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ASYMPTOTIC AND FINITE-SAMPLE PROPERTIES OF
ESTIMATORS BASED ON STOCHASTIC GRADIENTS

By Panos Toulis and Edoardo M. Airoldi∗

University of Chicago and Harvard University

Stochastic gradient descent procedures have gained popularity
for parameter estimation from large data sets. However, their statis-
tical properties are not well understood, in theory. And in practice,
avoiding numerical instability requires careful tuning of key param-
eters. Here, we introduce implicit stochastic gradient descent proce-
dures, which involve parameter updates that are implicitly defined.
Intuitively, implicit updates shrink standard stochastic gradient de-
scent updates. The amount of shrinkage depends on the observed
Fisher information matrix, which does not need to be explicitly com-
puted; thus, implicit procedures increase stability without increas-
ing the computational burden. Our theoretical analysis provides the
first full characterization of the asymptotic behavior of both stan-
dard and implicit stochastic gradient descent-based estimators, in-
cluding finite-sample error bounds. Importantly, analytical expres-
sions for the variances of these stochastic gradient-based estimators
reveal their exact loss of efficiency. We also develop new algorithms
to compute implicit stochastic gradient descent-based estimators for
generalized linear models, Cox proportional hazards, M-estimators,
in practice, and perform extensive experiments. Our results suggest
that implicit stochastic gradient descent procedures are poised to be-
come a workhorse for approximate inference from large data sets.

1. Introduction. Parameter estimation by optimization of an objec-
tive function is a fundamental idea in statistics and machine learning (Fisher,
1922; Lehmann and Casella, 1998; Hastie et al., 2011). However, classi-
cal procedures, such as Fisher scoring, the EM algorithm or iteratively
reweighted least squares (Fisher, 1925; Dempster et al., 1977; Green, 1984),
do not scale to modern data sets with millions of data points and hundreds
or thousands of parameters (National Research Council, 2013).

In particular, suppose we want to estimate the true parameter θ? ∈ Rp
of a distribution f from N i.i.d. data points (Xi, Yi), such that condi-
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tional on covariate Xi ∈ Rp outcome Yi ∈ Rd is distributed according to
f(Yi;Xi, θ?). Such estimation problems often reduce to optimization prob-
lems. For instance, the maximum likelihood estimator (MLE) is obtained by
solving θmle

N = arg maxθ
∑N

i=1 log f(Yi;Xi, θ). Classical optimization proce-
dures, such as Newton-Raphson or Fisher scoring, have a runtime complexity
that ranges between O(Np1+ε) and O(Np2+ε), in the best case and worst
case respectively (Lange, 2010). Quasi-Newton (QN) procedures are the only
viable alternative in practice because they have O(Np2) complexity per it-
eration, or O(Np1+ε) in certain favorable cases (Hennig and Kiefel, 2013).
However, estimation from large data sets requires an even better runtime
complexity that is roughly O(Np1−ε), i.e., linear in data size N but sublinear
in parameter dimension p. The first requirement on N is generally unavoid-
able because all data points carry information from the i.i.d. assumption.
Sublinearity in p is therefore critical.

Such requirements have recently generated interest in stochastic opti-
mization procedures, especially those only relying on first-order information,
i.e., gradients. Perhaps the most widely popular procedure in this family is
stochastic gradient descent (SGD), defined for n = 1, 2, . . ., as

θsgdn = θsgdn−1 + γnCn∇ log f(Yn;Xn, θ
sgd
n−1),(1)

where γn > 0 is the learning rate sequence, typically defined as γn = γ1n
−γ ,

γ1 > 0 is the learning rate parameter, γ ∈ (.5, 1], and Cn are p× p positive-
definite matrices, also known as condition matrices.

Stochastic optimization procedures of this kind are special cases of stochas-
tic approximation (Robbins and Monro, 1951), where the estimation prob-
lem is not formulated as an optimization problem but more generally as a
characteristic equation. Early research considered a streaming data setting—
akin to a superpopulation setting—where the characteristic equation is

E (∇ log f(Y ;X, θ?) | X) = 0,(2)

with the expectation being over the true conditional distribution of outcome
Y given covariate X. More recent research, largely in computer science and
optimization, considers a finite N setting with characteristic equation

E
(
∇ log f(Y ;X, θmle

N )
)

= 0,(3)

where the expectation is over the empirical distribution of (X,Y ) in the
finite data set.1 In both settings, SGD of Eq. (1) is well-defined: in the finite

1If regularization is used, then Eq. (3) could approximate the maximum a posteriori
estimate (MAP) instead of the MLE.
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population setting of Eq. (3) the data point (Xn, Yn) is a random sample
with replacement from the finite data set; in the infinite population setting
of Eq. (2) the data point (Xn, Yn) is simply the nth data point in the stream.

From a computational perspective, SGD in Eq. (1) is appealing because
it avoids expensive matrix inversions, as in Newton-Raphson, and the log-
likelihood is evaluated at a single data point (Xn, Yn) and not on the entire
data set. From a theoretical perspective, SGD in Eq. (1) converges, under

suitable conditions, to θsgd∞ where E
(

log f(Y ;X, θsgd∞ ) | X
)

= 0 (Benveniste

et al., 1990; Ljung et al., 1992; Borkar, 2008). This condition can satisfy
both Eq. (2) and Eq. (3), implying that SGD can be used on both finite
and infinite population settings. For the rest of this paper we assume an
infinite population setting, as it is the most natural setting for stochastic
approximations. The main difference between the streaming data setting
studied in the computer science and optimization literature and the infi-
nite population setting we consider here is that we do not condition on the
observed ordering of data points, but we condition on a random ordering
instead. Moreover, most of the theoretical results presented in this paper
for the infinite population case can be applied to the finite population case,
where instead of estimating θ? we estimate the MLE, or the MAP estimate
if there is regularization.

In this paper, we introduce implicit stochastic gradient descent procedures—
implicit SGD for short—defined as

θim
n = θimn−1 + γnCn∇ log f(Yn;Xn,θ

im
n ),(4)

where γn, Cn are defined as in standard SGD in Eq. (1). Furthermore, we
provide a theoretical analysis of estimators based on stochastic gradients, for
both implicit and standard procedures. To distinguish the two procedures,
we will refer to standard SGD in Eq. (1) as SGD with explicit updates, or

explicit SGD for short, because the next iterate θsgdn can be immediately
computed given θsgdn−1 and the data point (Xn, Yn). In contrast, the update
in Eq. (4) is implicit because the next iterate θimn appears on both sides of
the equation, where the iterate was typed in boldface to emphasize the fact.

1.1. Illustrative example. Here, we motivate the main results of this pa-
per on the comparison between implicit and explicit SGD. Let θ? ∈ R
be the true parameter of a normal model with i.i.d. observations Yi|Xi ∼
N (Xiθ?, σ

2), where the variance σ2 is assumed known for simplicity. The log-
likelihood is log f(Yi;Xi, θ) = − 1

2σ2 (Yi −Xiθ)
2, and the score function (i.e.,

gradient of log-likelihood) is given by ∇ log f(Yi;Xi, θ) = 1
σ2 (Yi − Xiθ)Xi.

Let Xi be distributed according to some unknown distribution with bounded
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second moment. Assume γn = γ1/n, for some γ1 > 0 as the learning rate.
Then, the explicit SGD procedure in Eq. (1) is

θsgdn = θsgdn−1 + γn(Yn − θsgdn−1Xn)Xn

= (1− γnX2
n)θsgdn−1 + γnYnXn.(5)

Procedure (5) is the least mean squares filter (LMS) in signal processing,
also known as the Widrow-Hoff algorithm (Widrow and Hoff, 1960). The
implicit SGD procedure can be derived in closed form in this problem using
update in Eq. (4) as

θimn = θimn−1 + γn(Yn −Xnθ
im
n )Xn

=
1

1 + γnX2
n

θimn−1 +
γn

1 + γnX2
n

YnXn.(6)

The procedure defined by Eq. (6) is known as the normalized least mean
squares filter (NLMS) in signal processing (Nagumo and Noda, 1967).

From Eq. (5) we see that it is crucial for explicit SGD to have a well-

specified learning rate parameter γ1. For instance, if γ1X
2
1 >> 1 then θsgdn

will diverge to a value at the order of 2γ1/
√
γ1, before converging to the true

value θ? (see Section 2.5, Lemma 2.1). In contrast, implicit SGD is more
stable to misspecification of the learning rate parameter γ1. For example, a
very large γ1 will not cause divergence as in explicit SGD, but it will simply
put more weight on the nth observation YnXn than the previous iterate θimn−1.

Assuming for simplicity θsgdn−1 = θimn−1 = 0, it also holds θimn = 1
1+γnX2

n
θsgdn ,

showing that implicit SGD iterates are shrinked versions of explicit ones (see
also Section 5).

Let v2 = E
(
X2
)
, then by Theorem 2.2 the asymptotic variance of θimn (and

of θsgdn ) satisfies nVar(θimn ) → γ21σ
2v2/(2γ1v

2 − 1) if 2γ1v
2 − 1 > 0. Since

γ21/(2γ1v
2 − 1) ≥ 1/v2, it is best to set γ1 = 1/v2. In this case nVar(θimn )→

σ2/v2. Implicit SGD can thus be optimal by setting γn = (
∑n

i=1X
2
i )−1 in

which case θsgdn is exactly the OLS estimator, and θimn is an approximate but
more stable version of the OLS estimator. Thus, the implicit SGD estimator
θimn in Eq. (6) inherits the efficiency properties of θsgdn , with the added benefit
of being stable over a wide range of learning rates. Overall, implicit SGD is
a superior form of SGD.

1.2. Related work. Historically, the duo of explicit-implicit updates origi-
nate from the numerical methods introduced by Euler (ca. 1770) for solving
ordinary differential equations (Hoffman and Frankel, 2001). The explicit
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SGD procedure was first proposed by Sakrison (1965) as a recursive sta-
tistical estimation method and it is theoretically based on the stochastic
approximation method of Robbins and Monro (1951). Statistical estimation
with explicit SGD is a straightforward generalization of Sakrison’s method
and has recently attracted attention in the machine learning community as
a fast learning method for large-scale problems (Zhang, 2004; Bottou, 2010;
Toulis and Airoldi, 2015b). Applications of explicit SGD procedures in mas-
sive data problems can be found in many diverse areas such as large-scale
machine learning (Zhang, 2004), online EM algorithm (Cappé and Moulines,
2009), image analysis and deep learning (Dean et al., 2012) and MCMC sam-
pling (Welling and Teh, 2011).

The implicit SGD procedure is less known and not well-understood. In
optimization, implicit methods have recently attracted attention under the
guise of proximal methods, such as mirror-descent (Nemirovski, 1983). In
fact, the implicit SGD update in Eq. (4) can be expressed as a proximal
update:

(7) θimn = arg max
θ

{
−1

2
||θ − θimn−1||2 + γn log f(Yn;Xn, θ)

}
.

From a Bayesian perspective, θimn is the posterior mode of a model with the
standard multivariate normal N (θimn−1, γnI) as the prior, and log f(Yn;Xn, θ)
as the log-likelihood of θ for observation (Xn, Yn). Arguably, the normalized
least mean squares (NLMS) filter (Nagumo and Noda, 1967), introduced
in Eq. (6), was the first statistical model that used an implicit update as
in Eq. (4), and was shown to be consistent and robust under excessive in-
put noise (Slock, 1993). From an optimization perspective, the update in
Eq. (7) corresponds to a stochastic version of the proximal point algorithm
by Rockafellar (1976), which has been generalized through the idea of split-
ting algorithms (Lions and Mercier, 1979; Beck and Teboulle, 2009; Singer
and Duchi, 2009); see also the comprehensive review of proximal methods
in optimization by Parikh and Boyd (2013). Additional intuition of implicit
methods has been provided by Krakowski et al. (2007) and Nemirovski et al.
(2009), who have argued that proximal methods can fit better in the geom-
etry of the parameter space. Bertsekas (2011) derived the convergence rate
of an implicit procedure similar to Eq. (4) on a fixed data set, and com-
pared the rates between procedures that randomly sampled data (Xn, Yn)
or simply cycled through them. Toulis et al. (2014) derived the asymptotic
variance of θimn as estimator of θ? in the family of generalized linear mod-
els, and provided an algorithm to efficiently compute the implicit update of
Eq. (4) in such models and in the simplified setting where Cn = I.



6

1.3. Contributions. Prior work on procedures similar to implicit SGD
has considered mostly an optimization setting, in which the focus is on speed
of convergence (Bertsekas, 2011, for example). Instead, we focus on statis-
tical efficiency, that is, the sampling variability of the estimator implied by
implicit and explicit SGD procedures—the relevant analysis and the results
of Theorem 2.1 and Theorem 2.2 are novel. Furthermore, our procedure,
which we generalized in Toulis and Airoldi (2015a), is different than typical
stochastic proximal gradient procedures (for example see Duchi and Singer,
2009; Rosasco et al., 2014). In such procedures the parameter updates are
obtained by combining a stochastic explicit update and a deterministic im-
plicit update. In implicit SGD there is a single stochastic implicit update,
which prevents numerical instability.

With regard to theoretical contributions, the asymptotic statistical effi-
ciency of SGD procedures (both explicit and implicit) derived in Theorem 2.2
is a key contribution of our work. Our analysis is in fact general enough that
allowed us to derive the asymptotic efficiency of other popular stochastic op-
timization procedures, notably of AdaGrad (Duchi et al., 2011) in Eq. (13)
of our paper. The asymptotic normality of implicit SGD in Theorem 2.4 is
new and enables a novel comparison of explicit SGD and implicit SGD in
terms of the normality of their iterates, which is also a clear point of depar-
ture from the typical optimization literature. The results in Section 2.5 are
also new, and formalize the advantages of implicit SGD over explicit SGD
in terms of numerical stability.

With regard to practical contributions, Algorithm 1 and its variants pre-
sented in the paper are a significant extension of our earlier work beyond
first-order GLMs (Toulis et al., 2014, Algorithm 1). The key contribution
here is that these new algorithms make implicit SGD as simple to imple-
ment as standard explicit SGD, whenever the fixed-point computation of
the implicit update is feasible. We provide extensive applications in Sec-
tion 3 and experiments in Section 4 of implicit SGD compared to explicit
SGD. Importantly, we developed a concrete implementation of implicit SGD
through the R package sgd (Tran et al., 2015) available at https://cran.

r-project.org/web/packages/sgd/index.html to compare implicit SGD
with state-of-art procedures, including R’s glm() function (Fisher scoring),
biglm package, the elastic net (Friedman et al., 2010, glmnet), AdaGrad
(Duchi et al., 2011), Prox-SVRG (Xiao and Zhang, 2014), and Prox-SAG
(Schmidt et al., 2013).

2. Theory. The norm ||.|| denotes the L2 norm. If a positive scalar
sequence an is nonincreasing and an → 0, we write an ↓ 0. For two positive

https://cran.r-project.org/web/packages/sgd/index.html
https://cran.r-project.org/web/packages/sgd/index.html
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scalar sequences an, bn, equation bn = O(an) denotes that bn is bounded
above by an, i.e., there exists a fixed c > 0 such that bn ≤ can, for all n.
Furthermore, bn = o(an) denotes that bn/an → 0. Similarly, for a sequence
of vectors (or matrices) Xn, we write Xn = O(an) to denote ||Xn|| = O(an),
and write Xn = o(an) to denote ||Xn|| = o(an). For two positive definite
matrices A,B we write A ≺ B to express that B − A is positive definite.
The set of eigenvalues of a matrix A is denoted by eig(A); thus, A � 0 if
and only if λ > 0 for every λ ∈ eig(A).

Assumption 2.1. The explicit SGD procedure in Eq. (1) and the implicit
SGD procedure in Eq. (4) operate under a combination of the following assumptions.

(a) The learning rate sequence {γn} is defined as γn = γ1n
−γ , where γ1 > 0 is the

learning parameter, and γ ∈ (0.5, 1].

(b) For the log-likelihood log f(Y ;X, θ) there exists function ` such that log f(Y ;X, θ) ≡
`(Xᵀθ;Y ), which depends on θ only through the natural parameter Xᵀθ.

(c) Function ` is concave, twice differentiable almost surely w.r.t. natural parameter
Xᵀθ and Lipschitz with constant L0 w.r.t. θ.

(d) The observed Fisher information matrix În(θ) = −∇2`(Xᵀ
nθ;Yn) has non-

vanishing trace, i.e., there exists constant b > 0 such that trace(În(θ)) ≥ b

almost surely, for all θ. The Fisher information matrix, I(θ?) = E
(
În(θ?)

)
,

has minimum eigenvalue λf > 0 and maximum eigenvalue λf < ∞. Typical

regularity conditions hold (Lehmann and Casella, 1998, Theorem 5.1, p.463).

(e) Every condition matrix Cn is a fixed positive-definite matrix, such that Cn =
C + O(γn), where C � 0 and symmetric, and C commutes with I(θ?). For
every Cn, min eig(Cn) = λc > 0, and max eig(Cn) = λc <∞.

(f) Let Ξn = E (∇ log f(Yn;Xn, θ?)∇ log f(Yn;Xn, θ?)
ᵀ | Fn−1), then ||Ξn − Ξ|| =

O(1) for all n, and ||Ξn − Ξ|| → 0, for a symmetric positive-definite Ξ. Let
σ2
n,s = E

(
I||ξn(θ?)||2≥s/γn ||ξn(θ?)||2

)
, then for all s > 0,

∑n
i=1 σ

2
i,s = o(n) if

γ = 1, and σ2
n,s = o(1) otherwise.

Remarks. Assumption 2.1(a) is typical in stochastic approximation as it
implies that

∑
i γi =∞ and

∑
i γ

2
i <∞, as posited by Robbins and Monro

(1951). Assumption 2.1(b) narrows our focus to models for which the like-
lihood depends on parameters θ through the linear combination Xᵀθ. This
family of models is large and includes generalized linear models, Cox pro-
portional hazards models, and M-estimation. Furthermore, in Section 5 we
discuss a significant relaxation of Assumption 2.1(b). Assumption 2.1(c) puts
a Lipschitz condition on the log-likelihood but it is used only for deriving
finite-sample error bounds in Theorem 2.1—it is possible that this condition
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can be relaxed. Assumption 2.1(d) is equivalent to assuming strong convex-
ity for the negative log-likelihood, which is typical for proving convergence in
probability. The assumption on the observed Fisher information is less stan-
dard and, intuitively, it posits that a minimum of statistical information is
received from any data point, at least for certain model parameters. Making
this assumption allows us to forgo boundedness assumptions on the errors of
stochastic gradients that were originally used by Robbins and Monro (1951),
and have since been standard. Finally, Assumption 2.1(f) posits the typical
Lindeberg conditions that are necessary to invoke the central limit theo-
rem and prove asymptotic normality; this assumption follows the conditions
defined by Fabian (1968) for the normality of explicit SGD procedures.

2.1. Finite-sample error bounds. Here, we derive bounds for the errors
E(||θimn − θ?||2) on a finite sample of fixed size n.

Theorem 2.1. Let δn = E
(
||θimn − θ?||2

)
. Suppose that Assumptions

2.1(a),(b),(c), (d), and (e) hold. Then, there exist constants n0 > 0 and
κ = 1 + 2γ1µλcλf for some µ ∈ (0, 1] such that,

δn ≤
4L2

0λc
2
γ1κ

µλfλc
n−γ + exp (− log κ · φγ(n)) [δ0 + κn0Γ2],

where Γ2 = 4L2
0λc

2∑
i γ

2
i < ∞, and φγ(n) = n1−γ if γ < 1, and φγ(n) =

log n if γ = 1.

Not surprisingly, implicit SGD in Eq. (4) matches the asymptotic rate of
explicit SGD in Eq. (1). In particular, the iterates θimn have squared error
with rate O(n−γ), as seen in Theorem 2.1, which is identical to the rate

of error for the explicit iterates θsgdn (Benveniste et al., 1990, Theorem 22,
p.244). One way to explain intuitively this similarity in convergence rates is
to assume that both explicit and implicit SGD are at the same estimate θ0.
Then, using definitions in Eq. (1) and in Eq. (4), a Taylor approximation of
the gradient ∇ log f(Yn;Xn, θ

im
n ) yields

∆θimn ≈ [I + γnÎn(θ0)]
−1∆θsgdn ,(8)

where ∆θimn = θimn − θ0 and ∆θsgdn = θsgdn − θ0. Therefore, as n → ∞, we
have ∆θimn ≈ ∆θsgdn , and the two procedures coincide.

Despite the similarity in convergence rates, the critical advantage of im-
plicit SGD—more generally of implicit procedures—is their robustness to
initial conditions and excess noise. This can be seen in Theorem 2.1 where
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the implicit procedure discounts the initial conditions E
(
||θim0 − θ?||2

)
at

an exponential rate through the term exp(− log κ · φγ(n)). Importantly, the
discounting of initial conditions happens regardless of the specification of
the learning rate. In fact, large values of γ1 can lead to faster discounting,
and thus possibly to faster convergence, however at the expense of increased
variance as implied by Theorem 2.2, which is presented in the following sec-
tion. The implicit iterates are therefore unconditionally stable, i.e., virtually
any specification of the learning rate will lead to a stable discounting of the
initial conditions.

In contrast, explicit SGD is known to be very sensitive to the learning
rate, and can numerically diverge if the rate is misspecified. For example,
Moulines and Bach (2011, Theorem 1) showed that there exists a term
exp(L2γ21n

1−2γ), where L is a Lipschitz constant for the gradient of the

log-likelihood, amplifying the initial conditions E(||θsgd0 − θ?||2) of explicit
SGD, which can be catastrophic if the learning rate parameter γ1 is misspec-
ified.2 Thus, although implicit and explicit SGD have identical asymptotic
performance, they are crucially different in their stability properties. This is
investigated further in Section 2.5 and in the experiments of Section 4.

2.2. Asymptotic variance and optimal learning rates. In the previous sec-
tion we showed that θimn → θ? in quadratic mean, i.e., the implicit SGD iter-
ates converge to the true model parameters θ?, similar to classical results for
the explicit SGD iterates θsgdn . Thus, θimn and θsgdn are consistent estimators
of θ?. In the following theorem we show that both SGD estimators have the
same asymptotic variance.

Theorem 2.2. Consider SGD procedures in Eq. (1) and in Eq. (4), and
suppose that Assumptions 2.1(a),(c),(d),(e) hold, where γ = 1, and that
2γ1CI(θ?) � I. The asymptotic variance of the explicit SGD estimator in
Eq. (1) satisfies

nVar
(
θsgdn

)
→ γ21 (2γ1CI(θ?)− I)−1CI(θ?)C.

The asymptotic variance of the implicit SGD estimator in Eq. (4) satisfies

nVar
(
θimn
)
→ γ21 (2γ1CI(θ?)− I)−1CI(θ?)C.

2The Lipschitz conditions are different in the two works, however this does not affect
our conclusions. Our result remains effectively unchanged if we assume Lipschitz continuity
of the gradient ∇` instead of the log-likelihood `, similar to Moulines and Bach (2011);
see comment after proof of Theorem 2.1.
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Remarks. Although the implicit SGD estimator θimn is significantly more
stable than the explicit estimator θsgdn (Theorem 2.1), both estimators have
the same asymptotic efficiency in the limit according to Theorem 2.2. This
implies that implicit SGD is a superior form of SGD, and should be preferred
when the calculation of implicit updates in Eq. (4) is computationally feasi-
ble. In Section 3 we show that this is possible in a large family of statistical
models, and illustrate with several numerical experiments in Section 4.1.

Asymptotic variance results in stochastic approximation similar to The-
orem 2.2 were first obtained by Chung (1954), Sacks (1958), and followed
by Fabian (1968), Polyak and Tsypkin (1979), and several other authors
(see also Ljung et al., 1992, Parts I, II). We contribute to this literature in
two important ways. First, our asymptotic variance result includes implicit
SGD, which is a stochastic approximation procedure with implicitly defined
updates, whereas other works consider only explicit updates. Second, in our
setting we estimate recursively the true parameters θ? of a statistical model,
and thus we can exploit the typical regularity conditions of Assumption
2.1(d) to derive the asymptotic variance of θimn (and θsgdn ) in a simplified
closed-form. We illustrate the asymptotic variance results of Theorem 2.2 in
Section 4.1.1.

2.2.1. Optimal learning rates. Crucially, the asymptotic variance for-
mula of Theorem 2.2 depends on the limit of the sequence Cn used in the
SGD procedures of Eq. (1) and Eq. (4). We distinguish two classes of pro-
cedures, one where Cn = I, known as first-order procedures, and a second
class where Cn is not trivial, known as second-order procedures.

In first-order procedures only gradients are used in the SGD procedures.
Inevitably, no matter how we set the learning rate parameter γ1, first-order
SGD procedures will lose statistical efficiency. We can immediately verify
this by comparing the asymptotic variance in Theorem 2.2 with the asymp-
totic variance of the maximum likelihood estimator (MLE), denoted by
θmle
N , on a data set with N data points {(Xn, Yn)}, n = 1, 2, . . . , N . Un-

der the regularity conditions of Assumption 2.1(d), the MLE is the asymp-
totically optimal unbiased estimator and NVar

(
θmle
N − θ?

)
→ I(θ?)

−1. By
Theorem 2.2 and convergence of implicit SGD, it holds NVar

(
θimN − θ?

)
→

γ21(2γ1I(θ?)− I)−1I(θ?), which also holds for θsgdN . For any γ1 > 0 we have
as an identity that

γ21(2γ1I(θ?)− I)−1I(θ?) � I(θ?)
−1.(9)

The proof is rather quick if we consider λi ∈ eig(I(θ?)) and note that
γ21λi/(2γ1λi − 1) is the corresponding eigenvalue of the left-hand matrix
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in Ineq. (9) and 1/λi is the eigenvalue of I(θ?)
−1, and that (2γ1λf − 1) > 0

implies that
γ21λi/(2γ1λi − 1) ≥ 1/λi,

for every λi ∈ eig(I(θ?)). Therefore, both SGD estimators lose information
and this loss can be quantified exactly by Ineq. (9). This inequality can
also be leveraged to find the optimal choice for γ1 given an appropriate
objective. As demonstrated in the experiments in Section 4, this often suffices
to achieve estimates that are comparable with MLE in statistical efficiency
but with substantial computational gains. One reasonable objective is to
minimize the trace of the asymptotic variance matrix, i.e., to set γ1 equal to

γ?1 = arg min
x>1/2λf

∑
i

x2λi/(2xλi − 1).(10)

Eq. (10) is defined under the constraint x > 1/(2λf ) because Theorem 2.2

requires 2γ1I(θ?)− I to be positive definite.
Of course, the eigenvalues λi are unknown in practice and need to be

estimated from the data. This problem has received significant attention re-
cently and several methods exist (see Karoui, 2008, and references within).
We will use Eq. (10) extensively in our experiments (Section 4) in order to
tune the SGD procedures. However, we note that in first-order SGD pro-
cedures, knowing the eigenvalues λi of I(θ?) does not necessarily achieve
statistical efficiency because of the spectral gap of I(θ?), i.e., the ratio be-
tween its maximum eigenvalue λf and minimum eigenvalue λf ; for instance,

if λf = λf , then the choice of learning rate parameter according to Eq. (10)
leads to statistically efficient first-order SGD procedures. However, this case
is not typical in practice, especially in many dimensions.

In second-order procedures, we assume non-trivial condition matrices Cn.
Such procedures are called second-order because they usually leverage curva-
ture information from the Fisher information matrix (or the Hessian of the
log-likelihood). They are also known as adaptive procedures because they
adapt their hyperparameters, i.e., learning rates γn or condition matrices
Cn, according to observed data. For instance, let Cn ≡ I(θ?)

−1 and γ1 = 1.
Plugging in Cn = I(θ?)

−1 in Theorem 2.2, the normalized asymptotic vari-
ance of the SGD estimators is

γ21(2γ1I(θ?)
−1I(θ?)− I)−1I(θ?)

−1I(θ?)I(θ?)
−1 = I(θ?)

−1,

which is the theoretically optimal asymptotic variance of the MLE, i.e., the
Cramér-Rao lower bound.
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Therefore, to achieve asymptotic efficiency, second-order procedures need
to estimate the Fisher information matrix at θ?. Because θ? is unknown one
can simply use Cn = I(θimn )−1 (or Cn = I(θsgdn−1)

−1) as an iterative estimate
of I(θ?), and the same optimality result holds. This approach in second-order
explicit SGD was first studied by Sakrison (1965), and later by Nevelson
and Khasminskĭı (1973, Chapter 8, Theorem 5.4). It was later extended by
Fabian (1978) and several other authors. Notably, Amari (1998) refers to

the direction I(θsgdn−1)
−1∇ log f(Yn;Xn, θ

sgd
n−1) as the “natural gradient” and

uses information geometry arguments to prove statistical optimality.
An alternative way to implement second-order procedures is to use stochas-

tic approximation to estimate I(θ?), in addition to the approximation proce-
dure estimating θ?. For example, Amari et al. (2000) proposed the following
second-order procedure,

C−1n = (1− an)C−1n−1 + an∇ log f(Yn;Xn, θ
am
n−1)∇ log f(Yn;Xn, θ

am
n−1)

ᵀ

θamn = θamn−1 + γnCn∇ log f(Yn;Xn, θ
am
n−1),(11)

where an = a1/n is a learning rate sequence, separate from γn. By standard
stochastic approximation, C−1n converges to I(θ?), and thus the procedure
in Eq. (11) is asymptotically optimal. However, there are two important
problems with this procedure. First, it is computationally costly because of
matrix inversions. A faster way is to apply quasi-Newton ideas. SGD-QN de-
veloped by Bordes et al. (2009) is such a procedure where the first expensive
matrix computations are substituted by the secant condition. Second, the
stochastic approximation of I(θ?) is usually very noisy in high-dimensional
problems and this affects the main approximation for θ?. Recently, more
robust variants of SGD-QN have been proposed (Byrd et al., 2014).

Another notable adaptive procedure is AdaGrad (Duchi et al., 2011),
which is defined as

C−1n = C−1n−1 + diag
(
∇ log f(Yn;Xn, θ

ada
n−1)∇ log f(Yn;Xn, θ

ada
n−1)

ᵀ) ,
θadan = θadan−1 + γ1C

1/2
n ∇ log f(Yn;Xn, θ

ada
n−1),(12)

where diag(·) takes the diagonal matrix of its matrix argument, and the
learning rate is set constant to γn ≡ γ1. AdaGrad can be considered a
second-order procedure because it tries to approximate the Fisher informa-
tion matrix, however it only uses gradient information so technically it is
first-order. Under appropriate conditions, C−1n → diag(I(θ?)) and a sim-
ple modification in the proof of Theorem 2.2 can show that the asymptotic
variance of the AdaGrad estimate is given by

√
nVar

(
θadan

)
→ γ1

2
diag(I(θ?))

−1/2.(13)
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This result reveals an interesting trade-off achieved by AdaGrad and a sub-
tle contrast to first-order SGD procedures. The asymptotic variance of Ada-
Grad is O(1/

√
n), which indicates significant loss of information. However,

this rate is attained regardless of the specification of the learning rate param-
eter γ1.

3 In contrast, as shown in Theorem 2.2, first-order SGD procedures
require 2γ1I(θ?) − I � 0 in order to achieve the O(1/n) rate, and the rate
is significantly worse if this condition is not met. For instance, Nemirovski
et al. (2009) give an example of misspecification of γ1 where the rate of first-
order explicit SGD is O(n−ε), and ε can be arbitrarily small. The variance
result in Eq. (13) is illustrated in the numerical experiments of Section 4.1.1.

2.3. Optimality with averaging. As shown in Section 2.2.1, Theorem 2.2
implies that first-order SGD procedures can be statistically inefficient, espe-
cially in many dimensions. One surprisingly simple idea to achieve statistical
efficiency is to combine larger learning rates with averaging of the iterates.
In particular, we consider the procedure

θimn = θimn−1 + γn∇ log f(Yn;Xn, θ
im
n ),

θimn =
1

n

n∑
i=1

θimi ,(14)

where θimn are the typical implicit SGD iterates in Eq. (4), and γn = γ1n
−γ ,

γ ∈ [0.5, 1). Under suitable conditions, the iterates θimn are asymptotically
efficient. This is formalized in the following theorem.

Theorem 2.3. Consider the SGD procedure defined in Eq. (14) and
suppose Assumptions 2.1(a),(c),(d), and (e) hold, where γ ∈ [0.5, 1). Then,
θimn converges to θ? in probability and is asymptotically efficient, i.e.,

nVar
(
θimn

)
→ I(θ?)

−1.

Remarks. In the context of explicit stochastic approximations, averaging
was first proposed and analyzed by Ruppert (1988) and Bather (1989). Rup-
pert (1988) argued that larger learning rates in stochastic approximation un-
correlates the iterates allowing averaging to improve efficiency. Polyak and

3 This follows from a property of recursions (Toulis and Airoldi, 2016, Lemma 2.4). On
a high-level, the term γn−1/γn is important for the variance rates of AdaGrad and SGD.
When γn ∝ 1/n, as in Theorem 2.2, it holds that γn−1/γn = 1 + γn/γ1 + O(γ2

n), which
explains the quantity 2I(θ?)− I/γ1 in first-order SGD. The rate O(1/n) is attained only
if 2I(θ?)− I/γ1 � 0. When γn ∝ 1/

√
n, as in AdaGrad, it holds that γn−1/γn = 1 + o(γn)

and the rate O(1/
√
n) is attained without any additional requirements.
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Juditsky (1992) expanded the scope of averaging by proving asymptotic opti-
mality in more general explicit stochastic approximations that operate under
suitable conditions similar to Theorem 2.3. Polyak and Juditsky (1992) thus
proved that slowly-converging stochastic approximations can be improved
by using larger learning rates and averaging of the iterates. Recent work has
analyzed explicit updates with averaging (Zhang, 2004; Xu, 2011; Bach and
Moulines, 2013; Shamir and Zhang, 2012), and has shown their superiority
in numerous learning tasks. More recently, Toulis et al. (2016) derived the
finite-sample error bounds of the averaged implicit SGD estimator.

2.4. Asymptotic normality. Asymptotic distributions, or more generally
invariance principles, are well-studied in classical stochastic approximation
(Ljung et al., 1992, Chapter II.8). In this section we leverage Fabian’s theo-
rem (Fabian, 1968) to show that iterates from implicit SGD are asymptoti-
cally normal.

Theorem 2.4. Suppose that Assumptions 2.1(a),(c),(d),(e),(f) hold. Then,
the iterate θimn of implicit SGD in Eq. (4) is asymptotically normal, such that

nγ/2(θimn − θ?)→ Np(0,Σ),

where Σ = γ21 (2γ1CI(θ?)− I)−1CI(θ?)C.

Remarks. The combined results of Theorems 2.1, 2.2, and 2.4 indicate
that implicit SGD is numerically stable and has known asymptotic variance
and distribution. Therefore, contrary to explicit SGD that has severe sta-
bility issues, implicit SGD emerges as a stable estimation procedure with
known standard errors, which enables typical statistical tasks, such as confi-
dence intervals, hypothesis testing, and model checking. We show empirical
evidence supporting this claim in Section 4.1.2.

2.5. Stability. To illustrate the stability, or lack thereof, of both SGD
estimators in small-to-moderate samples, we simplify the SGD procedures
and inspect the size of the biases E(θsgdn − θ?) and E(θimn − θ?). In par-
ticular, based on Theorem 2.1, we simply assume the Taylor expansion
∇ log f(Yn;Xn, θn) = −I(θ?)(θn − θ?) + O(γn); to simplify further we ig-
nore the remainder term O(γn).

Under this simplification, the SGD procedures in Eq. (1) and in Eq. (4)
can be written as follows:

E
(
θsgdn − θ?

)
= (I − γnI(θ?))E

(
θsgdn−1 − θ?

)
= Pn1 b0,(15)

E
(
θimn − θ?

)
= (I + γnI(θ?))

−1E
(
θimn−1 − θ?

)
= Qn1b0,(16)
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where Pn1 =
∏n
i=1(I − γiI(θ?)), Q

n
1 =

∏n
i=1(I + γiI(θ?))

−1, and b0 denotes
the initial bias of the two procedures from a common starting point θ0.
Thus, the matrices Pn1 and Qn1 describe how fast the initial bias decays
for the explicit and implicit SGD respectively. In the limit, Pn1 → 0 and
Qn1 → 0 (Toulis and Airoldi, 2016, proof of Lemma 2.4), and thus both
methods are asymptotically stable.

However, the explicit procedure has significant stability issues in small-
to-moderate samples. By inspection of Eq. (15), the magnitude of Pn1 is
dominated by λf , the maximum eigenvalue of I(θ?). Furthermore, the rate
of convergence is dominated by λf , the minimum eigenvalue of I(θ?).

4 For

stability, it is desirable |1−γ1λi| < 1, for all eigenvalues λi ∈ eig(I(θ?)). This
implies the requirement γ1 < 2/λf for stability. Furthermore, Theorem 2.2
implies the requirement γ1 > 1/2λf for fast convergence. This is problematic

in high-dimensional settings because λf is typically orders of magnitude
larger than λf . Thus, the requirements for stability and speed of convergence
are in conflict in explicit procedures: to ensure stability we need a small
learning rate parameter γ1, thus paying a high price in convergence which
will be at the order of O(n

−γ1λf ), and vice versa.
In contrast, the implicit procedure is unconditionally stable. The eigen-

values of Qn1 are λ′i =
∏n
j=1 1/(1 + γ1λi/j) = O(n−γ1λi). Critically, it is no

longer required to have a small γ1 for stability because the eigenvalues of
Qn1 are always less than one. We summarize these findings in the following
lemma.

Lemma 2.1. Let λf = max eig(I(θ?)), and suppose γn = γ1/n and
γ1λf > 1. Then, the maximum eigenvalue of Pn1 satisfies

max
n>0

max eig(Pn1 ) = Θ(2γ1λf /
√
γ1λf ).

For the implicit method,

max
n>0

max eig(Qn1 ) = O(1).

Remarks. Lemma 2.1 shows that in the explicit SGD procedure the effect
from the initial bias can be amplified in an arbitrarily large way before fading
out, if the learning rate is misspecified (i.e., if γ1 >> 1/λf ). This sensitivity
of explicit SGD is well-known and requires problem-specific considerations
to be avoided in practice, e.g., preprocessing, small-sample tests, projections,

4To see this, note that the eigenvalues of Pn1 are λ′i =
∏
j(1 − γ1λi/j) = O(n−γ1λi) if

0 < γ1λi < 1. See also proof of Lemma 2.1.



16

truncation (Chen et al., 1987). In fact, there exists voluminous work, which
is still ongoing, in designing learning rates to stabilize explicit SGD; see,
for example, a review by George and Powell (2006). Implicit procedures
render such ad-hoc designs obsolete because they remain stable regardless
of learning rate design, and still maintain the asymptotic convergence and
efficiency properties of explicit SGD.

3. Applications. Here, we show how to apply implicit SGD in Eq. (4)
for estimation in generalized linear models, Cox proportional hazards, and
more general M-estimation problems. We start by developing an algorithm
that efficiently computes the implicit update in Eq. (4), and is applicable to
all aforementioned models.

3.1. Efficient computation of implicit updates. The main difficulty in ap-
plying implicit SGD is the solution of the multidimensional fixed-point equa-
tion (4). In a large family of models where the likelihood depends on the
parameter θ? only through the natural parameter Xᵀ

nθ?, the solution of the
fixed-point equation is feasible and computationally efficient. We prove the
general result in Theorem 3.1.

For the rest of this section we will treat `(Xᵀθ;Y ) as a function of the
natural parameter Xᵀθ for a fixed outcome Y . Thus, `′(Xᵀθ;Y ) will refer
to the first derivative of ` with respect to Xᵀθ with fixed Y .

Theorem 3.1. Suppose Assumption 2.1(b) holds, then the gradient of
the log-likelihood is a scaled version of covariate X, i.e., for every θ ∈ Rp
there is a scalar λ ∈ R such that

∇ log f(Y ;X, θ) = λX.

Thus, the gradient in the implicit update in Eq. (4) is a scaled version of
the gradient calculated at the previous iterate, i.e.,

∇ log f(Yn;Xn, θ
im
n ) = λn∇ log f(Yn;Xn, θ

im
n−1),(17)

where the scalar λn satisfies

λn`
′(Xᵀ

nθ
im
n−1;Yn) = `′

(
Xᵀ
nθ

im
n−1 + γnλn`

′(Xᵀ
nθ

im
n−1;Yn)Xᵀ

nCnXn;Yn
)
.(18)

Remarks. Theorem 3.1 implies that computing the implicit update in
Eq. (4) reduces to numerically solving the one-dimensional fixed-point equa-
tion for λn—this idea is implemented in Algorithm 1. As shown in the proof
of Theorem 3.1, this implementation is fast because λn lies on an interval
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Bn of size O(γn). We also note that Theorem 3.1 can be readily extended
to cases with linearly separable regularizers, for instance, regularizers using
the L1 norm ||θ|| =

∑
i |θi|. In such cases, there are additional fixed-point

equations as in Step 9 of Algorithm 1 that involve the components of the
regularizer. More generally, for families of models that do not satisfy As-
sumption 2.1(b) there are methods to approximately perform the implicit
update—we discuss one such method in Section 3.3.

3.2. Generalized linear models. In this section, we apply implicit SGD
to estimate generalized linear models (GLMs). In such models, Yn follows
an exponential distribution conditional on Xn, and E (Yn | Xn) = h(Xᵀ

nθ?),
where h is the transfer function of the GLM model (Nelder and Wedderburn,
1972). Furthermore, the gradient of the GLM log-likelihood for parameter
value θ at data point (Xn, Yn) is given by

∇ log f(Yn;Xn, θ) = [Yn − h(Xᵀ
nθ)]Xn.(19)

The conditional variance of Yn is Var (Yn | Xn) = h′(Xᵀ
nθ?)XnX

ᵀ
n, and thus

the Fisher information matrix is I(θ) = E (h′(Xᵀ
nθ)XnX

ᵀ
n). Thus, the SGD

procedures in Eq. (1) and in Eq. (4) can be written as

θsgdn = θsgdn−1 + γnCn[Yn − h(Xᵀ
nθ

sgd
n−1)]Xn,(20)

θimn = θimn−1 + γnCn[Yn − h(Xᵀ
nθ

im
n )]Xn.(21)

Implementation of explicit SGD is straightforward. Implicit SGD can be
implemented through Algorithm 1. In particular, log f(Y ;X, θ) ≡ `(Xᵀθ;Y )

Algorithm 1: Efficient implementation of implicit SGD in Eq. (4)

1: for all n ∈ {1, 2, · · · } do
2: # compute search bounds Bn
3: rn ← γn`

′ (Xᵀ
nθimn−1;Yn

)
4: Bn ← [0, rn]
5: if rn ≤ 0 then
6: Bn ← [rn, 0]
7: end if
8: # solve fixed-point equation by a root-finding method

9: ξ = γn`
′(Xᵀ

nθimn−1 + ξXᵀ
nCnXn;Yn), ξ ∈ Bn

10: λn ← ξ/rn
11: # following update is equivalent to update in Eq. (4)

12: θimn ← θimn−1 + γnλn∇ log f(Yn;Xn, θ
im
n−1)

13: end for
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with `(η;Y ) = Y − h(η). In typical GLMs h is twice-differentiable and also
h′(η) ≥ 0 because it is proportional to the conditional variance of Y given
X, thus fulfilling Assumption 2.1(b). In the simplified case where Cn = I,
the identity matrix, for all n, Algorithm 1 simplifies to Algorithm 2, which
was first derived by Toulis et al. (2014). We make extensive experiments
using Algorithm 2 in Section 4.2.

3.3. Cox proportional hazards model. Here, we apply SGD to estimate
a Cox proportional hazards model, which is a popular model in survival
analysis (Cox, 1972; Klein and Moeschberger, 2003). Multiple variations of
the model exist but for simplicity we will analyze one simple variation that
is popular in practice (Davison, 2003). Consider N individuals, indexed by i,
with observed survival times Yi, failure indicators di, and covariates Xi. The
survival times can be assumed ordered, Y1 < Y2 . . . < YN , whereas di = 1
denotes failure (e.g., death) and di = 0 indicates censoring (e.g., patient
dropped out of study). Given a failure for unit i (di = 1) at time Yi, the
risk set Ri is defined as the set of individuals that could possibly fail at Yi,
i.e., all individuals except those who failed or were censored before Yi. In
our simplified model, Ri = {i, i+ 1, . . . , N}. Define ηi(θ) = exp(Xᵀ

i θ), then
the log-likelihood ` for θ is given by (Davison, 2003, Chapter 10)

`(θ;X,Y ) =
N∑
i=1

[di −Hi(θ)ηi(θ)]Xi,(22)

where Hi(θ) =
∑

j:i∈Rj dj(
∑

k∈Rj ηk(θ))
−1. In an online setting, where N is

infinite and data points (Xi, Yi) are observed one at a time, future observa-
tions affect the likelihood of previous ones, as can be seen by inspection of
Eq. (22). Therefore, we apply SGD assuming fixed N to estimate the MLE

Algorithm 2: Estimation of GLMs with implicit SGD

1: for all n ∈ {1, 2, · · · } do
2: rn ← γn

[
Yn − h(Xᵀ

nθimn−1)
]

3: Bn ← [0, rn]
4: if rn ≤ 0 then
5: Bn ← [rn, 0]
6: end if
7: ξ = γn

[
Yn − h

(
Xᵀ
nθimn−1 + ξ||Xn||2

)]
, ξ ∈ Bn

8: θimn ← θimn−1 + ξXn

9: end for
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θmle
N . As mentioned in Section 1, our theory in Section 2 can be applied

unchanged if we only substitute θ?, the true parameter, with the MLE θmle
N .

A straightforward implementation of explicit SGD in Eq. (1) for the Cox
model is shown in Algorithm 3. For implicit SGD in Eq. (4) we have the
update

θimn = θimn−1 + γn[di −Hi(θ
im
n )ηi(θ

im
n )]Xi,(23)

which is similar to the implicit procedure for GLMs in Eq. (21). However,
the log-likelihood term di − Hi(θ

im
n )ηi(θ

im
n ) does not satisfy the conditions

of Assumption 2.1(b) because Hi(θ) may be increasing or decreasing since
it depends on terms Xᵀ

j θ, j 6= i. Thus, Theorem 3.1 cannot be applied.
One way to circumvent this problem is to simply compute Hi(·) on the

previous update θimn−1 instead of the current θimn . Then, update (23) becomes

θimn = θimn−1 + γn[di −Hi(θ
im
n−1)ηi(θ

im
n )]Xi,(24)

which now satisfies Assumption 2.1(b) since Hi(θ
im
n−1) is constant with re-

spect to θimn . In fact, this idea can be used to apply implicit SGD more
generally beyond models that satisfy Assumption 2.1(b); see Section 5 for a
discussion.

3.4. M-Estimation. Given N observed data points (Xi, Yi) and a convex
function ρ : R → R+, the M-estimator is defined as

θ̂m = arg min
θ

N∑
i=1

ρ(Yi −Xᵀ
i θ),(25)

where it is assumed Yi = Xᵀ
i θ? + εi, and εi are i.i.d. zero mean-valued noise.

M-estimators are especially useful in robust statistics (Huber et al., 1964)

Algorithm 3: Explicit SGD for Cox

proportional hazards model

1 for n = 1, 2, . . . do
2 i← sample(1, N)

3 Ĥi ←
∑
j:i∈Rj

dj∑
k∈Rj

ηk(θ
sgd
n−1)

4 wn−1 ←
[
di − Ĥiηi(θsgdn−1)

]
5 θsgdn = θsgdn−1 + γnwn−1CnXi

Algorithm 4: Implicit SGD for Cox

proportional hazards model

1 for n = 1, 2, . . . do
2 i← sample(1, N)

3 Ĥi ←
∑
j:i∈Rj

dj∑
k∈Rj

ηk(θ
im
n−1)

4 w(θ) = di − Ĥiηi(θ)
5 Wn ← w(θimn−1)CnXi
6 λnw(θimn−1) = w

(
θimn−1 + γnλnWn

)
7 θimn = θimn−1 + γnλnWn



20

because appropriate choice of ρ can reduce the influence of outliers in data.
Typically, ρ is twice-differentiable around zero. In this case,

E
(
ρ′(Y −Xᵀθ̂m)X

)
= 0,(26)

where the expectation is over the empirical data distribution. Thus, ac-
cording to Section 1, SGD procedures can be applied to approximate the
M-estimator θ̂m. There has been increased interest in the literature for fast
approximation of M-estimators due to their robustness (Donoho and Monta-
nari, 2013; Jain et al., 2014). The implicit SGD procedure for approximating
M-estimators is defined in Algorithm 5, and is a simple adaptation of Algo-
rithm 1.

Importantly, the conditions of Assumption 2.1(b) are met because ρ is
convex and thus ρ′′ ≥ 0. Thus, Step 4 of Algorithm 5 is a straightforward ap-
plication of Algorithm 1 by simply setting `′(X ′nθ

im
n−1;Yn) ≡ ρ′(Yn−Xᵀ

nθimn ).
The asymptotic variance of θimn is also easy to derive. If S = E (XnX

ᵀ
n),

Cn → C > such that S and C commute, ψ2 = E
(
ρ′(εi)

2
)
, and v(z) =

E (ρ′(εi + z)), Theorem 2.2 can be leveraged to show that

nVar
(
θimn
)
→ ψ2(2v′(0)CS − I)−1CSC.(27)

Historically, one of the first applications of explicit stochastic approximation
procedures in robust estimation was due to Martin and Masreliez (1975).
The asymptotic variance (27) was first derived, only for the explicit SGD
case, by Polyak and Tsypkin (1980) using stochastic approximation theory
from Nevelson and Khasminskĭı (1973).

4. Simulation and data analysis. In this section, we demonstrate
the computational and statistical advantages of SGD estimation procedures
in Eq. (1) and in Eq. (4). For our experiments we developed a new R package,
namely sgd, which has been published on CRAN. All experiments were con-
ducted on a single laptop running Linux Ubuntu 13.x with 8 cores@2.4GHz,

Algorithm 5: Implicit SGD for M-estimation

1 for n = 1, 2, . . . do
2 i← sample(1, N)
3 w(θ) = ρ′(Yi −Xᵀ

i θ)
4 λnw(θimn−1)← w

(
θimn−1 + γnλnw(θimn−1)CnXi

)
# implicit update

5 θimn ← θimn−1 + γnλnw(θimn−1)CnXi
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16Gb of RAM memory and 256Gb of physical storage with SSD technology.
A separate set of experiments, which is presented in the supplemental arti-
cle (Toulis and Airoldi, 2016, Section 3), focuses on comparisons of implicit
SGD with popular machine learning methods on typical estimation tasks.

4.1. Numerical results. In this section we aim to illustrate the theoretical
results of Section 2, namely the result on asymptotic variance (Theorem 2.2)
and asymptotic normality (Theorem 2.4) of SGD procedures.

4.1.1. Asymptotic variance. In this experiment we use a normal linear
model following Xu (2011). The procedures we test are explicit SGD in
Eq. (1), implicit SGD in Eq. (4), and AdaGrad in Eq. (12). For simplicity
we use first-order SGD, i.e., Cn = I. In the experiment we calculate the
empirical variance of said procedures for 25 values of their common learning
rate parameter γ1 in the interval [1.2, 10]. For every value of γ1 we calculate
the empirical variances through the following process, repeated for 150 times.
First, we set θ? = (1, 1, · · · , 1)ᵀ ∈ R20 as the true parameter value. For
iterations n = 1, 2, . . . , 1500, we sample covariates as Xn ∼ Np(0, S), where
S is diagonal with elements uniformly on [0.5, 5]. The outcome Yn is then
sampled as Yn|Xn ∼ N (Xᵀ

nθ?, 1). In every repetition we store the iterate
θ1500 for every tested procedure and then calculate the empirical variance of
stored iterates over all 150 repetitions.

For any fixed learning rate parameter γ1 we set γn = γ1/n for im-
plicit SGD and γn = γ1 for AdaGrad. For explicit SGD we set γn =
min(0.3, γ1/(n+ ||Xn||2) in order to stabilize its updates. This trick is nec-
essary by the analysis of Section 2.5. In particular, the Fisher information
matrix here is I(θ?) = E (XnX

ᵀ
n) = S, and thus the minimum eigenvalue is

λf = 0.5 and the maximum is λf = 5. Therefore, for stability we require

γ1 < 2/λf = 0.4 and for fast convergence we require γ1 > 1/(2λf ) = 1. The
two requirements are incompatible, which indicates that explicit SGD can
have serious stability issues.

For given γ1 > 1, the asymptotic variance of SGD procedures after n
iterations is (1/n)γ21(2γ1S−I)−1S, by Theorem 2.2. The asymptotic variance
of AdaGrad after n iterations is equal to (γ1/2

√
n)S−1/2 by Eq. (13). The log

traces of the empirical variance of the SGD procedures and AdaGrad in this
experiment are shown in Figure 1. The x-axis corresponds to different values
of the learning rate parameter γ1, and the y-axis corresponds to the log trace
of the empirical variance of the iterates for all three different procedures. We
also include curves for the theoretical values of the empirical variances.

We see that our theory predicts well the empirical variances of all meth-
ods. Explicit SGD performs on par with implicit SGD for moderate values
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Fig 1. Simulation with normal model. The x-axis corresponds to learning rate parameter
γ1; the y-axis curves corresponds to log trace of the empirical variance of tested procedures
(explicit/implicit SGD, AdaGrad). Theoretical asymptotic variances of SGD and AdaGrad
are plotted as well. Implicit SGD is stable and its empirical variance is very close to
its asymptotic value. Explicit SGD becomes unstable at large γ1. AdaGrad is statistically
inefficient but remains stable to large learning rates.

of γ1, however, it required a modification in its learning rate to make it
work. Furthermore, explicit SGD quickly becomes unstable at larger values
of γ1 (see, for example, its empirical variance for γ1 = 10), and in several
instances, not considered in Figure 1, it numerically diverged. On the other
hand, AdaGrad is stable to the specification of γ1 and tracks its theoretical
variance well. However, it gives inefficient estimators because their variance
has order O(1/

√
n). Implicit SGD effectively combines stability and good

statistical efficiency. First, it remains very stable to the entire range of the
learning rate parameter γ1. Second, its empirical variance is O(1/n) and is
tracks closely the theoretical value predicted by Theorem 2.2 for all γ1.

4.1.2. Asymptotic normality. In this experiment we use the normal lin-
ear model in the setup of Section 4.1.1 to check the asymptotic normality
result of Theorem 2.4. For simplicity, we only test first-order implicit SGD
in Eq. (4) and first-order explicit SGD.

In the experiment we define a set of learning rates (0.5, 1, 3, 5, 6, 7). For
every learning rate we take 400 samples of N(θN − θ?)ᵀΣ−1(θN − θ?), where

N = 1200 and θN denotes either θsgdN or θimN . The matrix Σ is the asymptotic
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variance matrix in Theorem 2.4, and θ? = 10 exp (−2 · (1, 2, . . . , p)), is the
true parameter value. We use the ground-truth values both for Σ and θ?, as
we are only interested to test normality of the iterates in this experiment.
We also tried p = 5, 10, 100 as the parameter dimension. Because the explicit
SGD procedure was very unstable across experiments we only report results
for p = 5. Results on the implicit procedure for larger p are given in the
supplemental article (Toulis and Airoldi, 2016), where we also include results
for a logistic regression model.

By Theorem 2.4 for implicit SGD, and by classical normality results
for explicit SGD (Fabian, 1968; Ljung et al., 1992), the quadratic form
N(θN − θ?)ᵀΣ−1(θN − θ?) is a chi-squared random variable with p degrees
of freedom. Thus, for every procedure we plot this quantity against inde-
pendent samples from a χ2

p distribution and visually check for deviations.
As before, we tried to stabilize explicit SGD as much as possible by setting
γn = min(0.3, γ1/(n + ||Xn||2)). This worked in many iterations, but not
for all. Iterations for which explicit SGD diverged were not considered. For
implicit SGD we simply set γn = γ1/n without additional tuning.

The results of this experiment are shown in Figure 2. The vertical axis
on the grid corresponds to different values of the learning rate parameter
γ1, and the horizontal axis has histograms of N(θN − θ?)ᵀΣ−1(θN − θ?), and
also includes samples from a χ2

5 distribution for visual comparison.
We see that the distribution N(θimN − θ?)ᵀΣ−1(θimN − θ?) of the implicit

iterates follows the nominal chi-squared distribution. This also seems to
be unaffected by the learning rate parameter. However, the distribution
of N(θsgdN − θ?)ᵀΣ−1(θsgdN − θ?) does not follow a chi-squared distribution,
except for small learning rate parameter values. For example, as the learning
rate parameter increases, the distribution becomes more heavy-tailed (e.g.,
for γ1 = 6), indicating that explicit SGD becomes unstable. Particularly for
γ1 = 7 explicit SGD diverged in almost all replications, and thus a histogram
could not be constructed.

4.2. Comparative performance analysis. In this section we aim to illus-
trate the performance of implicit SGD estimation against deterministic esti-
mation procedures that are optimal. The goal is to investigate the extent to
which implicit SGD can be as fast as deterministic methods, and to quantify
how much statistical efficiency needs be sacrificed to accomplish that.

4.2.1. Experiments with glm() function. The built-in function glm() in
R performs deterministic maximum-likelihood estimation through iterative
reweighted least squares. In this experiment, we wish to compare computing
time and MSE between first-order implicit SGD and glm(). Our simulated
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Fig 2. Simulation with normal model. The x-axis corresponds to the SGD procedure (ex-
plicit or implicit) for various values of the learning rate parameter, γ1 ∈ {0.5, 1, 3, 5, 7}.
The histograms (x-axis) for the SGD procedures are 500 replications of SGD where at
each replication we only store the quantity N(θN − θ?)ᵀΣ−1(θN − θ?), for every method
(N = 1200); the theoretical covariance matrix Σ is different for every learning rate and is
given in Theorem 2.2. The data generative model is the same as in Section 4.1.1. We ob-
serve that implicit SGD is stable and follows the nominal chi-squared distribution. Explicit
SGD becomes unstable at larger γ1 and its distribution does not follow the nominal one
well. In particular, the distribution of N(θsgdN − θ?)ᵀΣ−1(θsgdN − θ?) becomes increasingly
heavy-tailed as the learning rate parameter gets larger, and eventually diverges for γ1 ≥ 7.

data set is a simple normal linear model constructed as follows. First, we
sample a binary p× p design matrix X = (xij) such that xi1 = 1 (intercept)
and P (xij = 1) = s i.i.d, where s ∈ (0, 1) determines the sparsity of X. We
set s = 0.08 indicating that roughly 8% of the X matrix will be nonzero.
We generate θ? by sampling p elements from (−1,−0.35, 0, 0.35, 1) with re-
placement. The outcomes are Yi = Xᵀ

i θ? + εi, where εi ∼ N (0, 1) i.i.d., and
Xi = (xij) is the p× 1 vector of i’s covariates. By GLM properties,

I(θ?) = E
(
h′(Xᵀ

i θ?)XiX
ᵀ
i

)
=


1 s s · · · s
s s s2 · · · s2

s s2 s s2 · · ·
· · · s2 · · · s · · ·
s s2 · · · · · · s

 .

Slightly tedious algebra can show that the eigenvalues of I(θ?) are s(1−s)
with multiplicity (p − 2) and the two solutions of x2 − A(s)x + B(s) = 0,
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Table 1
Parameters from regressing computation time and MSE against (N, p) in log-scale for
glm() and implicit GLM. Computation time for glm() is roughly O(p1.47N) and for

implicit SGD, it is O(p0.2N0.9). Implicit SGD scales better in parameter dimension p,
whereas MSE for both methods are comparable, at the order of O(

√
p/N).

method Time(sec) MSE

log p (se) logN (se) log p (se) logN (se)

glm() function 1.46 (0.019) 1.03 (0.02) 0.52 (0.007) -0.52 (0.006)

implicit SGD 0.19 (0.012) 0.9 (0.01) 0.58 (0.007) -0.53 (0.006)

where A(s) = 1 + s + s2(p − 2) and B(s) = s(1 − s). It is thus possible to
use the analysis of Section 2.2 and Eq. (10) to derive a theoretically optimal
learning rate. We sample 200 pairs (p,N) for the problem size, uniformly in
the ranges p ∼ [10, 500] and N ∼ [500, 50000], and obtain running times and
MSE of the estimates from implicit SGD and glm(). Finally, we then run a
regression of computing time and MSE against the problem size (N, p).

The results are shown in Table 1. We observe that implicit SGD scales
better in both sample size N , and especially in the model size p. We also
observe that this significant computational gain does not come with much
efficiency loss. In fact, averaged over all samples, the MSE of the implicit
SGD is 10% higher than the MSE of glm(), with a standard error of ±0.005.
Furthermore, the memory requirements (not reported in Table 1) are roughly
O(Np2) for glm() and only O(p) for implicit SGD.

4.2.2. Experiments with biglm. The package biglm is a popular choice
for fitting GLMs with data sets where N is large but p is small.5 It works in
an iterative way by splitting the data set in many parts, and by updating
the model parameters using incremental QR decomposition (Miller, 1992),
which results in only O(p2) memory requirement. In this experiment, we
compare implicit SGD with biglm on larger data sets of Section 4.2.1. with
small p and large N such that Np remains roughly constant.

The results are shown in Table 2. We observe that implicit SGD is signif-
icantly faster at a very small efficiency loss. The difference is more dramatic
at large p; for example, when p = 103 or p = 104, biglm quickly runs out of
memory, whereas implicit SGD works without problems.

5See http://cran.r-project.org/web/packages/biglm/index.html for the biglm

package. biglm is part of the High-Performance Computing (HPC) task view of the CRAN
project here http://cran.r-project.org/web/views/HighPerformanceComputing.html.

http://cran.r-project.org/web/packages/biglm/index.html
http://cran.r-project.org/web/views/HighPerformanceComputing.html
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Table 2
Comparison of implicit SGD with biglm. MSE is defined as ||θN − θ?||/θ0 − θ?||. Values
“*” indicate out-of-memory errors. biglm was run in combination with the ffdf package
to map big data files to memory. Implicit SGD used a similar but slower ad-hoc method.

The table reports computation times excluding file access.

Procedure

biglm Implicit SGD

p N size (GB) time(secs) MSE time(secs) MSE

1e2 1e5 0.021 2.32 0.028 2.4 0.028

1e2 5e5 0.103 8.32 0.012 7.1 0.012

1e2 1e6 0.206 16 0.008 14.7 0.009

1e2 1e7 2.1 232 0.002 127.9 0.002

1e2 1e8 20.6 * * 1397 0.00

1e3 1e6 2.0 * * 31.38 0.153

1e4 1e5 2.0 * * 25.05 0.160

4.2.3. Experiments with glmnet. The glmnet package in R (Friedman
et al., 2010) is a deterministic optimization algorithm for generalized linear
models that uses the elastic net. It performs a component-wise update of
the parameter vector, utilizing thresholding from the regularization penal-
ties for more computationally efficient updates. One update over all param-
eters costs roughly O(Np) operations. Additional computational gains are
achieved when the design matrix is sparse because fewer components are
updated per each iteration.

In this experiment, we compare implicit SGD with glmnet on a subset
of experiments in the original package release (Friedman et al., 2010). In
particular, we implement the experiment of Subsection 5.1 in that paper, as
follows. First, we sample the design matrix X ∼ Np(0,Σ), where Σ = b2U+I
and U is the p× p matrix of ones. The parameter b =

√
ρ/(1− ρ), where ρ

is the target correlation of columns of X, is controlled in the experiments.
The outcomes are Y = Xθ?+σ2ε, where θ∗j = (−1)j exp(−2(j−1)/20), and
ε is a standard p-variate normal. The parameter σ is tuned to achieve a pre-
defined signal-noise ratio. We report average computation times in Table 3
over 10 replications, which expands Table 1 of Friedman et al. (2010).

First, we observe that implicit SGD is consistently faster than the glmnet
method. In particular, the SGD method scales better at larger p following a
sublinear growth as noted in Section 4.2.1. Interestingly, it is also not affected
by covariate correlation, whereas glmnet gets slower as more components
need to be updated at every iteration. For example, with correlation ρ = 0.9
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Table 3
Comparing implicit SGD with glmnet. Table reports running times (in secs.) and MSE
for both procedures. The MSE of glmnet is calculated as the median MSE over the 100

grid values of regularization parameter computed by default (Friedman et al., 2010).

method metric correlation (ρ)
0 0.2 0.6 0.9

N = 1000, p = 10

glmnet
time(sec) 0.005 0.005 0.008 0.022

mse 0.083 0.085 0.099 0.163

sgd
time(sec) 0.011 0.011 0.011 0.011

mse 0.042 0.042 0.049 0.053

N = 5000, p = 50

glmnet
0.058 0.067 0.119 0.273
0.044 0.046 0.057 0.09

sgd
0.059 0.056 0.057 0.057
0.019 0.02 0.023 0.031

N = 100000, p = 200

glmnet
2.775 3.017 4.009 10.827
0.017 0.017 0.021 0.033

sgd
1.475 1.464 1.474 1.446
0.004 0.004 0.004 0.006

and N = 1e5, p = 200, the SGD method is almost 10x faster.
Second, to compare glmnet with implicit SGD in terms of MSE we picked

the median MSE produced by the grid of regularization parameters com-
puted by glmnet. We picked the median because glmnet is a deterministic
method and so at the best regularization value its MSE will be lower than
the MSE of implicit SGD. However, implicit SGD seems to perform better
against the median performance of glmnet. Furthermore, Table 3 indicates a
clear trend where, for bigger dimensions p and higher correlation ρ, implicit
SGD is performing better than glmnet in terms of efficiency as well. We ob-
tain similar results in a comparison on a logistic regression model, which we
present in Section 3 of the supplemental article (Toulis and Airoldi, 2016).

4.2.4. Cox proportional hazards. In this experiment we test the perfor-
mance of implicit SGD on estimating the parameters of a Cox proportional
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Fig 3. Left panel: 5%-95% quantile band of implicit SGD estimates (in cyan) against 5%-
95% band of the MLE (dashed lines) for a Cox proportional hazards model (50 replications);
Right panel: 5%-95% quantile band of implicit SGD estimates (in cyan) against median
MLE (dashed line) on an M-estimation task (100 replications).

hazards model in a setup that is similar to the numerical example of Simon
et al. (2011, Section 3).

We consider N = 1000 units with covariates X ∼ N (0,Σ), where Σ =
0.2U+I, and U is the matrix of ones. We sample times as Yi ∼ Expo (ηi(θ?)),
where ηi(θ) = exp(Xᵀ

i θ), and θ? = (θ?,k) is a vector with p = 20 elements
defined as θ?,k = 2(−1)−k exp(−0.1k). Time Yi is censored, and thus di = 0,
according to probability (1 + exp(−a(Yi − q))−1, where q is a quantile of
choice (set here as q = 0.8), and a is set such that min{Yi} is censored
with a prespecified probability (set here as 0.1%). We replicate 50 times the
following process. First, we run implicit SGD for 2N iterations, and then
measure MSE ||θimn −θ?||2, for all n = 1, 2, . . . 2N . To set the learning rates we
use Eq. (10), where the Fisher matrix is diagonally approximated, through
the AdaGrad procedure (12). We then take the 5%, 50% and 95% quantiles
of MSE across all repetitions and plot them against iteration number n.

The results are shown in Figure 3 (left panel). In the figure we also plot
(horizontal dashed lines) the 5% and 95% quantiles of the MSE of the MLE,
assumed to be the best MSE achievable for SGD. We observe that implicit
SGD performs well compared to MLE in this small-sized problem. In par-
ticular, implicit SGD, under the aforementioned generic tuning of learning
rates, converges to the region of optimal MLE in a few thousands of it-
erations. In experiments with explicit SGD we were not able to replicate
this performance because of numerical instability. We note that there are no
standard implementations of explicit SGD for estimating Cox proportional
hazards models, to our best knowledge.
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4.2.5. M-estimation. In this experiment we test the performance of im-
plicit SGD, in particular Algorithm 5, on a M-estimation problem in a setup
that is similar to the simulation example of Donoho and Montanari (2013,
Example 2.4).

We set N = 1000 data points and p = 200 as the parameter dimension.
We sample θ? as a random vector with norm ||θ?|| = 6

√
p, and sample

the design matrix as X ∼ N (0, (1/N)I). The outcomes are sampled i.i.d.
from a contaminated normal distribution, i.e., with probability 95%, Yn ∼
N (Xᵀ

nθ?, 1), and Yn = 10 with probability 5%.
The results over 2000 iterations of implicit SGD are shown in Figure 3

(right panel). In the figure we plot the 5% and 95% quantiles of MSE of im-
plicit SGD over 100 replications of the experiment. We also plot (horizontal
dashed line) the median MSE of the MLE estimator, computed using the
coxph built-in command of R. We observe that SGD converges steadily to
the best possible MSE. Similar behavior was observed under various modi-
fications of the simulation parameters.

4.3. National Morbidity-Mortality Air Pollution (NMMAPS) study. The
NMMAPS study (Samet et al., 2000; Dominici et al., 2002) analyzed the
risks of air pollution to public health. Several cities (108 in the US) are
included in the study with daily measurements covering more than 13 years
(roughly 5,000 days) including air pollution data (e.g. concentration of CO
in the atmosphere) together with health outcome variables such as number
of respiratory-related deaths.

The original study fitted a Poisson generalized additive model (GAM),
separately for each city due to data set size. Recent research (Wood et al.,
2014) has developed procedures similar to biglm’s iterative QR decomposi-
tion to fit all cities simultaneously on the full data set with approximately
N = 1.2 million observations and p = 802 covariates (7 Gb in size). In this
experiment, we construct a GAM model using data from all cities in the
NMMAPS study in a process that is very similar (but not identical) to the
data set of Wood et al. (2014).

Our final data set has N = 1, 426, 806 observations and p = 794 covariates
including all cities in the NMMAPS study (8.6GB in size), and is fit using
a simple first-order implicit SGD procedure with Cn = I and γ1 = 1. The
runtime for implicit SGD was roughly 120 seconds, which is 6x faster than
the 12 minutes reported by Wood et al. (2014) on a similar computer. We
cannot directly compare the estimates from the two procedures because
the datasets used were different. However, we can compare the estimates
of our model with the estimates of glm() on a random small subset of
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the data. For that purpose, we subsampled N = 50, 000 observations and
p = 50 covariates (19.5MB in size) and fit the smaller data set using implicit
SGD and glm(). A scatter plot of the estimates is shown in Figure 4. The
estimates of the implicit of the SGD procedure are very close to MLE, while
further replications of the aforementioned testing process revealed the same
pattern indicating that implicit SGD converged on all replications.

Fig 4. Estimates of implicit SGD (y-axis) and glm() (x-axis) on a subset of the NMMAPS
data set with N = 50, 000 observations and p = 50 covariates, which is roughly 5% of the
entire data set.

5. Discussion. The theory in Section 2 suggests that implicit SGD
is numerically stable and has known asymptotic variance and asymptotic
distribution. The experiments in Section 4 show that the empirical properties
of SGD are well predicted by theory. In contrast, explicit SGD is unstable
and cannot work well without problem-specific tuning. Thus, we conclude
that implicit SGD is a principled estimation procedure and is superior to
widely-used explicit SGD procedures.

Intuitively, implicit SGD leverages second-order information at every it-
eration, although second-order quantities do not need to be computed in
Eq. (4). To demonstrate this, we build upon the argument that was first
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introduced in Section 1. Assume both explicit and implicit SGD are at the
same estimate θ0. Then, using definitions in Eq. (1) and in Eq. (4), a Taylor
approximation of ∇ log f(Yn;Xn, θ

im
n ) yields

∆θimn ≈ [I + γnÎ(θ0;Xn, Yn)]−1∆θsgdn ,(28)

where ∆θimn = θimn −θ0 and ∆θsgdn = θsgdn −θ0, and the matrix Î(θ0;Xn, Yn) =
−∇2 log f(Yn;Xn, θ)|θ=θ0 is the observed Fisher information at θ0. In other
words, the implicit procedure is a shrinked version of the explicit one, where
the shrinkage factor depends on the observed information.

Naturally, the implicit SGD iterate θimn has also a Bayesian interpretation.
In particular, θimn is the posterior mode of a Bayesian model defined as

θ|θimn−1 ∼ N (θimn−1, γnCn)

Yn|Xn, θ ∼ f(.;Xn, θ).(29)

The explicit SGD update θsgdn can be written as in Eq. (29), however f needs

to be substituted with its linear approximation around θsgdn−1. Thus, Eq. (29)
provides an alternative explanation why implicit SGD is more principled
than explicit SGD. Furthermore, it indicates possible improvements for im-
plicit SGD. For example, the prior in Eq. (29) could be chosen to fit better
the parameter space (e.g., θ? being on the simplex). Krakowski et al. (2007)
and Nemirovski et al. (2009) have argued that appropriate implicit updates
can fit better in the geometry of the parameter space, and thus converge
faster. Setting up the parameters of the prior is also crucial. Whereas in
explicit SGD there is no statistical intuition behind learning rates γn, Eq.
(29) reveals that in implicit SGD the terms (γnCn)−1 encode the statistical
information up to iteration n. It follows immediately that it is optimal, in
general, to set γnCn = I(θ?)

−1/n, which is a special case of Theorem 2.2.
The Bayesian formulation of Eq. (29) also explains the stability of implicit

SGD. In Theorem 2.1 we showed that the initial conditions are discounted
at an exponential rate, regardless of misspecification of the learning rates.
This stability of implicit SGD allows several ideas for improvements. For
example, constant learning rates could be used in implicit SGD to speed
up convergence towards a region around θ?. A sequential hypothesis test
could decide on whether θimn has reached that region or not, and switch to
the theoretically optimal 1/n rate accordingly. Alternatively, we could run
implicit SGD with AdaGrad learning rates and switch to 1/n rates when the
theoretical O(1/

√
n) variance of AdaGrad becomes larger than the O(1/n)

variance of implicit SGD. Such schemes using constant rates with explicit
SGD are very hard to do in practice because of instability.



32

Regarding statistical efficiency, a key technical result in this paper is that
the asymptotic variance of implicit SGD can be calculated exactly using The-
orem 2.2. Optimal learning rates were suggested in Eq. (10) that depend on
the eigenvalues of the unknown Fisher matrix I(θ?). In this paper, we used
second-order procedures of Section 2.2.1 to iteratively estimate the eigenval-
ues, however better methods are certainly possible and could improve the
performance of implicit SGD. For example, it is known that typical iterative
methods usually overestimate the largest eigenvalue and underestimate the
smallest eigenvalue, in small-to-moderate samples. This crucially affects the
behavior of stochastic approximations with learning rates that depend on
sample eigenvalues. Empirical Bayes methods have been shown to be supe-
rior in iterative estimation of eigenvalues of large matrices (Mestre, 2008),
and it would be interesting to apply such methods to design the learning
rates of implicit SGD procedures.

Regarding computational efficiency, we developed Algorithm 1 which im-
plements implicit SGD on a large family of statistical models. However, the
trick used in fitting the Cox proportional hazards model in Section 3.3 can be
more generally applied to models outside this family. For example, assume a
log-likelihood gradient of the form s(Xᵀθ;Y )G(θ;X,Y ), where both its scale
s(·) and direction G(·) depend on model parameters θ; this violates condi-
tions of Assumption 2.1(b). The implicit update in Eq. (4)—where Cn = I
for simplicity—would be θimn = θimn−1 + γns(X

ᵀ
nθimn ;Yn)G(θimn ;Xn, Yn), which

cannot be computed by Algorithm 1. One way to circumvent this problem
is to use an implicit update only on the scale and use an explicit update on
the direction, i.e., θimn = θimn−1 + γns(X

ᵀ
nθimn ;Yn)G(θimn−1;Xn, Yn). This form

of updates expands the applicability of implicit SGD.
Finally, hypothesis testing and construction of confidence intervals using

SGD estimates is an important issue that has remained unexplored. In exper-
iments of Section 4.1.2 we showed that implicit SGD is indeed asymptotically
normal in several simulation scenarios. However, as SGD procedures are it-
erative, there needs to be a rigorous and general method to decide whether
SGD iterates have converged to the asymptotic regime. Several methods,
such as bootstrapping the data set, could be used for that. Furthermore,
conservative confidence intervals could be constructed through multivariate
Chebyshev inequalities or other strategies (Marshall and Olkin, 1960).

5.1. Concluding remarks. In this paper, we introduced a new stochas-
tic gradient descent procedure that uses implicit updates at every iteration,
which we termed implicit SGD. Equation (28) shows, intuitively, that the
iterates of implicit SGD are a shrinked version of the standard iterates,
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where the shrinkage factor depends on the observed Fisher information ma-
trix. Thus, implicit SGD combines the computational efficiency of first-order
methods with the numerical stability of second-order methods.

In a theoretical analysis, we derived non-asymptotic upper bounds for the
mean-squared errors of implicit SGD iterates, and the asymptotic variance
of both explicit and implicit SGD iterates. Our analysis quantifies the effi-
ciency loss of SGD procedures, and suggests principled strategies to calibrate
a hyperparameter that is common to both explicit and implicit SGD proce-
dures, known as the learning rate. We illustrated the use of implicit SGD for
statistical estimation in generalized linear models, Cox proportional hazards
model, and general M-estimation problems.

Viewed as statistical estimation procedures, our results suggest that im-
plicit SGD has the same asymptotic efficiency to explicit SGD. However,
the implicit procedure is significantly more stable than the explicit one with
respect to misspecification of the learning rate. In general, explicit SGD
procedures are sensitive to outliers and to misspecification of the learning
rates, making it impossible to apply without problem-specific tuning. In the-
ory and in extensive experiments, implicit procedures emerge as principled
iterative estimation methods because they are numerically stable, they are
robust to tuning of hyper-parameters, and their standard errors are well-
predicted by theory. Thus, implicit stochastic gradient descent is poised to
become a workhorse of estimation from large data sets in statistical practice.

SUPPLEMENTARY MATERIAL

Supplement to “Asymptotic and finite-sample properties of es-
timators based on stochastic gradients”
(doi: COMPLETED BY THE TYPESETTER; .pdf). The proofs of all tech-
nical results are provided in an online supplement (Toulis and Airoldi, 2016).
There, we also provide numerical results that extend the results in Section 4
of this article—referred to as the “main paper” in the supplement.
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