
 

 

Introduction 
 
MicroRNAs (miRNAs) are small non-coding RNAs 
of approximately 22 nucleotides (nt) and act as 
post-transcriptional regulators of gene expres-
sion. This type of regulation was first described 
in Caenorhabditis elegans in 1993 [1, 2], and it 
has since been described in many other organ-
isms. Today, more than 1,400 miRNAs have 
been described in humans (miRBase - http://
www.mirbase.org/cgi-bin/browse.pl), constitut-
ing 1 to 3% of the genes in the human genome 
[3]. It has been estimated that miRNAs regulate 
30 to 60% of protein-coding genes [4, 5]. 
MiRNAs are involved in the regulation of genes 
related to many biological processes, such as 
cell proliferation and apoptosis. However, their 
main function is to establish and maintain the 
differentiated status of many cell types [6]. They 
are located in different regions of the genome; 
70% are intragenic, and the host gene and 
miRNA invariably have the same orientation and 
are expressed together because both are con-
trolled by the same promoter region [7]. Forty 
percent of all miRNAs are organized in clusters, 
and the miRNAs in each cluster usually regulate 

a common pathway [7, 8]. 
 
These small RNA molecules are generally proc-
essed through the transcription of a primary 
miRNA (pri-miRNA), which can have one or sev-
eral secondary structures with 60- to 80-nt 
loops that are recognized and cleaved in the 
nucleus by DROSHA, an RNase III endoribonu-
clease, and its partner, DGCR-8 [9]. Pri-miRNA 
cleavage generates miRNA precursors (pre-
miRNAs), which are hairpin structures of ap-
proximately 70 nt with a 2-nt 3' overhang [10]. 
These are exported to the cytoplasm by exportin 
5 and its co-factor, Ran-GTP [11]. Finally, the 
pre-miRNAs are processed into miRNA duplexes 
of 21 to 25 nt by DICER, another RNase III en-
doribonuclease, and its partner, trans-activator 
RNA-binding protein (TRBP) [12]. Once mature, 
miRNA duplexes are loaded by DICER into the 
RNA-induced silencing complex (RISC), which 
keeps only the strand that is less stable at its 5' 
end and subsequently initiates the post-
transcriptional gene silencing (Figure 1). The 
fate of the unused miRNA strand is not fully 
understood. However, this unused strand may 
be incorporated into specific exosomes and 
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extruded from the cell [13]. This biological 
event results in the presence of extracellu-
lar microRNAs in body fluids, primarily 
blood serum. Accordingly, the possibility of 
using serum miRNAs for cancer detection 
and prognosis has received much attention 
[13].  
 
In mammals, translational repression by 
miRNAs is usually achieved through partial 
complementarity to the 3'UTR of target 
mRNAs [14]. The fine-tuning between cod-
ing gene expression and repression is ac-
complished by the differential expression of 
miRNAs, which makes their regulation diffi-
cult to study. Nevertheless, the identifica-
tion of new miRNAs and their targets, 
miRNA expression profiling in different spe-
cies and tissues [15] (such as in human 
and mouse embryonic stem cells [16] and 
tumor cells [17]) and epigenetic regulation 
of miRNAs [18] have been explored. Many 
miRNAs have been associated with the de-
velopment of various cancers; establish-
ment of cancer aggressiveness, invasive-
ness and metastatic capacity; and resis-
tance to anti-cancer treatments. Addressing 
these issues is the main aim of this review.  
 
MiRNAs and cancer development 
 
The first cancer-associated miRNAs were 
miR-15a and miR-16-1, which are located 
in the human chromosome 13q14 region, 
between exons 5 and 6 of the LEU2 gene, a 
region frequently deleted in chronic lym-
phocytic leukemia (CLL) that progresses to 
an aggressive state [19]. In normal cells, 
these miRNAs induce apoptosis through 
the regulation of the anti-apoptotic proto-
oncogene BCL2 [20]. Several other miRNAs 
with altered expression in cancers have 
been identified, and many causes for their 
deregulation have been discovered.  
 
A systematic analysis of the locations of 
miRNAs in the mammalian genome has 
shown that more than 50% of them are 
located in fragile genomic sites, regions of 
loss of heterozygosity (LOH), minimal ampli-
cons, and regions more susceptible to mu-
tations, breaks and rearrangements, all 
situations frequently found in tumor cells 
[21]. Thus, changes in the copy number of 
miRNA genes have an important role in 

Figure 1. MicroRNA biogenesis, with a special focus on the 
roles of DROSHA and DICER and the formation of the RISC 
complex. 
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tumor formation [19]. Moreover, the deregula-
tion of miRNA expression can have other 
causes, such as the deregulation of transcrip-
tion factors, epigenetic modifications, muta-
tions, and polymorphisms in the miRNA or in the 
binding site of the target mRNA sequences, and 
the deregulation of proteins that participate in 
miRNA biogenesis (reviewed in [22]). In full-
blown cancer, tumor suppressor miRNAs in-
volved in cell cycle blockage, apoptosis, cell 
differentiation, and oncogene silencing are sup-
pressed by genetic alterations, mainly the ho-
mozygous deletion of miRNA genes, which is a 
common event in human cancer [21]. However, 
the silencing of protective miRNAs is an early 
event during carcinogenesis. Indeed, exposure 
to environmental mutagens, such as cigarette 
smoke, results in a trend toward lung miRNA 
downregulation, as demonstrated in mice [23] 
and humans [24]. MiRNA downregulation is a 
reversible event in cases of short-term exposure 
to cigarette smoke but becomes irreversible 
after long-term exposure, thus committing a cell 
to cancer development [25]. For cigarette 
smoke-induced lung cancer, both DNA damage 
and miRNA alteration have to occur for full-
blown cancer to develop. Cigarette smoke in-
duces early DNA damage by promoting DNA 
adduct formation [26] and mutations in onco-
genes, such as K-ras [27]. However, the expres-
sion of mutated oncogenes is silenced by the 
physiological expression of specific miRNAs, 
such as those belonging to the let-7 family, 
which targets K-ras gene products. When let-7 
becomes irreversibly downregulated due to long
-term cigarette smoke exposure, cells exhibit 
uncontrolled expression of mutated K-ras and 
become committed to cancer development.  
 
High-throughput studies have screened the ex-
pression of different miRNAs to compare them 
between normal and cancer tissues. The data 
obtained show that there is an overall decrease 
in the expression of these miRNAs in tumor tis-
sues compared with normal tissues [17]. More-
over, there is a direct relationship between the 
expression of miRNAs and the origin of the tis-
sue. Consequently, each tumor type has a spe-
cific expression profile, which could provide in-
formation regarding its origin, degree of malig-
nancy, and state of differentiation [17]. This fact 
has great importance in the diagnosis and prog-
nosis of tumors, given that 3 to 5% of all human 
malignancies are metastatic cancers of un-
known primary origin (CUP) [28]. 

Although there is an overall decrease in the ex-
pression of miRNAs in tumor cells, specific 
miRNAs can be over-expressed, which causes 
deregulation of the expression levels of the tar-
get genes. MiRNAs that suppress the expression 
of proto-oncogenes and prevent the develop-
ment or maintenance of the tumor state are 
usually down-regulated in tumor cells and are 
called tumor suppressor miRNAs, as previously 
reported for let-7. On the other hand, oncomiRs 
are miRNAs that generally modulate the expres-
sion of tumor suppressor genes and are usually 
over-expressed or amplified in tumor cells, con-
tributing to tumor development. Despite the fact 
that these terms facilitate the description of the 
functions of these miRNAs, they reflect a state 
of activity, and a particular miRNA or cluster can 
have both functions. This can vary according to 
the cell type and its specific gene expression 
pattern. An example is the miR-17-92 cluster, 
whose members can function as oncomiRs in 
different tumor types, but one member, miR-17-
5p, is down-regulated in breast cancer cell lines, 
and its ectopic expression has an antiprolifera-
tive effect by targeting the oncogene AIB1 [29]. 
Deletion of this specific miRNA has been re-
ported in some cases of melanoma and breast 
and ovarian cancers [29], showing that it acts 
as a tumor suppressor. Other possible mecha-
nisms for the dual role played by this cluster 
may include post-transcriptional regulation, as 
over-expression of all of its members has been 
seen in lung cancer cells, with the exception of 
miR-17-5p, which was down-regulated [30].  
 
The miR-17-92 cluster is the most extensively 
studied cluster that has an oncogenic function. 
It comprises seven miRNAs, which reside in in-
tron 3 of the C13orf25 gene at 13q31.3 [31]. 
This cluster is widely expressed in healthy tis-
sues and is important for the regulation of the 
immune and hematopoietic systems and lung 
development [32-34]. However, it is situated in 
a region that is commonly amplified and, there-
fore, is usually over-expressed in B-cell lympho-
mas [31], as well as in other tumor types, such 
as other lymphomas and cancers of the lung, 
breast, prostate, pancreas, stomach, and colon 
[30, 35-38]. The ectopic expression of this clus-
ter increases the proliferation of lung cancer 
cells [30]. Additionally, the introduction of a por-
tion of this cluster into hematopoietic stem cells 
from transgenic Eµ-myc mice, which over-
express the oncogene Myc, promotes tumor 
development, higher levels of malignancy and 
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invasiveness, lower levels of apoptosis and ac-
celerated formation of malignancies compared 
with tumors from transgenic animals carrying an 
Eµ-myc oncogene and lacking the miRNA cluster 
[35]. This is due to the fact that the proto-
oncogene Myc encodes a transcription factor 
responsible for miR17-92 activation [36]. Simi-
larly, mice that over-express miR-17-92 in their 
lymphocytes develop lymphoproliferative dis-
ease and autoimmunity [34]. Several targets 
are regulated by this cluster, including E2F1, 
which is regulated by both miR-17-5p and miR-
20a [36]. This transcription factor is responsible 
for the activation of many genes involved in cell-
cycle regulation [39], such as Myc, and, as a 
dual-function protein, can stimulate both cell 
proliferation and apoptosis (reviewed in [40]). 
Additionally, under the effects of MYC, members 
of the miR-17-92 cluster, such as miR-18 and 
miR-19, promote an increase in tumor neovas-
cularization by targeting connective tissue 
growth factor (CTGF) and the anti-angiogenic 
thrombospondin-1 (TSP-1), respectively [37]. 
Moreover, Xiao et al. [34] and Ventura et al. 
[33] showed that the tumor suppressor gene 
PTEN and the pro-apoptotic gene BIM are also 
regulated by the miR-17-92 cluster.  
 
Among the tumor suppressor miRNAs, the let-7 
family is one of the better studied. Let-7 was 
one of the first miRNAs identified, from studies 
in heterochronic nematode mutants [41], and is 
involved in the regulation of the developmental 
timing of tissues in C. elegans [41]. Over the 
years, many other functions have been associ-
ated with this family in different organisms, 
such as limb development in mice [42], neuro-
musculature development in flies [43], and the 
regulation of cell differentiation and prolifera-
tion in mammals [44, 45]. Several additional 
members of this family have been identified. In 
humans and mice, they are located in 13 ge-
nomic loci and generate 10 mature miRNAs 
[46], having a highly conserved position and 
grouping pattern between different species, 
from flies to higher organisms [47, 48]. Their 
expression is temporal in several animals, corre-
lating with the cellular differentiation state, 
showing that this family may have an important 
role in the development of many organisms [44, 
45]. The let-7 miRNA in C. elegans leads to the 
terminal differentiation of seam cells in the last 
larval stage, initiating the formation of the adult 
organism [41]. In mutants of let-7, which have 
defects in this transition, the seam cells main-

tain the characteristics of stem cells, with a high 
proliferation capacity and lack of differentiation, 
which are also characteristics of cancer cells. 
The first evidence of the involvement of let-7 in 
cancer was through the observation that this 
miRNA was down-regulated in lung cancer cells, 
which was related to a lower survival of patients 
with non-small-cell lung cancer (NSCLC). Addi-
tionally, the over-expression of this miRNA was 
capable of inhibiting cancer cell growth in vitro 
[49]. Moreover, members of the let-7 family are 
located in fragile sites of the human genome 
that are frequently deleted in lung cancer cells 
[21]. The RAS gene, commonly deregulated in 
lung cancer, and HMGA2, an oncogene over-
expressed in several tumors, including benign 
mesenchymal and lung tumors, are regulated by 
members of the let-7 family [50, 51]. In some 
tumors, increased levels of HMGA2 can be lo-
cated even in microenvironments with normal 
let-7 levels. However, it frequently occurs when 
the mRNA of HMGA2 has a truncated 3'UTR 
region that lacks let-7 binding sites [51].  
 
Other examples of miRNAs with tumor suppres-
sor functions are those belonging to the miR-29 
family, which are down-regulated in several tu-
mor types [52, 53]. Its members regulate the 
expression of the anti-apoptotic protein MCL-1 
[54], the oncogene TCL-1 [55], and two DNA 
methyltransferases, DNMT3a and DNMT3b 
[52], and indirectly repress the expression of 
DNMT1 by targeting the transcription factor SP1 
[56]. MiR-34 family members also bear a tumor 
suppressor function, as they are the main p53 
effectors and thus are downregulated in a vari-
ety of cancer cells [57]. 
 
The downregulation of onco-protective miRNAs 
is not only achieved during the final stages of 
carcinogenesis but also during its early stages. 
Indeed, the most important lung carcinogen in 
humans, cigarette smoke, is able to down-
regulate a variety of onco-suppressive miRNAs 
that inhibit the expression of specific onco-
genes, including let-7 (targeting KRAS), miR-26a 
(targeting TGF), miR-30a (targeting EGF), and 
miR-125a (targeting ERBB2). In parallel, in the 
lung, cigarette smoke down-regulates the ex-
pression of miRNAs that activate onco-
suppressors, mainly miR-34 (targeting TP53) 
[23]. Accordingly, the downregulation of onco-
protective miRNAs due to cigarette smoke may 
represent an additional mechanism that wors-
ens the prognosis of smoking-related lung can-
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cer patients compared with the prognosis of 
non-smoking-related cancer patients.  Indeed, 
miRNA alterations greatly affect lung cancer 
prognosis [58].  
 
MiRNAs and epigenetic modifications in cancer 
 
Aberrant epigenomic patterns in tumor cells are 
frequently seen, including hypermethylation of 
CpG islands located next to gene promoter re-
gions, causing the silencing of tumor suppres-
sor genes [59], global hypomethylation [60], 
and reactivation of oncogene expression and 
creating chromosome instability. Moreover, his-
tone post-translational modifications, such as 
deacetylation and methylation, are also com-
mon (reviewed in [61]). These modifications 
have important roles in tumor initiation and 
maintenance (reviewed in [62]). A recent study 
has estimated that approximately half of the 
miRNA genes are associated with CpG islands, 
which could be an important mechanism for the 
transcriptional regulation of miRNAs [63].  
 
The first evidence of the altered expression of 
miRNAs and epigenetic modifications in tumor 
cells was reported by Scott et al. [64]. These 
authors demonstrated that the treatment of 
SKBr3 breast cancer cells with a pro-apoptotic 
dose of the histone deacetylase inhibitor 
(HDACi) LAQ824 alters miRNA expression, re-
sulting in 22 down-regulated and 5 up-regulated 
miRNAs after treatment [64]. However, Died-
erichs and Harber [65] found no significant al-
terations in the expression of miRNAs in A549 
lung cancer cells treated with a DNMT inhibitor 
(5-AZA-dC or 5-AZA-C) or HDACi (TSA or sodium 
butyrate), suggesting that different cell lines 
may have different responses, as well as differ-
ent dose-dependent effects [65].  
 
The direct correlation between miRNAs and epi-
genetic mechanisms in cancer was first demon-
strated by Saito et al. [18]. These authors found 
17 overexpressed miRNAs in T24 bladder can-
cer cells treated with both 5-AZA-dC and PBA 
(an HDACi). Among them, miR-127 was particu-
larly interesting because it was highly expressed 
after treatment. This miRNA is a member of a 
cluster located on chromosome 14q32.31 and 
is included in a CpG island [18, 66]. It is ex-
pressed in normal tissues but was down-
regulated or silenced in the majority of the tu-
mor cell lines analyzed [18]. The treatment led 
to the demethylation of its promoter region, 

which reactivated its expression, resulting in a 
decreased expression of its target proto-
oncogene BCL6 [18]. This work has opened up 
new pathways for the treatment of cancer 
through the correction of miRNA expression with 
drug treatments.  
 
Lujambio et al. [67] compared the expression of 
miRNAs in HCT116 colon cancer cells with their 
double-knockout counterpart DNMT3b/DNMT1 
(DKO). The authors found that miR-124a is the 
only miRNA out of 320 that is embedded in a 
CpG island, upregulated in DKO compared with 
the parental HCT116 cell line, methylated in 
HCT116 cells and demethylated in normal colon 
cells. They also discovered that the proto-
oncogene CDK6 is a target of miR-124a and 
that this gene is therefore overexpressed in the 
HCT116 tumor cells compared with normal con-
trols. Its expression is also decreased in cells 
treated with demethylating agents and in DKO 
cells compared with non-treated HCT116 paren-
tal cells.  
 
Indeed, the silencing of miRNAs with a tumor 
suppressor role by aberrant DNA hypermethyla-
tion is common in tumors, such as hsa-miR-9-1 
in breast cancer [68]; miR-370 in cholangiocar-
cinoma [69]; miR-342 and its host gene, EVL 
(Ena/VASP- Like), in colorectal cancer [70]; miR-
137 and miR-193 in oral cancer [71]; and miR-
203 in hematopoietic malignancies [72].  
 
On the other hand, the overexpression of on-
comiRs is also seen as a result of epigenetic 
changes in cancer cells. One example is the let-
7a-3 gene. Its promoter region is highly methy-
lated in HCT116 cells, it has a lower degree of 
methylation in HCT116-DNMT1 (1KO) or -
DNMT3B (3bKO) knockout cells, and it is almost 
completely demethylated in DKO cells, indicat-
ing that this region is regulated by both 
DNMT3b and DNMT1 [73]. Additionally, in sev-
eral normal tissues, a strong methylation of this 
miRNA is seen. Because miRNAs of the let-7 
family have important roles in lung cancer [49, 
50], one study compared the methylation 
statuses of lung adenocarcinoma cells and non-
neoplastic lung cells from the same patients, 
showing that the promoter region of let-7a-3 
was highly methylated in normal tissues and 
demethylated in lung cancers [73]. Moreover, 
the introduction of the let-7a-3 miRNA in A549 
lung adenocarcinoma cells increased the capac-
ity of anchorage-independent growth, demon-
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strating an oncogenic function [73]. Because 
the let-7 family is well known for its tumor-
suppressive role, the function of let-7a-3 is 
atypical, demonstrating the diversity of func-
tions of similar miRNAs in cancer. In agreement 
with these observations, Lu et al. [74] analyzed 
the methylation of the let-7a-3 promoter in 214 
clinical samples of ovarian epithelial cancer and 
found a significant correlation between hyper-
methylation and a lower risk of death. In that 
work, they also observed an inverse correlation 
between the level of let-7a-3 methylation and 
the expression of insulin-like growth factor II 
(IGF-II), which is indirectly regulated by let-7a-3 
and is highly expressed in tumors with poor 
prognosis. In addition, a positive correlation 
between the methylation of let-7a-3 and IGFBP-
3 expression was observed [74]. 
 
Thus, an increasing number of studies have 
recently associated aberrant methylation and 
alterations in chromatin structure with the de-
regulated expression of miRNAs and, conse-
quently, with the onset of cancer.  
 
The opposite is also seen; namely, miRNAs can 
regulate the expression of components of the 
epigenetic machinery. In several types of can-
cer, DNMTs show high levels of expression [75, 
76]. Thus, miRNA activities may be good candi-
dates with which to control the aberrant methy-
lation of tumor suppressor genes in cancer. The 
first evidence that miRNAs regulate the expres-
sion of genes associated with the epigenetic 
machinery was reported by Chen and col-
leagues [77]. They observed the regulation of 
the enzyme histone deacetylase 4 (HDAC4) by 
miR-1, which promotes myogenesis. Members 
of the miR-29 family have been frequently asso-
ciated with cancer, being generally down-
regulated, which indicates a tumor suppressor 
role [52, 56]. Fabbri and colleagues [52] dem-
onstrated that members of the miR-29 family 
directly regulate the mRNAs of DNMT3a and 
DNMT3b in lung cancer cells, and the ectopic 
expression of these miRNAs inhibits the expres-
sion of these DNA methyltransferases, causing 
increased global methylation and the re-
expression of tumor suppressor genes. Further-
more, the ectopic expression of miR-29 inhibits 
cellular growth and induces apoptosis in vitro, 
as well as reduces the growth of tumors in nude 
mice. Next, Garzon and colleagues [56] ob-
served an indirect regulation of DNMT1 by miR-
29b in leukemia. This miRNA targets SP1, a 

transcription factor that regulates the expres-
sion of DNMT1. In another study, Duursma et al. 
[78] observed that miR-148 inhibits the expres-
sion of DNMT3b by binding to its ORF; this is 
one of the few studies showing this type of si-
lencing, which is common in plants. Interest-
ingly, this miRNA targets the DNMT3b1 isoform, 
but not DNMT3b3, revealing a splicing variant-
specific regulation. The interplay between 
miRNAs and changes in DNA methylation in tu-
mor cells is represented in Figure 2.  
 
The regulation of epigenetic machinery gene 
expression by miRNAs also has an important 
role in embryonic development, as observed by 
Sinkkonen et al. [79]. They demonstrated that 
miRNAs from the miR-290 cluster regulate the 
expression of de novo DNA methyltransferases 
in an indirect manner, through the inhibition of 
their transcriptional repressor, Rbl2. On the 
other hand, the DNA methyltransferases have 
an important role in the initiation of embryonic 
development, contributing to embryonic stem 
cell differentiation.  
 
MiRNAs play a major role in maintaining the 
stemness of stem cells. Indeed, various stem 
cell-specific miRNAs have been identified [80]. 
Furthermore, miRNA expression in lung physio-
logically shifts from the staminal status, which is 
characteristic of the prenatal and postnatal 
stages, to a differentiated pattern, which is 
characteristic of adults [81]. Because of the 
pivotal role of stem cells in cancer mainte-
nance, recurrences after treatment, and metas-
tasis formation [82], the maintenance of 
stemness by miRNAs plays a physiological role 
during intrauterine life but may play an onco-
genic role when expressed in adult organisms.   
 
MiRNAs in tumor invasion and metastasis 
 
Metastasis is the ability of tumor cells to reach 
sites far from the primary site, and it is the main 
cause of death in cancer patients. To metasta-
size, tumor cells must cross several barriers, 
such as migration of the primary tumor and tis-
sue invasion, entrance into and survival in the 
bloodstream or lymphatic system and, finally, 
extravasation and complete colonization of the 
tissue (reviewed in [83]). MiRNAs are involved in 
the development of such processes and could 
be prognostic markers and therapeutic targets 
in metastatic tumors. The most important 
miRNAs related to this topic are reported in  
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Figure 3. A complete list of these metastasis-
related miRNAs is provided as Table 1. The first 
observation of a miRNA involved in metastasis 
was made by Ma et al. [84]. The authors found 
that miR-10b was overexpressed in breast can-
cer cells with metastatic potential compared 
with non-metastatic breast cancer cells. How-
ever, in a previous study, primary breast tumors 
exhibited miR-10b down-regulation compared 
with normal breast tissue, regardless of their 
aggressiveness [85]. In fact, Ma and colleagues 
observed that the expression of this miRNA was 
down-regulated in tumor samples of patients 
free of metastasis compared with normal breast 
tissue. On the other hand, half of the patients 
with metastatic tumors showed an increased 
expression of miR-10b in tumor cells compared 

with normal tissue [85]. 
When silenced by an an-
tagomiR, a decrease in the 
invasive properties of these 
cells was observed in vitro, 
with no alterations in their 
viability or motility. The ec-
topic expression of miR-10b 
had no effect on cell prolif-
eration in vitro, but it in-
creased motility and inva-
sive capacity. In an in vivo 
assay, human breast cancer 
cells were transduced with a 
miR-10b-encoding retroviral 
vector and inoculated in 
mice. All animals developed 
tumors, including the control 
group. However, those who 
rece ived  ce l l s  over -
expressing miR-10b showed 
higher invasion rates into 
adjacent tissues, higher tu-
mor growth and proliferative 
rates, and greater angio-
genesis and metastases at 
distant sites. Chromatin im-
munoprecipitation (ChIP) 
showed that TWIST1, a tran-
scription factor that plays an 
essential role in tumor me-
tastasis [86], binds to the 
miR-10b promoter, indicat-
ing that it controls the ex-
pression of this miRNA [84]. 
Indeed, TWIST1 expression 
correlates with that of miR-
10b, and a target of this 

miRNA, HOXD10 [84], encodes a protein that 
inhibits the expression of several genes in-
volved in cellular migration and extracellular 
matrix remodeling [87]. 
 
Comparing miRNA expression profiles between 
parental lineages of human breast cancer and 
their metastatic derivatives, which have high 
bone- and lung-targeting capacities, Tavazoie 
and colleagues [88] characterized miRNAs 
downregulated in the latter, including miR-126, 
miR-206, and miR-335. These miRNAs are im-
portant for the metastatic phenotype because 
their ectopic expression significantly reduced 
lung metastases in mice. The authors also 
found that in humans, patients with primary 
breast cancer with down-regulation of miR-126 

Figure 2. Overview of the interplay between miRNAs and DNA methylation in 
tumor cells. Dashed lines denote the original function in normal cells that is 
lost in tumor cells. Open circles: unmethylated CpG sites; filled circles: methy-
lated CpG sites.  
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Table 1. A complete list of these metastasis-related miRNAs (Table 1 references reported between 
square brackets are available as Supplementary Material) 

MicroRNA Metastasis-
suppressing miRNA 
(MSM) or metastasis-
promoting miRNA 
(MPM) 

Expression in 
metastasis 
compared to 
benign tissue 

Tissues Target genes 

Let-7 family MSM [29, 101, 115, 
131, 157, 162, 163, 
165] 

- [28, 29, 47, 48, 
71, 101, 115, 
157, 162, 163, 
165] 

Breast cancer [29], esophageal 
squamous cell carcinoma [163], 
Pancreatic cancer cells [72], 
gastric carcinoma [115, 162], 
Uveal melanoma [85], mouse 
melanoma [131], Lung cancer 
[71, 157], prostate cancer [47], 
hepatocellular carcinoma [28, 
101], Colorectal cancer [165] 

HMGA1 [72],HMGA2 [72], 
KRAS [72], 
Bsg [131], E2RAS and c-
myc [49], MYH9 [162], 
COL1A2 [101], TRIM41, 
SOX13, SLC25A4, SEMA4F, 
RPUSD2, PLEKHG6, 
CCND2, and BTBD3  [165] 

lin-28b MPM [160] +[160] Colon cancer [160]  

miR-1  - [28] Hepatocellular carcinoma [28]  

miR-9 family  MSM [36, 38] + [90], - [6, 35, 
36, 38] 

breast cancer [6, 90], lung[34], 
ovarian cancer [35], brain 
cancer [36] 

CDH1 [90] 

miR-10a MPM [80] +[80] Pancreatic adencarcinoma [80]  

miR-10b MPM [11, 92, 104, 
118],MSM [107] 

+[11, 44, 73, 
74] 

Breast carcinoma [11, 107], 
hepatocellular carcinoma [73], 
AML [74], pancreatic tumor cells 
[44], esophageal cancer [92], 
nasopharyngeal carcinoma 
[118] 

HoxD10 [11], KLF4 [92], 
Tiam1 [107] 

miR-15a  - [28] Hepatocellular carcinoma [28]  

miR-16 MSM [70] - [70] Prostate cancer [70]  

miR-17-92 
cluster 

MPM [46,99] +[99] Neuroblastoma [46], Breast 
cancer [99] 

 

miR-19a  - [28] Hepatocellular carcinoma [28]  

miR-20a MSM [112]  Pancreatic cancer cell lines 
[112] 

Stat3 [112] 

miR-21 MPM [8, 21, 52, 59, 
102, 103, 106, 108, 
127, 148, 153, 161] 

+ [3, 52, 21, 
102, 103, 106, 
127, 148, 153, 
161] 

Several types of cancer [3, 4, 5, 
6, 8, 21, 52, 59, 102, 103, 106, 
127, 148, 153, 161] 

PTEN [5, 127], TPM1 [7], 
PDCD4 [8, 9, 56, 59, 106, 
153], SPRY2 [10], MARCKS 
[53], RECK 
and TIMP3 [60, 103], 
Maspin [59], RHOB  [108] 

miR-22 MSM [122, 159] - [122, 129, 
159] 

Ovarian cancer [122], Breast 
cancer [129, 159] 

CDK6, SIRT1 and Sp1 
[159] 

miR-23b MSM[39] - [39,81] Hepatocellular carcinoma[39], 
prostate cancer [81] 

uPA e c-met[39] 

Mir-24 MSM [26] - [26] Breast cancer [26] DHFR [27] 

miR-27a MPM [75] +[75] Gastric cancer [75]  

miR-29a MPM [67] +[67] Breast cancer [67]  

miR-29c  - [63] nasopharyngeal carcinomas 
[63] 

Laminin [63], collagen [63], 
tcl1 [64] 

Mir-30a/b MSM [109, 168] - [28, 109, 168] Hepatocellular carcinoma [28], 
breast tumor [109], non-small 
lung cancer cell [168] 

 

miR-30c  - [28] Hepatocellular carcinoma [28]  

miR-30d MPM[93] +[93] Hepatocellular carcinoma [93] Galphai2 [93] 

miR-30e  - [28] Hepatocellular carcinoma [28]  

miR-31 MSM[33, 132, 152] - [33, 132, 152] breast cancer [33]  Fzd3, ITGA5,  
M-RIP MMP16, RDX, 
RhoA [33], WAVE3 [132] 

miR-34a MSM [77, 143] - [77, 143] Hepatocellular carcinoma [77], 
prostate cancer [143] 

C-met [77], CDK6, cyclin D1 
[78], MYCN [79], CD44 
[143] 
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miR-34b/c MSM [38] - [38] colon cancer, head and neck 
cancer, melanoma [38] 

MYC, CDK6, E2F3 [38]  

miR-92a MPM [135] +[135] Esophageal squamous cell 
carcinoma [135] 

CDH1 [135] 

miR-92b MSM [36] - [36] brain tumor [36]  

miR-100  - [47, 81] Prostate cancer [47, 81]  

miR-101 MSM [65] -[65] Prostate cancer [65] EZH2 [65] 

miR-103/107 MPM [113, 126] +[113, 126] Breast cancer [113], gastric 
cancer [126] 

Dicer [113, 126] 

miR-106b  - [114] Renal cell carcinoma [114]  

Mir-122 MSM [55] -[28, 54,55] Hepatocellular carcinoma [28, 
54,55] 

ADAM17 [55] 

miR-124a MSM [174] - [28, 174] Hepatocellular carcinoma [28, 
174] 

ROCk2, EZH2 [174] 

miR-125a-3p MSM [111] - [111] Non-small cell lung cancer [111]  

miR-125a-5p MPM [111], MSM 
[141] 

+[111], - [141] Non-small cell lung cancer 
[111], gastric cancer [141] 

ERBB2 [141] 

miR-125b MSM [120] - [28, 120] Hepatocellular carcinoma [28], 
Liver cancer cell [120] 

LIN28B [120] 

miR-126 MSM [14, 62, 116] - [14, 28, 62, 
116] 

Lung cancer [62], Breast cancer 
[14], hepatocellular carcinoma 
[28], gastric cancer [116] 

Crk [62, 116] 

miR-127 MPM [86] +[86] cervical carcinoma [86]  

miR-138 MSM[31,96] -[31, 32,96] head and neck squamous cell 
carcinoma[31], squamous cell 
carcinoma of the tong [96], 
thyroid carcinoma [32] 

RhoC, ROCK2 [96], hTERT 
[32] 

miR-81 MSM [124] - [124] Hepatocellular carcinoma [124] ROCK2 [124] 

miR-143 MPM [43, 156], 
MSM [154, 169] 

+ [43, 156], - 
[154, 169] 

Hepatocellular carcinoma[43], 
osteosarcoma [154], 
esophageal squamous cell 
carcinoma [156], prostate 
cancer [169] 

FNDC3B[43] 

miR-145 MSM [97, 169], 
MPM [156] 

+[156], - [169] esophageal squamous cell 
carcinoma [156], prostate 
cancer [169] 

MUC1 [97] 

miR-146a/b MSM [12, 15, 30, 
57, 58, 91, 167] 

- [12, 15, 30, 
57,58, 91, 167] 

Glioblastoma [57], Breast 
cancer [12, 15, 30], prostate 
cancer [58], pancreatic cancer 
cells [91], gastric cancer [167] 

MMP16 [57], ROCK1[ 58], 
TRAF6 [15, 16], IRAK1 [34, 
16, 91, 167], EGFR [91, 
167] 

miR-148 MSM [38] - [28, 38] Hepatocellular carcinoma [28]  

Mir-151 MPM [94] +[94] Hepatocellular carcinoma [94] RhoGDIA [94] 

miR-155 MPM [61, 153] +[61, 153] colorectal cancer [153] RHOA [61] 

miR-181 MPM [144] +[144] Oral squamous cell carcinoma 
[144] 

 

miR-182 MPM [69] +[69] Melanoma [69] MITF and FOXO3 [69] 

miR-183 MSM [83,98, 121], 
MPM [164] 

-[83, 121], 
+[164] 

Lung cancer cells[83], breast 
cancer [121], medullary thyroid 
cancer [164] 

ITGB1[98],  KIF2A [98], 
Ezrin [83, 121] 

miR-185  +[28] Hepatocellular carcinoma [28]  

miR-194 MSM [125] - [28, 125] Hepatocellular carcinoma [28], 
liver cancer [125] 

 

MiR-196 
family (miR-
196a1, miR-
196a2, and 
miR-196b)  

MSM [119], MPM 
[45] 

- [119], +[45] Breast cancer [119], colorectal 
cancer [45] 

HOXC8 [119], ANXA1 [87] 

miR-198 MSM [170] - [170] Hepatocellular carcinomas 
[170] 

c-MET [170] 
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miR-199a MPM[128], MSM 
[150] 

+[128], - [150] Uveal melanoma [85], Gastric 
Cancer [128], testicular tumor 
[150] 

MAP3K11 [128], PODXL 
[150] 

Mir-199b-5p MSM [51] - [51] Medulloblastoma [51] HES1 [51] 

miR-200 
family (miR-
200a, miR-
200b, miR-
200c, miR-
141 and miR-
429) 

MSM[22, 23, 24, 25, 
84,88,89, 117, 134, 
139] MPM [37,100] 

+[37, 100], -  
[22,23, 24, 
25,84,  88, 89, 
117, 134, 139] 

Ductal adenocarcinomas of 
pancreas [37],  breast 
carcinoma cells [24,25,100], 
primary 
serous papillary ovarian 
tumors[25], lung cancer [84, 
117, 134], head and neck 
squamous cell carcinoma [139] 

ZEB1 [22, 23, 24,25], 
ZEB2 [24,25], WAVE3 [89], 
Flt1 [134], BMI1 [139], 
SIP1 [22, 23], EP300 [37] 

miR-203 MSM [137] - [137] Prostate cancer [137] ZEB2, Bmi, Survivin, Runx2 
[137] 

miR-204 MSM [105, 151] - [105, 151] Squamous cell carcinoma of 
head and neck [105], 
endometrial cancer [151] 

FOXC1 [151] 

miR-205 MSM [22,68] - [22, 68] breast cancer [68], head and 
neck squamous cell carcinoma 
[66] 

LRP1[1], ErbB3 [68], VEGF-
A [68] 

miR-206 MSM [14, 136] - [14, 136] Breast cancer [14], lung cancer 
[136] 

 

miR-207  +[28] Hepatocellular carcinoma [28]  

miR-211 MPM [82], MSM 
[130, 133] 

+ [82], - [130, 
133] 

Oral carcinoma [82], melanoma 
[130, 133] 

KCNMA1 [130] 

miR-214 MSM [140] - [140] Cervical cancer [140] Plexin B1 [140] 

miR-218 MSM[47,95] - [47, 95] Gastric cancer [100], prostate 
cancer [47] 

LAMB3 [50], ROBO1 [95] 

Mir-219  +[28] Hepatocellular carcinoma [28]  

miR – 221 MSM [17]  - [17] prostate cancer [17] P27Kip1[18, 19, 20] 

miR-222 MSM[40] - [40] Tongue squamous  cell 
carcinoma[40] 

MMP1 and SOD2[40] 

miR-223 MPM [166] +[166] Gastric Cancer [166] EPB41L3  [166] 

miR-224 MPM [41] +[41] Pancreatic ductal 
adenocarcinomas [41] 

 

miR-328 MPM [155] +[155] Non-small cell lung cancer [155]  

miR- 335 MSM [14, 147] - [14, 147] Breast cancer [14, 147] SOX4, TNC [14] 

miR-338 MSM[42, 173] - [42, 173], 
+[28] 

Hepatocellular carcinoma[28, 
42], liver cancer [173] 

SMO [173] 

miR-339-5p MSM [123] - [123] Breast cancer [123]  

miR-340 MSM [142] - [142] Breast cancer [142] C-met [142] 

miR-345 MSM [171] - [171] Colorectal cancer [171] BAG-3 [171] 

miR-370 MPM [172] +[172] Gastric cancer [172] TGFβ-RII  [172] 

miR-373 MPM [13] +[13] Breast cancer cells [13] TXNIP e RABEP1 [146] 

miR-375 MPM [164] +[164] Medullary thyroid cancer [164]  

MIR-452 MPM [76] +[76] Urothelial carcinoma [76]  

miR-486 MPM [41] +[41] Pancreatic ductal 
adenocarcinomas [41] 

 

miR-503 MSM [158] - [158] Hepatocellular cancer [158]  

miR-516a-3p MSM [138] - [138] Gastric cancer [138] Sulfatase1 [138] 

miR-520b MSM [149] - [149] Breast cancer [149] HBXIP e IL-8 [149] 

miR-520c MPM [13] +[13] Breast cancer cells [13]  

miR-661 MPM [110] +[110] Breast cancer [110]  

miR-1258 MSM [145] - [145] breast cancer [145] HPSE [145] 
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and miR-335 had poor metastasis-free survival 
rates, and the inhibition of miR-335 in human 
non-metastatic breast cancer cells increased 
the colonization ability of these cells in the lung. 
Indeed, miR-126 is associated with the silenc-
ing of genes related to cell growth, adhesion, 
migration and invasion, such as Crk, an adhe-
sion adaptor protein [89], vascular cell adhe-
sion molecule 1 (VCAM-1) [90], insulin receptor 
substrate 1 (IRS-1) [91], and PIK3R2, which 
regulates the activity of PI3 kinase [92]. The re-
expression of miR-335 in metastatic human 
cells also affects the expression of several 
genes, including those associated with cy-
toskeleton control and extracellular matrix (type 
1 collagen, COL1A1), signal transduction 
(receptor-type tyrosine protein phosphatase, 
PTPRN2; c-Mer tyrosine kinase, MERTK; and 
phospholipase 1, PLCB1) and cell migration 
(tenascin C, TNC; and SRY-box-containing tran-

scription factor 4, SOX4) [88]. Additionally, miR-
206 blocks the anti-apoptotic activity of 
NOTCH3 at the transcriptional and post-
transcriptional levels [93].  
 
Another miRNA with great importance in metas-
tatic tumors is miR-21, whose role in cancer is 
well known. This miRNA represses several tu-
mor suppressor or metastasis suppressor 
genes, such as PTEN [94], a phosphatase that 
regulates the cell cycle by suppressing Akt/PKB 
signaling; tropomiosin1 (TPM1) [95], an actin-
binding protein that regulates microfilament 
organization and anchorage-independent 
growth; programmed cell death 4 (PDCD4) [95, 
96]; maspin [95, 97], an epithelial-specific 
member of the serine protease inhibitor (serpin) 
superfamily that inhibits the invasion and motil-
ity of tumor cells; TIMP3 [98], a metallopro-
teinase inhibitor; and RECK [98], a membrane-

Figure 3. Overview of miRNAs involved in metastasis progression. Dashed lines denote the original function in normal 
cells that is lost or altered in tumor cells. 
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anchored glycoprotein. In a human breast can-
cer model, the inhibition of miR-21 with an an-
tisense oligonucleotide reduced the tumor inva-
sion capacity in vitro and in vivo by up to 60% 
and induced a lower number of metastases in 
the lung [95]. MiR-21 is also upregulated in eso-
phageal cancer cells compared with normal 
esophageal epithelial cells, as determined by 
microdissection [99]. 
 
In another study, Huang et al. [100] conducted 
a migration assay using a breast cancer cell 
line, MCF-7, that does not exhibit migration or 
metastatic properties. MCF-7 cells were trans-
duced with approximately 450 different miRNA-
expressing vectors. In the migratory population 
prone to a metastatic phenotype, the authors 
found an enrichment of cells transduced with 
miR-373, miR-520c and miR-520e compared 
with the total population. When exogenous miR-
373 or miR-520c was introduced into MCF-7 
cells, they showed a more invasive and migra-
tory phenotype compared with the control cells. 
In addition, cells that endogenously express miR
-373, such as human breast MDA-MB-435 and 
human colon HCT-15 cancer cell lines, show a 
high capacity for migration, which was reduced 
in more than 70% of cells when a miR-373 an-
tagomiR was introduced [100]. In an in vivo 
assay, mice that received MCF-7 cells express-
ing exogenous miR-373 or miR-520c developed 
metastases to the skull, brain and lung, but this 
was not observed in mice that were injected 
with control MCF-7 cells [100]. The seed se-
quences of both miRNAs are similar, indicating 
that they might have overlapping functions by 
controlling the same targets. Among the targets 
predicted for miR-373 and miR-520c, CD44, 
which is a glycoprotein that modulates matrix 
degradation, cell growth, adhesion and motility 
[101], was confirmed as a direct target of both. 
In agreement with these findings, miR-373 was 
overexpressed in metastatic clinical samples 
compared with primary breast cancer samples 
from the same patients [100]. 
 
An important event seen in metastasis is the 
transition of cells from an epithelial to a mesen-
chymal phenotype (EMT). This phenomenon is 
important for the initiation of embryonic devel-
opment, as well as in adults, and is involved in 
tissue regeneration, fibrosis and healing [102]. 
Cells that undergo this transition show altered 
expression of several genes, such as loss of E-
cadherin expression and, therefore, loss of cell-

to-cell adhesion and increased motility [103]. In 
metastatic cells, EMT confers the ability to exit 
the primary site and to colonize distant sites. 
The miR-200 family has been implicated in EMT 
[104]. This family consists of five members 
grouped in two different regions of the genome: 
miR-200a, miR-200b and miR-429 on chromo-
some 1p36.33 and miR-141 and miR-200c on 
chromosome 12p13.31 [104]. These miRNAs, 
as well as miR-205, target and regulate ZEB1 
and SIP1 (ZEB2), which are factors that repress 
the transcription of E-cadherin [104]. 
 
Interestingly, several miRNAs involved in cancer 
metastasis, including miR, are downregulated 
by cigarette smoke [23]. In particular, lung can-
cer metastasis is linked to the downregulation 
of anti-angiogenic miRNAs, allowing blood ves-
sel penetration into the neoplastic mass. This 
event is linked to the hypoxic condition charac-
terizing the cancer tissue but promoted by hy-
poxic compounds contained in cigarette smoke, 
such as carbon monoxide and hydrogen cya-
nide, which render CS a pro-angiogenic factor 
due to its ability to induce the expression of hy-
poxia-related factors, triggering angiogenesis 
[23]. Furthermore, FOXO1 upregulation charac-
terizes cigarette smoke-induced lung cancer 
and is correlated with the silencing of specific 
miRNAs that target this gene, including miR-182 
[105]. These molecular events contribute to the 
establishment of poor prognosis in cancer pa-
tients and explain the poor cancer prognosis of 
smoke-induced lung cancer.  
 
MiRNAs and chemoresistance 
 
Chemotherapy is a treatment widely used in 
cancer, but in many cases, tumors can became 
refractory to this treatment by mutations, altera-
tions in gene expression caused by epigenetic 
deregulation, or drug-induced karyotypic altera-
tions (reviewed in [106]). Tumor chemoresis-
tance to certain types of drugs may be influ-
enced by miRNA regulation. Meng et al. [107] 
showed that the inhibition of miR-21 and miR-
200b increases the cytotoxicity induced by gem-
citabine in cholangiocarcinomas, while the 
transfection of non-malignant cholangiocytes 
with pre-miR-21 and pre-miR-200b increases 
cell viability. Indeed, Si et al. [108] have shown 
an association between silencing miR-21 and 
the sensitization of MCF-7 cells to the chemo-
therapeutic agent topotecan. In corroboration 
with these findings, miR-21 targets PTEN, a 
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negative regulator of the PI3 kinase pathway, 
which is involved in cell survival through the 
activation of AKT/mTOR [107].  
 
On the other hand, the overexpression of the 
tumor suppressor miRNAs miR-15 and miR-16, 
which are negative regulators of BCL2 [20], in-
creases the sensitivity to several cancer chemo-
therapeutic drugs, while its inhibition has the 
opposite effect. These miRNAs are downregu-
lated in a multidrug-resistant (MDR) gastric can-
cer cell line compared with their parental cell 
line [109]. The inhibition of miR-30 and miR-
138 before cancer onset and of mir-378 in full-
blown cancer has been associated with the in-
duction of MDR protein expression in lungs of 
rodents exposed to cigarette smoke [105]. 
 
Mishra and colleagues [110] have demon-
strated that polymorphisms can also promote 
drug resistance. The SNP 829C->T in the 3'UTR 
of the dihydrofolate reductase (DHFR) gene is 
frequently found in the Japanese population, 
resulting in an increase in its expression [111]. 
Mishra et al. [110] reported that this SNP is 
located next to the target site of miR-24, pre-
venting its binding. When DHFR is overex-
pressed, cells become resistant to treatment 
with the chemotherapeutic agent methotrexate. 
Thus, the authors proposed that SNPs in 
miRNAs or around their binding sites in target 
genes involved in the response to chemothera-
peutic agents may contribute to the increasing 
resistance or sensitivity of cells to chemothera-
peutics.  
 
With regard to the use of selective estrogen 
receptor modulators for breast cancer therapy, 
miRNAs have major roles in inducing drug resis-
tance in cancer cells. Indeed, miR-221 and miR-
222 are elevated in estrogen receptor alpha 
(ERα)-negative breast cancer cells compared 
with ERα-positive cells [112] and in tamoxifen-
resistant cells, whereas miR-21, miR-342 and 
miR-489 show decreased expression. Another 
study suggested that miR-342 regulates the 
tamoxifen response in breast cancer cells in 
vitro, and clinical data indicate a link between 
reduced miR-342 expression and tamoxifen 
resistance [113]. Mir-221 and miR-222 play 
roles in resistance to fulvestrant, which is used 
in hormone-sensitive breast cancers following 
the failure of previous tamoxifen or aromatase 
inhibitor therapies [114]. 
 

MiRNAs and radiotherapy 
 
Ionizing radiation (IR) induces breaks and other 
types of DNA damage, but the correct repara-
tion of these breaks in tumor cells can make 
them resistant to treatment [115]. Based on the 
fact that the oncogene RAS participates in cell 
protection against IR [116] and is regulated by 
the let-7 miRNA family [50], Weidhaas et al. 
[117] irradiated A549 lung cancer cells and 
CLR2741 normal lung epithelial cells and exam-
ined their miRNA expression profiles. A signifi-
cant change in response to radiation was seen 
in both cell lines after irradiation. Significant 
downregulation of the let-7 family members was 
seen, with the exception of let-7g, which was 
significantly upregulated. A549 cells transfected 
with pre-let-7a or pre-let-7b showed an increase 
in radiosensitivity compared with control cells, 
while transfection with anti-let-7b led to radio-
protection [117]. The opposite occurred with let-
7g, whose overexpression was radioprotective 
and whose inhibition led to radio-sensitization. 
Experiments with C. elegans have shown the 
same effects in vivo [117]. These results sug-
gest that miRNA expression can be modulated 
to act synergistically with radiotherapy, causing 
normal cells to become more resistant or sensi-
tizing tumor cells. 
 
Additionally, Yan and colleagues [115] have 
studied the role of miRNAs in the sensitization 
of tumor cells to radiotherapeutic treatment by 
targeting several genes involved in different 
DNA repair pathways. They identified in silico 
and validated miR-101 as a regulator of the 
DNA-PKcs and ATM genes. Next, they observed 
that the overexpression of this miRNA increased 
the sensitivity of tumor cells to radiation both in 
vitro and in vivo, indicating an important role of 
miR-101 in the regulation of genes involved in 
the repair of radiation-induced breaks in DNA.  
 
Despite the fact that radiation is widely used in 
the treatment of cancer, its undesirable effects 
and their causes are not fully understood. A 
possible effect of radiotherapy is the bystander 
effect, which consists of a destabilization of non
-irradiated cells next to the irradiated cells, lead-
ing to the carcinogenesis of normal cells 
(reviewed in [118]). This destabilization may be 
due to genomic instability, which could be 
caused by epigenetic alterations (reviewed in 
[119]). Koturbash and colleagues [120] ex-
posed rats to localized cranial irradiation and 
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monitored its effects in the spleen 24 hours and 
7 months after exposure. A decrease in global 
methylation in the spleen was observed, as well 
as in the expression of proteins that are part of 
the epigenetic machinery, such as DNMT3a and 
MeCP2. The consequent reactivation of retro-
transposons in that tissue was also seen. In 
addition, miR-194 was over-expressed after 
irradiation, both in plasma and in the spleen, 
and an in silico analysis revealed that the 
mRNAs of DNMT3a and MeCP2 were predicted 
targets of this miRNA. All of these alterations 
remained even 7 months post-irradiation, indi-
cating a possible contribution of epigenetic al-
terations to the destabilization of distant tis-
sues, achieved by miRNA regulation and possi-
bly contributing to carcinogenesis.  
 
Therapeutic modulation of miRNAs in cancer 
 
The modulation of cancer-related miRNAs, ei-
ther to study their functions or for future appli-
cations in therapy, has been receiving a great 
amount of attention due to several promising 
results. 
 
The two strategies used in miRNA modulation 
are (a) the introduction of molecules mimicking 
the expression of protective miRNAs downregu-
lated in cancer and (b) the introduction of an-
tagomiRs, which are synthetic miRNAs comple-
mentary to the miRNAs of interest, to inhibit 
oncomiRs overexpressed in tumor cells 
(reviewed in [121]). 
 
An important characteristic of miRNA expres-
sion modulation is that one miRNA is capable of 
silencing several genes, in contrast to RNA inter-
ference technology, which is capable of silenc-
ing only one gene or a few genes belonging to 
the same gene family. This turns the therapeu-
tic modulation of aberrantly expressed miRNAs 
into a powerful tool for the treatment of cancer, 
as well as for the understanding of carcinogene-
sis.  
 
The antisense technology based on antagomiRs 
is the major method used to reduce unwanted 
miRNA expression in tumor cells. AntagomiRs 
have been progressively improved by chemically 
modified oligonucleotides, providing more sta-
bility and affinity to the target miRNA and, con-
sequently, more efficiency than their natural 
counterparts (reviewed in [122]). The main 
modifications used are 2’-O-methyl and 2’-O-
methoxyethyl groups [123], 2’-O-methyl-

modified RNAs conjugated with cholesterol 
bound to phosphorothioate (known as an-
tagomiRs) [124], and “locked nucleic 
acid” (LNA) constructs [125]. Other widely used 
constructs are “miRNA sponges”, which have 
multiple binding sites to one or several miRNAs, 
thus competing with the targets of the miRNA(s) 
of interest [126]; and miR-masking antisense 
oligonucleotides (miR-masks), which are oli-
gonucleotides that are complementary to the 
binding site of the miRNA in the 3'UTR of the 
target gene and that prevent the binding of the 
miRNA to its target site [127]. On the other 
hand, the introduction of tumor suppressor 
miRNAs that are down-regulated in tumor cells 
may be achieved by delivering synthetic double-
stranded RNAs or vectors expressing the pre-
miRNAs (reviewed in [121]).  
 
However, delivery to the cell is still a great ob-
stacle for miRNA introduction in vivo. Despite 
the fact that the molecules are very small and 
can receive chemical modifications to increase 
their delivery efficiency, the nucleic acids are 
negatively charged and do not easily cross the 
cell membrane. Many strategies have been de-
scribed to overcome this issue, such as the en-
capsulation of the oligonucleotides in liposomes 
and the introduction of viral vectors (reviewed in 
[121]).  
 
Another major problem is nucleotide sequenc-
ing of artificial miRNA probes. Indeed, an ex-
ceedingly high GC content activates endoge-
nous TLR activation, triggering side effects rang-
ing from fever to the activation of autoimmune 
diseases. The fact that miRNA overload may 
have adverse consequences in humans has 
been recently highlighted for a rare genetic dis-
ease, Aicardi-Goutieres syndrome, targeting 
RNase H and thus resulting in endogenous 
miRNA accumulation in the central nervous sys-
tem, thereby impeding brain development 
[128].  
 
In 2008, the first clinical trial using miRNA-
based therapy began. A phase I trial was initi-
ated to treat hepatitis C using a LNA oligonu-
cleotide complementary to miR-122 to inhibit 
the expression of this oncogenic miRNA, which 
normally facilitates virus replication. In 2010, 
the success of this clinical trial and the begin-
ning of phase II was announced [129]. Despite 
the fact that this is the only study addressing 
the manipulation of a specific miRNA expres-
sion, several other clinical trials are currently 
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being performed, aiming at the treatment of 
several diseases, such as asthma, leukemia, 
a n d  o t h e r  c a n c e r  t y p e s  ( s e e 
www.clinicaltrials.gov). 
 
Conclusion 
 
MiRNAs are small molecules that have impor-
tant roles in regulating gene expression, main-
taining the differentiation status and controlling 
the cell cycle. It has been estimated that half of 
them are epigenetically regulated, while epige-
netic machinery is also targeted by miRNAs, 
demonstrating how these gene regulatory path-
ways are interrelated and involved in tumori-
genesis. MiRNA expression deregulation triggers 
cancer development, as well as cancer cell ag-
gressiveness, chemoresistance, radioresis-
tance, migration and metastasis. The identifica-
tion of miRNAs that are associated with the 
most varied types of cancer, the resistance to 
drugs and radiation, and the invasion and me-
tastasis of tumors will lead to more individual-
ized and efficient treatments for cancer. Addi-
tionally, miRNA expression profiles may provide 
a powerful tool for the diagnosis of metastasis 
of tumors from unknown primary sites.  
 
In conclusion, a better knowledge of miRNA 
functions, their interrelationships with other 
cellular processes and the already available 
treatments against unwanted proliferation can 
generate new approaches, such as combined 
therapies, in which the manipulation of miRNA 
expression can play a pivotal role. 
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