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Abstract 

An analysis on selecting cutting speed, cutting feed and depth of cut when collecting data for the Colding Tool Life Model based on Woxen’s 

Equivalent Chip Thickness was performed to achieve the lowest possible model error. All possible combinations of a large data set were evaluated 

with regard to model error. This work shows that an increase of ratio between the highest and lowest cutting speed, feed, depth of cut and tool 

life within the five included tool life tests increases the likelihood of an accurate model. Further, to ensure an accurate model, it is not enough to 

have a large ratio of one single parameter, but a large ratio in all parameters is needed. The paper also presents a suggestion on how to select the 

cutting data points, derived from the best performing tool life models. It is concluded that one should aim to have one pair of cutting data points 

with equal equivalent chip thickness while varying cutting speed and three more test points with different equivalent chip thickness. 

1. Introduction

Nomenclature 

MR metal removed 

T tool life 

ap  depth of cut 

f feed 

he Woxén chip thickness 

rε nose radius 

vc cutting speed 

κ major cutting angle 

K, H, M, N0, L are model constants based on curve fitting 

The ability to predict tool life and cutting data (cutting speed 

vc, feed f and depth of cut ap) in metal cutting for a tool engaged 

with a work piece material is of growing interest. Prediction of 

cutting data is for example needed since tool manufactures 

increasingly present more of this type of information to end 

users on various web based systems. Predicting tool life and 

cutting data is normally done with exponential functions 

including a number of model constants. The most common 

models are the Taylor tool life equation and the Colding tool 

life equation, where f and ap are represented by Woxen’s 

equivalent chip thickness he in the latter [1,2,3]. The Colding 

model has proven to work well for prediction of both cutting 

data and tool life as shown by Johansson [4] and Hägglund [5], 

among others, and outperforms the Taylor model. In this study, 

the Colding model is investigated. 

http://www.sciencedirect.com/science/journal/22128271


When creating a tool life model, a number of tests are 

necessary for the specific combination of work material and 

tool grade. Each test comes with a cost of machine time, 

operator time, work material and tool material. This cost is 

pushing tool manufactures and researchers to limit the amount 

of testing, if possible, without increasing the model error. 

Colding discussed this issue in several papers [6,7] where he 

investigated the number of model constants needed for a well 

functioning model while still limiting the number of 

experimental tests. He concluded that 5 constants are sufficient 

within a reasonable work load of testing. Johansson et al [8] 

investigated the importance of including enough tests to create 

a reliable Colding model and concluded that the model for the 

test series used in the investigation improved significantly when 

the number of tests was increased from 5 to 10. In the 

investigation, the test points were randomly selected from a 

larger set of test points and it was suggested that greater care 

should be taken on how to select the test points.  

Fig 1. Colding’s suggestion of locating the test points. 

In his work, Colding suggested one possible way of selecting 

the cutting data points where the data points represent a large 

window of cutting data. As presented in Fig. 1, 5 points should 

be selected in two pairs of equivalent chip thickness he and 

cutting speed vc plus one additional center point to enable for 

simple calculation and a reliable model [6]. However, selecting 

test points according to Colding’s suggestion is not always 

sufficient due to the fact that several of the test points can be 

outside applicable cutting data, allowing for phenomena like 

built up edges, vibration, poor chip breaking, plastic 

deformation or economically insufficient tool life.  

The aim of this work is thus to investigate how the 5 test-

point locations should be selected in regard to vc, f and ap to 

minimize the risk of a poor tool life model. Moreover, the 

location of the test points tested should help to avoid undesired 

phenomena due to cutting data selected outside of the 

applicable cutting data range. An improved methodology of 

selecting the locations of the test points will limit the amount of 

experimental testing and hence, limit the cost of creating tool 

life models with low model errors. 

2. Test setup

A total of 22 experimental tests were used for the data 

presented in table 1. Tool life was recorded when machining 

C45 E (SS 1672) in longitudinal turning according to ISO 

3685:1993 [9] using industry standard coated cemented carbide 

inserts. No cooling was applied. A wear criterion was set to 

maximum flank wear 0.3 mm or maximum crater wear 0.5 mm. 

When reaching this stage, the tool was considered worn out and 

the tool life was recorded.  

The 22 data points (table 1) are defined as: 

cutting data point - a test point based on vc, f and ap. 

tool performance point - a tested point for a defined vc, f and 

ap with a corresponding tool life T. 

Table 1. The 22 tool performance points used. 

Equation 1 gives the Colding equation and equation 2 gives 

Woxén equivalent chip thickness. 

𝑣𝑐 = 𝑒[𝐾−
(𝑙𝑛(ℎ𝑒)−𝐻)2

4∙𝑀
−(𝑁0−𝐿∙𝑙𝑛(ℎ𝑒))∙𝑙𝑛(𝑇)]

 (1) 

 ℎ𝑒 =
𝑎𝑝∙𝑓

𝑎𝑝−𝑟(1−𝑐𝑜𝑠𝜅)

𝑠𝑖𝑛 𝜅
+𝜅∙𝑟𝜀+

𝑓

2

(2) 

A matlab script was created to pick 5 tool performance 

points out of 22 possible points and then to use the built in 

curve fitting tool [10], to calculate the Colding model constants 

K, H, M, N0 and L. No upper or lower limits were applied on 

the constants. The calculated model was thereafter tested on the 

full 22 tests series and the RMS error of the model was 

calculated. This procedure was then carried out for all 26 334 

possible combinations of tool performance points and a total of 

Test 

No. 

Depth of 

cut 

(mm) 

Feed 

(mm/rev) 

Cutting 

speed 

(m/min) 

E. Chip 

thickness 

(mm) 

Tool life 

(min) 

1 3.5 0.50 260 0.416 7.65 

2 3.5 0.50 245 0.416 9.51 

3 3.5 0.50 230 0.416 13.17 

4 3.5 0.50 215 0.416 17.55 

5 3.5 0.50 200 0.416 20.34 

6 3.5 0.50 185 0.416 30.24 

7 3.5 0.50 170 0.416 33.85 

8 3.5 0.50 150 0.416 71.03 

9 2.0 0.35 355 0.266 10.05 

10 2.0 0.15 490 0.119 12.24 

11 2.0 0.25 410 0.194 14.34 

12 1.5 0.20 455 0.146 14.17 

13 3.0 0.20 430 0.169 18.70 

14 2.0 0.25 420 0.194 9.06 

15 2.0 0.35 365 0.266 7.00 

16 1.5 0.30 405 0.214 11.20 

17 2.5 0.40 330 0.317 4.64 

18 2.0 0.25 420 0.194 9.66 

19 2.0 0.35 365 0.266 10.65 

20 1.5 0.30 405 0.214 13.45 

21 2.5 0.35 330 0.279 13.29 

22 2.5 0.40 330 0.317 10.74 



26 334 Colding models with respective model constants and 

error were created and evaluated. 

For each model, the ratio of cutting speeds vc, feeds f, depth 

of cuts ap, equivalent chip thicknesses he, tool life T, and metal 

removed MR of the included tool performance points were 

calculated as equation (3), where x can be substituted for any 

previously mentioned parameter. The total testing time (4) and 

the total amount of metal removed from the work piece (5) was 

also calculated for each Colding model, as these are the driving 

factor of costs in tool life testing. 

𝑟𝑎𝑡𝑖𝑜(𝑥) =
𝑥𝑚𝑎𝑥

𝑥𝑚𝑖𝑛
(3) 

𝑇𝑚𝑜𝑑𝑒𝑙 = 𝑇1 + 𝑇2 + 𝑇3 + 𝑇4 + 𝑇5  (4)

𝑀𝑅𝑚𝑜𝑑𝑒𝑙 = 𝑀𝑅1 + 𝑀𝑅2 + 𝑀𝑅3 + 𝑀𝑅4 + 𝑀𝑅5 (5)

3. Result and Discussions

3.1. Influence of parameters 

Fig. 2 shows the exponential fit of the increase of error when 

the average ratio decreases. It can be noted that the ratio of vc 

has a bigger influence on model error than the ratio of he, and 

that the ratio of f has a more significant influence on the model 

error than the ratio of ap. Fig 3 shows the exponential fit of the 

increase of error when the average ratio decreases for vc, he and 

T. As shown, the ratio of tool life T is more significant than the 

ratio of vc. It is important to notice that the ratio of the different 

parameters, i.e. the highest and the lowest vc compared to the 

highest and the lowest he, varies and one should therefore be 

careful when comparing the data. What can be concluded is that 

the ratio of all parameters influences the model error. 

Fig 2. Model error in relation to the average ratio of vc , f, ap and he. 

Fig. 4 shows the relationship between model error and the 

ratio of vc and he and fig. 5 shows the relationship between the 

ratio of vc, he and T and the model error. Each Colding model 

is represented with (●) and an exponential curve fit of the 

average ratio for any specific model error is represented with (

●).

Fig 3. Model error in relation to the average ratio of vc, he and T. 

Fig 4. Model error in relation to vc and he. Each Colding model is 

represented with (●) and an exponential curve fit of the average 

ratio for any specific model error is represented with (●). 

Fig 5. Model error in relation to vc and he and T. Each Colding 

model is represented with (●) and an exponential curve fit of the 

average ratio for any specific model error is represented with (●). 
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The main cost driving factor in tool performance testing is 

the time used for testing and the material consumed by testing. 

Fig. 6 shows the model error in relation to total time of testing, 

eq. 4, and fig. 7 shows the model error in relation to total 

amount of work piece material used, eq. 5, where (●) represent 

Colding models. 

Fig 6.  Model error in relation to total time used for testing; Each Colding 

model is represented with (●) and an exponential curve fit of the average 

tool life for any specific model error is represented with (●). 

Fig 7. Model error in relation to the amount of work piece material used. 

Each Colding model is represented with (●) and an exponential curve fit of 

the material used for any specific model error is represented with (●). 

The most cost efficient way of collecting data for any 

Colding tool life model is to aim for the models found in the 

lower left corner of fig. 6 and fig. 7, which require short testing 

time or low material usage. The result of this study shows that 

when testing with low total test time or low material use, the 

risk of potential error increases. It can be noted, though, that if 

these models are studied closely, it is not possible to find 

reasons why some models have high accuracy and some have 

poor accuracy for cutting data prediction based on the selection 

of the initial cutting data points creating the specific model. 

3.2. Optimal selection of test points 

This study shows that the ratio the parameters vc, he and T 

all influence the model error. An increase of ratio in any of the 

parameters lowers the risk of creating an inaccurate tool life 

model. However, a large ratio of one single parameter alone 

will not guarantee for an accurate tool life model. Only when 

the ratio of vc, he and T combined are as large as possible is the 

risk of creating an inaccurate model reduced.  

According to fig 5, the highest ratio of vc, he and T is 6.1. A 

total of 172 combinations of cutting data points and Colding 

models were created with this highest ratio with a model error 

from 3.24 % to 19.24%. An analyze of these models shows that 

the following selections of cutting data points should be 

avoided: 

 Different he in each cutting data point.

 More than one pair of he in the test series.

 Three or more cutting data points with the same he

value.

Based on this conclusion we suggest the following selection 

of cutting data points: 

 Maximize the range of cutting speed.

 Maximize the range of equivalent chip thickness.

 Maximize the range of tool life.

 Include two cutting data points using the same

equivalent chip thickness.

To fill these criteria but avoid issues like plastic deformation 

and build up edges, a suggestion of placing the five test points 

is presented in fig. 8 and selected with the following criteria: 

1. Smallest possible he within working range and high

vc.

2. Aiming for economical tool life and equivalent

chip thickness.

3. Minimum tool life and relative high he.

4. Maximum he within working range and economical

tool life.
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5. Maximum he, within working range, low cutting

speed and long tool life.

Fig 8. . Suggestion on placement of the cutting data points in a 

test series of five tests. 

In sum, it is clear that the above mentioned method can 

reduce the amount of time and work material consumed in 

testing whilst limiting the risk of creating a poor tool life model. 

Thus, this work offers a cost effective approach for collecting 

data for tool life and cutting data modeling. 

4. Conclusion

A total of 22 tool performance tests from turning C45 E (SS 

1672) were used to evaluate the optimal selection of cutting 

data points to create a Colding tool life model. Five tool 

performance points were selected, and a tool life model was 

calculated. This model was then tested on all available data and 

the model error was recorded. This was done for all 26 334 

possible combinations. To reduce cost, time and environmental 

impact of testing, the aim of this work was to suggest a novel 

method on select five cutting data points and still creating an 

accurate model. 

The result shows that an increase of ratio between the 

highest and lowest cutting speed, equivalent chip thickness and 

tool life within the five tool performance points  increases the 

likelihood of an accurate model. The work also shows that it is 

not enough to have a large ratio of one single parameter but it 

is crucial to have a large ratio in all parameters to ensure an 

accurate model. 

Further, a suggestion of how to place the cutting data points 

is presented, derived from the best performing tool life models 

with a high total ratio. It is concluded that one should aim to 

have on pair of cutting data points with equal equivalent chip 

thickness while varying cutting speed and three more cutting 

data points with different equivalent chip thickness. This 

conclusion contradicts the work of Colding [5] suggesting the 

cutting data points to be selected in a square placing the cutting 

data points in each corner as shown in fig. 1 and then adding 

one cutting data point in the center of the square. 
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