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Oral microbiota in youth with perinatally
acquired HIV infection
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Mark I. Ryder5, Tzy-Jyun Yao6, Lina L. Faller7, Russell B. Van Dyke8, Bruce J. Paster1,3* and for the Pediatric HIV/AIDS
Cohort Study

Abstract

Background: Microbially mediated oral diseases can signal underlying HIV/AIDS progression in HIV-infected adults.
The role of the oral microbiota in HIV-infected youth is not known. The Adolescent Master Protocol of the Pediatric
HIV/AIDS Cohort Study is a longitudinal study of perinatally HIV-infected (PHIV) and HIV-exposed, uninfected (PHEU) youth.
We compared oral microbiome levels and associations with caries or periodontitis in 154 PHIV and 100 PHEU youth.

Results: Species richness and alpha diversity differed little between PHIV and PHEU youth. Group differences in average
counts met the significance threshold for six taxa; two Corynebacterium species were lower in PHIV and met thresholds for
noteworthiness. Several known periodontitis-associated organisms (Prevotella nigrescens, Tannerella forsythia,
Aggregatibacter actinomycetemcomitans, and Filifactor alocis) exhibited expected associations with periodontitis
in PHEU youth, associations not observed in PHIV youth. In both groups, odds of caries increased with counts of taxa in
four genera, Streptococcus, Scardovia, Bifidobacterium, and Lactobacillus.

Conclusions: The microbiomes of PHIV and PHEU youth were similar, although PHIV youth seemed to have fewer
“health”-associated taxa such as Corynebacterium species. These results are consistent with the hypothesis that HIV
infection, or its treatment, may contribute to oral dysbiosis.

Keywords: Perinatally infected HIV, Pediatric, Oral microbiome, Corynebacterium

Background
Emerging research on the role of the gut microbiota in
HIV infection highlights a complex and clinically import-
ant relationship. Microbes in the lower gastrointestinal
tract and vagina have been associated with the acquisition
of HIV [1]. By suppressing host immune function, HIV
may cause microbial dysbiosis, which has been shown to
influence HIV progression [1, 2].
Alteration in the oral microbiota is well known to have

negative consequences including periodontitis, oral can-
didiasis, oral herpes lesions, and Kaposi’s sarcoma le-
sions [3, 4], all of which reduce quality of life and act as
sentinel signs of underlying HIV/AIDS progression.
Conversely, maintaining a healthy mucosal barrier,

including through host-microbiota interactions, may
help mitigate clinical symptoms of HIV disease [5–7].
Although analysis of oral salivary samples and lingual

and subgingival plaque samples has shown overall simi-
lar microbial composition between HIV-positive and
HIV-negative adults, some differences are notable [8–
11]. For example, Haemophilus parainfluenzae was more
prevalent and Streptococcus mitis less prevalent in
HIV-positive adults than in HIV-negative adults [5, 10].
In the lingual microbiome, species of Veillonella, Prevo-
tella, Megasphaera, and Campylobacter were associated
with untreated HIV infection, which was also inversely
associated with putative commensal species of Strepto-
coccus and Neisseria [11]. Yet, collectively, little is
known about the oral microbiome and its relationship to
oral health sequelae in adults with HIV/AIDS, and even
less is known about its relevance in HIV-infected youth.
In a recent study of HIV-infected and HIV-uninfected
children, there were few observed differences in phyla
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between the two groups; however, the small sample size
(n = 16) limits firm conclusions [12].
One challenge to studying the relationship between

perinatally acquired HIV infection and the oral micro-
biota is that children are born with HIV, before they
have an established microbiome. In addition, perinatally
HIV-infected (PHIV) children are repeatedly exposed to
their HIV-infected mothers, whose microbiome appears
to be altered compared with women uninfected with
HIV [13–15]. In turn, the maternal microbiome influ-
ences the establishment of the microbiome of the chil-
dren [16]. PHIV children are also placed on
antiretroviral therapy (ART) early in life, with frequently
shifting regimens. Although ART should help protect
immune function, these medications may result in loss
of protective bacteria and thereby allow the emergence
of pathogenic species [5, 8, 17]. To capitalize on an ap-
propriate comparison group that helps address these
challenges, we conducted a sub-study within the
Pediatric HIV/AIDS Cohort Study (PHACS), in which
both HIV-infected and HIV-uninfected children were
perinatally exposed to maternal HIV infection and, sub-
sequently, to ART.
In a previous publication from the PHACS, we ob-

served that caries but not periodontal disease was more
common in PHIV youth compared with HIV-exposed
but uninfected (PHEU) youth [18]. The present study fo-
cuses on the differences in oral microbiomes between
the two groups. We address two primary questions: first,
does oral microbial community composition differ in
PHIV versus PHEU youth? Second, do caries-associated
or periodontitis-associated organisms differ in PHIV ver-
sus PHEU youth?

Methods
Study design and population
The Oral Health Protocol was a cross-sectional study
within the Adolescent Master Protocol of the Pediatric
HIV/AIDS Cohort Study (PHACS; www.phacsstudy.org).
The Adolescent Master Protocol is an ongoing prospect-
ive cohort study at 15 US clinical sites, designed to de-
termine the health effects of HIV infection and ART on
youth perinatally exposed to HIV. The AMP included a
comparison group of perinatally HIV-exposed, unin-
fected (PHEU) youth. Details about the overall study
and adolescent cohort have been published elsewhere
[19, 20]. Briefly, age at enrollment for PHIV and PHEU
was 7 to 15 years. Regularly scheduled visits included
audio computer-assisted structured interviews for sex-
ual behavior, physical examination, and chart reviews
for medication, diagnoses, CD4 counts, and viral load.
In this oral health sub-study, participants were en-
rolled from September 2012 through January 2014;

ages ranged from 10 to 22 years at the time of bios-
pecimen sampling [18, 21].
Examinations by dentists at each site were standard-

ized and calibrated as previously described [21–23].

Microbial sampling
Participants were instructed not to eat, smoke, floss,
drink anything besides water, or brush their teeth for
90 min prior to sample collection. Subgingival plaque
samples for each participant were then collected at the
mesial buccal aspect of the first permanent upper left
and lower right molars, if fully erupted, or from the first
fully erupted tooth mesial to the first permanent molar
site. The examiner collected subgingival plaque samples
by first drying the sites with cotton, then placing a sterile
endodontic paper point in the sulcus of the two sites for
10 s. The two samples were pooled into one cryovial,
immediately put on ice, and within 4 h, frozen at − 80 °C
for storage.
The oral microbiomes of parents and caretakers of the

adolescent participants were not analyzed in this study.

Caries and periodontal parameter end points
The vast majority of participants had no primary teeth;
therefore, we combined information on permanent and
primary dentition before categorizing the participants re-
garding the presence of caries (any versus none). Based
on the periodontal parameters clinical attachment loss
and probing depth, and using the CDC-AAP criteria,
periodontitis was defined as present or absent [24].

DNA isolation
Using sterile forceps, we removed paper points from the
cryovials and placed them in 1.5-ml Eppendorf tubes
that contained 200 μl of Tris buffer, pH 7.5. The blunt
ends of the paper points (i.e., no bacteria) were secured
by the caps, leaving the points immersed in the buffer.
The vials were vortexed for 30 s. Cells were spun down
at 14,000×g for 5 min. Pellets were suspended in 200 μl
of fresh Tris. DNA was isolated from clinical samples
by using a modified protocol of a DNA Purification Kit
following instructions from the manufacturer (Master-
Pure, Epicentre Biotechnologies, Madison, WI, USA).
Prior to steps that use the kit, the modified protocol uses
Ready-Lyse™ Lysozyme Solution (Epicentre, cat. no.
R1802M) for overnight incubation. Total DNA yields
ranged from 200 to 500 ng per clinical sample. Tech-
nical replicates of DNA isolations were not performed.

16S rDNA sequencing
Universal primers (forward: 341F, reverse: 806R) target-
ing the V3 to V4 region of the 16S rRNA genes were
used for PCR amplification of bacterial DNA. Fifty nano-
grams was used for each initial PCR reaction. Controls
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without added DNA were run as negative controls.
AMPure beads were used for purification of amplicons.
Libraries (100 ng of PCR product) were pooled, gel puri-
fied, and quantified by using quantitative PCR (qPCR). A
modified protocol as described by Caporaso et al. [25] was
used for 16S rDNA sequencing by using the Illumina
platform on a MiSeq, resulting in 33,974,989 total initial
reads that ranged from 13 to 339,805 per sample [26].
16S rDNA sequencing reads were first trimmed and

filtered by using the built-in “fastqPairedFilter” func-
tion of DADA2 version 1.4 with the following param-
eters: truncLen = c(235,235), trimleft = 5, maxN = 0,
maxEE = 0.75, truncQ = 2 [27]. The read pairs were
then processed through the de-noising, pair-merging, and
chimera-removing steps of the DADA2 pipeline by using
default parameters. After dropping samples with < 200
reads, the total reads remaining were 18,448,552, ranging
from 1330 to 230,039 per sample. A dataset including se-
quences in the GenBank database as of January 22, 2017,
that matches with 99% identity and 99% coverage to the
curated Human Oral Microbiome Database (HOMD;
v14.51) reference rDNA sequences, was constructed [28].
This dataset was used as the training dataset for taxonomy
classification up to genus level by using a naive Bayesian
classifier [29] implemented in DADA2. Species-level clas-
sification was achieved via a string search for exact match
to the above GenBank dataset.
We removed 16S rDNA sequences that, after this

process, remained unmatched, an average of 0.1% of the
total reads, and excluded 196 taxa with relative abun-
dance < 10−5.

Statistical analysis
Two hundred seventy-nine samples of either type were
available for analysis. We excluded 25 (19 PHIV and 6
PHEU) participants from analysis due to antibiotic use
within the prior 3 months, leaving 254 (154 PHIV and
100 PHEU) samples for analysis.

Phylogenetic trees for the most abundant taxa
The relative abundance of each taxon for each sample
was calculated as a simple proportion (including un-
matched reads). We constructed phylogenetic trees for
the 50 most abundant taxa plus taxa that illustrated dif-
ferences noted below. Phylogenetic trees were generated
using the Clustal V (weighted) method by using the
Lasergene MegAlign program (DNASTAR, Madison
WI). 16S rDNA sequences used to generate phylogenetic
trees were obtained from HOMD [28].

Microbial community diversity
Separately for PHIV and PHEU youth, we estimated three
measures of taxonomic diversity by using QIIME [30]:
rarefaction curves for samples with ≥ 65,000 sequences;

the Simpson diversity index (1-D), which ranges from 0 to
1 and is higher when communities are more diverse; and
the Shannon diversity index, which measures both rich-
ness and evenness and increases as there are more and
more evenly distributed taxa. We performed t tests to
compare differences in diversity between the PHIV and
PHEU groups (Stata, version 12.1).

Differences in microbial counts between PHIV and PHEU
youth
For these analyses, we excluded 23 taxa present in fewer
than 10 subjects in both groups combined, of which five
taxa were not present in any PHEU participants (the ref-
erence group). For each taxon, we compared mean
counts in PHIV and PHEU youth by fitting negative bi-
nomial regression models adjusted for age, sex, indicator
of a dental visit in the previous year, race (white or
other), ethnicity (Hispanic or not), and the total number
of sequencing reads [31]. Regression results were re-
ported as estimated rate ratios, the fold change in counts
in the two groups. We set the significance level at 0.05
within each set of comparisons by applying a step-up
Benjamini and Hochberg procedure [32]. Analyses were
performed at both the species and genus levels.
Significance thresholds alone do not distinguish be-

tween true and false positive findings. To filter out like-
lier false positive findings, we applied two procedures to
the set of “significant” results: the false positive report
probability (FPRP) [33] and the Bayesian false discovery
probability (BFDP) [34]. We used prior probabilities of
0.001, 0.01, and 0.05. On the result plots, we indicated
as noteworthy taxa that met the significance threshold
and also met any of the following criteria: (1) both the
FPRP and the BFDP were < 0.5, (2) the FPRP was < 0.2,
or (3) the BFDP was < 0.2. For these calculations, we
used prior probabilities of 0.01 and, for the FPRP, ex-
pected rate ratio of 1.5.

Differences in caries- or periodontitis-associated taxa
between PHIV and PHEU youth
We tested whether the strength of association between
odds of periodontitis (or caries) and each taxon was dif-
ferent in PHIV and PHEU youth. We fit logistic regres-
sion models with either periodontitis or caries as the
dependent variable in relation to HIV status and levels
of each taxon, in turn, in separate models. We log10
transformed the counts of each taxon, after replacing
zeros with half the taxon’s minimum non-zero value. In
addition to the covariates included in main analyses,
models included the total counts for each sample and a
multiplicative interaction term (HIV group times the
count for that taxon). The p value for the test of inter-
action was compared to significance threshold of 0.05
[32]. We considered the primary analyses to be those
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focused on species putatively etiologic for either periodon-
titis (n = 9 species) or caries (n = 11 species). We also per-
formed further exploratory analyses for all species.

Results
Phylogenetic diversity
Species of Streptococcus, including S. sanguinis, repre-
sented over 65% of the total taxa detected. Other abun-
dant taxa included Granulicatella adiacens, species of
Fusobacterium, including Fusobacterium nucleatum ssp.
animalis, and Haemophilus parainfluenzae (Fig. 1).

Richness and alpha diversity
Rarefaction curves were nearly identical for PHIV (n = 154)
and PHEU (n = 100) (Fig. 2a). The Shannon and Simpson
diversity indices also differed little between PHIV and
PHEU, though samples from the PHIV group exhibited
slightly lower diversity, on average (p > 0.3 for either index,
Fig. 2b, c).

Differences in microbial counts between PHIV and PHEU
youth
Adjusted group differences between PHEU and PHIV
in average counts at the species level met the signifi-
cance threshold for six taxa (Fig. 3 and Additional file 1:
Table S1). PHIV-associated species included two
Bacteroidetes species not yet cultivated (phylotypes),
Bacteroidaceae G1 HOT 272 and Bacteroidales G2
HOT274, and Actinomyces lingnae. PHEU-associated
species included two species of Corynebacterium
(Actinobacteria), and Abiotrophia defectiva (Firmi-
cutes). In genus-level analyses, in addition to the genera
for the species already mentioned, three other genera
also met the significance threshold, Desulfobulbus,
Mycoplasma, and TM7 G5 (Additional file 1: Table S2).
At both the species and genus levels, only Corynebac-
terium met the noteworthiness threshold.

Differences in periodontitis- or caries-associated
organisms between PHIV and PHEU youth
Both the PHIV and PHEU groups had similar prevalence
of periodontitis (~ 30%; Table 1). Several known
periodontitis-associated taxa exhibited expected positive
associations with periodontitis in PHEU, whereas these as-
sociations were not observed in PHIV, e.g., P. nigrescens,
T. forsythia, A. actinomycetemcomitans, and F. alocis
(Table 2). For all periodontitis-associated organisms com-
bined, for every tenfold increase in counts, the odds of
periodontitis were increased 11% (95% CI 0, 24) among
the PHEU youth, whereas no increase was observed in the
PHIV group (p = 0.175 for test of PHIV-PHEU difference
in odds ratios; Table 2).
Sixty-two percent of PHIV youth had caries compared

with 45% of PHEU youth (Table 1). The odds of having

any caries was increased in both PHIV and PHEU youth
as counts of taxa in four caries-associated genera in-
creased, Streptococcus, Scardovia, Bifidobacterium, and
Lactobacillus (Table 3). Across the Veillonella genus,
species of Veillonella were inconsistently associated with
odds of caries, and the OR estimates were also inconsist-
ent between the PHIV and PHEU groups.
Neither for the primary analyses of nine

periodontitis-associated taxa and 11 caries-associated
taxa nor in exploratory analyses of all taxa did any indi-
vidual species meet the significance threshold testing
stratum-specific differences, i.e., whether estimates of as-
sociation between odds of periodontitis (or caries) and
levels of each taxon were different between PHIV and
PHEU (Additional file 1: Tables S3 and S4).

Discussion
The large cohort of youth perinatally infected with HIV
allowed for a comprehensive investigation of the oral
microbiome in these youth compared with a suitable
control group of youth also perinatally HIV exposed but
not infected. The bacterial taxa detected in both groups
were, for the most part, similar, and many taxa were
those that are typically detected in healthy oral sites. For
example, subgingival plaque contained Streptococcus
anginosus, Streptococcus intermedius, species of Tanner-
ella, and species of Treponema, all known to be found in
healthy individuals [35, 36].
We do not claim that PHEU participants have the

same health status as non-HIV infected youth who were
never exposed to HIV. Indeed, PHEU youth are appro-
priate controls precisely because they were exposed to
their HIV-infected mothers at birth, similar to the PHIV
group. PHEU, as well as PHIV, youth differ from
non-HIV-exposed youth in reportedly having higher
mortality [37], altered natural killer cell function [38], in-
creased risk of infections [39], impaired vaccine re-
sponses [40], and lower CD4 counts [37]. Thus, the
results should be unconfounded by factors underlying
differences between HIV-exposed and HIV-unexposed
children.
A strength of this study is that we sought to bolster

the interpretation of results by applying other statistical
filters in addition to significance testing. Although it
may not be generally appreciated, the chance that a “sig-
nificant” result is falsely positive increases with the near-
ness of the p value to the significance threshold and
decreases with the statistical power and the strength of
the scientific hypothesis being tested. These relationships
can be formalized mathematically and used to estimate
two types of false positive report probabilities, FPRP
[33], and the BFDP [34].
Among the six species meeting the significance thresh-

old, only two met false reporting thresholds,
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Corynebacterium durum and Corynebacterium matrucho-
tii, for which average counts were 75–85% lower in PHIV
versus PHEU youth. Counts of Corynebacterium identified
only to the genus level exhibited a similar 87% decrease
(reported in online supplement). Corynebacterium spp.
have been observed consistently at higher abundance in
orally healthy participants compared with those with oral
disease [41, 42]. Commensal species of Corynebacterium
have been shown to inhibit colonization and growth of
oral pathogens such as Streptococcus pneumoniae by pro-
ducing free fatty acids [43]. Further speculation as to a
specific role for Corynebacterium arises from visualization
of plaque communities via spectral-imaged fluorescent in
situ hybridization (FISH). In healthy sites, one end of these
filamentous microorganisms attaches to the tooth surface,

appearing to anchor a multi-genus consortium organized
around the Corynebacterium cell [44]. It is possible these
differences noted in the relative abundance of Corynebac-
terium partially explain the higher prevalence and levels of
caries observed in PHIV versus PHEU in the PHACS
cohort [21]. The higher prevalence of caries in PHIV
compared with PHEU group may seem at odds with the
much lower relative abundance of caries-causing
Streptococcus mutans, 0.39 versus 0.66 (Fig. 1), respect-
ively. Like species of Veillonella, however, C. matrucho-
tii can use lactic acid to modulate the local pH and
may thus help to reduce the risk of caries induced by S.
mutans and other acid-producing bacteria [45–47].

In previous studies in adult populations, other than in
one study in which HIV infection and highly active

Fig. 1 Phylogenetic tree depicting bacterial diversity of the most prevalent bacterial taxa in subgingival plaque samples of youth perinatally
HIV-exposed and uninfected (PHEU) and perinatally HIV-infected (PHIV). Taxa are grouped into seven bacterial phyla indicated by brackets on the
right. Predominant taxa found only in PHIV are noted by a single underline and those found only in PHEU are noted by a double underline.
Numbers after taxa represent relative abundance (PHEU, PHIV). Taxa detected > 1% in relative abundance are noted in bold. Marker bar represents %
difference in nucleotide sequence
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antiretroviral therapy (HAART) were associated with al-
terations in the salivary microbiome of adults [8], few
differences in oral microbiomes have been reported be-
tween subjects with and without HIV infection [9, 10].
Discrepancies may be due to subject population, includ-
ing age, sample size, perinatal versus behavioral HIV in-
fection, how microbiota were assessed, e.g., microarray
analysis vs next-generation sequencing, or how data
were analyzed.
It is tempting to speculate that in adolescents whose

HIV infection is controlled by HAART or other therap-
ies, the oral microflora would be similar to that of
PHEU, and the microorganisms that cause oral disease

would also be similar. Other than Veillonella spp.,
known caries-associated microorganisms exhibited
similar increases in odds of caries in PHIV and PHEU
youth. Sensitivity might have been increased if we had
sampled supra- rather than subgingival plaque, though
the microbiomes of the two overlap greatly and stand
apart from those of other oral sites in healthy subjects
[48]. Known periodontal pathogens had much less con-
sistent associations either within or across the groups,
with levels of most exhibiting associations with odds of
periodontitis only in PHEU and not in PHIV youth.
Yet, it would be premature to conclude that therefore,
etiologic factors must differ in PHEU and PHIV, in part
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because of the low prevalence and severity of periodon-
titis. Though periodontitis was present in ~ 30% of this
PHACS subcohort, half of these participants had mild,
half moderate, and none severe periodontitis based on
CDC-AAP criteria [24]. Sampling at specific locations
rather than comparing the microbiota at carious lesions
and non-carious surfaces, or at the periodontium of
healthy and diseased sites, likely decreased study sensi-
tivity. And, testing differences in odds ratios between
two groups (e.g., PHIV versus PHEU) typically requires
larger sample sizes than testing whether one odds ratio
is non-null. Thus, these results regarding associations
with oral disease should be considered preliminary.
The children in PHACS comprise an important co-

hort for clarifying the history of HIV infection, oral mi-
crobial community composition, and their relation to
common oral infectious disease. The data suggest there
are fewer oral “health”-associated bacterial taxa in
PHIV youth than in PHEU youth. The reduced abun-
dance of Corynebacterium and Abiotrophia species may
be why the PHIV group tended to have more caries.
These results are consistent with the hypothesis that
HIV infection, or its treatment, may contribute to oral
dysbiosis.

Conclusions
We compared subgingival plaque microbiota in youth
with and without HIV infection. HIV-infected youth had
fewer “health”-associated organisms such as Corynebacter-
ium species; they did not exhibit expected associations of
periodontitis with known periodontitis-associated organ-
isms. HIV infection may promote oral dysbiosis.

Additional file

Additional file 1: List of supplemental tables. Table S1. Ratio of
average counts (at the species level) in perinatally HIV-exposed, infected
(PHIV) versus perinatally exposed, uninfected (PHEU), with Bayesian False
Discovery Probabilities and False Positive Report Probabilities. Table S2.
Ratio of average counts (at the genus level) in perinatally HIV-exposed, in-
fected (PHIV) versus perinatally exposed, uninfected (PHEU), with Bayesian
False Discovery Probabilities and False Positive Report Probabilities. Table
S3. Is the strength of association of periodontitis presence with oral taxa's
counts the same inperinatally exposed, infected (PHIV) youth compared
with perinatally exposed, uninfected (PHEU) youth?. Table S4. Is the
strength of association of caries presence with oral taxa's counts the
same in perinatally exposed, infected (PHIV) youth compared with
perinatally exposed, uninfected (PHEU) youth?. (XLSX 214 kb)
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