp Tt = ptr — (1 — a)Atp*]dQ
Q

(2.7)
+/[5P[ n+1 n +pn n+1 n ny7+pn+1u +pn n+1 —pJu7]]dQ—0
Q
Navier stokes equation
/ pou” @+(VU)u o — / V.0updQ + / [D.(6u)]" CeD.d
Q ot Q Q
= / poulbdQ + [ ouTtdl
Q T
/Q[péuT (Vu) u]dQ = /Q [poul w; ju;| dQ

= p"ouiui jul + Apdujug juy + ptouAu; jui + p"duuy; Auy
_ n n+1 n n+1 n n n n+1 n
= p"ouuui + [p P ouiu jul 4 p" o fu; ug jlug + p"ouwu ful T — uf]

= pouju; jul + p"ouifu jul — 2ui ul + g ]

= du;pug jul + 0ugp™u; jul — 20uip"u jul + duip"ugl juy

— / V.SupdS + / [De(6u)]" C.D.d + / pouT bdQ + / su'tdr
Q Q Q

T

= —5ui’¢P + 5Dij0ijlek‘l + / p5u?bzd§2 + 5u;‘FﬂdF
JQ JTy

/QpcSuT [ut™ — " — (1 — @) Ata'"]dQ
_ /Q [ HouTut™+t — Tt — +igyT (1 — a)Atat] d
= /ﬂ [p"ouTu™ + ApsuTu™ + p"out Au — p"HouT Ut — pt T (1 — ) Atat™] dQ
= /ﬂ [proutu™ + [pn T — pt] sulut™ + prou” [un T — ]
— p"TlsuTut™ — pntlouT (1 — ) Atat™]dQ

_ / [pn+15uTutn + pn(suTun+1 _ pnéuTUtn o pn+15uTutn _ pn+15’LLT(1 _ Q)At’&tn] dQ
Q



The variational formulation is obtained as:
/ [pn+15uTutn + pnéuTun+1 _ pnéuTUtn _ pn+1(5’U,T’U,tn _ pn+15uT(1 _ Q)Atﬂtn]dﬂ-l—
Q
U ouip g jul — 20w p" g jul + dup"ug jug — duy i P+ (2.8)

6D;;CijriDiy = / pduy bydQ + / du; £;dl
Q Iy

du; pu

Energy equation

/ oC, {% + u.V@] Q= / [-pV.u+0: D —V.q+ pQp) d
Q Q

/ [pC00 (% + u.V@) + 60 (pV.u — o : D)]dQ2 + / EV 0.V 0dQ
Ja Ja

= / p60Q QY — / 80¢,dl
Q r

q

/ pCLu.VOdQ = / pCy00u.VodQ
Q Q
_ / (667 [Co(poti267 + poti? A8, + p iz + Apul'9™)] dS2
Q
= / so'c, [pnui 07 + pnu?(ﬁzﬂ —0%) + P (Ul Tt — w0 + (P — pMule] d
o : :

- /Q(WTC’U [P0 i1 + pnﬂﬁu?“ + p”“u?ﬁﬁ — 2/)”1&‘«97’;] 2

/ [pV.u—0o : D|dQ = / 80[pV.u — o : D]dQ
Q Q
= /9649[])1117,' — 0ij : Dy;]dQ
_ /Q [B0P™ 2, + SOAPU, + 60P" Ay ; — 66(DE (u™)Cijaa Dy (u™)
+ AD;Cijri Dii(u™) + D3 (u™) Cijpy A Dy )]dS2
_ /Q [S6P™ul'; + 6(P™ ' — Pyult, + 0P (ulF' — ul';) — 66( DL (u™)Cijna Dy (u™)
+ (DZ'T]-(U"H) - Dz;(un))cijlekl(un) + DiTj(Un)Cijkl(Dkl(unH) — Dy (u™)))]dS2
— /Q [00P™ uft; + 60P ™ ul Tt — 60 P ull; — 60(D] (u™ ) Cyjiy Dy (u™)
+ D} (u™)Cijra Dy (u™) — D (u™)Cijra Dt (u™))]dQ2
_ /Q [BOP™ 1, + 0P ™t — 80P ul, — 66(2DT (1" 1) Ciypa Dy (u™)

— DZ; (u”)C,-jlekl (u”))]dQ



/k‘V(S@.V@dQ—F/p(S@thQ—/ 69q'ndl":/k59,¢.92+1d9+/p”+159thQ—/ 00¢,dl
Q Q I, Q Q ry

/Q pCLOOT [T — gt — (1 — @) AtO™]dQ

_ /Q O, [ 18670 — s — 5T (1 — ) At

_ /S < [p”(seTet” + ApseTo 1 praaT AG — priseTetn — prtiseT (1 — a)Atét”] )

= /S Co (76670 + [p" ! — p"] 6676 + ps6" 67T — 6"

— 60T — 0T (1 — ) At

_ /Q Cy [ 16670 4 076 — o g — T g — 06T (1~ o) A do
The variational formulation is obtained as:
A O [p" 1607 6™ + p 50T 0" — pra6T oM — prTeeT 0 — pnTEOT (1 — o) At d+
A l 607 Cy [pntift0 jusr + prbluf T 4 p T U0 — 2p" w07 | dQ + /S l k660" d+
/Q [06P" up; + 660P ul !t — 60P™ul!; — 66 (2D, (u™ ) Cijpa Dt (u™) — D (u™) Cyjr Dyt (u™)) 1d€2

= / P60Q,d0 — / 56y, dl’
Q

Fq
(2.9)
State equation
/5P[P—P]d9=o
Q
The variational formulation is obtained as:
/ 6P [P~ P| a0~ / 6P [P = P — PyAp — PA0) d2
@ «© (2.10)

— / 6P [P — P, — P,(p"T! — p") — Pp(9n T — en)] dQ
Q

The above linearized variational statements are subject to finite element formulation. The fluid
domain is discretized with quadrilateral, isoparametric finite elements as shown in Fig. 2.1 where
in the velocity is interpolated quadratically within each element, while all other field variables i.e,

density, temperature and pressure are interpolated linearly.

10



Finite element formulation

Let the velocity, density, temperature and pressure fields, and their variations be interpolated as

u=Nua, p=N,p, 6 = Ngb, p= N,p, (2.11)

N are the standard shape functions of a 9-noded quadratic element, while N,, Ny and N, are the

standard shape function for a 4-noded linear element. Using the above interpolations, we have

D, (u,) = Ba, (2.12)
(Vu)u® = RBy 1, (2.13)
V. u=B,u, (2.14)
PP (V u) + (Vo) -u=B,, (2.15)
(V- u*) p+u®-(Vp) =B, (2.16)
V0 = By, (2.17)
where,
Niz 0 Nop O No. O
B= 0 ley 0 N27y 0 Ng,y ’
Nl,y Nl,m szy NZ,::: NQU Ng,x
Bp - [ J\Tl,x Nl,y N2,x NQ,y Nga: Ngy ] )
R — uk u’; 0
0 0 ub u’; ’
Nz O Noy 0 . . . No, O
Niy 0 Npy O . . . Nogy O
Byr = ’ ’ ’
0 Nz 0 Noy . . . 0 No,
0 Nl,y 0 NQ’y . e 0 Ng,y
k k 3 k k
By = [ FNio+ BN Ny + 2N L pFNo + 2Ny pPNey 2N |
By = [ (V- ub )N+ (uF - V)N (V-ub) N+ (0P V)N, . . (V-uP) Ny + (ub - V) Ny ]
Bo_ | N Now oo Nog
6 — )
Niy Naoy . . . N,

Finally we obtain the finite element formulation for the fluid element using the above mentioned
shape functions.

11



Continuity Equation

J\J

/QépT [pt’”"H —plr —(1— a)Atp't"] dQ + ozAt/Q[épT[p"Hu” + p"u;l;-'l

—ptul; + pf}*’lu? + pf}u}”’l — plul]dQ

- / 597 [INTN,p — N p"]d0 + ot / (NT g Ny + N2 " By u
Q Q
+ (N uj ;Np + Ny Bo)p — Ny (p"uf ; + uff p;)]d€2

= 6pT/ [NpTNpp - Nprt"]dQ + aAt/ [NpTBplu + NpTBp2p — Ng(p”u}fj + uj p)]dQ
Q Q
6PT[Mppp —9p+ O‘At(Kpuu + Kppp — fp)] =0
Navier Stokes Equation

/ [pn+15uTutn + pn5uTun+1 _ pn5uTUtn _ pn+15uTutn _ pn+15uT(1 _ a)Atut”] do
Q
+ OtAt/ [5uzpu;f]u;’ + 5uip"ui,ju;-‘ — 25u1pnu§f]u;’ + 5uip"u§fjuj — 5UZ‘71P + 5D¢jC¢jMDk1]dQ
Q
= aAt] /Q poul b;dS) + A Suy £;dl)

/ [P"NTNu+ NT(u" —u' — (1 — @) Ata"™)N, — p"u'"N"]dQ + aAt / su'[(BFC.B, + N"p"RBn1
Q Q

+ N p"u ;N)u+ N"ul ul Nop — BYN, P — 2N "l ,uldQ + oAt | NT#dl =0
T,

5uT[Muuu + Myp — gu + At (Kyyu + Kypp + KupP — fu)] =0
Energy Equation

/ Colp™™1667 0" + pr60" 6"+ — prsoT o™ — prtlaeT o™ — prHs0T (1 — o) AL dQ+

Q

/Q 50" Cy [prti0 s + T pM RO — 2p 007 ] dQ + /Q k6 ;.07 dQ+

/Q [00P" 1, + 80P ul F! — 60 P ult; — 66 (2D (u" 1) Cijpy Dyt (u™) — D (u™)Cijra Dia (u™)) 1dS2

= / p"H1500Q,dQ — / 80, dT
Q

Ly

12



C,NT (0" — 0™ — (1 — ) At )N, + C,p" NF Ny — C,p"0" N dQ + [ 66T [(C,NT pm6" N
o % P 6 % o [ N

+ Ny P"B, — 2N, D(u)" C.B.)u + (Cy Ny 0"ui N,y)p + Ng QuN,rho
+ (Cop™ Nipetat; Bineta + B kBo)0 + (N§ ujiNp) P + 2Ng p"u}' 0t + N§ P},

— D(w)TC.D(u)NFd - / GNFdT =0
I,

59T[M9pu + Mgy — go + OéAt(Kguu + Kg,,p + Kpgb + Kyp — f@)] =0

State Equation

/ SP[P — P, — Py(p""! — p™) — Bp(0""! — ™))
Q

= 6P"[~P,N]N,p— PyN,] Nob + N N,P — (P, — Ppp" — Ppt")]

SPT[K,,P+ Kpg + K,, — f,] =0

From the above FE formulation , we obtain the general matrix form as written below

(M + aAIK) % = aAlf + g, (2.18)
where,
u
. p
x=1 21,
[
D
My, My, 0 0
M_| 0 My 0 0|
0 Mgp Mgy O
0 0 0 0
Ko Kuyp 0 Kup
K| K Ky 00
Ko Ko, Koo Koy
K. K, Kp 0
f.
e=| 7]
fo
Ip



8u
9p
90

with
M,., = /S 2 p*NTNdQ,
M,, = /Q NT [u —u” — (1 - a) At | N,de,
M,, = /Q NTN,dQ,
M, = /Q Cy [0m = 0" = (1 - ) A" | NoN,d2,
Mgy = /S 2 p"CyNJ N,d<,
Koy = /Q p"NT [(Vu") N + RByz]dQ + /Q B”C.BdQ,
K,, = /Q NT[(Vu™)u™ — b] N,dS,
Kup = — /Q B, N,dQ,
K,, = / NIB,dQ,
Q

K,, = / NIB e,

JQ
Koo = /Q NZ [pncv (Vo' N + p"B, — 2DT (u™) CCB] ds,
Ky, = /Q [Cyu™ - (VO™) — Qn] Ny N,dS,
Koo = /Q [pnC’ngT (u™)” By + kBYBy | d,
Ko, = [ (V") Nf N0,
K,, = /Q g—i|kNpTdiQ,
Ky = /Q %ZykNgNng,

K,y = / N NpdS2,
Q
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f, = / NTEdT — / [2p"NT (Vu™)u™] dQ,
Iy Q
o= [ L (9w (9] e

fo = _/ N{ pdl +/ [2p™a" - (VO") — D! (u") C.D. (u™)] Nj d +/ p"VO" N} dQ,
r, Q Q

fo= [ "= 5" o) N as
g, = / p"NT [ut"] dQ,
Q
Q
g = / p"C, [9”] NTd.
Q
For obtaining steady state solutions, the transient terms are omitted and final set of equations takes

the form
Kx =f

2.3 Fluid-Structure Interaction

The Eulerian finite element fluid model is coupled with the Lagrangian beam element formulation.
The interaction between solid and fluid element is modelled using the fictitious domain method [2].
Coupling is achieved by using the constraint that fluid and solid nodes have equal velocity at the
interface. So no slip boundary condition has to be imposed at the interface.This coupling is provided
using the method of Lagrange multipliers [10].

— Rigid object +~——

TN bl .
I
\hﬂ’ .1-"|'

- T e N R
|

]
— Fluid domain ~————

Figure 2.1: shows (Left) a non moving rigid solid body present within a fluid domain and (Right)
its descritisation into a finite number of points.
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u; = uy,

9
E N]U[i = uf».
I=1

where N is the I" shape function, Uy, is the fluid velocity at the node I in the " direction and us

is the velocity of a point representing a solid in the i*" direction. Figure shows an example in which

a rigid body is present within a fluid domain. This rigid object is descritized into a finite number

of points and a condition is applied such that at each node on the interface the velocity of the fluid

node and solid node are equal.

Combining the fluid and solid equations of motion we obtain the final set of equations [2] in matrix

form as: ~ R
Kuu Kup Ku0 Kup 0 ¢
K, K, 0 0 0 0
Koo Koo Koo Ko, 0 0
K, K, Kp 0 0 0
0 0 0 0 K, -AT
-A
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Chapter 3

Numerical Examples

Several benchmark tests were done to verify the performance of compressible fluid flow solver [11].
The equation of state used for all these benchmark tests was taken from Reference [9] depending
upon the fluid in consideration. We can classify the different terms in the Euler’s equations as
steady, transient, linear and non linear. The accuracy of the Finite element implementation of these
terms are tested using different benchmark problems.

In this approach we validate each term either using the previous results or the analytical solutions
and then validate the complete coupled equations. Stokes lid driven cavity(A) problem was solved
to validate the steady part and Navier stokes lid driven cavity(B) problem for non linear part of
momentum equation. Convection diffusion equation(C) was solved to validate the energy equa-
tion. Plane couette flow(D) and Oscillatory couette flow(E) was solved which includes unsteady
terms. Sod’s shock tube(F) problem which involves unsteady as well as non linear terms were
solved and compared with analytical results. The fully coupled equations were validated by solving
the Compressible couette flow (G) problem. FSI analysis was done for Lid driven cavity with two
rigid objects(H) and Longitudinal flow past a rigid circular object(I) where we verified that no slip
boundary condition is perfectly imposed between the rigid object and fluid domain.

The coupled FSI solver was used to solve the problem involving heat transfer due to conduction and

convection caused by a rigid vertical oscillating beam.

TEST CASE A B|C/ DI E|F | G H|I
STEADY ANALYSIS VIV - Y|V
TRANSCIENT ANALYSIS | - | - | - |V [V |V | - | - |V
NON LINEAR ANALYSIS | - |V | - | - | - |V | - |V |V
FSI ANALYSIS -l -l -1 - -1 -V |V

Table 3.1: Test cases solved to verify compressible fluid flow solver
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3.1 Heat transfer by conduction and convection caused by a

rigid oscillating beam

The problem involves a rigid vertical beam oscillating at a certain frequency (or Time period) inside
square cavity filled with static compressible fluid. The cavity is a square of unit size ( 1z1mm? ) and
the vertical beam is of length 5mm with its bottom point positioned at cordinate (5,0). The fluid
domain is descritised into 1600 elements and the structure member is descritised into 20 elements.
The geometry and boundary conditions are as shown in the figure. All four boundaries are assumed
to be of zero velocity. Top and bottom boundary of the fluid domain were also provided with

temperature boundary conditions as 1°C and 0°C' respectively.

u=(0,0) 6=0

u=(0,0) u=(0,0)

u= (0,0)m 6=0

Figure 3.1: Schematic representation of the problem of flow caused by a rigid oscillating beam with
fluid boundary conditions.

The velocity boundary conditions for the vertical beam is as follows:

s 1—1

Vo= —-2%n% = ( ) * length * sin

ool 3

— )MMMMw—@)

7 —

T 1

o0l

)MM@Mw—@)

where,
t (Time) W n
TP i
0 - 4 2TP -1
TP _ 3TP | _n(TP—4t) 1
1 1 8TP
3TP n(TP—t)
4 pP 2T P -1
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The results obtained from the simulation are discussed below. The simulation was run for
different values of Peclet numbers and Reynolds numbers. We investigated the variation of heat flux

with change in Peclet number and Reynolds number.

=

o]

w
L

=
P
'

DA5§ b

0.05 b
-
0 1 ! n N N N

o] 002 004 006 008 0:a 012 014 016 018

Time(t)ins

Heat flux (q) in W

o
-
.

Figure 3.2: shows the variation of heat flux (q) with time (t)

0017

0.0108 7

0.0106 7

0.0104 b

Heat flux (q) in W

0.0102 o

a.01 . . . 1 1 1
1] 1 2 3 4 5 6

Normalised Time (T)

Figure 3.3: shows the variation of heat flux (q) with normalised time (T') (enlarged view when steady
state is acheived)

Figure 3.1 shows the variation of heat flux with normalised time, where normalised time is the
ratio between time step and time period of oscillation. Fig:3.2 shows a enlarged view of the time
period when the heat flux achieves steady state. The contour plots presented below shows the change
in temperature at different time steps. Fig: 3.3 corresponds to the case when heat has not reached

steady state and fig: 3.4 corresponds to the case when heat flux has achieved steady state.
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Figure 3.4: shows temperature contour behaviour Re= 8.33 and Pe= 8.33 at (a)T = 0 ,(b)T = 0.3
()T = 0.7 and ( = 1 (when heat flux is unsteady)

(©) (d)

Figure 3.5: shows temperature contour behaviour Re= 8.33 and Pe= 8.33 at (a)T = 0 ,(b)T = 0.3
,(¢)T = 0.7 and (d)T = 1 and (d)time step = (after heat flux reached steady state)
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Figure 3.5 shows the variation of heat flux ratio § with normalised time T, where § is the ratio of
heat flux when beam is oscillating to the heat flux when beam is at rest; and T is the ratio between

time step and time period of oscillation.

26
24
o 22t E T N
—
© Peclet number
s 2T
= 138.9
E 18| — 83,33
© —13.80
I 16y —8.333
i ——1.389
b ——0833
12f
. i g
0 2 4 6 ] 10 12 14 16

Normalised Time (T)

Figure 3.6: shows the variation of heat flux ratio with normalised time T at different values of Peclet

numbers (Re =8.333).
(a) (b)
(c) (d)

Figure 3.7: shows temperature contour behaviour for Re = 8.33 and Pe = 0.833 at (a) T = 5, (b)
T=53,(c) T=57and (d) T =6.
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We observe that with the increase in Peclet number the ratio of heat flux is also increasing. This
behaviour can be explained with the help of the temperature contour plots provided below. We
compared the temperature contour plots of the cases where Peclet number is very high (Pe= 138.9)
and very low (Pe=0.833) and observed that the temperature diffuses more in the case of higher
Peclet number leading to higher heat flux.

(a) ®)
(© (d

Figure 3.8: shows temperature contour behaviour for Re = 8.33 and Pe = 138.9 at (a) T = 67, (b)
T =673, (¢) T =67.7 and (d) T = 68.

2.8

261

24+

22

=)
2
g 2 -
x Peclet Number
=18
= ——138.9
© 16 ——8333
m T -
Tl ——8333
——0.833
1.2} i
-
1
i T A wm w3

0 100 200 300 400 500 600 700 800 900
Reynolds number

Figure 3.9: shows the variation of heat flux ratio with Reynolds number at different values of Peclet
numbers.
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We observe that in the beginning the normalised heat flux increases with increase in Reynold’s
number. The reason for this behaviour is that the heat transfer due to convection is increased due to
the decrease in viscosity. Further the curve tends to decrease and take a U’ turn and increase with
further increase in Reynold’s number. The reason for this behaviour is under investigation which

need to be found out.
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Chapter 4

Conclusion

We first solved some benchmark problems to validate the performance of the Finite element model
for fluids. Then we solved problems involving compressible fluid flow coupled with embedded rigid
bodies using fictitious domain method. Next the fluid dynamics equations were coupled with struc-
tural dynamics equations and the Fluid-Structure interaction problem was solved using monolithic
method. A problem involving fluid flow caused by a vertical oscillating beam was solved using
the present finite element model. Next step is to extent this problem where a number of vertical

oscillating beams are arranged in parallel.
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Appendix A

A.1 Kinematics

A.1.1 Lagrangian and Eulerian description

Consider a arbitrary shaped fluid element occupying a region in space Vj, which is capable of
undergoing motion on application of some force so as to occupy a different region in space V' (t), as
shown in Fig. A.1. The intial configuration Vj serves as the reference configuration with respect to
which the deformations in the current configuration V' (¢) are measured. The reference configuration
can be taken to be any random configuration, and as a matter of convenience, the time is set at t=0
at this configuartion. As shown in Fig. A.1l, a particle with a position vector X in the reference
configuration Vp takes the position « in the current configuration V(¢). The points X € V; will
often be called as material points.

The relation between X and x is expressed as
z=x(X,1) (A1)

The coordinates X and a are known as the material and spatial coordinates, respectively. The
mapping x taking X to x is assumed to be one-to-one and orientation-preserving. Due to the

one-to-one nature of the mapping x, we can invert it to obtain X as a function of x and ¢, i.e.,
X =x""(z1)

The formulation based on the material coordinates is called as the Lagrangian formulation, while the
formulation based on spatial coordinates is called Eulerian formulation. Physically, in Lagrangian
formulation we tag each individual fluid particle and observe the change in flow properties of those
particle with respect to time whereas in case of Eulerian formulation we emphasise on fixed region
in space where we focus on change in flow properties at each point in space of fixed region with

repect to time.
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Figure A.1: Reference and current configuration.

At each point in the domain, we define the deformation gradient F' by

9x1 Ix1 9x1

Oy 9X, 09X, O
F. = L Ox2  Ox2 Oxe
v 8X 00X 0Xo 0X3
J Oxs Oxs Oxs

0X4 0Xo 0X3

The relationship between the length element in the deformed configuration dx and the length element

in the reference configuration dX at given instant of time is given by

dz = FdX; du; = F;dX; = %dxj; J = detF (A.2)
J

J represents, locally, the volume after deformation per unit original volume. By any deformation
process, we can not make the material body to vanish so we have J # 0. In order to avoid the

change in orientation of reference configuration, we need to have
J>0 VX eV tel0,00) (A.3)

Given a material field ¢ (X ,t), the particle or material derivative of that field, denoted by D¢/Dt,
is defined as the partial derivative of ¢ with respect to time, i.e.,

Do _ (09
Dt \ot)y
In the Lagrangian approach, the velocity and acceleration are defined as the first and second material
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derivatives, respectively, of the mapping x. i.e.,

- Dx ox
woxn=75=(5)
X

- Du ou 0?
a(X.t)=——= () =(ZX
Dt ot ) x o2 ) x
However, in fluid mechanics the problem with finding the velocities and accelerations from the above
formulae is that, in general, at any given time ¢, we do not know the reference position X occupied
by a particle now at «. In such a case, the computation can be carried out using Eulerian approach,

in which the field quantities are now expressed as functions of the spatial position  and time. Since

X = x ! (=, t), the Eulerian description of the velocity is given by
’U,(J,',t) = ﬁ(X,t) = ﬁ(X_l (ZD,t),t)

The expression for the acceleration using spatial description (i.e., Eulerian approach) of the velocity
u (x,t), is given by

Ju

a(z,t)=—= | +(Vgu)u

ot ),
The above expression for the acceleration shows that the acceleration at a fixed point depends on
the material velocity that changes with time i.e., (Ounot), and the material point (with a specific
velocity) carried past the fixed point in space i.e., (Vzu)uw. The argument used to determine the
acceleration is rather general and can be used to compute the material derivative of any spatial field,
be it scalar, vector or tensor-valued. For example, if ¢ (x,t) is a scalar-valued field, then its material

derivative is given by
Dy _ 99 90 0xi _ 06
Dt Ot Ox; Ot Ot

+u- (Vo) (A.4)

A.2 Governing equations of fluid.

The following transport theorem is used for deriving the governing equation of fluid.

Transport theorem 1

Let f(x,t) be a continuous and differentiable scalar-valued function, and let V(t) be the material
volume (i.e., a volume comprising of definite set of particles and moving with the medium) and
S(t) be the boundary of the material volume V(t). Then fv(t) is a function of time alone and its
derivative is given by

d of

e / 9 v + (- n)dS (A.5)
dt Jy v Ot S(t)

Let  f(z,t) = f(x(=,1),t) = f(X,1)

then the volume integral in the current configuration V(t) and the reference configuration at t = 0,
Vi are related by

/ Fa v = [ frave (- J=dV\dvy)
V() Vo
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taking the time derivative on both sides, we have

4 f(x,t)dV = 4 fJdvy
dt V(t)

using Leibniz integral rule, we have

d B A(fT)
it Joe f(a:,t)dv_/% (—t )deo

B Df fDJ
- /V l"ﬁ o |
changing the volume integral V; back to V (¢), we get
d _ [ [Bf .
p /V(t) flz,t)dV = v | Dt + f(V u)} dv (by Eqn. A.4 and ?77?)
z/ g—l—u-(Vf)—l—f(V-u)} av
v, LOt
" [0
[ % vgw|av (V- (fu) = (V) + £V -u)
[ .
“ EdV—i— ” V- (fu)dV
of
= —dV + (u-n)dS V- (fu)dV = f(u-n)dS
v, Ot S(1) ( v, S(1) )

If g (x,t) is a vector-valued function, then the above equation is applies to each component of g (z, t)

to get

i/ g (x,t)dV = / @dv+ f(g-n)dsS
dt Jy v O S

Transport theorem 2

Let f(x,t) and g(x,t) be scalar and vector fields defined on V(¢). Then,

d Df of

£ of (z,t dV:/ p—de/ [—+u- Vf]dV, A6

at Jy o (z,t) v " D ar (V) (A.6)
d Dg 99

— g (x,t dV:/ —dV:/ p[——!— Vg u} av A7
it Jy o (z,1) v "Dt v Lt (Vg) (A7)

29



By letting pf play the role of f in transport theorem 1, we get

d

— pf (x,t dV:/

+V. (pfu)] dv
V(t)

N (o) + - (9| av

we use conservation of mass i.e., %§ + V- (pu) = 0 which will be discussed later (see section A.3.1)

to get

_ o ..

_/V(t)p|:8t +u (Vf)}dV

N Df

_ /V Lol O Ban A

A.2.1 Conservation of mass

Consider a specific mass of medium enclosed in a material volume V' (¢), which is arbitrarily chosen.
By the statement of conservation of mass, we know that as time progresses the V(¢) changes in
shape and size, but the mass contained in V(¢) remains constant i.e., the mass in V and V(¢) is
the same except in the case of V (¢) with mass sources inside it. Thus, the mass m contained within

V(t) using conservation of mass is given by

m=[ w0~ [ p@nav
Vo V(t)

/ dm _d [ v —o (A.8)

Applying the transport theorem 1 with p as the scalar valued function, we have

/ @dV + / p(u-n)dS =0 (By Eqn. A.5)
v Ot S(t)
0
/ [—p—kV-(pu)} dV =0 V-(pu)dV:/ p(u-n)dS
v, Lot V) s

we know that the V(¢) is arbitrary, so we obtain
Ip
= . = A.
5 +V.(pu)=0 (A.9)

A.2.2 Balance of linear momentum

Balance of linear momentum states that the rate of change of momentum of material volume is equal
to the net external force acting on the material volume. The external forces acting on material volume
can be classified as body force such as gravitational force etc. and surface force such as pressure or
viscous forces that arises due to the surface contact between the bulk of continua. Let b(x,t) be the
body force per unit mass of the material volume, then the body force acting on the material volume
is given by fv(t) pbdV .

If n be the outward normal vector acting on the bounding surface S(t) of the arbitrary portion of
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Figure A.2: Schematic representation of tetrahedron considered.

material volume V' (¢), then by Cauchy hypothesis there exist a traction vector t(x,t,n) due to the
action of material outside the S(t). The net surface force acting on the material volume is given
by [, (1) t(x,t,n)dS. Let m be the mass contained within the material volume V(¢), then by the

statement of balance of linear momentum we get

/ M:/ t(a:,t,n)dS—l—/ pbdV
v dt S(t) V()

4 pudV:/ t(w,t,n)d5+/ pbdV ‘.‘m:/ pdV (A.10)
dt Jy @ S(1) V(t) V()

*Using transport theorem 2 to left hand side of Eqn. A.10, we have Thus, D1; is

D . :
/ p22av = / t(x,t,m)dS + / pbdV
Jvwy Dt Js@) Jv

/ p [@ —b] dV:/ t(w,t,n)dS (A11)
v LDt 5(t)

Applying the above equation to the tetrahedron considered, we have

D hdA
’ [F{ - } "= = [t ) + (@t —e)m + (@, —eo)na + (@, . —eg)ng] dA

We now shrink the tetrahedron to the point O as h tends to zero by keeping normal to the face
AXY Z to be same as n. This turns the left hand side of above equation to zero giving

t(xz,t,n) +t(xz,t,—e)ny +t(x,t, —ex)ng + t(x,t,—e3)ng =0 (A.12)
Let n = ¢; = (1,0,0) then the above equation reduces to
t(x,t,e1) = —t(x,t,—e1) (A.13)
Similarly by taking n = e; and n = e3, we get
t(x,t,e) = —t(x,t,—es) (A.14)

t(x,t,e3) = —t(x,t,—e3) (A.15)
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By substituting Eqn. (A.13, A.14, A.15) in Eqn. (A.12), we have
t(x,t,n) =t(x,t,e1)ny + t(x, t,ex)ng + t(x, t, e3)ns
Let us know define the cauchy stress tensor 7 such that
T(x,t)n =t(xz,t,e1)ng + t(x, ¢, e2)ng + t(x, t, e3)ng (A.16)

Using Eqn. (A.4, A.16) in Eqn. (A.11) and rewriting Eqn. (A.11), we have

/ P {d_u +u- (V'u,)} dv = / ™ndS —|—/ pbdV
v Ldt S(t) V()

/ P{d—u-Fu‘(VU)—V'T—Pb}dV:O / T™ndS = V.71dV
v Ldt S(t) V(t)

Since the volume V/(t) is arbitrary, the integrand of above equation must be equal to zero, therefore

p[lfi—rl;-l-u-(Vu)}—V-T—pb:O

p{z—?—i—u-(VU)} =V.-1+4+pb

Du

vy Al
P V.-1+pb (A.17)

Constitutive relation for a Newtonian fluid

In this section, we establish relation between Cauchy stress tensor 7 and the fluid properties of
Newtonian fluid (such as water, air etc.). The Cauchy stress tensor can be decomposed as hydrostatic

stress and deviatoric stress as shown below
T=0npl +0o
In indicial notation, we have
Tij = Om0ij + 0y (A.18)
The Cauchy stress tensor T for a Newtonian fluid needs to satisfy the following condition

1. When the fluid is at rest, only hydrostatic stress acts on it which is given by the thermodynamic

pressure p.

Om = =P (-ve sign — compressive stress)

Tz'j = _p(sij —+ Uz’j (by Eqn. A18) (Alg)

2. The stress tensor T is directly proportional to velocity gradient L.
Since the o, = —p, it is independent of deformation tensor so the only part of 7;; that is

directly proportional to velocity is o;;.
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045 has 9 components each of which must be directly proportional to the 9 components of Ly,

so we need 81 proportionality constants which is given by 4th order tensor f3;;

0ij = BijriLli
05 = ﬁijkl (Dkl + Wkl) (by Eqn. 7?7 ) (A.QO)

. The shear stress is zero for the solid body rotation of fluid.

The deviatoric stress of 7;; i.e., 0;; denotes the shear stress of fluid. For solid body rotation,
there will be no contribution to the rate of deformation i.e. Dy; = 0. So the only part of
velocity gradient Lg; contributing to solid body rotation is vorticity tensor Wy;. By using the

above statement, we get

Bijki (Dyt +Wig) =0 (by Eqn. A.20)
BijkiWr =0
Wi =0 (" Bijr # 0) (A.21)

Using Eqn.(A.21) in Eqn.(A.20), we have

0ij = BijiDrt

1 (Our  Ow 1 (Oup  Owuy
i = iik - _— _— o = — —_ —_ .22
%ig = Digh {2 (61’; + Grk)] ( D 2 <6ml + Ba’k)) (A.22)

. Condition of isotropy for fluid properties.
This statement describes that the fluid properties such as viscosity should be independent of
the orientation of coordinate system chosen. In order to do so, we choose a general 4th order

tensor shown below
Bijkt = M0t + p (dindji + 6i0jk) + v (0ixdj1 — diadjx)

Due to the symmetry nature of 74, the contribution from + term will be zero, thercfore we

have

Bijki = A0kt + 1 (k051 + 0udjn) (A.23)

Using Eqn.(A.23) in Eqn.(A.22), we have

1 /0 0
i = (MOt + 1 (6ir0j1 + 0udjn)] X [5 < uk uz)}

dz; | Oxy
s |1 [Oug | Oug w(Ou;  Ou;  Ou; = Ouy
= A% {2 (&rk + 8:1:;@)} + 2 \ Oz; + ox; + ox; + Ox;
A\ s Buk aul B’U,j
Oij = )\Omg_k +u (6% + 8ng> (A.24)
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Using Eqn.(A.24) in Eqn.(A.19), we have

rir = —pBis A Ouy, . (81@- n Guj)

Ouy 1 /0u; Ou;
’ j

In matrix form, we have
7= —pl + X(trD)I 4+ 2uD (A.25)

where A and u are scalar constants found by experiments

A.2.3 Energy equation

In order to derive the total energy equation, we must first derive the mechanical energy balance
equation which is solely based on the momentum equation (Eqn. A.17), so mechanical energy
balance equation is independent of thermodynamic properties.

Taking dot product on both sides of Eqn.(A.17) with u, we have

u:u-(V-T)—i—pu-b

P Dr

which can be rewritten as

(TTu) T (D+W)4pu-b (A.26)
If A and B is symmetric and anti-symmetric tensor, then it follows that
A:B=0

Since 7 is symmetry tensor whereas W is anti-symmetry tensor, so using the above statement we
have 7 : W = 0. This reduces the Eqn.(A.26) to the below form

D /u-u
() ) e war

Integrating the above equation with respect to material volume V(t), we have

D /u-u
p—— (—— dV:/ V- (rTu dV+/ —7: D+ pu-bldV A.28
oo (5= [ v rwars [ | (A.28)
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Applying transport theorem 2 to left-hand side and divergence theorem to the first term of the

right-hand side, we have

D /u-u
p— | —— dV:/ u-(t™n dS—I—/ —7: D+ pu-bjdV
/V(t> Dt( 2 ) S(0) ) vw[ |

= / t-udS + / [-T : D+ pu-b]dV (Cauchy stress relation — t = mn)
S(t) V(t)
Using transport theorem 2 to left-hand side of the above expression, we can write

1
4 —p(u~u)dV:/ t-udS—|—/ [T : D+ pu-bldV
dt Jv 2 S(t) v(t)

dk

—7/ t~udS+/ [-T:D+ pu-bldV
dt Jsw Jv)

where the kinetic energy k is defined by k = fv(t) ip(u-u)dV
We know define the first law of thermodynamics which forms the basis for the total energy equation.
Mathematically, we can define the first law of thermodynamics as follows

dU W  dQ

dt dt | dt (A.29)

where U, W and Q denotes total energy of the system, work done on the system and heat supplied
to the system respectively. The time derivative represents the rate of change of the respective
thermodynamic quantities.

Internal energy of the system is the summation of kinetic energy (k) and internal energy per unit

mass (e) of the system. So we have

U:/‘/(t)p{%(u-u)—ke} av
v d ) F (u-u)—l—ﬁ’} Jv (A.30)

dt dt Jy' (2

The external forces acting on the system are surface traction ¢ and body force b. So the rate of
change of work done on the system is given by rate of change of work done by external forces acting
on it. Let us consider a small element of surface arca dS on surface S, then the surface traction
force acting on the small element is given by tdS and the rate of change of work done by this force
is given by [, () t - udS. Similarly, the rate of change of work done by body force per unit mass is
given by fv © pb - udV. The total rate of change of work done on the system is given by

aw

— = t-udS +/ pb - udV (A.31)
dt S() V)

If @y, is the heat generation per unit mass per unit time by any heat source and q is the heat flux
vector, then the rate of heat generated within system is given by fv ) pQrdV and the rate of heat
dissipated from the system is given by — f s ndS. The net heat flow rate of the system is given
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49 = pPQRdV —/ g.ndS (A.32)
dt V() 5(¢)

Using Eqn. (A.30, A.31, A.32) in Eqn. (A.29), we get

1
4 p[—(u-u)—l—e}d‘/:/ t-udS+/ pb-udV—I—/ thdV—/ q-ndS
dt Jvw 12 S() V(1) v(n) S(0)
(A.33)

Applying divergence theorem to the first and last term of the right-hand side of above equation
yields

/ q-ndS = V - qdV
S(t) V(t)

/ t-udS:/ (T'n)-udS:/ V- (tTu)dv
S(t) S(t) V(t)

Using these above expressions in Eqn. (A.33), we have

d pF(uuu)—ke}dV:

— V- (rTu)dv + /

pb - udV + / pQrdV —V - qdV
V(t)

V(t) V(t)

Applying transport theorem 2 to the left-hand side of above equation gives

/ p2 [l(u-u)jue} AV = V-(TTu)dV—l—/ pb-udV—l—/ pQudV —V - qdV
vy Dt |2 40 v 0

/V(t){pDEt B(u-u)—ke] —V-(TTu)—pb-u—th+V-q}dV:()

Since V' (t) can be chosen arbitrarily, we can make the integrand to be zero to obtain differential

form of energy equation.

D |1
ﬂﬁ[ﬁ(u-u)—i—e}:V-(TTu)+/)b-u+/)Qh—V-q (A.34)
From Eqn.(A.27) and Eqn.(A.34), we have

De

—=7:D-V.
P =T V.q+pQp

From thermodynamic relation for perfect gas, we have e = C',8 where C,, is specific heat at constant

volume. This reduces the above equation to
Do
wv—=T:D—-V.
pC. =T V.-q+pQp
do
pChy [E +u- (VG)] =7:D -V -q+pQn (by Eqn.(1.4)) (A.35)
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Substituting Eqn.(A.19) in Eqn.(A.35), we have

pCy {d—e

7 +u.(V«9)} =—p-Vu+o:D—-V-qg+ pQy
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