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The International Classification of Diseases (ICD) relies on clinical features and lags behind the current under-
standing of the molecular specificity of disease pathobiology, necessitating approaches that incorporate growing
biomedical data for classifying diseases to meet the needs of precision medicine. Our analysis revealed that the
heterogeneous molecular diversity of disease chapters and the blurred boundary between disease categories in
ICD should be further investigated. Here, we propose a new classification of diseases (NCD) by developing an al-
gorithm that predicts the additional categories of a disease by integratingmultiple networks consisting of disease
phenotypes and their molecular profiles. With statistical validations from phenotype-genotype associations and
interactome networks, we demonstrate that NCD improves disease specificity owing to its overlapping categories
and polyhierarchical structure. Furthermore, NCD captures themolecular diversity of diseases and defines clearer
boundaries in terms of both phenotypic similarity and molecular associations, establishing a rational strategy to
reform disease taxonomy.

© 2018 The Authors. Published by Elsevier B.V. This is an open access article under the CC BY-NC-ND license
(http://creativecommons.org/licenses/by-nc-nd/4.0/).
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1. Introduction

Disease taxonomy plays an important role in defining the diagnosis,
treatment, andmechanisms of human diseases. The principle of the cur-
rent clinical disease taxonomies, in particular the International Classifi-
cation of Diseases (ICD), goes back to the work of William Farr in the
nineteenth century and is primarily derived from the differentiation of
clinical features (e.g. symptoms and micro-examination of diseased

tissues and cells) (Council et al., 2011). Despite its extensive clinical
use, this classification system lacks the depth required for precision
medicine with the limitations of its rigid hierarchical structure and,
moreover, it does not exploit the rapidly expanding molecular insights
of disease phenotypes. For example, many diseases (e.g. cancer, chronic
inflammatory diseases) in the current disease taxonomies have either
high genetic heterogeneity (Bianchini et al., 2016; McClellan and King,
2010) or manifestation diversity (Arostegui et al., 2014; Jeste and
Geschwind, 2014; Mannino, 2002), which give little basis for tailoring
treatment to a patient's pathophysiology. Furthermore, disease comor-
bidities (Hu et al., 2016; Lee et al., 2008; Hidalgo et al., 2009), temporal
disease trajectories (Jensen et al., 2014) in clinical populations, various
molecular relationships between disease-associated cellular compo-
nents and their connections in the interactome (Blair et al., 2013; Goh
et al., 2007; Barabasi et al., 2011; Rzhetsky et al., 2007; Zhou et al.,
2014), and many successful drug repurposing cases (Li and Jones,
2012; Chong and Sullivan Jr., 2007; Ashburn and Thor, 2004; Wu et al.,
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2016; Evans et al., 2005) altogether demonstrate the vague boundary
between different diseases in current disease taxonomies. Moreover,
the deep understanding of diseases based on the advances in disease bi-
ology, bioinformatics, and multi-omics data necessitates the reclassifi-
cation of disease taxonomy (Mirnezami et al., 2012).

In the past decade, efforts to reclassify diseases based on molecular
insights have increased with studies related tomolecular-based disease
subtyping in different disease conditions, such as acute leukemias
(Golub et al., 1999; Alizadeh et al., 2000), colorectal cancer
(Dienstmann et al., 2017), oesophageal carcinoma (Cancer Genome
Atlas Research et al., 2017), pancreatic cancer (Bailey et al., 2016),
cancer metastasis (Chuang et al., 2007), neurodegenerative disorders
(Mann et al., 2000), autoimmunity disorders (Ahmad et al., 2003),
multiple cancer types across tissues of origin (Hoadley et al., 2014),
and a network-based stratification method for cancer subtyping
(Hofree et al., 2013). Further insights will arise from integrating all
types of biomedical data with a single framework to exploit disease-
disease relationships. Data integration methods that utilize multiple

types of data, including ontological and omics data, have been used to
classify and refine disease relationships (Gligorijevic and Przulj, 2015;
Menche et al., 2015; Gligorijevic et al., 2016). Despite these efforts, the
development of a molecular-based disease taxonomy that links molec-
ular networks and pathophenotypes still remains challenging
(Menche et al., 2015; Hofmann-Apitius et al., 2015; Jameson and
Longo, 2015).

Here, we aim to refine a widely used clinical disease classification
scheme, the ICD. To achieve this, we first quantify the category similar-
ity among the ICD chapters using ontology-based similarity measures
and investigate the molecular connections of disease pairs in the same
ICD chapters. Furthermore, we seek the correlation between category
and molecular similarity, and check for the heterogeneity of molecular
specificity and correlated boundary between categories in ICD taxon-
omy. Finally, we construct a new classification of diseases (NCD) with
overlapping structures. The aim is to provide clear boundaries between
distinct diseases belonging to different categories using a new disease
classification scheme (Fig. 1 & Fig. S3).
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Fig. 1. Overview of the new disease taxonomy construction and validation. a. Similarity calculation between the disease pairs in ICD taxonomy, including the calculation of 1) category
similarity; 2) Phenotype similarity (based on ICD-MeSH term mapping) and 3) Molecular profile similarities (based on ICD-UMLS term mapping) of disease pairs in ICD; b. Module or
community annotations of disease association network by chapters in ICD or NCD. We generate disease association network, in which nodes represent diseases and the link weights
represent their corresponding phenotype or molecule profile similarities. The module annotations of the disease network correspond to ICD chapters or NCD categories;
c. Construction of integrated disease network (IDN) and generation of NCD. The links of IDN are fused from the multiple similarities (e.g. phenotype similarity and shared gene
similarity). Based on IDN, NCD is generated by community detection algorithms with overlapping disease members; d. Quality evaluation and validation of ICD and NCD. The
molecular specificity (or inverse molecular diversity) and network modularity are used for evaluation and comparison of the quality of two disease taxonomies. Furthermore, we
validate the robustness of NCD with two independent phenotype-genotype association datasets, namely GWAS and PheWAS.
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2. Materials and Methods

2.1. Basic Dataset Compilation

In this work, large curation efforts are performed to generate the re-
lated data sources (details see Supplementary Materials (SM)
Section 1). We obtained the updated text version of ICD-9-CM (2011)
and extracted the list of ICD codes with their hierarchical structures.
While we recognize the improvements of the currently used ICD-10
over ICD-9, nevertheless, we chose to use ICD-9-CM as the adoption of
ICD-10 has been slow in the United States (Butler, 2014) and since it
was still being widely used at the time of the data collection for this
paper (Blair et al., 2013; Wang et al., 2017). Furthermore, although
ICD-10 does have more codes than ICD-9-CM, the structure is kept
almost the same. We obtained the high-quality phenotype-genotype
(disease-gene) associations from Disease Connect database (2015 ver-
sion) (Liu et al., 2014), leaving out the less reliable text mining entries
and focusing only on Genome-wide association study (GWAS), Online
Mendelian Inheritance in Man (OMIM) and differential expression
evidence types, and manually mapped those diseases in unified
medical language system (UMLS) codes to ICD and MeSH codes (SM
Section 1.6).

To calculate the molecular network and phenotype characteristics
related to disease phenotypes, a high-quality subset of human protein-
protein interactions was filtered from STRING V9.1 (Franceschini
et al., 2013) using the score threshold at ≥ 700, as well as a well-
established disease-phenotype (disease-symptom) association dataset
(i.e. disease network with symptom similarity, HSDN) (Zhou et al.,
2014) derived fromPubMedbibliographic records and the gene ontology
annotations from NCBI gene database are adopted. To ensure the results
are not biased by computational predictions in the STRING database, we
replicated the classification pipelinewithmanually curated PPI networks
(Menche et al., 2015), which rely only on physical protein interactions
with experimental support, and found that the results are robust
(SM Section 8.3).

In addition, to validate the robustness of our results from indepen-
dent data sources, we filtered the GWAS and Phenome Wide Associa-
tion Studies (PheWAS) data from University of California Santa Cruz
(UCSC) Genome Browser (Tyner et al., 2017) and PheWAS catalog
(Denny et al., 2010) respectively, and performed additional ICD map-
ping task to prepare the data for validation analysis. TheGWASevidence
of the DiseaseConnect database, which we used to build the disease as-
sociations, comes from the National Human Genome Research Institute
(NHGRI) GWAS catalog (Welter et al., 2014), whereas for validation, we
used the UCSC-GWAS Genome Browser. We have ensured that the
GWAS data used to build the networks and to validate them have a
very small overlap (SM Section 8).

2.2. Evaluating the Quality of ICD Disease Taxonomy

Here, we systematically evaluated the consistency of disease catego-
ries in ICD taxonomy from both clinical phenotype and molecular pro-
files (details are in SM Section 2). We investigated the quality of ICD
disease taxonomy by evaluating the correlation between the closeness
of disease pairs in the disease taxonomy and the underlying molecular
connections (and symptom phenotype similarities) between disease
pairs. For example, if two disease pairs have close positions (e.g. have
a low level common parent disease) in the disease taxonomy, then we
would expect that those disease pairs might have common genes or
shared protein-protein interactions or similar phenotypes. We calcu-
lated the category similarity between disease pairs using a widely
used semantic similarity measure (i.e. Lin measure using information
content) (Lin, 1998; Pesquita et al., 2009) to represent the closeness of
disease pairs located in the ICD taxonomy. Information theoretic mea-
sures such as information content have been used in the context of
ICD-9-CM previously (Dahlem et al., 2015). The category similarity

measure takes as input two concepts c1 and c2 and outputs a numeric
measure of similarity. If two ICD codes have a very specific commonpar-
ent code in the taxonomic tree structure, then the category similarity
would be ~ 1.

The molecular and phenotype similarity between disease pairs are
calculated by evaluating the shared genes and their GO annotations,
molecular network similarities, and shared phenotypes by established
similarity measures (e.g. Cosine measure and Jaccard measure). In
particular, to propose a more robust representation of molecular
network profiles of diseases, we partitioned the STRING network into
314 topological modules (Data S2) and used them to construct the rel-
evant module vectors of diseases using Odds Ratio (OR) as weighting
measure. For example, an ICD disease code would be represented with
a 314-dimensional vector, which has a value of wij if its related gene is
in a module or 0 otherwise. Suppose we have N genes in total and mi

genes of a module i. Now for a disease dj with nj genes, which has kij
overlapping genes with the module i, we calculated the value of wij as
the following equation,

wij ¼
kij= nj−kij

� �
mi−kij
� �

= N−nj−mi þ kij
� � ð1Þ

We used the cosinemeasure to calculate themolecular module sim-
ilarity between disease pairs after the molecular module vector (i.e. OR
weighting) of each disease was constructed.

Furthermore, as ICD taxonomy proposes a framework for organizing
the diseases, it is expected that there should overlapping molecular in-
teractions or phenotype relationships between the diseases of the same
chapters than those of the different chapters. Thus, we assumed that
when we collapse the ICD chapters as the module annotations, such
that all the diseases in one chapter would be considered as members
of a same module, the modularity of the disease association networks,
i.e. the disease networks with molecular or phenotype associations as
links, would reflect the quality of ICD disease taxonomy. This means
that the higher the modularity, the higher the quality of the ICD chap-
ters as a disease category framework.

To evaluate the quality of community structures in complex net-
work, themodularity measure (Newman, 2006) was proposed to quan-
tify the extent to which the connection in communities is above the
random expectation in the whole network. Let a network have m
edges and Avw be an element of the adjacency matrix of the network.
Suppose the vertices in the network are divided into communities
such that vertex v belongs to community cv. Then the modularity Q is
defined as:

Q ¼ 1
2m

X
vw

Avw−
kvkw
2m

� �
δ cv; cwð Þ ð2Þ

where the function δ(i,j) is 1 if i = j and 0 otherwise, and kv is the degree
of vertex v. The value of themodularity lies in the range [−1/2,1]. It is pos-
itive if the number of edges within groups exceeds the number expected
on the basis of chance. Otherwise, it would be negative.We use it tomea-
sure the consistency of disease categories (ICD chapter or NCD) as an an-
notation of topological module (or community) structures within disease
networks. We hypothesize that if a disease category framework captures
the molecular or phenotypic profiles of diseases, then there would be
more links existing between the diseasemembers in a category than ran-
dom expectation.

2.3. Measuring the Disease Specificity

As a quantification of themolecular diversity (or the inverse specific-
ity) of a disease, we calculated the maximum betweenness of disease-
related genes in the PPI network (Data S3). Betweenness (Freeman,
1977) is a widely used centrality measure to quantify how many
shortest paths run through a given node. In particular, bridging nodes
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that connect disparate components of the network often have a high be-
tweenness. The betweenness centrality of a node v is given by:

bc vð Þ ¼
X
s≠v≠t

nst vð Þ
gst

ð3Þ

where nst(v) denotes the number of shortest paths from s to t that pass
through v and gst is the total number of shortest paths from s to t. We

will adopt the convention that nstðvÞ
gst

¼ 0 if both nst(v) and gst are zero.

We assume the molecular diversity of diseases would largely lie on
the related genes with maximum betweenness. For example, to quan-
tify the molecular diversity (in terms of maximum betweenness) of
Alzheimer's disease (AD), we calculated all the betweenness values for
theAD-related genes, such asAPP, APOE, TNF andNOS3. Finally,we con-
sidered the molecular diversity of AD as 8.44e-3 since we found that
APP has the maximum betweenness of 8.44e-3 among those genes
(see Fig. S5a). In fact, this kind of measurement has been successfully
used in a previous study (Zhou et al., 2014) to evaluate the diversity
of diseases, which indicated that the diversity of disease manifestations
has a strong positive correlation with the molecular diversity of dis-
eases. For disease taxonomy with good quality, we would expect it to
have its lowest level diseases (the leaf nodes in the tree-structure dis-
ease taxonomy) with similar molecular diversities.

2.4. Detection of the Significant Disease-chapter Associations

We calculated the edge density to quantify the molecular interac-
tions between ICD chapters. To further detect the significant interac-
tions between diseases in different chapters, we find an approach to
obtain the diseases that have significant interactions with diseases in
chapters other than their own. Given a disease di for investigation, we
evaluate whether the proportion of interactions (i.e. edge density) of
di to the disease set DCk

of a chapter Ck is significantly larger than the av-
erage proportion of interactions between the diseases in Ck (Fig. S6).We
use binomial test to filter the significant interacting disease-chapter
pairs, in which the edge density of the disease to the chapter is signifi-
cantly higher than the average edge density of the diseases in the corre-
sponding chapter (details are in SM Section 4).

2.5. Multi-category Prediction of Diseases

The results showing positive correlations between category similar-
ity and molecular similarity, and the high molecular diversity of many
diseases imply that it would be possible to predict the multi-category
map for each disease using its underlying molecular connections. To
demonstrate a pilot method for multiple disease category prediction
by integrating molecular module and shared gene similarities, we pro-
vided a novel algorithm to generate the possible associated additional
disease categories for a given disease with the correspondingmolecular
association scores. (details are in SMSection 5, Fig. S7). In this algorithm,
we integrated the correlation between category similarity and module
similarity with significant disease-chapter associations (which are
based on the shared gene similarity) to predict the additional chapters
for a given disease. We divide the disease pairs in the same chapter to
three subsets,which correspond to those pairswith shared root parents,
shared second-level intermediate parents and shared third-level inter-
mediate parents, respectively, to help predict to what degree a pair of
diseaseswould be located closely in the disease taxonomy. The principle
of the algorithm adheres to the positive correlation between category
similarity (or the closeness of position of the disease pairs in ICD disease
taxonomy) and molecular profile similarity of disease pairs, which
means that strong molecular profile similarity between disease pairs
would indicate close locations of them in the disease taxonomy. To
ensure detecting the significant disease-chapter associations, we next
filtered the predicted disease-chapter associations with positive

association scores by the significant disease-chapter interactions based
on shared genes.

2.6. Construction of Integrated Disease Network

To integrate disease associations derived from both molecular and
phenotype features, we performed several sequential analytical steps
to generate a highly reliable disease networkwith strict filtering criteri-
ons of the disease links (details are in SM Section 6). Firstly, we gener-
ated three disease association networks: disease network with
module similarity (MSDN) with 598,420 links and 1744 nodes, disease
network with shared genes (SGDN) with 133,469 links and 1868
nodes, and disease network with symptom similarity (HSDN) with
1,639,791 links and 1814 nodes (Fig. S10 & Table S10) according to
shared genes, shared phenotypes and molecular module similarity, re-
spectively. To reduce the possible noise and bias of disease related
data sources, we applied a multi-scale backbone algorithm (Serrano
et al., 2009) to obtain high reliable disease links (with significantly
highweights than the randomexpectations) from the three disease net-
works. We finally obtained 53,241, 8554 and 134,370 high reliable links
for MSDN, SGDN and HSDN, respectively and retained most nodes
(1744 forMSDN, 1782 for SGDN and 1814 for HSDN) of these networks.
To further reduce the possible weak associations (the disease pairs with
high module similarity but no direct protein interactions) derived from
module similarity, we calculated the minimum length of the shortest
paths (MSPLs) between each disease pairs and used it as a filtering cri-
terion (with MSPL≤1) for MSDN, which resulted in a more biological
meaningful subset of MSDN with 33,611 links and 1694 diseases.

SGDN would capture strong associations between disease pairs if
they have high degree of shared genes even their related genes are
not forming functional modules. However, MSDN would give high
weights for disease links if the disease pairs have similar co-locations
on the topological modules of molecular network even they have no
shared genes. Therefore, MSDN and SGDNare actually two complemen-
tarymolecular association evidences for disease pairs andwe finally ob-
tained the union of the subset of MSDN and SGDN as the molecular
association disease network (MADN), which contains 35,389 links and
1811 nodes with the weights derived from the two original networks.
Next,we adopted a highly strict criterion to obtain an integrated disease
network (IDN) from the fusion of MADN and HSDN links, which con-
tains 35,114 disease links and 1857 nodes.

2.7. Overlapping Category Detection from Integrated Disease Network

Finding the overlapping disease categories could be transformed to
the task of detecting the overlapping communities (i.e. modules) from
the IDN. BigClam (Yang and Leskovec, 2013) is a state-of-the-art over-
lapping community detection algorithm based on a variant of non-
negative matrix factorization, which achieves near linear running time
and comparable high quality community results. We used the BigClam
algorithm, which is packaged in SNAP complex network software
(http://snap.stanford.edu/snap/) to automatically detect overlapping
communities from IDN network. Finally, we obtained 223 overlapping
disease communities with 1797 distinct ICD disease codes. These 223
disease subcategories contain different numbers of ICD codes, ranging
from 5 to 168 (Fig. S12 & Data S10).

To obtain a top-level category framework of diseases corresponding
to the chapters in ICD taxonomy, we calculated the overlapping degree
of the 223 disease sub-categories by using Jaccard similarity tomeasure
the common number of diseases held by two given disease categories.
This generated a disease category networkwith 2685 links representing
shared ICD codes (a link is established if two disease categories share at
least an ICD code and theweights of links correspond to the Jaccard sim-
ilarity) and nodes representing disease categories. After that, we clus-
tered the 223 disease sub-categories additionally by a widely used
non-overlapping community detection algorithm (considering the link
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weight and setting the resolution parameter as 0.5) into 17 top-level
categories (which corresponds to the number of original chapter-level
categories in ICD, which we named as New Chapters, NCs) using the
shared ICD codes (Fig. S11c & Data S10). The modularity of these 17
top-level categories (this makes a good comparable partition with ICD
chapters) in the network of 223 sub-categories is 0.426, which means
a rather good partition of the network. These 17 NCs contain different
numbers of sub-categories ranging from 4 to 25 or of diseases ranging
from 53 to 369 (Fig. S11c & Data S10), covering diseases from all of
the 17 chapters of ICD taxonomy (Table S11). These 17 NCs would
still contain overlapping disease codes since the 223 disease sub-
categories have overlapping disease codes. Therefore, 17 NCs with 223
disease sub-categories form a disease taxonomy consisting of two hier-
archical levels with polyhierarchical categories although with a limited
number (1797) of disease members.

2.8. Statistical Validation of NCD From External Data

To validate the robustness of NCD, we obtained two external
phenotype-genotype data sources (i.e. UCSC-GWAS and PheWAS cata-
log), which have not been integrated yet for generating NCD for further
investigation. By measuring whether the disease members in the sub-
categories in NCD tend to incorporate the associations of shared genes
from these two data sources, we would be able to validate the quality
of NCD. If the diseases in suchNCD sub-categorieswould tend to involve
shared genes, then the diseases would be more likely associated with
one another than other diseases. To test this hypothesis, we obtained
the overlapping disease codes (ODC) in both NCD and the two external
phenotype-genotype association databases and evaluate the degree of
these ODC disease links in each NCD sub-category when considering
two diseases linked if they share common genes. In detail, we firstly ob-
tained the common disease codes involved in both NCD and UCSC-
GWAS or PheWAS database. Then we generated a disease network
with shared genes derived from the two datasets, in which two diseases
linked if they shared at least one common gene. After that for each NCD
sub-category, we generated a complete disease network with the ODC
diseases in it and overlaid the network on the disease network with
shared genes. Finally, the overlapping percentage of disease links
would be calculated for evaluating the degree of molecular associations
involved in diseases in each NCD sub-categories (details are in SM
Section 8, Figs. S23–S25).

2.9. Statistical Analysis

Weuse R 3.1.0 as themain statistical tool in ourwork. The comparison
of two percentages was calculated by Binomial test or Chi-squared test.
Wilcoxon rank sum test was used for compare two independent list of
values (e.g. two types of molecular diversities and two groups of
MSPLs). All the correlations between two variables were calculated by
Pearson's productmoment correlation coefficient. Due to the incomplete-
ness and bias of disease-related data (i.e. disease-gene associations and
disease-symptom associations), we need to distinguish the information
from the background noise. Therefore, for comparison with random ex-
pectation, we reshuffle (100 random permutations) the symptom fea-
tures and the related genes of each disease using the Fisher-Yates
method (Fisher andYates, 1948). The calculations from randompermuta-
tions were used for the correlation between category similarity and mo-
lecular similarity, as well as phenotype similarity. In addition, this was
used for detection of the disease categories with high molecule diversity.

3. Results

3.1. Category Similarity of ICD Taxonomy

We curated 1883 distinct ICD disease codes (Table S1) from the 5-
level tree structure of 14,292 ICD-9-CMcodes, aswell as high confidence

protein-protein interactions consisting of 15,551 nodes and 218,409
edges (Franceschini et al., 2013). We compiled 153,277 distinct disease-
gene associations between 4552 distinct diseases in UMLS codes and
14,975 genes reported in the DiseaseConnect database (Liu et al., 2014)
(Fig. S3). Next, by manually mapping the DiseaseConnect identifiers to
ICD codes, we obtained 160,754 disease-gene records involving 1883 dis-
tinct ICD codes and 14,906 genes (Figs. S1–2 and Data S1).

To evaluate the closeness of two diseases in the ICD tree structure,
we applied an established semantic similarity algorithm named cate-
gory similarity (see Methods, SM Section 2.1). This similarity measure
is based on the information content, which quantifies the specificity of
a term and can be applied to any categorization scheme that has a
rooted tree structure, including the ICD-9-CM disease classification.
We then created a disease network comprising 1883 nodes
(representing ICD codes) and 154,563 edges. The edge weight reflects
the category similarity values and higher values reflect higher similarity
between diseases whose code positions are adjacent in the ICD tree.
The category similarity distribution showed that most disease pairs
(135,271, 87.52%) had similarities between 0.2 and 0.5 (Fig. S4a).
Disease pairs within this range mostly belong to different disease sub-
categories in the same chapter, such as diseases of other endocrine
glands and disorders of thyroid gland. For example, type 2 diabetes
(ICD: 250.00) and simple goiter (ICD: 240.0), which are in ICD chapter
3, have a category similarity of 0.37. However, there do exist disease
pairs with high category similarities, such as type 2 diabetes (ICD:
250.00) and type 1 diabetes (ICD: 250.01) with a category similarity
0.83. Overall, this measure indicates the capability of ICD in bringing to-
gether similar diseases in its tree structure, and the overrepresentation
of lower similarity scores is indicative of its limitations in doing so.

While the ICD classificationwas derived from clinical manifestations
(including symptoms and signs) and does not necessarily reflect
the connections among the molecular components of diseases, it is
informative to quantify to what extent it carries molecular information.
We investigated the correlations of category similarity of disease pairs
with 1) the degree of shared genes and shared clinical phenotypes,
2) GO term (Cell Component, Molecular Function, Biology Process)
similarity (Mistry and Pavlidis, 2008), and 3) topological similarity
(i.e., minimum shortest path length and molecular module similarity)
among them (Methods, SM Section 2.2).

We found that close disease codes (disease pairs with a high cate-
gory similarity) actually have higher clinical phenotype similarity
(Methods, SM Section 2.3), which adheres to the construction principle
of ICD taxonomybased on symptomphenotypes (Fig. S4b, PCC=0.960,
95% CI = [0.854, 1.000], p = 2.079e-05). Furthermore, we observed
strong correlations between higher category similarity bins for molecu-
lar profiles, compared to lower category similarity bins (Fig. S4c–i and
Table S2. SeeMethods, SM Section 2 for detailed information). In partic-
ular, we observed that in addition to the strongly positive correlations,
the percentage overlap of disease pairs with shared geneswas generally
larger than the random controls (Fig. S4c and d, see Methods, SM
Section 2.4). The top 10 disease pairs with the largest number of shared
genes are all from Chapter 2, which consists of cancer types. This might
reflect the fact that cancers are the most studied and complex disease
phenotypes involving various gene mutations (Table S3, see Methods,
SM Section 2 for detailed information).

Overall, thesefindings indicate that diseases in the same ICD chapter
tend to have a higher degree of shared genes, and the closer their posi-
tions in the ICD tree, the higher is the degree of shared genes.

3.2. Heterogeneity of Molecular Specificity in ICD Taxonomy

We measured the maximum betweenness of disease-related genes
in the protein-protein interaction (PPI) network to quantify the molec-
ular diversity (the inverse of specificity) of each disease, as described
previously (Zhou et al., 2014) (seeMethods, SM Section 3). A highmax-
imum betweenness indicates a high molecular diversity. For example,
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the molecular diversity of Alzheimer's disease could be represented by
the maximum betweenness of its related genes (i.e., the betweenness
of the APP gene) in the PPI network (Fig. S5a).

We observed that the molecular diversity of diseases in the ICD tax-
onomy is heterogeneous, with molecular diversity values varying from
10−8 to 10−2 with a median value of 8.93e-04 (Fig. 2a and Data S3).
The top two disease chapters with the highest median molecular diver-
sity were Chapter 2 (3.87e-03) and Chapter 1 (1.31e-03) (Fig. 2b). Fur-
thermore, we found that neoplasm (Chapter 2) and infectious disease
(Chapter 1) categories tended to have higher molecular diversity com-
pared to their complementary categories (Neoplasms vs. Non-
Neoplasms p b 2.2e-16, Infectious diseases vs. non-infectious diseases
p = 2.0e-02, Fig. S5b–c) and random controls. We also found that dis-
ease categories annotated as “other/unspecified” categories (SM
Section 3.1) had highermolecular diversity compared to disease catego-
ries with specific conditions (p = 9.75e-03, Fig. S5d, Data S4; see SM
Section 3.1) and its random control. These results indicate that the dis-
eases in neoplasms, infectious diseases, and “Other/unspecified dis-
eases” categories should be further investigated for molecular
subtypes. A detailed discussion of disease cases is offered in SM
Section 3, Data S5 & Tables S4–S5.

3.3. The Blurred Molecular Boundary Between ICD Categories

In the current ICD taxonomy, we observed many instances where
there exists a significant number of links between diseases in different
chapters, comparable to the number of links between diseases within
the same chapter (Table S6 & Fig. 2d, see Methods & SM Section 4).
For example, strong shared-gene relationships were detected between
respiratory diseases (Chapter 8) and mental, behavioral, and
neurodevelopmental disorders (Chapter 5) (Fig. 2c–d, more examples
shown in SM Section 4, Tables S7–9). In addition, by calculating the
shared molecular connections between diseases in the context of chap-
ters, we could detect 768 diseases with a significant number of shared
genes with diseases other than those in their own chapters (Data S6 &
SM Section 4).

To further quantify the molecular boundaries between the disease
categories in ICD disease taxonomy, we evaluated the modularity, a
structural measure of the tendency of the network to form close-knit
communities (seeMethods, SM Section 2.5), generated by either shared
molecular profiles or shared phenotypes. When we mapped ICD
chapters as grouping annotations on the disease networks filtered
by with appropriate weight thresholds, and calculated their
modularity, we observed very low modularity values (Fig. 2e).
Since modularity is a widely used measure to validate the quality of
partitions/module structures in complex networks, this means that
the grouping of ICD chapters does not agree with the natural
topological groupings of their corresponding molecular networks
(disease modules). This finding gives strong evidence for the blurred
disease boundaries of the ICD taxonomy, possibly arising from the
complexity of the underlying molecular mechanisms, in particular
the possible overlap of their respective subnetworks, or disease
modules, in the interactome.

Furthermore, although the modularity of disease networks with
shared phenotypes (similarity ≥ 0.1) is slightly positive, theweak corre-
lation (PCC = 0.08, p-value = .7588) between phenotypic similarity
and category similarity of disease pairs in each chapter (Fig. 2f) indicates
that ICD taxonomy does not adequately incorporate phenotype similar-
ity knowledge into disease category structures. These observations indi-
cate that the strict tree structures in the ICD taxonomy wherein terms

can only have one lineage (Cimino, 2011) may be inefficient for disease
classification given the contemporary knowledge of disease pathobiol-
ogy, and should therefore be refined to be polyhierarchical in structure.

3.4. Polyhierarchical Mapping of Diseases Using Molecular Module
Similarity

It has been proposed that if two disease modules overlap in themo-
lecular interaction network, local perturbations in one disease might
disrupt the biological pathways in the other disease, resulting in shared
pathobiological characteristics (Menche et al., 2015). We observed a
strong positive correlation between category similarity and module
similarity (see Methods, SM Section 5.1) of diseases, indicating that
two diseases with higher module similarity would be more closely lo-
calized in the disease category (Fig. 3a, PCC = 0.887, 95% CI =
[0.584,0.973], p = 6.12e-04; 3b, PCC = 0.974, 95% CI = [0.889,0.994],
p = 2.08e-06).

Here, we utilize the module similarity between disease pairs to pre-
dict the categories of similar diseases. In particular, we determine the
taxonomic closeness (SM Section 2.1) of each given disease pair to pre-
dict the additional categories of diseases, by applying heuristic rules in-
corporating the positive correlation between category similarity and
module similarity (see Methods, SM Section 5.1). In particular, using
the 598,420 disease pairs with positive module similarity (Data S7),
we generated 2057 predicted additional category results for 722 out of
1883 disease codes (38.3%) in which each disease code had ~4 catego-
ries on average (Data S7&8). We found that the number of predicted
categories positively correlatedwith themolecular diversity of the orig-
inal disease codes (Fig. 3c, PCC = 0.547, 95% CI = [0.514, 0.578], p b

4.94e-324; for External validations see SM 5.2). This indicates that dis-
eases with multiple pathogenic pathways could be captured by
polyhierarchical mapping. For example, the 20 diseases in Chapter 8
(i.e. Diseases of the Respiratory System) have been predicted to belong
to over five additional chapters, such as neoplasms, infectious diseases,
and diseases of the skin and subcutaneous tissue (Fig. 3d), which is con-
sistent with the heterogeneous pathogenesis of COPD and asthma
(Grainge et al., 2016; Sharma et al., 2015). A detailed discussion on
the polyhierarchial map of the mental disorders is offered in SM
Section 5.3 (Fig. S8).

Furthermore, we found that the predicted category framework,
which is based only on molecular module similarity, also had higher
phenotype similarity than diseases with shared root codes in the origi-
nal ICD chapters (see SM Section 5.2, median: 0.0703 vs. 0.0563; mean:
0.125 vs 0.109; p b 2.2e-16, Fig. 3e). This observation helps to establish
that the predicted category results are of higher quality than ICD with
respect to their phenotype homogeneity.

3.5. Integrated Disease Network for Overlapping Disease Classification

To extend and redefine disease concepts by discovering additional
categories of a disease, we generated a novel disease taxonomy by con-
structing an integrated disease network (IDN) with: (a) Shared clinical
phenotypes including shared symptoms; (b) Shared molecular profiles
including (i) shared genes and molecular module similarity and (ii)
shortest path lengths in the PPI network, based on a systematic integra-
tion process to filter out possible false positive associations (see
Methods, SM Section 6, Fig. S9 and Fig. S11a), which includes 1857 dis-
eases and 35,114 links (Data S9).

Next, we applied high performance community detection
algorithms to identify overlapping community structures in the IDN

Fig. 2. Lack ofmolecular specificity in ICD taxonomy and the blurred boundary between disease categories in ICD taxonomy. a. The distribution ofmolecular diversity of 1883 ICD diseases;
b. The boxplot ofmolecular diversity of 17 ICD chapters (ordered bymedian values); c. Thedisease networkwith shared genes inwhich thediseases belong to Chapter 5 and Chapter 8. The
ICD codes 295, 296, in Chapter 5 havedense relationships to the ICD codes inChapter 8; d. The disease category networkwith shared genes. Thenodes indicate thedisease chapters and the
weights of edges represent the edge densities between disease chapter pairs; the nodes with same color are considered as a chapter cluster, which is detected by community detection
algorithm; e. Modularity of disease networks with chapter as module annotations; f. The correlation between category similarity and phenotype similarity of ICD chapters.
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(seeMethods, SM Section 7 and Fig. S11a). In particular, we first used
BigClam (see Methods) since this method is able to detect overlap-
ping communities whereby a disease can belong tomultiple commu-
nities, in line with our main premise of creating a molecular based
flexible disease classification. This resulted in 223 disease sub-
categories with overlapping diseases as members (Fig. S11a and
Data S10), which included 1797 distinct diseases from the ICD taxon-
omy. These 223 disease sub-categories contain different numbers of
ICD codes, ranging from 5 to 168 (Fig. S12), therefore, they represent
different levels of disease categories similar to ICD chapters and their
sub-categories.

To further develop a more unified view of the disease category
quality, we used the established BGLL method (Blondel et al., 2008),
which detects non-overlapping communities, to cluster these 223 sub-
categories further into 17 non-overlapping, distinct parts, such that
these represent the 17 new chapter-level categories (called new chap-
ters, or NCs) using the shared ICD codes (see Methods, SM Section 7.2,
Fig. S11b). Overall, this clustering order effectively ensures distinct
top-level categories that have overlapping subcategories.

The resulting 17 NCs contain different numbers of sub-categories
ranging from 4 to 25, or of diseases ranging from 53 to 369 (Fig. S11c).
We denote the 17 NCs together with their 223 disease sub-categories
as our new overlapping disease classification (NCD). Each of the
resulting NCs reflects the shared features of integrative molecular and
phenotypic profiles (SM Section 7.4; Fig. S11c & Table S12, Data
S11–14). For example, NC08 could be denoted as the “limbic system
development-vision disorders-related diseases” since the most
enriched PPI module (p = 4.9e-324, Relevance ratio = 0.7778) of its
constituent diseases was mainly related to biological process; “limbic
systemdevelopment” (p=1.13e-04), and 73.84% (127/172) of diseases
in NC08 shared the phenotype, “vision disorders” (p = 4.9e-324)
(Tables S13–S14).

3.6. New Disease Categories Define Diseases with Clearer Boundaries and
Balanced Diversity

To confirm the phenotypic and molecular cohesiveness of our over-
lapping disease categories, we compared the modularity of NCD with
that of the ICD taxonomy. We found that the 17 NCs consistently have
much higher modularity than the original ICD chapters for all types of
disease association networks (SM Section 7.3; Fig. 4a–h, Fig. S13). This
finding indicates that the phenotypic and molecular links between the
diseases of a category in NCD are much denser compared to ICD
taxonomy.

Furthermore, to ensure that the performance of NCD is indeed due to
the combined effect of the molecular and phenotypic profiles, we per-
formed a controlled experiment where we determined the new disease
categories based on molecular-based networks and phenotype-based
networks only by running the entire analytical pipeline and applying
the same category prediction algorithm (SM Section 7.3). We
found that NCD outperforms both molecular-based categories and
phenotype-based categories in capturing the gene similarity, GO term
similarity and phenotypic similarity (Figs. S14–S16). This suggests the
importance of integrating both clinical phenotypes and molecular pro-
files to obtain a high-quality disease taxonomy.

Furthermore, we found that the minimum shortest path lengths in
the PPI network between disease pairs that belong to the sameNCD cat-
egories had a larger percentage of low values (i.e., [0,2]) compared to
ICD (Fig. 4i, 62.86% vs 58.95%, p b 4.9e-324; SM Section 7.3). This result
indicates that diseases within an NCD category have a significantly
higher degree of shared genes (or shorter path lengths) in comparison
to diseases within a category in ICD. On the other hand, the MSPLs be-
tween disease pairs in different NCD categories had a significantly
lower percentage of low values than those in the ICD (47.27% vs
54.88%, p b 4.9e-324, Fig. 4i & Fig. S17, External validations in SM 8.3),

Observed             Expected

Observed             Expected

b e

c d

Fig. 3.Polyhierarchicalmapprediction of ICD taxonomybased onmolecularmodule similarity. a. Correlation betweenmean semantic (category) similarity andmeanmodular similarity of
disease pairs; b. Correlation between overlapping edge ratio with category similarity and modular similarity of disease pairs; c. Correlation between predicted category number and
molecular diversity of ICD codes in Chapter 14 (PCC: 0.438; 95% CI: [0.401, 0.474]; p b 2.2e-16); d. Polyhierarchical map of the disease codes in Chapter 8, indicating that the 20
disease codes in Chapter 8 have significant associations with two disease category clusters: 1) Chapter 1 (infectious disease) and Chapter 2 (neoplasms); 2) Chapter 3 (endocrine,
nutritional and metabolic diseases and immunity disorders), Chapter 5 (mental disorders), Chapter 6 (nervous diseases), Chapter 9 (digestive diseases), Chapter 12 (skin and
subcutaneous disease) and Chapter 13 (musculoskeletal system and connective tissue diseases); e. The boxplots of phenotype similarity of predicted disease pairs and original ICD
disease pairs in the same top-level chapters (p b 2.2e-16, Wilcoxon test).

86 X. Zhou et al. / EBioMedicine 31 (2018) 79–91

Image of Fig. 3


which indicates a lower degree of shared genes (or shorter path
lengths) between diseases from different categories in NCD than in
ICD. These findings demonstrate that our NCD framework has clearer
boundaries between distinct diseases belonging to different categories
than those in the original ICD disease taxonomy.

Moreover, to validate the robustness of NCD predictions, we calcu-
lated the degree of associations in terms of network density among
the diseases in each sub-category of NCD. To this end, we investigated
the overlaps with the disease pairs connected by shared genes using
two independent phenotype-genotype association databases, GWAS
and PheWAS (see Methods, SM Section 1.2,1.6 & 8). We found that for
the 223 sub-categories in NCD, network densitywas significantly higher
compared to random controls (GWAS: p-value = 9.42e-197, Fig. 4j;
PheWAS:p-value = 1.31e-14, Fig. 4k). This means that the diseases in
the 223 sub-categories in NCDwould tend to have shared genes. For ex-
ample, the New Chapter: NC12 in NCD, including 11 sub-categories and
136 ICD diseases (belonging to eight ICD chapters), is enriched with re-
spiratory and airway diseases (e.g. COPD and asthma).

We obtained 37 overlapped diseases from the GWAS database,
which have a high degree of shared genes with the diseases in each
sub-category of the NC12 (Fig. 5a). In particular, the sub-categories,
such as NC12.M06 (p-value = 2.53e-30), NC12.M03 (p-value =
1.80e-38) and NC12.M02 (p-value = 6.89e-19) have significantly
higher density than those of the whole GWAS disease network
(Fig. S22). Furthermore, we found that the overlapping subcategories
of the NCD are able to differentiate between different components (i.e.
asthma/allergy vs. COPD) of the same broad group of diseases (i.e. respi-
ratory diseases) (see Fig. S22 for a detailed example). Indeed, in
the NC12 disease chapter chiefly containing respiratory diseases, the
two sub-categories, namely NC12.M06 and NC12.M07, overlap in the

underlying molecular interaction network while still containing the re-
spective disease (asthma and COPD, respectively) genes separately
(Fig. 5a). A detailed discussion is offered in SM Section 8(with results
in Data S21–22, Tables S18–19 & Figs. S23–S25).

In addition, in NCD, a disease can be classified into multiple catego-
ries, and the number of categories of a disease positively correlateswith
its molecular diversity (Fig. 4l, PCC= 0.352, 95% CI = [0.311, 0.392], p-
value b 4.94e-324; External validations in SM 8.3). For example, we
reclassified neoplastic diseases into multiple categories due to their
high molecular diversity. Two hundred and fifty-eight neoplastic dis-
eases in our NCD were divided into 144 sub-categories and 17 NCs
(Figs. S20 & S21). Thirty-nine out of 144 sub-categories (27.08%) were
enriched with “neoplasm” diseases (Data S19, p-value = 2.78e-5).
There weremainly 4 NCs (i.e., NC01, NC06, NC11, and NC16) containing
these 32 sub-categories and 188 “neoplasm” disease codes (Fig. 5b),
where 76.06% (143/188) of the neoplastic diseases were classified into
N1 sub-category, ranging from 2 to 15(Data S20 & Table S17). The neo-
plasm with the highest molecular diversity, “malignant neoplasm of
connective and other soft tissue” (ICD: 171; molecular diversity:
0.035), was reclassified into 15 sub-categories, and “malignant neo-
plasms of thyroid gland” (ICD: 193; molecular diversity: 0.0028) was
assigned to 14 sub-categories. Furthermore, related diseases had been
reclassified together in NCD, such as the well-known disease-
correlations among H. pylori infection (ICD: 041.86), stomach cancer
(ICD: 151), and duodenal ulcer (ICD: 532) or peptic ulcer (ICD: 533)
(Fig. 5b) (Sitas, 2016; Graham, 2015).

More interestingly, some diseases, like viral hepatitis C (ICDs: 070.4,
070.5, 070.7), graft-versus-host disease (ICDs: 279.5/279.50), glomeru-
lonephritis (ICDs: 580, 582, 582.9), circumscribed scleroderma (ICD:
701.0), systemic lupus erythematosus (ICD: 710.0), and rheumatoid
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Fig. 4. Properties of new disease categories (NCD) and comparison to conventional ICD classification. a. Modularity of phenotype (symptom)-based disease network (NCD vs. ICD);
b. Modularity of gene-based disease network (NCD vs. ICD); c. Modularity of molecule module-based disease network (NCD vs. ICD); d. Modularity of gene ontology (molecular
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arthritis (ICDs: 714/714.0), each fromdifferent chapters in ICD taxonomy,
were classified together into a unique NCD sub-category (NC06.M10)
since 50% (13/26) of these diseases share a PPImodule related to immune
response (SM Section 7.4, Fig. 5c, Data S15–16, Tables S15–16).

In addition, diseases originally in the same ICD chapter, such as viral
pneumonia (ICD: 480) and influenza (ICD: 487) from respiratory
system-related diseases (Chapter 8), were reclassified into different cat-
egories in the NCD (NC12, NC10). Influenza shared more phenotype
profiles with “episodic mood disorders” (ICD: 296) in NC10.M01, rather
than viral pneumonia in NC12 (Fig. S18& Data S17), which is in accor-
dance with recent epidemiological studies between episodic mood dis-
orders and influenza (Okusaga et al., 2011; Canetta et al., 2014), and,
furthermore, we also found that influenza shared some molecular pro-
files with “episodic mood disorders” (ICD: 296) in NC10.M01 (Fig. S19,
Data S18).

These findings suggest that NCD offers a promising integrative
framework incorporating both clinical phenotypes and molecular pro-
files for disease taxonomy that has very practical implications for the
precise investigation of disease subtyping and etiologies.

4. Discussion

Given the molecular network mechanisms (Barabasi et al., 2011;
Zanzoni et al., 2009), genetic pleiotropy (Solovieff et al., 2013), as well
as complicated genotype-phenotype associations underlying diseases,
the establishment of a molecular-based disease taxonomy with clear
boundaries is essential but challenging. From the molecular network
perspective, we first investigated the utility, shortcomings, and incon-
sistencies of ICD-9-CM, the established disease taxonomy for clinical
settings. We found that there exist a considerable number (~40% of
our investigated diseases) of diseases, for example, cancer and infec-
tious diseases, that have diverse molecular network mechanisms and
tend to interact more with diseases from other chapters. It is also
thesemolecularly diverse diseases thatmainly contribute to the blurred
boundary of ICD disease taxonomy (see Methods, SM Section 4&7).
Upon exploring the molecular diversity and cross-chapter interactions
between diseases, we propose a novel disease classification system
based on the integration of the clinical and molecular profiles of dis-
eases. In particular, we integrate disease networks taking into account
molecular and phenotypic connectivity among diseases, predict the
multiple disease categories that diseases belong to, and finally validate
the biological cohesiveness of our NCD by network topological mea-
sures such as modularity and shortest path length.

Our findings indicate that although general correlations exist be-
tween disease closeness in ICD taxonomy and underlying molecular
profiles, ICD still displays significant limitations with regard to the het-
erogeneity of molecular diversity and clear category boundaries. In our
NCD, a diseasewith a highmolecular diversity tends to be classified into
multiple disease categories, which indicates that there exist more dis-
ease subtypes for that disease. For example, “malignant neoplasm of
the pancreas” was reclassified into 11 sub-categories and 4 NCs, which
is consistentwith a recent studywherein 4 phenotypic subtypes of pan-
creatic cancer were enriched for 10 distinct molecular mechanisms
(Bailey et al., 2016). Therefore, we believe that the new disease classifi-
cation system may help facilitate precise clinical diagnosis and correct
prognosis (Jameson and Longo, 2015), and does so in alignmentwith re-
fined molecular network diagnostics.

Furthermore, the molecular network underpinnings and overlap-
ping disease categories of NCD provide a credible relationship map be-
tween diseases and disease categories that may radically transform
our current understanding of diseases and relevant treatment para-
digms. On the one hand, our approach accurately links diseases with
all possible underlying mechanisms in the molecular interaction net-
work. On the other hand, it presents a promising approach to the iden-
tification of targeted drugs for the treatment of related diseases. For
example, breast cancer and influenza (both in NC11.M02) may share
potential drug targets (Park, 2012). As another example, metformin,
widely prescribed to treat metabolic syndrome (in NC11.M02), could
alter the gutmicrobiome composition and function, improve gutmicro-
bial dysbiosis (Forslund et al., 2015; Cabreiro et al., 2013), and also pre-
vent colorectal cancer (also in NC11.M02) through microbiome-
influenced immune response modification (Nakatsu et al., 2015).
Here, it is important to note that while a considerable number of dis-
eases have a strong environmental component, our main focus has
been themanydiversemolecular determinants. In the future, additional
environmental factors such as epigenetic changes can be added into the
data integration scheme to further refine the classification.

There exist several potential limitations of this work. Although we
have aimed to address the possible confounders by constructing ran-
dom controls and using external evaluations, the incompleteness and
bias incorporated in the integrated data sources are likely to influence
the generalization of our results. For example, DiseaseConnect yields
an incomplete disease-gene database: 1883 ICD diseases could be
mapped (Table S11), leading to only 1797 diseases included in the
NCD. Furthermore, as with other studies that rely on literature-based
and ontological knowledge, investigation bias remains an issue, where
the molecular mechanisms (e.g. related genes and their interactions)
of some diseases (e.g. cancer) being more intensively studied than
others may influence the results (Menche et al., 2015). We expect the
results of similar works to be more refined in the future as biomedical
datasets become more complete. The incorporation of more compre-
hensive disease-gene data sources, such as DISEASES (Pletscher-
Frankild et al., 2015) and MalaCards (Rappaport et al., 2017), could re-
sult in an improved study.While we have chosen to keep individual ex-
ternal gene expression datasets outside the scope of this study since
gene expression is highly tissue- and cell-type dependent, it presents
an interesting future direction and could potentially improve the quality
of the resulting disease categories if exhaustive lists of tissue-specific
expression datasets are used in dedicated studies. In addition, our NCD
merely delivers a two-level taxonomy framework without elaborated
hierarchical structures in the same disease categories, which could be
further refined or optimized through methods like hierarchical cluster-
ing algorithms (Murtagh andContreras, 2012) and systematic posteriori
ontology engineeringmethod (Gessler et al., 2013). Finally, high-quality
ontologies, such as the Human PhenotypeOntology (Kohler et al., 2014)
and Disease Ontology (Kibbe et al., 2015), can be used for external val-
idation, or for further integration to obtain more robust and extensive
NCDs.

In this big-data era, the dramatically increasing multi-omics
databases, as well as clinical data from electronic health records (EHR)
involving phenotypic, therapeutic and environmental factors informa-
tion (Jensen et al., 2012), should also be incorporated into the new dis-
ease taxonomy refinement for patient stratification and disease
treatment. At this point, a realistic assumption is that the translation
of this classification to the clinic will need some time. That said, while

Fig. 5. Biological insights of new disease taxonomy. a. The New Chapter containing airway diseases (NC12) consists of 11 sub-categories and 136 ICD diseases belonging to 8 ICD chapters.
The subcategories overlap in the underlying molecular interaction network, while still separately including the disease genes (asthma and COPD, respectively) that characterize each
subcategory; b. The disease network of neoplasms in NCD. The 32 sub-categories significantly representing neoplasms are divided into 4 NCs (G1). Helicobacter pylori [H. pylori]
(041.86), malignant neoplasm of stomach (151), duodenal ulcer (532), peptic ulcer, site unspecified (533), which have significant relationships, are clearly clustered into a sub-
category (NC11. M07) (G2); c. A sub-category (NC06.M10) in NCD, which includes diseases from 8 different ICD chapters with shared molecular mechanism and phenotypes. Fifty
percent (13/26 = 50%) of the diseases in NC06.M10 share a PPI module, the biological function of which is enriched with immune system response, while over 90% (25/26 = 96.2%)
of the shared common phenotype of this module is “Pain”.
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the ICD is originally made “by clinicians for clinicians”, it is now widely
used by biomedical researchers as well to gain a deeper understanding
of human diseases. We therefore believe that researchers will be the
first and direct beneficiaries of our approach.

In conclusion, our study provides valuable insights into the
polyhierarchical network-based disease classification beyond the tradi-
tional tree structure. Our integrated disease network approach is suffi-
ciently powerful to elucidate the tangled underpinnings of human
diseases and uncover distinct disease boundaries. Our work may pro-
vide a new framework for the disease taxonomy reform based on big-
data fusion, so as to generate further the robust infrastructure needed
for precision medicine.

Supplementary data to this article can be found online at https://doi.
org/10.1016/j.ebiom.2018.04.002.
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