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NMDA-type glutamate receptors are ligand-gated ion channels that mediate a Ca2+-permeable component of excitatory 
neurotransmission in the central nervous system (CNS). They are expressed throughout the CNS and play key physiological 
roles in synaptic function, such as synaptic plasticity, learning, and memory. NMDA receptors are also implicated in the 
pathophysiology of several CNS disorders and more recently have been identified as a locus for disease-associated genomic 
variation. NMDA receptors exist as a diverse array of subtypes formed by variation in assembly of seven subunits (GluN1, 
GluN2A-D, and GluN3A-B) into tetrameric receptor complexes. These NMDA receptor subtypes show unique structural 
features that account for their distinct functional and pharmacological properties allowing precise tuning of their 
physiological roles. Here, we review the relationship between NMDA receptor structure and function with an emphasis on 
emerging atomic resolution structures, which begin to explain unique features of this receptor.
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Introduction
The vast majority of the excitatory neurotransmission in the 
central nervous system (CNS) is mediated by vesicular release of 
glutamate, which activates both pre and postsynaptic G-protein–
coupled metabotropic glutamate receptors and ionotropic gluta-
mate receptors (iGluRs). iGluRs are ligand-gated cation channels 
that are divided into three major structurally distinct functional 
classes: the α-amino-3-hydroxy-5-methyl-4-isoxasolepropionic 
acid (AMPA) receptors, kainate receptors, and NMDA receptors 
(Traynelis et al., 2010; Fig. 1 A). The nomenclature for these func-
tional classes was initially based on the activating agonist, and 
subsequent molecular cloning revealed cDNAs encoding mul-
tiple subunits within the three classes of iGluRs. An intriguing 
fourth class of iGluRs (GluD1-2) have structural resemblance to 
AMPA and kainate receptors but do not function as ion channels 
under normal circumstances (Yuzaki and Aricescu, 2017). Sev-
eral unique properties distinguish NMDA receptors from other 
glutamate receptors, including voltage-dependent block by extra-
cellular Mg2+, high permeability to Ca2+, and the requirement for 
binding of two coagonists, glutamate and glycine (or d-serine), for 
channel activation (Traynelis et al., 2010). These features have a 
profound impact on the physiological roles of NMDA receptors 
and have therefore been the topic of intense investigation.

At central synapses, glutamate release activates iGluRs that 
mediate an inward current and thereby depolarize the postsyn-

aptic neurons. These excitatory postsynaptic currents (EPSCs) 
can be described primarily by two temporally distinct compo-
nents corresponding to activation of AMPA and NMDA receptors. 
AMPA receptors mediate a synaptic current with rapid rise time 
and decay, whereas NMDA receptor activation mediates a current 
that activates more slowly with a time course that endures for 
tens to hundreds of milliseconds (Hestrin et al., 1990; Sah et al., 
1990; Trussell et al., 1993; Geiger et al., 1997; Fig. 1 B). At rest, the 
NMDA receptor pore is strongly blocked in a voltage-dependent 
manner by extracellular Mg2+, but this block can be released by 
the depolarization that accompanies rapid activation of AMPA 
receptors, particularly when there is a series of closely spaced 
synaptic events (Fig. 1 C). Thus, the current mediated by NMDA 
receptors is dependent on both the membrane potential and 
frequency of synaptic release, rendering these receptors coinci-
dence detectors that respond uniquely to simultaneous presyn-
aptic release of glutamate and postsynaptic depolarization with 
a slow synaptic current that allows substantial influx of external 
Ca2+ into the dendritic spine (Bourne and Nicoll, 1993; Seeburg 
et al., 1995; Nevian and Sakmann, 2004). This increase in intra-
cellular Ca2+ serves as a signal that leads to multiple changes in 
the postsynaptic neuron, including changes that ultimately pro-
duce either short-term or long-term changes in synaptic strength 
(Lau and Zukin, 2007; Holtmaat and Svoboda, 2009; Traynelis et 
al., 2010; Higley and Sabatini, 2012; Zorumski and Izumi, 2012; 
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Paoletti et al., 2013; Volianskis et al., 2015). The nature of these 
changes (e.g., increased or decreased synaptic strength) depends 
on the frequency and duration of synaptic NMDA receptor ac-
tivation (Citri and Malenka, 2008; Granger and Nicoll, 2013), 
thereby providing the brain with a mechanism for encoding in-
formation (Hunt and Castillo, 2012; Morris, 2013).

NMDA receptors are unique among synaptic receptors in their 
requirement for the binding of two agonists, glutamate and glycine 
(or d-serine; Johnson and Ascher, 1987; Kleckner and Dingledine, 
1988; Benveniste and Mayer, 1991; Clements and Westbrook, 1991, 
1994). Synaptic NMDA receptors are temporally controlled by the 
synaptic release of glutamate for activation, because extracellular 
glycine (or d-serine) is thought to be continuously present at fairly 
constant concentration. The distinction of glycine or d-serine ap-
pears to depend on brain region in addition to the subcellular lo-
calization of the receptor (Wolosker, 2007; Oliet and Mothet, 2009; 
Mothet et al., 2015). For example, some data suggested that d-ser-
ine is the dominant coagonist at synapses, with glycine being more 
important at extrasynaptic sites (Papouin et al., 2012). Although 
this is an intriguing subdivision, more work will be required to 
confirm this idea as a general principle. Furthermore, glycine and 
d-serine are unlikely to be present at concentrations that saturate 
the coagonist binding site (Berger et al., 1998; Bergeron et al., 1998; 
Billups and Attwell, 2003). Thus, the requirement for a coagonist 
enables an additional layer of regulation of NMDA receptor func-
tion, in which synaptic activation can be modulated by changes 
in the ambient levels of glycine/d-serine (Ahmadi et al., 2003; 
Sullivan and Miller, 2012; Meunier et al., 2017).

There is a rapidly increasing body of data from crystal or 
cryo-EM structures of intact NMDA receptors or individual do-
mains, which provides a structural framework in which to consider 
biophysical properties of the receptors and allosteric modulation. 
In this review, we will focus on how emerging structural under-
standing has provided functional insight into key properties of the 
NMDA receptor that are relevant to its roles in the CNS.

Subunit composition of NMDA receptors
Seven genes encode the NMDA receptor subunits: a single GRIN1 
gene encodes GluN1, four GRIN2 genes encode GluN2A-D, and 

two GRIN3 genes encode GluN3A-B (Traynelis et al., 2010). All 
known NMDA receptors are heterotetrameric assemblies of 
subunits, which together form a central ion channel pore with 
striking similarity to an inverted potassium channel. The stoi-
chiometry of the NMDA receptor has been definitively shown to 
be two glycine-binding GluN1 and two glutamate-binding GluN2 
subunits (i.e., GluN1/2 receptors; Ulbrich and Isacoff, 2007; 
Karakas and Furukawa, 2014; Lee et al., 2014; Fig. 2). However, 
subunit assembly and physiological roles of the glycine-bind-
ing GluN3 subunits remain elusive, and the GluN3 subunits will 
not be considered in this review (Cavara and Hollmann, 2008; 
Henson et al., 2010; Low and Wee, 2010; Pachernegg et al., 2012; 
Kehoe et al., 2013; Pérez-Otaño et al., 2016).

When glutamate is released into the synaptic cleft, it reaches 
a high concentration (∼1.1 mM) for a brief duration of time, de-
caying with a time constant of ∼1.2 ms (Clements et al., 1992) as 
a result of diffusion and active removal of glutamate from the 
synaptic cleft by excitatory amino acid transporters (i.e., gluta-
mate transporter; Divito and Underhill, 2014). In the synaptic 
cleft, glutamate will bind to AMPA (and/or kainate) and NMDA 
receptors, inducing the necessary conformational changes that 
trigger opening of the ion channel pore, a process referred to as 
gating. The NMDA receptor–mediated component of the EPSC 
continues to pass current for tens to hundreds of milliseconds 
after synaptic glutamate is removed (Lester et al., 1990), which 
is in part a reflection of agonist binding affinity but also because 
the receptor activation mechanism involves pregating steps as 
well as repeated transitions between glutamate-bound open and 
closed conformational states until glutamate eventually unbinds 
and the EPSC is terminated (Lester et al., 1990; Lester and Jahr, 
1992; Erreger et al., 2005a; Zhang et al., 2008). The functional 
consequences of the gating reaction mechanism are strongly 
dependent on the identity of the GluN2 subunit (Monyer et al., 
1992, 1994; Vicini et al., 1998; Wyllie et al., 1998). The four dif-
ferent GluN2 subunits thus create substantial diversity among 
NMDA receptors, and assembly of receptors that contain differ-
ent GluN2 subunits with distinct properties allows tuning of the 
synaptic response time course and variation in parameters that 
control synaptic strength and plasticity. This diversity exerts 

Figure 1. Functional classes of iGluRs. (A) iGluRs are divided into AMPA, kainate, and NMDA receptors with multiple subunits cloned in each of these func-
tional classes. (B) EPSCs from central synapses can be divided into fast AMPA or slow NMDA receptor–mediated components in the absence of Mg2+ using the 
AMPA receptor antagonist CNQX or the NMDA receptor antagonist AP5. The figure is adapted from Traynelis et al. (2010). (C) The relationships between NMDA 
receptor current response and membrane potential (i.e., holding potential) in the presence and absence of 100 µM extracellular Mg2+ reveal the voltage-depen-
dent Mg2+ block, which is relieved as the membrane potential approaches 0 mV (i.e., with depolarization). Data are from Yi et al. (2018).
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many effects on neuronal function, circuit properties, and ner-
vous system development.

The glycine-binding GluN1 subunit
The GluN1 subunit, which binds glycine and d-serine, is an oblig-
atory subunit in all functional NMDA receptors and is therefore 
widely expressed in virtually all central neurons. Three exons in 
the GluN1 subunit can be alternatively spliced to produce eight 
different isoforms (Durand et al., 1992; Nakanishi et al., 1992; 
Sugihara et al., 1992; Hollmann et al., 1993). Exon 5 encodes 21 
amino acids in the GluN1 amino-terminal domain (ATD), exon 21 
encodes 37 amino acids in the carboxyl-terminal domain (CTD), 
and exon 22 encodes 38 amino acids in the CTD. Deletion of exon 
22 eliminates a stop codon and produces a frameshift, which re-
sults in the inclusion of 22 alternative amino acids in the mature 
polypeptide chain. The GluN1 splice variants show variation in 
regional and developmental profiles (Laurie and Seeburg, 1994; 
Zhong et al., 1995; Paupard et al., 1997) and endow the receptor 
with unique function and pharmacology (see below).

One important property of NMDA receptors containing GluN1 
with residues encoded by exon 5 (e.g., GluN1-1b) is reduced ag-
onist potency (i.e., increased EC50, the concentration that pro-
duces a half-maximal response; Traynelis et al., 1995, 1998). 
Consistent with the effect on agonist potency, the GluN1-1b splice 
variant accelerates deactivation of the NMDA receptor response 
after removal of glutamate, resulting in EPSCs with a shorter 
duration (Rumbaugh et al., 2000; Vance et al., 2012; Swanger et 
al., 2015; Yi et al., 2018). These actions may reflect interactions 
between the ATD and both the GluN1 and GluN2 agonist-binding 
domains (ABDs) created by residues encoded by exon 5 (Regan 
et al., 2018). In addition, GluN1-1b alleviates inhibition of NMDA 
receptor function by GluN2B-selective antagonists, such as ifen-
prodil, reduces inhibition by extracellular Zn2+ and protons, and 

virtually eliminates potentiation by extracellular polyamines 
(Durand et al., 1992, 1993; Zhang et al., 1994; Traynelis et al., 1995, 
1998; Pahk and Williams, 1997; Mott et al., 1998; Rumbaugh et al., 
2000; Yi et al., 2018).

Alternative splicing of exons 21 and 22 changes the amino 
acid composition of the intracellular GluN1 CTD, which interacts 
with PSD-95, calmodulin, and the neurofilament subunit NF-L 
(Traynelis et al., 2010). These proteins are involved in surface 
trafficking and anchoring of receptors at synaptic sites, and 
alternative splicing of exons 21 and 22 influences cell surface 
distribution of NMDA receptors (Scott et al., 2001, 2003; Mu et 
al., 2003; Wenthold et al., 2003). The CTD of GluN1 is a binding 
site for calmodulin (Ehlers et al., 1996; Iacobucci and Popescu, 
2017b), as well as a target of kinases and phosphatases (Tingley 
et al., 1993, 1997). The relationships between functional roles and 
structural features of the residues encoded by GluN1 exon 21 and 
22 are not yet fully understood.

The glutamate-binding GluN2 subunits
The four glutamate-binding GluN2A-D subunits provide the 
CNS with a means of controlling NMDA receptor properties as 
a function of developmental period and brain region (Fig. 3 A). 
Many studies have described the variation in expression profiles 
of these subunits, which ultimately control important features 
of the synaptic NMDA receptor component (Monyer et al., 1992, 
1994; Watanabe et al., 1992; Ishii et al., 1993; Akazawa et al., 1994; 
Zhong et al., 1995). Attempts to pharmacologically control spe-
cific NMDA receptor subtypes have, not surprisingly, focused 
on the development of small molecules that can distinguish be-
tween the GluN2 subunits (Ogden and Traynelis, 2011; Strong et 
al., 2014; Vyklicky et al., 2014; Zhu and Paoletti, 2015; Hackos and 
Hanson, 2017; Burnell et al., 2018). These efforts are driven in 
part by the hope that GluN2 subunit–selective pharmacological 
probes will allow targeting of unique circuits at specific devel-
opmental periods to bring about a desired therapeutically ben-
eficial effect.

Among the many differences in functional properties gov-
erned by the GluN2 subunit, several are particularly noteworthy 
(Erreger et al., 2004; Traynelis et al., 2010; Paoletti et al., 2013; 
Wyllie et al., 2013; Glasgow et al., 2015). The potency of gluta-
mate is influenced by the GluN2 subunits. For example, the EC50 
for glutamate-activating NMDA receptors containing two GluN1 
and two GluN2D subunits is more than fivefold lower (i.e., more 
potent) than that for GluN1/2A, whereas GluN1/2B and GluN1/2C 
receptors show intermediate EC50 values (Erreger et al., 2007; 
Chen et al., 2008; Hansen et al., 2008). The time course of deac-
tivation after removal of glutamate, which controls the duration 
of the synaptic EPSC (Lester et al., 1990), varies over 100-fold 
for the different GluN2 subunits (Fig. 3 B). The time constants 
describing the exponential deactivation time course (τdecay) 
are ∼40–50 ms for GluN1/2A, ∼300–400 ms for GluN1/2B and 
GluN1/2C, and ∼4 s for GluN1/2D (Monyer et al., 1992; Vicini et 
al., 1998; Wyllie et al., 1998; Yuan et al., 2009). Interestingly, in-
trareceptor allosteric interactions render the potency of glycine 
and d-serine at the GluN1 subunit sensitive to the identity of the 
GluN2 subunit (Sheinin et al., 2001; Chen et al., 2008; Dravid et 
al., 2010; Jessen et al., 2017; Maolanon et al., 2017). For example, 

Figure 2. Subunit stoichiometry and subunit arrangement of GluN1/2 
NMDA receptors. The crystal structure of the intact GluN1/2B NMDA recep-
tor (the intracellular CTD omitted from structure; Protein Data Bank accession 
no. 4PE5; Karakas and Furukawa, 2014) definitively demonstrated that GluN1 
and GluN2 subunits assemble as heterotetramers with an alternating pattern 
(i.e., 1-2-1-2). The NMDA receptor is therefore comprised of two glycine-bind-
ing GluN1 and two glutamate-binding GluN2 subunits (i.e., GluN1/2 receptors) 
that form a central cation-permeable channel pore.

4PE5
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the potency of glycine at GluN1/2A receptors is ∼10-fold less than 
at GluN1/2D receptors (Chen et al., 2008).

Multiple biophysical properties are also controlled by the 
GluN2 subunit. GluN1/2A and GluN1/2B have higher single-chan-
nel conductance than GluN1/2C and GluN1/2D receptors (Erreger 
et al., 2004; Traynelis et al., 2010; Paoletti et al., 2013; Wyllie et 
al., 2013; Glasgow et al., 2015; Fig. 3 C). GluN1/2A and GluN1/2B 
also show higher Ca2+ permeability and are more sensitive to 
Mg2+ block than GluN1/2C and GluN1/2D (Monyer et al., 1992, 
1994; Burnashev et al., 1995; Kuner and Schoepfer, 1996; Qian et 
al., 2005; Siegler Retchless et al., 2012). These biophysical dif-
ferences are important, as the sensitivity to voltage-dependent 
Mg2+ block can influence the temporal window for spike timing–
dependent plasticity (Nevian and Sakmann, 2004, 2006; Carter 
and Jahr, 2016). Furthermore, the probability that the channel 
will be open when all agonist-binding sites are occupied by ago-
nists (i.e., the open probability) is strongly dependent on GluN2 
identity (Fig.  3  C). The open probability is ∼0.5 for recombi-
nant GluN1/2A, ∼0.1 for GluN1/2B, and <0.02 for GluN1/2C and 
GluN1/2D (Erreger et al., 2004; Traynelis et al., 2010; Paoletti et 
al., 2013; Wyllie et al., 2013; Glasgow et al., 2015). The GluN2 sub-
units also control inhibition of NMDA receptors by endogenous 
modulators, such as protons and extracellular Zn2+ (Traynelis et 
al., 1995, 1998; Paoletti et al., 1997).

The amino acid sequence of the intracellular CTD is highly 
variable among GluN2 subunits, thereby producing pronounced 
differences in interaction sites for phosphatases, kinases, and 
proteins responsible for anchoring at synaptic sites and surface 
trafficking (Wenthold et al., 2003; Traynelis et al., 2010; Sanz-
Clemente et al., 2013; Aman et al., 2014; Lussier et al., 2015). As a 
result of this variation, the GluN2 subunits therefore influence 
cell-surface expression, subcellular localization, and recycling/
degradation of NMDA receptor subtypes.

Diheteromeric and triheteromeric NMDA receptors
The NMDA receptor subunits assemble into receptors with vary-
ing composition and distinct functional properties and roles in 
the CNS. At least two different GluN2 subunits are expressed in 
most neurons, and thus virtually all neurons have the oppor-
tunity to signal through triheteromeric NMDA receptors that 
contain two GluN1 and two different GluN2 subunits (Chazot et 
al., 1994; Sheng et al., 1994; Chazot and Stephenson, 1997; Luo 
et al., 1997; Cathala et al., 2000; Piña-Crespo and Gibb, 2002; 
Brickley et al., 2003; Jones and Gibb, 2005; Al-Hallaq et al., 2007; 
Rauner and Köhr, 2011; Tovar et al., 2013; Huang and Gibb, 2014; 
Swanger et al., 2015). Multiple lines of evidence support the ex-
pression of triheteromeric NMDA receptors of the GluN1/2A/2B, 

Figure 3. Expression and functional properties of NMDA receptor sub-
types determined by the GluN2 subunit. (A) Autoradiograms obtained by 
in situ hybridizations of oligonucleotide probes to parasagittal sections of rat 
brain at indicated postnatal (P) days reveal distinct regional and developmen-
tal expression of GluN2 subunits. Fig. 3 A is modified from Akazawa et al., 1994 
with permission from the Journal of Comparative Neurology. (B) Whole-cell 
patch-clamp recordings of responses from recombinant diheteromeric NMDA 
receptor subtypes expressed in HEK293 cells. The receptors are activated by 
a brief application of glutamate (1 ms of 1 mM glutamate) indicated by the 

open tip current in the upper trace. Fig. 3 B is adapted from Vicini et al. (1998) 
with permission from the Journal of Neurophysiology. (C) Single-channel 
recordings of currents from outside-out membrane patches obtained from 
HEK293 cells expressing recombinant NMDA receptor subtypes. The sin-
gle-channel recordings demonstrate distinct open probabilities and channel 
conductances depending on the GluN2 subunit in the diheteromeric NMDA 
receptor. Highlights of individual openings are shown on the left. Adapted 
from Yuan et al. (2008).
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GluN1/2A/2C, and GluN1/2B/2D subtypes in neurons (Chazot et 
al., 1994; Sheng et al., 1994; Takahashi et al., 1996; Chazot and 
Stephenson, 1997; Luo et al., 1997; Sundström et al., 1997; Dunah 
et al., 1998; Tovar and Westbrook, 1999; Piña-Crespo and Gibb, 
2002; Brickley et al., 2003; Dunah and Standaert, 2003; Jones 
and Gibb, 2005; Lu et al., 2006; Al-Hallaq et al., 2007; Brothwell 
et al., 2008; Gray et al., 2011; Rauner and Köhr, 2011; Tovar et al., 
2013; Huang and Gibb, 2014; Swanger et al., 2015, 2018). Many 
important properties of triheteromeric NMDA receptors in the 
CNS are still poorly understood, and the combinations of GluN2 
subunits that can form triheteromeric receptors have not been 
fully established. This knowledge gap persists because trihetero-
meric NMDA receptors have been difficult to study in isolation 
(Chazot et al., 1994; Brimecombe et al., 1997; Vicini et al., 1998; 
Tovar and Westbrook, 1999; Hatton and Paoletti, 2005; Hansen 
et al., 2014; Stroebel et al., 2014). That is, coexpression of GluN1 
with two different GluN2 subunits (e.g., GluN2A and GluN2B) 
will produce three populations of functional NMDA receptors, 
including diheteromeric GluN1/2A and GluN1/2B as well as tri-
heteromeric GluN1/2A/2B receptors (Brimecombe et al., 1997; 
Vicini et al., 1998; Hatton and Paoletti, 2005; Hansen et al., 2014; 
Stroebel et al., 2014). A wealth of information exists describing 
the function, pharmacology, and regulation of recombinant di-
heteromeric NMDA receptors that contain two copies each of 
GluN1 and a single type of GluN2 (e.g., GluN1/GluN2A). In con-
trast, relatively little is known about how the coassembly of two 
different GluN2 subunits affects receptor properties, including 
the deactivation time course, concentration dependence, and 
voltage dependence of Mg2+ block and the sensitivity to sub-
unit-selective allosteric modulators. Similarly, phosphoryla-
tion sites and trafficking properties of the intracellular GluN2 
CTDs have been extensively studied in diheteromeric receptors, 
whereas the regulation of triheteromeric NMDA receptors that 
possess two distinct GluN2 CTDs remains elusive (Tang et al., 
2010). Knowledge of the key NMDA receptor properties is an 
essential step to understand the roles of triheteromeric recep-
tors in the brain. One recent advance that has enabled a deter-
mination of the functional and pharmacological properties of 
some triheteromeric NMDA receptors has been to control cell 
surface expression of receptors with known GluN2 subunit com-
position (Hansen et al., 2014; Yi et al., 2017, 2018). This method 
has provided information about the properties of triheteromeric 
GluN1/2A/2B receptors, which are distinct from the properties 
of the diheteromeric receptors that contain composite subunits 
(Hansen et al., 2014; Stroebel et al., 2014; Cheriyan et al., 2016; 
Hackos et al., 2016; Serraz et al., 2016; Yi et al., 2016, 2018). Im-
portantly, these properties are not simply the average of the 
respective diheteromeric NMDA receptor properties. This new 
approach should allow new opportunities to develop therapeutic 
agents that target disease-relevant triheteromeric NMDA recep-
tors (Khatri et al., 2014; Yuan et al., 2014; Hackos et al., 2016; 
Serraz et al., 2016; Yi et al., 2016; Swanger et al., 2018).

NMDA receptor structure and function
All glutamate receptor subunits share a similar architecture that 
comprises four domains: a large extracellular ATD, a bilobed 

ABD, a pore-forming transmembrane domain (TMD), and an 
intracellular CTD (Fig. 4 A). The TMD is formed by three trans-
membrane helices (M1, M3, and M4) and a reentrant loop (M2). 
In iGluRs, the reentrant loop lines the intracellular portion of the 
ion channel pore, whereas elements of the third transmembrane 
segment (M3) form the extracellular region of the pore. Among 
NMDA receptor subtypes, the residues in the pore region, which 
influence ion permeation, are highly conserved. A key determi-
nant of ion permeation, which controls divalent ion permeabil-
ity and Mg2+ block, resides at the apex of the reentrant M2 loop 
and is often referred to as the Q/R/N site on the basis of amino 
acids at this position in AMPA, kainate, and NMDA receptors 
(Wollmuth, 2018).

The ATDs from each subunit adopt bilobed structures formed 
by the first ∼350 amino acids that associate as back-to-side het-
erodimers between GluN1 and GluN2. The ATDs play important 
roles in assembly and strongly modulate NMDA receptor func-
tion (Atlason et al., 2007; Gielen et al., 2009; Yuan et al., 2009; 
Farina et al., 2011). Furthermore, the ATDs create binding sites 
for allosteric modulators, including extracellular Zn2+ and a di-
verse series of GluN2B-selective antagonists (exemplified by if-
enprodil; Karakas et al., 2009, 2011; Romero-Hernandez et al., 
2016; Tajima et al., 2016; Fig. 4 B).

The ABD is formed by the S1 and S2 segments of the polypep-
tide chain, which are separated by the M1, M2, and M3 segments. 
The ABDs form kidney-shaped bilobed structures that contain 
an upper lobe (D1) and a lower lobe (D2) with the agonist-bind-
ing site residing in the cleft between these two lobes (Fig. 4 A). 
The ABD structure, intra- and intersubunit interactions, and its 
influence on receptor function have been studied for more than 
two decades. More recently, crystallographic and cryo-EM data 
have provided the first glimpses of the domain organization of 
inactive and active GluN1/2B NMDA receptors, providing mech-
anistic hypotheses by which the different domains and their cog-
nate ligands influence receptor function (Karakas and Furukawa, 
2014; Lee et al., 2014; Tajima et al., 2016; Zhu et al., 2016; Regan 
et al., 2018; Song et al., 2018). We will consider each of these do-
mains in more detail below.

Structure and function of GluN1 and GluN2 ABDs
Keinänen and colleagues were the first to demonstrate that re-
combinant glutamate receptor ABDs can be generated as soluble 
proteins by linking the S1 and S2 polypeptide sequences with 
an artificial peptide linker (Kuusinen et al., 1995; Arvola and 
Keinänen, 1996). Subsequent work by Gouaux and colleagues 
resulted in the first crystal structures of glutamate receptor 
ABDs (Armstrong et al., 1998; Armstrong and Gouaux, 2000). 
The water-soluble ABD proteins produced by this approach re-
tain ligand-binding activities comparable to those in full-length 
glutamate receptors, indicating that structural integrity and 
characteristics of the agonist-binding pocket are retained in iso-
lated ABDs. ABD structures for GluN1, GluN2, and GluN3 sub-
units have been solved in complex with agonists, antagonists, and 
allosteric modulators (Furukawa and Gouaux, 2003; Furukawa 
et al., 2005; Inanobe et al., 2005; Yao and Mayer, 2006; Yao et 
al., 2008, 2013; Vance et al., 2011; Hansen et al., 2013; Kvist et 
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al., 2013; Jespersen et al., 2014; Hackos et al., 2016; Volgraf et al., 
2016; Yi et al., 2016; Lind et al., 2017; Romero-Hernandez and 
Furukawa, 2017). In addition to NMDA receptor subunits, nu-
merous crystal structures for AMPA and kainate receptor sub-
units (Pøhlsgaard et al., 2011; Kumar and Mayer, 2013; Karakas et 
al., 2015) have provided insight into the mechanism underlying 
full and partial agonism, suggested molecular determinants of 
subunit selectivity, and demonstrated mechanism and binding 
pose for competitive antagonists.

The GluN2A ABD in complex with the GluN1 ABD provided 
the first structural information about a GluN1/GluN2 subunit 
interface within the NMDA receptor complex, in addition to the 
binding mode for glutamate and glycine between the two lobes 
(D1 and D2) of GluN2A and GluN1, respectively (Furukawa et al., 
2005; Fig. 5 A). Multiple water molecules reside in close prox-
imity to the agonists, and some form a hydrogen-bonding net-
work that interacts with the ligand. The glycine-binding pocket 
in GluN1 is considerably smaller and more hydrophobic than 
the glutamate-binding pocket in GluN2 (Furukawa and Gouaux, 
2003; Furukawa et al., 2005; Inanobe et al., 2005; Yao et al., 
2008, 2013). Residues within the glutamate-binding pocket that 
make atomic contacts with agonists or competitive antagonists 
are mostly conserved in the GluN2 subunits, and it has there-
fore proven difficult to identify ligands that bind to this site with 
strong selectivity between the different NMDA receptor sub-
types. However, recent crystallographic data have revealed the 
structural basis for binding of antagonists with modest selectiv-
ity (Lind et al., 2017; Romero-Hernandez and Furukawa, 2017). 
Selectivity in these cases is driven by space outside the conven-

tional binding pocket that competitive antagonists can exploit in 
a GluN2-dependent manner (Fig. 5 B).

The residues at the heterodimer interface between the GluN1 
and GluN2 ABDs modulate receptor function in several import-
ant ways. Three separate areas of contact between GluN1 and 
GluN2A can be seen in the ABD heterodimer crystal structures 
(referred to as sites I, II, and III; Furukawa et al., 2005; Fig. 5 A). 
Sites I and III consist of hydrophobic residues from both GluN1 
and GluN2, and nonpolar interactions between these residues 
mediate ABD heterodimerization (Furukawa et al., 2005). The 
heterodimeric arrangement of GluN1 and GluN2A ABDs is sim-
ilar to the homodimeric arrangement found in some AMPA and 
kainate receptors. In AMPA receptors, allosteric modulators such 
as cyclothiazide and aniracetam bind to sites equivalent to site 
I + III and site II, respectively, resulting in block of desensiti-
zation and slowing of deactivation speeds (Sun et al., 2002; Jin 
et al., 2005). The aromatic ring of Tyr535 in GluN1 has a posi-
tional overlap with that of aniracetam bound in AMPA receptors, 
therefore acting like a natural “tethered ligand” incorporated 
in the primary sequence (Furukawa et al., 2005). Consistently, 
mutations of Tyr535 in GluN1 alters deactivation time course of 
NMDA receptors, suggesting that the heterodimer interface can 
influence factors controlling deactivation, such as agonist disso-
ciation or channel open time (Furukawa et al., 2005; Borschel et 
al., 2015). Recent crystallographic studies have shown that site 
II of the GluN1/2A ABD heterodimer contains the binding sites 
for both positive and negative allosteric modulators with strong 
selectivity for GluN2A (Hackos et al., 2016; Volgraf et al., 2016; Yi 
et al., 2016). Together, these results identify the heterodimer ABD 

Figure 4. Domain organization and ligand-binding sites in NMDA receptors. (A) The linear representation of the polypeptide chain illustrates the segments 
that form the four semiautonomous subunit domains shown in the cartoon, which are the extracellular ATD, the ABD, the TMD formed by three transmem-
brane helices (M1, M2, and M4) and a membrane reentrant loop (M2), and the intracellular CTD. The ABD is formed by two polypeptide segments (S1 and S2) 
that fold into a bilobed structure with an upper lobe (D1) and lower lobe (D2). The agonist-binding site is located in the cleft between the two lobes. (B) The 
crystal structure of the GluN1/2B NMDA receptor (Protein Data Bank accession no. 4PE5; Karakas and Furukawa, 2014) shows the subunit arrangement and 
the layered domain organization. The binding sites for agonists (and competitive antagonists) as well as predicted and known binding sites for PAMs and NAMs 
are highlighted. The figure is adapted from Hansen et al. (2017).

4PE5
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Figure 5. Crystal structures of NMDA receptor ABDs. (A) Structures of the soluble GluN1/2 ABD heterodimers reveal the subunit interface and back-to-
back dimer arrangement of the ABDs. The structure shown here is for the GluN1/2A ABD heterodimer with bound glutamate and glycine shown as spheres 
(Protein Data Bank accession no. 5I57; Yi et al., 2016). The top view of the structure highlights sites I–III at the subunit interface. (B) Overlay of crystal structures 
of GluN1/2A ABD heterodimers in complex with glycine and either glutamate agonist (Protein Data Bank accession no. 5I57; Yi et al., 2016) or a competitive 
glutamate site antagonist (Protein Data Bank accession no. 5U8C; Romero-Hernandez and Furukawa, 2017). Activation of NMDA receptors requires agonist-in-
duced ABD closure. Competitive antagonists bind the ABD without inducing domain closure, thereby preventing receptor activation. (C) Magnified views of the 
glutamate-binding site with bound GluN2A-preferring antagonists NVP-AAM077 (Protein Data Bank accession no. 5U8C; Romero-Hernandez and Furukawa, 
2017) or ST3 (Protein Data Bank accession no. 5VII; Lind et al., 2017). Schild analyses demonstrated that NVP-AAM077 has 11-fold and ST3 has 15-fold pref-
erence for GluN1/2A over GluN1/2B receptors (data adapted from Lind et al., 2017). The crystal structures reveal a binding mode in which NVP-AAM077 and 
ST3 occupy a cavity that extends toward GluN1 at the subunit interface, and mutational analyses show that the GluN2A preference of these antagonists is 
primarily mediated by four nonconserved residues (Lys738, Tyr754, Ile755, and Thr758) that do not directly contact the ligand but are positioned within 12 Å 
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interface as an important locus for modulation of NMDA receptor 
function (Fig. 5 C).

NMDA receptors are sensitive to the redox potential, and 
reducing conditions can enhance NMDA receptor–mediated 
current responses (Aizenman et al., 1989; Tang and Aizenman, 
1993; Köhr et al., 1994; Choi and Lipton, 2000). This sensitivity 
appears to be mediated by a pair of conserved cysteine residues 
(C744 and C798) within the GluN1 subunit (Sullivan et al., 1994; 
Choi et al., 2001). These two residues interact as a disulfide bond 
in the GluN1/2A ABD heterodimer structure, and reduction of 
this conformational constraint in GluN1, but not GluN2, en-
hances NMDA receptor function (Sullivan et al., 1994; Talukder 
et al., 2011). Several other disulfide bonds exist in ABD crystal 
structures of both GluN1 and GluN2 subunits, but functional ef-
fects of their reduction or oxidation have not yet been described 
(Takahashi et al., 2015).

Structures of the GluN1-GluN2A ABD heterodimer in com-
plex with various agonists, partial agonists, and antagonists have 
suggested a structural basis for their modes of action (Furukawa 
and Gouaux, 2003; Furukawa et al., 2005; Inanobe et al., 2005; 
Vance et al., 2011; Hansen et al., 2013; Yao et al., 2013; Jespersen 
et al., 2014). Binding of glycine and glutamate to GluN1 and 
GluN2 ABDs, respectively, produces a rapid ABD rearrange-
ment that involves reduction of the angle between the D1 and D2 
lobes, producing a clamshell-like closure of the bilobed domain 
(Fig. 5 B). This agonist-mediated ABD closure triggers formation 
of hydrogen bonds between residues from the upper and lower 
lobes, which are hypothesized to stabilize the agonist-bound ABD 
structure (Kalbaugh et al., 2004; Paganelli et al., 2013). The en-
ergy provided by agonist binding and ABD closure triggers the 
receptor to undergo a series of conformational changes that ulti-
mately open the ion channel pore. Thus, ABD closure that results 
from agonist binding is the initial conformational change that 
ultimately triggers the process of ion channel gating. Binding 
of competitive antagonists, such as the glycine site antagonist 
DCKA and the glutamate site antagonist D-AP5, stabilizes an 
open cleft conformation that is incapable of triggering channel 
gating (Fig. 5 B).

The stabilization of the NMDA receptor ABDs in a closed cleft 
conformation by agonist binding and in an open cleft conforma-
tion by competitive antagonist binding is similar to that found 
for the AMPA and kainate receptor ABDs (Pøhlsgaard et al., 2011; 
Kumar and Mayer, 2013; Karakas et al., 2015). However, one no-
table difference exists. Multiple structures of AMPA receptor 
ABDs in complex with partial agonists show partial domain clo-
sure that correlates with their efficacy (Pøhlsgaard et al., 2011). In 
contrast, multiple structures of ABD with bound partial agonists, 
such as d-cycloserine, ACPC, and ACBC in GluN1 and NMDA and 
Pr-NHP5G in GluN2 show virtually identical degrees of domain 
closure compared with structures with full agonists (Inanobe et 

al., 2005; Vance et al., 2011; Hansen et al., 2013). However, these 
crystal structures capture only one conformation of the isolated 
ABDs, which may be influenced by the lack of interacting do-
mains (ATD and TMD) and is further stabilized by contacts in 
the crystal lattice. This caveat to crystal structures of the isolated 
ABDs is highlighted by recent single-molecule FRET and molec-
ular dynamics studies that provide insight into the dynamic be-
havior of the NMDA receptor ABDs (Yao et al., 2013; Dai et al., 
2015; Dai and Zhou, 2015; Dolino et al., 2015, 2016). These studies 
suggest that the ABDs fluctuate between open and closed cleft 
conformations even in the absence of agonist (i.e., the apo state). 
However, binding of full agonist changes the energy landscape 
for ABD conformations to strongly favor a fully closed confor-
mation, whereas binding of partial agonists is less efficient in 
changing this landscape, thereby enabling the ABD to adopt con-
formations with intermediate domain closure more frequently 
than full agonists. Hence, a conformational selection mechanism 
is likely to account for partial agonism in NMDA receptors de-
spite the lack of crystallographic data showing intermediate do-
main closure for partial agonists.

Structures of intact tetrameric NMDA receptors
The first structures of intact NMDA receptors (GluN1/2B extra-
cellular domains and TMDs) confirmed the hypothesized domain 
organization and showed that GluN1 and GluN2B subunits exist in 
an alternating pattern (i.e., 1-2-1-2) within the tetrameric assem-
bly (Karakas and Furukawa, 2014; Lee et al., 2014; Fig. 6). These 
studies also confirmed that the NMDA receptor structure shares 
certain characteristics with AMPA and kainate receptors. First, 
the receptor subunits adopt a layered structure, with one layer 
formed by TMDs and two extracellular layers formed by ABD het-
erodimers and ATD heterodimers. Second, the TMDs have a qua-
si-fourfold symmetry, whereas the extracellular portion shows 
twofold symmetry between the two ABD heterodimers and ATD 
heterodimers in a dimer-of-dimer arrangement. Thus, there is 
a symmetry mismatch between the TMD layer and the extracel-
lular layers of the receptor. Third, there is a remarkable subunit 
crossover between the ABD layer and the ATD layer (Fig. 6). In ad-
dition, the NMDA receptor has several unique structural features 
when compared with AMPA and kainate receptors (Karakas and 
Furukawa, 2014; Lee et al., 2014). For example, there are exten-
sive contacts between the two GluN1/2 ABD heterodimers that 
are not present in AMPA and kainate receptor structures. These 
contacts may provide the structural basis of the GluN2 subunit 
dependence of glycine potency. In addition, the NMDA receptor 
ATDs show a different arrangement, leading to distinct subunit 
interfaces compared with AMPA and kainate receptors. Impor-
tantly, the ATDs form extensive contacts with the upper lobe 
of the ABD whereas the ATD–ABD interactions are minimal in 
AMPA and kainate receptors. These interactions give the NMDA 

of the glutamate-binding site. (D) Structure of the agonist-bound GluN1/2A ABD heterodimer with the NAM MPX-007 bound at site II in the subunit interface 
(Protein Data Bank accession no. 5I59; Yi et al., 2016). (E) Magnified views of site II in GluN1/2A ABD heterodimer with bound MPX-007 (NAM; Protein Data Bank 
accession no. 5I59; Yi et al., 2016) or PAM GNE-8324 (Protein Data Bank accession no. 5H8Q; Hackos et al., 2016). The overlay illustrates the distinct effects of 
NAM and PAM binding on Val783 in GluN2A and Tyr535 in GluN1. The GluN2A selectivity of the NAMs and PAMs binding at this modulatory site is mediated by 
Val783 in GluN2A, which is nonconserved among GluN2 subunits (Phe in GluN2B and Leu in GluN2C/GluN2D).
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receptor a more compact “hot air balloon–like” appearance, 
which is distinct from the more Y-shaped AMPA and kainate 
receptors. The ABD–ATD interactions also create a protein–pro-
tein interface at which modulators can bind (Khatri et al., 2014; 
Kaiser et al., 2018). A recent study also showed that the motif 
encoded by exon 5, which controls pH sensitivity, deactivation 
time course, and agonist potency, is also located at the ABD–ATD 
interface and modulates the ABD–ATD interaction (Regan et al., 
2018). The structure of the NMDA receptor thus reveals unique 
intra- and interdomain contacts that provide a framework for 
understanding allosteric interactions between subunits, as well 
as allosteric modulation by small-molecule ligands.

Although the crystallographic structures of intact NMDA re-
ceptors advance our understanding of the structure–function 
relationship, they nevertheless capture only a low energy confor-
mation among the many conformations that the NMDA receptor 
moves through en route to activation. In these crystal structures, 
glycine and glutamate were bound to GluN1 and GluN2B, respec-
tively, and the GluN2B-selective negative allosteric modulator if-
enprodil was bound to the interface between GluN1 and GluN2B 
ATDs (Karakas and Furukawa, 2014; Lee et al., 2014). The struc-
tures represent the agonist-bound, inhibited receptor with the 
ion channel closed. However, recent cryo-EM data have described 

multiple conformations in the extracellular region, providing 
the first dynamic pictures of NMDA receptor conformational 
changes and insight into the structural mechanism of receptor 
activation and allosteric modulation (Tajima et al., 2016; Zhu et 
al., 2016). Unfortunately, the TMDs for the active and antago-
nist-bound states are not well resolved in the cryo-EM structures, 
limiting mechanistic insights into gating and antagonism. How-
ever, in the active conformation, distances between the residues 
that are in proximity of the TMDs increase as much as ∼20 Å in 
the context of the heterotetramer (Fig. 6 C). This “dilation” of the 
gating ring likely generates sufficient tensions in the ABD–TMD 
linker for rearrangement of the helices that form the gate (Kazi 
et al., 2014; Twomey and Sobolevsky, 2018). This tension can 
lead to reorientation of the M3 helix in AMPA receptors as well 
as a kink at an alanine residue that appears to serve as a hinge. 
Whether or not gating of NMDA receptor ion channels involves 
similar conformational alterations of the ABD–TMD linker and 
the TMD demonstrated in the recent AMPA receptor structures 
(Twomey and Sobolevsky, 2018) remains to be seen, although the 
gating motifs are highly conserved. Nevertheless, given that the 
relative orientation of the ABDs and TMDs is distinct in NMDA 
receptors, structural data are required to evaluate whether these 
ideas transfer between AMPA and NMDA receptors.

Figure 6. Structure of the intact NMDA 
receptors. (A) Structure of the glycine- and 
glutamate-bound GluN1-1b/2B NMDA recep-
tor without CTDs (Protein Data Bank accession 
no. 5FXI; Tajima et al., 2016). (B) The GluN1 (1) 
and GluN2 (2) subunits are arranged as a dimer 
of heterodimers at the ATD and ABD layers in a 
1-2-1-2 fashion. Note that the heterodimer pairs 
are interchanged between the ATD and ABD lay-
ers (i.e., subunit crossover). In the TMD layer, 
the GluN1 and GluN2 subunits are arranged as 
a tetramer with pseudo-fourfold symmetry. (C) 
Comparison of the two major conformational 
states observed in the presence of glycine and 
glutamate by cryo-EM/single-particle analysis. 
Shown in spheres are the Cα of the gating ring 
residues, GluN1-1b Arg684 and GluN2B Glu658, 
which are adjacent to the pore-forming M3 
transmembrane helices. In the nonactive (Pro-
tein Data Bank accession no. 5FXI; Tajima et al., 
2016) and active (Protein Data Bank accession 
no. 5FXG; Tajima et al., 2016) conformations, the 
distances between the two GluN2B Glu658 Cα 
atoms are ∼29 Å and ∼45 Å, respectively, indi-
cating that degrees of tension in the ABD–TMD 
loops are different.

5FXI
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Control of NMDA receptor function by the ATD
The ATD adopts a bilobed structure, which is unrelated to the 
ABD, with R1 and R2 referring to upper and lower lobes, respec-
tively (Karakas et al., 2009, 2011). Furthermore, there is a unique 
dimer-of-dimer arrangement of the NMDA receptor ATDs com-
pared with the ATDs in AMPA and kainate receptors (Karakas 
and Furukawa, 2014; Lee et al., 2014; Meyerson et al., 2014; 
Sobolevsky, 2015; Tajima et al., 2016; Zhu et al., 2016). This ar-
rangement, which is revealed in crystal and cryo-EM structures 
of intact iGluRs, is characterized by a protein–protein interface 
formed by the upper R2 lobes from the GluN1 and GluN2 sub-
units, whereas the lower R1 lobes, which connect to the ABDs, are 
almost completely separated.

Many of the GluN2-specific differences between NMDA re-
ceptor subtypes are caused by sequence variation in the GluN2 
ATDs (Gielen et al., 2009; Yuan et al., 2009). Consistent with 
this idea, chimeric GluN2 subunits that swap the ATD between 
GluN2A and GluN2D shift the open probability, deactivation time 
course, and agonist potency toward that of the subunit contrib-
uting the ATD (Gielen et al., 2009; Yuan et al., 2009). Although it 
remains unclear how the ATD controls NMDA receptor function, 
the mechanism likely involves intra- and intersubunit allosteric 
interactions between the ATDs and ABDs that influence the con-
figuration of the GluN1/GluN2 ABD heterodimer and thereby 
impact channel activation (Gielen et al., 2008; Zhu et al., 2013; 
Tajima et al., 2016). Thus, some GluN2-specific functional and 
pharmacological NMDA receptor properties are presumably 
controlled by distinct conformations adopted by the ATDs in a 
GluN2-specific manner (Hansen et al., 2014; Zhu et al., 2014; 
Sirrieh et al., 2015b; Lü et al., 2017; Sun et al., 2017).

Ligand binding to the ATD
Crystal structures have demonstrated that GluN2B-selective neg-
ative allosteric modulators (NAMs), such as ifenprodil and Ro 25–
6981, bind to a modulatory site located at the subunit interface 
between GluN1 and GluN2B ATDs (Karakas et al., 2011; Karakas 
and Furukawa, 2014; Lee et al., 2014; Stroebel et al., 2016). These 
crystal structures revealed that only one residue in this modula-
tory site is different between GluN2A and GluN2B subunits, but 
sensitivity to ifenprodil is not introduced by converting this or 
other residues in GluN2A to that in GluN2B (Karakas et al., 2011; 
Burger et al., 2012). This stems from the fact that the intersubunit 
arrangements in GluN1/2A and GluN1/2B ATD heterodimers are 
distinct from each other, as demonstrated in the recent crystal 
structure of the GluN1/2A ATD heterodimer (Romero-Hernandez 
et al., 2016). Specifically, the “pocket” in the GluN1/GluN2 sub-
unit interface is ideally sized to accommodate ifenprodil ana-
logues in GluN1/2B, whereas such a pocket is absent in GluN1/2A 
because of the different subunit arrangement characterized by a 
∼10° rotation compared with GluN1/2B. Multiple lines of investi-
gation, including cryo-EM structures of intact NMDA receptors, 
functional studies, and computational analyses, suggest that if-
enprodil inhibition involves closure of the GluN2B ATD bilobes 
with accompanying changes in the arrangement of the GluN1/2B 
ATD heterodimers (Burger et al., 2012; Tajima et al., 2016), in-
dicating that both clamshell conformation and subunit arrange-
ment are coupled to function of the NMDA receptor ion channel.

Functional and structural studies have converged on a struc-
tural model for NMDA receptor modulation by Zn2+ and ifen-
prodil, where modulator binding regulates receptor function 
through rearrangement of the ATD layer and GluN2 ATD clam-
shell opening and closing (Sirrieh et al., 2013, 2015a). In GluN1/2B, 
opening of the ATD bilobes robustly alters inter-GluN1/GluN2 
subunit arrangement within the ATD, which results in a ∼13° 
rotation between the GluN1/2B ABD dimers and dilation of the 
gating ring (Tajima et al., 2016). NAMs such as ifenprodil and 
zinc favor the closure of the bilobed GluN2B ATD thereby “lock-
ing” the subunit arrangement in a way that prevents dilation of 
the gating ring. Interestingly, the zinc-bound GluN2A ATD is ∼13° 
more open compared with the zinc-bound GluN2B ATD (Karakas 
et al., 2009; Romero-Hernandez et al., 2016). This may explain in 
part the observation that the extent of zinc inhibition is smaller 
in GluN2A than GluN2B (Rachline et al., 2005).

NMDA receptors containing GluN1 with exon 5 (e.g., the 
GluN1-1b splice variant) have reduced sensitivity to all three al-
losteric modulators (Zn2+, ifenprodil, and spermine; Traynelis 
et al., 1995; Mott et al., 1998; Yi et al., 2018). In recent cryo-EM 
structures, the 21 amino acids encoded by exon 5 are placed just 
above the GluN1-GluN2 ABD heterodimer interface between the 
ATD and ABD layers, positioned to influence allosteric interac-
tions between GluN2 ATD clamshell motions and GluN1-GluN2 
ABDs (Regan et al., 2018). Furthermore, GluN2C residues from 
both the ATD and ABD that influenced the activity of PYD-106, a 
GluN2C-selective positive allosteric modulator (PAM), have been 
identified and molecular modeling proposed a modulatory bind-
ing site located in a pocket at the ATD–ABD interface of GluN2C 
(Khatri et al., 2014; Kaiser et al., 2018). These studies all point to 
the ATD as the major structural determinant of GluN2-specific 
variation among NMDA receptor subtypes. For this reason, al-
losteric modulation of NMDA receptors by the ATD is intensely 
investigated, and drug discovery studies are poised to identify 
novel ATD ligands with therapeutic potential.

Channel gating in NMDA receptors
All three transmembrane helices (M1, M3, and M4) and the 
membrane-reentrant pore-forming loop (M2) are involved in the 
process of pore opening (i.e., channel gating; Schneggenburger 
and Ascher, 1997; Krupp et al., 1998; Villarroel et al., 1998; Ren 
et al., 2003; Talukder et al., 2010; Kazi et al., 2013; Ogden and 
Traynelis, 2013; Alsaloum et al., 2016). The transmembrane helix 
M3 forms a helical bundle crossing that physically occludes the 
pore, and thus M3 helices must change their position before ions 
can pass through the channel pore (Jones et al., 2002; Yuan et 
al., 2005; Chang and Kuo, 2008). The M3 transmembrane helix 
contains nine amino acids (SYT ANL AAF) that are almost fully 
conserved in iGluRs throughout the animal kingdom. Multiple 
structural and functional studies suggest that these residues 
comprise the activation gate and that dilation of the M3 helical 
bundle crossing is thought to be the key change that allows ion 
conduction (Beck et al., 1999; Sobolevsky et al., 2002a; Chang 
and Kuo, 2008).

What sequence of events leads to M3 rearrangement? Ag-
onist binding to the bilobed ABDs involves a clamshell closure 
around the ligands that must be the first step in a sequence of 
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conformational changes that lead to gating. These are followed by 
multiple short-lived, intermediate conformations that precede a 
rapid transition from the closed to the open state of the ion chan-
nel, inferred by brief, kinetically distinguishable closed states in 
the single-channel record and the relatively slow time course 
for receptor activation by supersaturating agonist (Banke and 
Traynelis, 2003; Popescu et al., 2004; Auerbach and Zhou, 2005; 
Erreger et al., 2005a; Schorge et al., 2005; Kussius and Popescu, 
2009; Fig. 7). However, there is poor understanding of the pro-
tein conformations that represent the rate limiting steps en route 
to channel opening. Moreover, the lifetimes of some of these in-
termediate conformations are brief, suggesting they are unlikely 
to be captured in crystal structures or cryo-EM studies, leaving 
functional experiments as the most feasible (yet imperfect) way 
to glean clues as to how these changes might control channel 
opening. Recent functional studies have built explicit models of 
channel activation in which specific conformations are hypoth-
esized for each of the four subunits (Gibb et al., 2018). Moreover, 
work with disease-causing mutations identified in human pa-
tients has provided key insights into the elements that comprise 
the gating control mechanism. Residues in the region connecting 
the S1 segment of the ABD with the M1 transmembrane helix (i.e., 
the pre-M1 linker) are invariant in the healthy population, and 
a locus for disease-associated mutations in various neurological 
diseases (Ogden et al., 2017). In addition, the region connecting 
the S2 segment of the ABD with the M4 transmembrane helix 
(i.e., the pre-M4 linker) also appears to be implicated in patients 
with NMDA receptor missense mutations, and both the pre-M1 
and pre-M4 linkers are close enough to be in contact with the 
conserved SYT ANL AAF motif in the M3 helical bundle crossing. 
These three elements (pre-M1, SYT ANL AAF, and pre-M4) ap-
pear positioned to form a gating control mechanism (Chen et al., 
2017), and it is possible that kinetically distinct conformational 
states may be the result of rearrangements of this triad of in-
teracting regions. Moreover, the different amino acid sequences 
for pre-M1 and pre-M4 that exist for GluN1 and GluN2 as well as 
different positions of these elements in relation to the gating ring 
could lead to distinct lifetimes for intermediate conformations 
that must be traversed before rapid pore dilation (Erreger et al., 

2005a; Dravid et al., 2008; Kussius and Popescu, 2009; Amico-
Ruvio and Popescu, 2010; Vance et al., 2012).

Kinetic models for NMDA receptor activation
The sequence of protein conformational changes that trigger 
channel gating can be described as reaction schemes (i.e., ki-
netic models) with agonist binding steps and transitions be-
tween different conformational states of the receptor (Fig. 8). 
The first widely applied kinetic model for NMDA receptor gating 
was solely designed to account for the time course of the mac-
roscopic current response and consisted of two identical but 
independent glutamate binding steps, one desensitized state, 
one closed state, and one open state (Lester and Jahr, 1992). 
This simple kinetic model appeared to effectively capture key 
features of macroscopic NMDA receptor responses but was not 
intended to describe the complexity observed in single-channel 
recordings (Ascher et al., 1988; Howe et al., 1991; Traynelis and 
Cull-Candy, 1991; Gibb and Colquhoun, 1992). Furthermore, the 
usefulness of the Lester and Jahr model was limited by the lack 
of glycine-binding steps required for receptor activation. Kinetic 
models that account for both glutamate- and glycine-binding 
steps as well as intersubunit interactions between the glutamate 
and glycine ABDs have also been developed (Benveniste et al., 
1990), and these models could capture additional features of the 
time course of NMDA receptors, including glycine-dependent 
desensitization (see below).

Newer, more complex kinetic models have been proposed 
that better describe single-channel data by incorporating mul-
tiple steps between binding and gating (Banke and Traynelis, 
2003; Popescu et al., 2004; Auerbach and Zhou, 2005; Erreger 
et al., 2005a; Schorge et al., 2005). Investigations of macro-
scopic and single-channel responses to partial and full agonists 
suggest that agonist binding to either GluN1 or GluN2 controls 
distinct steps in the kinetic model (Banke and Traynelis, 2003; 
Auerbach and Zhou, 2005; Erreger et al., 2005a; Schorge et al., 
2005; Fig. 8), although it has also been suggested that partial 
agonists can impact all pregating steps irrespective of the sub-
unit they bind to (Kussius and Popescu, 2009; Kussius et al., 
2010). In some of these models, the actions of allosteric modu-

Figure 7. Single-channel recordings of NMDA 
receptor gating. Recording of receptor activation 
(i.e., channel gating or pore dilation) in an excised 
outside-out membrane patch containing a single 
GluN1/2B receptor exposed to 1 mM glutamate plus 
30 µM glycine for 1 ms as indicated. In this exam-
ple, receptor activation results in a characteristically 
long burst of channel openings and closings (dura-
tion 128 ms). Evaluation of closed periods within the 
GluN1/2B activation suggests that two kinetically dis-
tinct pregating steps exist (i.e., fast and slow steps; 
see Fig. 8 D for model). Some (but not all) closures 
within the activation will reflect reversal of pore dila-
tion, reversal of a single pregating step, followed by 
forward movement back through the pregating step 
and pore dilation. Two possible closures that might 
reflect the slow and fast pregating components 
are highlighted in red. Data are from Banke and 
Traynelis (2003).
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lators are accounted for by explicitly representing the modula-
tor bound and unbound receptor as independent states (Banke 
et al., 2005; Erreger and Traynelis, 2008; Amico-Ruvio et al., 
2011). Other models for channel blockers and other use-depen-
dent modulators have been described that exclusively allow 
modulators to bind to the open state (Huettner and Bean, 1988; 
MacDonald et al., 1991; Blanpied et al., 1997, 2005; Dravid et 
al., 2007; Kussius et al., 2009; Paganelli and Popescu, 2015; 
Glasgow et al., 2017).

The ability of AMPA receptor subunits to operate semi-inde-
pendently (Rosenmund et al., 1998; Jin et al., 2003; Kristensen 
et al., 2011) and the modular domain architecture of glutamate 
receptor structures raise the possibility that independent con-
formational changes in different subunits may progress within 
the sequence of steps leading to channel opening (Gibb et al., 
2018). Some kinetic models suggest that such subunit-specific 
conformational changes are required in all four NMDA recep-

tor subunits to trigger channel gating and that these structural 
changes can occur in any order to arrive at an intermediate 
state that can subsequently transition to the open state of the 
ion channel (Banke and Traynelis, 2003; Auerbach and Zhou, 
2005; Erreger et al., 2005a,b; Schorge et al., 2005). Other mod-
els account for macroscopic and single-channel responses by 
including a few sequential gating steps in a linear kinetic model 
with an implicit order for slow and fast gating steps (Popescu et 
al., 2004; Kussius and Popescu, 2009). These models have been 
used to explore the kinetic aspects of modal gating (Zhang et al., 
2008; Iacobucci and Popescu, 2017a), an intriguing phenome-
non that is readily apparent in cell-attached recordings from 
GluN1/GluN2A receptors. Gating modes are defined by different 
open probabilities and open times and have been described for 
GluN1/2A and GluN1/2B receptors (Popescu and Auerbach, 2003; 
Popescu et al., 2004; Amico-Ruvio and Popescu, 2010; Popescu, 
2012) but are rarely observed in GluN1/2D (Vance et al., 2013). 

Figure 8. Application of a gating reaction mechanism of NMDA receptors. (A) Individual responses from a recombinant GluN1/2B channel in an excised 
outside-out patch activated by 1 ms application of maximally effective glutamate and glycine (indicated by the gray vertical bar and the open tip recording above 
the channel recordings). The patch contained a single active channel, which allowed analysis of the variable delay before channel opening. NMDA receptors 
bind agonist rapidly and subsequently open after a multimillisecond delay that reflects transition through kinetically distinct protein conformations before 
pore dilation (i.e., channel gating). Note that although application of maximal glutamate and glycine always produces a binding event, not all binding events 
lead to channel opening. Reproduced from Erreger et al. (2005a). (B) The cumulative plot of latency to opening after application of 1 mM glutamate for 1 ms. 
(C) The average of all individual recordings of single activations produced a macroscopic waveform with a characteristic rise time. (D) Evaluation of closed 
periods within the GluN1/2B activation suggested a model where two pregating steps can occur in any order and explosive opening of the pore, which occurs 
faster than the resolution of the recordings, is assumed to happen instantaneously once both pregating steps have been traversed. (E) Simulation of a single 
activation for a GluN1/2B channel (using the model in D) illustrates how brief gaps can contain information about forward rates for the fast kinetically distinct 
pregating step. The color above the simulation indicates occupancy in the corresponding closed state of the model in D. The slow step often reverses again 
through the fast state (green) before reopening.
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Although the mechanism remains elusive, mode switching has 
been proposed to influence the time course of the synaptic cur-
rent (Zhang et al., 2008).

All these kinetic models for NMDA receptor gating that faith-
fully describe both macroscopic responses and single-channel 
data require both multiple pregating steps and multiple open 
states. The interpretation of this observation is that ion channel 
opening in NMDA receptors is not directly coupled to agonist-in-
duced ABD closure; instead, the receptor must proceed through a 
sequence of conformational changes that couple agonist binding 
to ion channel gating.

Structural determinants of ion permeation and channel block
The ion channel pore in NMDA receptors can be divided into 
the intracellular and extracellular vestibules separated by a 
narrow constriction (Fig. 9). The narrow restriction resides ap-
proximately halfway across the membrane at the apex of the 
membrane reentrant loop M2 (i.e., the Q/R/N site) and is often 
referred to as the selectivity filter because of its role as key de-
terminant of Ca2+ permeability, single-channel conductance, 
and channel block (Wollmuth and Sobolevsky, 2004; Traynelis 
et al., 2010; Glasgow et al., 2015). The residue at the Q/R/N site 
is asparagine (N) in both GluN1 and GluN2, but the contribu-
tion of this residue to ion permeation is asymmetric between 
GluN1 and GluN2 subunits (Burnashev et al., 1992; Wollmuth 
et al., 1996, 1998; Sobolevsky et al., 2002b). This is because the 
narrow constriction is formed by the Q/R/N site asparagine in 
GluN1 but by the asparagine residue adjacent to the Q/R/N site 
(i.e., Q/R/N +1 site) in GluN2. The asymmetric contribution by 
GluN1 and GluN2 is revealed by substitutions of the Q/R/N site 
residue in GluN2 that have weak effects on Ca2+ permeability and 
dramatically reduce Mg2+ block, whereas the same substitutions 
of the Q/R/N site residue in GluN1 dramatically reduce Ca2+ per-
meability and have weak effects on Mg2+ block (Burnashev et al., 
1992; Wollmuth et al., 1998). However, mutations at the Q/R/N +1 
site in GluN2 strongly reduce Mg2+ block (Wollmuth et al., 1998). 
Functional data therefore suggest a structural asymmetry, where 

the apexes of M2 in GluN1 and GluN2 are slightly staggered 
(Sobolevsky et al., 2002b). Diheteromeric GluN1/3 receptors 
have glycine/arginine residues at the Q/R/N and Q/R/N +1 and 
show both markedly reduced Ca2+-permeability and Mg2+-block 
compared with GluN1/2 receptors (Cavara and Hollmann, 2008; 
Henson et al., 2010; Low and Wee, 2010; Pachernegg et al., 2012; 
Kehoe et al., 2013). Recent data describing the pore of the AMPA 
receptor in the open state reinforce the idea that the apex of the 
reentrant loops form a constriction that impacts ion permeation 
(Twomey et al., 2017). The structural basis for this functional 
asymmetry will require high-resolution images of the NMDA 
receptor in the open state.

Determinants of ion permeation
NMDA receptor ion channels are permeable to the physio-
logically relevant Ca2+, Na+, and K+ ions. The different NMDA 
receptor subtypes display similar permeability to Na+ and K+ 
ions (PK/PNa = 1.14) but are more permeable to Ca2+ relative to 
monovalent ions (PCa/PX = 1.8–4.5), with variation in Ca2+ per-
meability that depends on the GluN2 subunit (Burnashev et al., 
1995; Schneggenburger, 1996, 1998; Sharma and Stevens, 1996; 
Jatzke et al., 2002). However, NMDA receptors also exhibit block 
by external Ca2+, despite being highly Ca2+ permeable, which 
can be observed as a reduction in channel conductance in sin-
gle-channel data (Premkumar and Auerbach, 1996; Wyllie et 
al., 1996; Premkumar et al., 1997; Dravid et al., 2008). The con-
current block by Ca2+ and the high Ca2+ permeability are not 
incompatible properties but are expected if multiple Ca2+-bind-
ing sites are located in the ion channel pore of NMDA receptors 
(Premkumar and Auerbach, 1996; Sharma and Stevens, 1996). 
Studies have suggested that one Ca2+-binding site is located at 
the Q/R/N site, whereas another, more external Ca2+-binding 
site could be formed by a cluster of charged DRP EER residues 
in GluN1 (Watanabe et al., 2002; Karakas and Furukawa, 2014). 
The external Ca2+-binding site is located at the external entrance 
to the ion channel above the transmembrane helix M3 of GluN1. 
Although structural elements of Ca2+ permeation in GluN1/N2 

Figure 9. General pore structure of NMDA receptors. (A) Pore-lining elements contributed by the GluN1 subunit (blue; Protein Data Bank accession no. 
5UN1; Song et al., 2018). The M3 transmembrane segment lines the extracellular part of the permeation pathway, whereas the M2 pore loop lines the intracel-
lular part with the N site asparagine (red circle) positioned at the tip of the M2 pore loop. The channel is in the closed conformation. (B) The narrow constriction 
is formed by nonhomologous asparagine residues, the GluN1 N site and the GluN2 N+1 site (Wollmuth et al., 1996; Song et al., 2018). The GluN2B subunit is 
colored orange. For both GluN1 and GluN2, the N site asparagine residue is positioned at the tip of the M2 loop.

5UN1
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subunits have been identified, the mechanism of Ca2+ perme-
ation remains unknown.

Determinants of channel block
GluN1/2A and GluN1/2B channels are more strongly blocked 
by extracellular Mg2+ than GluN1/2C and GluN1/2D channels 
(Monyer et al., 1994; Kuner and Schoepfer, 1996; Qian et al., 
2005; Clarke and Johnson, 2006; Siegler Retchless et al., 2012). 
This channel block is highly dependent on the membrane poten-
tial (i.e., voltage dependent), and the IC50 values (the concentra-
tions that produce half-maximal inhibition) for block by external 
Mg2+ are 2 µM, 2 µM, 14 µM, and 10 µM for GluN1/2A, GluN1/2B, 
GluN1/2C, and GluN1/2D, respectively, at a holding potential of 
−100 mV (Kuner and Schoepfer, 1996). The dependency of Mg2+ 
block on the GluN2 subunit is influenced by multiple structural 
elements, but a main determinant appears to be a single residue 
at the S/L site located in the M3 transmembrane helix (Siegler 
Retchless et al., 2012). The residue at the S/L site, which is a ser-
ine in GluN2A/B and a leucine in GluN2C/D, is not lining the ion 
channel pore but has been suggested to interact with tryptophan 
residues in the membrane reentrant loop M2 of GluN1 (Siegler 
Retchless et al., 2012). This interaction between GluN1 and the 
GluN2 S/L site also appears to be a key determinant of GluN2 sub-
unit–specific variation in channel conductance and Ca2+ permea-
bility (Siegler Retchless et al., 2012). Although important insight 
into the structural mechanism of GluN2 subunit–dependent 
control of Mg2+ block is still missing, it is possible that structural 
elements, including the GluN2 S/L site, govern Mg2+ block by 
influencing binding sites for permeant ions in the channel pore 
(Antonov and Johnson, 1999; Zhu and Auerbach, 2001a,b; Qian et 
al., 2002; Qian and Johnson, 2006).

Channel block by organic cations
The NMDA receptor ion channel pore can be blocked in a volt-
age-dependent manner by a wide range of organic cations with 
diverse chemical structures (Huettner and Bean, 1988; Brackley 
et al., 1993; Parsons et al., 1995). These compounds almost ex-
clusively block open channels in activated NMDA receptors 
and are positively charged at physiological pH, a mechanism 
of channel block termed uncompetitive or use dependent. 
In general, the open channel blockers can be classified into 
three categories based on their interaction with the channel: 
(1) “foot-in-the-door” or sequential blockers (e.g., aminoac-
ridine derivatives and tetrapentylammonium) can only bind 
to the channel when it is open and prevent channel closure 
when bound (Benveniste and Mayer, 1995; Sobolevsky, 1999; 
Sobolevsky et al., 1999; Bolshakov et al., 2003; Barygin et al., 
2009); (2) partial trapping blockers (e.g., amantadine and me-
mantine) obstruct channel closure but are unable to completely 
prevent it (Blanpied et al., 1997, 2005; Chen and Lipton, 1997; 
Mealing et al., 1999; Kotermanski et al., 2009; Johnson et al., 
2015); and (3) trapping blockers (e.g., Mg2+, ketamine, phency-
clidine [PCP], and MK-801) are trapped inside the channel pore 
as it closes, and agonists can unbind while the trapping blocker 
remains bound (Sobolevsky and Yelshansky, 2000; Poulsen 
et al., 2015). Some channel blockers have also been shown to 
facilitate channel closure, presumably by interacting with the 

channel gate (Blanpied et al., 2005; Johnson et al., 2015). Chan-
nel blockers proposed to have bifunctionality include nitrome-
mantine derivatives that bind the ion channel pore, facilitating 
the targeting of a nitro group to a redox-mediated regulatory 
site on the receptor (Takahashi et al., 2015).

In general, the open channel blockers are considered nonse-
lective among NMDA receptor subtypes (Dravid et al., 2007), but 
some channel blockers, such as ketamine and memantine, display 
5- to 10-fold preference for GluN2C/D-containing receptors over 
GluN2A/B-containing receptors in the presence of 1 mM extra-
cellular Mg2+ (i.e., under physiological conditions; Kotermanski 
and Johnson, 2009). NMDA receptor channel blockers have ro-
bust neuroprotective effects in animal models of CNS disorders 
that involve excessive NMDA receptor activation, such as stroke, 
epilepsy, and traumatic brain injury. However, clinical trials have 
not been successful because of dose-limiting side effects, patient 
heterogeneity, and a narrow temporal window for intervention 
that could have confounded interpretation (Ikonomidou and 
Turski, 2002; Farin and Marshall, 2004; Muir, 2006; see also 
Table S2 in Yuan et al., 2015). NMDA receptor channel blockers 
that bind with high affinity, such as ketamine and PCP, are typi-
cally dissociative anesthetics, and their clinical use is limited by 
psychomimetic side effects. Nonetheless, there is an intense in-
terest in use of ketamine or similar molecules for the treatment 
of major depressive disorder because of several promising clin-
ical trials in recent years based on the discovery of antidepres-
sant effects for NMDA receptor antagonists (Niciu et al., 2014; 
Abdallah et al., 2015; Zanos et al., 2018).

Channel blockers such as memantine, which is approved in 
the treatment of moderate to severe Alzheimer’s disease, have 
lower affinity than ketamine and PCP and show faster blocking/
unblocking kinetics (Parsons et al., 1993). These kinetic proper-
ties have been suggested to contribute to an improved therapeu-
tic index with respect to psychomimetic effects, perhaps because 
of reduced channel block during normal synaptic transmission 
(Chen and Lipton, 2006), although the mechanism by which 
memantine may contribute to a symptomatic benefit in Alzhei-
mer’s disease is not well understood. Interestingly, Glasgow et al. 
(2017) have proposed that memantine stabilizes occupancy of a 
desensitized state of GluN1/2A receptors, whereas ketamine re-
duces occupancy of a GluN1/2B desensitized state (Glasgow et al., 
2017). Thus, the affinity of these blockers for their binding site in 
the channel may be allosterically affected by the conformational 
changes in the receptor protein associated with desensitization. 
Given the prevalence of triheteromeric GluN1/2A/2B receptors 
in the brain, it will be important to evaluate memantine and ket-
amine block at these triheteromeric receptors.

Endogenous mechanisms of functional modulation
NMDA receptors are complex macromolecular membrane-bound 
protein complexes, and their functional properties and mem-
brane trafficking can be altered by extracellular ions, phosphor-
ylation, and intracellular binding proteins. Additionally, the 
differences between various diheteromeric and triheteromeric 
NMDA receptor subtypes create selective actions of many of 
these types of modulation. Here, we will describe various forms 
of endogenous regulation of NMDA receptor function.
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Modulation by protons
Extracellular protons inhibit NMDA receptor function with an 
IC50 of ∼50 nM, corresponding to a pH of ∼7.3 (Giffard et al., 
1990; Traynelis and Cull-Candy, 1990, 1991; Vyklický et al., 1990). 
Thus, neuronal NMDA receptors are tonically inhibited by pro-
tons at physiological pH and are therefore poised to respond to 
small changes in extracellular pH that can occur under physio-
logical conditions caused by release of protons from acidic synap-
tic vesicles or movement of protons across the plasma membrane 
by pumps (Chesler, 2003). Furthermore, pathological conditions, 
including seizure and ischemia, produce extracellular acidifica-
tion, which can decrease pH to levels that strongly inhibit NMDA 
receptor function (Chesler, 2003).

The sensitivity of the NMDA receptors to inhibition by extra-
cellular protons depends on the GluN2 subunit (Traynelis et al., 
1995), with GluN2A-, GluN2B-, and GluN2D-containing NMDA 
receptors showing proton IC50 values near physiological pH (7.0–
7.4). In contrast, GluN2C-containing receptors are less sensitive 
to changes in pH, with an IC50 value near pH 6.0 (Traynelis et 
al., 1995; Low et al., 2003). NMDA receptors that include GluN1 
subunits containing the alternatively spliced exon 5 in the ATD 
(i.e., GluN1-1b) are notably less sensitive to protons (Traynelis et 
al., 1995). Proton inhibition is voltage independent, and without 
effect on glutamate potency; low pH produces modest shifts in 
the glycine potency (Tang et al., 1990; Traynelis and Cull-Candy, 
1990, 1991; Traynelis et al., 1995). The structural determinants 
underlying proton inhibition are unknown, although mutations 
at the ABD interface, linkers to pore-forming elements, and 
within the M2 reentrant loop can all influence pH sensitivity 
(Low et al., 2003; Gielen et al., 2008). This suggests that NMDA 
receptor gating is tightly coupled to proton inhibition of the re-
ceptor. This idea is consistent with the observation that channel 
blockers appear to sense the protonation state of the receptor 
(Dravid et al., 2007).

The actions of ATD modulators appear to involve a change 
in the pKa of the proton sensor that leads to enhancement or 
reduction of tonic proton inhibition at physiological pH. Thus, 
both Zn2+ and ifenprodil enhance proton sensitivity, which will 
increase tonic inhibition at resting pH (Pahk and Williams, 1997; 
Mott et al., 1998; Traynelis et al., 1998; Choi and Lipton, 1999; 
Erreger and Traynelis, 2008; Bhatt et al., 2013). In contrast, the 
binding of extracellular polyamines reduces the sensitivity to ex-
tracellular pH, resulting in potentiation due to reduced tonic in-
hibition by physiological levels of protons (Traynelis et al., 1995; 
Kashiwagi et al., 1996, 1997).

Actions of extracellular Zn2+

Extracellular Zn2+ binds with high affinity to the GluN2A ATD, 
with an IC50 value in the nanomolar range at GluN1/GluN2A 
receptors (Williams, 1996; Chen et al., 1997; Paoletti et al., 1997; 
Traynelis et al., 1998). In contrast, the IC50 for Zn2+ inhibition of 
GluN1/GluN2B receptors resulting from binding to the GluN2B 
ATD is in the low micromolar range (Rachline et al., 2005). Crys-
tallographic and functional data show that the Zn2+-binding site 
is located within the cleft formed by the two lobes R1 and R2 of 
the ATD (Karakas et al., 2009; Romero-Hernandez et al., 2016). 
Multiple observations suggest a mechanism of Zn2+ modula-

tion that involves a change in the angle between the two lobes 
R1 and R2, in addition to twisting motions around the hinge re-
gion of the bilobed ATD clamshell (Paoletti et al., 2000; Gielen et 
al., 2008; Karakas et al., 2009; Romero-Hernandez et al., 2016). 
Binding of Zn2+ stabilizes a conformation of the GluN2 ATD, 
which is presumably accompanied by structural changes at the 
GluN1/GluN2 ABD layers that favor channel closure (Gielen et 
al., 2008; Romero-Hernandez et al., 2016). Previous studies have 
suggested that Zn2+ binding can enhance the proton sensitivity 
(Choi and Lipton, 1999). In support of this idea, there is a strong 
correlation between mutations that perturb the IC50 of Zn2+ in-
hibition and their effect on proton IC50 (Traynelis et al., 1998). 
Furthermore, single-channel analysis can detect changes in the 
protonation rates for Zn2+-bound receptors, supporting the idea 
that Zn2+ alters the equilibrium between NMDA receptors and 
protons at physiological pH (Erreger and Traynelis, 2008). The 
incomplete inhibition by high-affinity Zn2+ binding is consistent 
with enhancement of proton sensitivity, because Zn2+ binding 
produces a leftward shift of the proton inhibition curve, leading 
to more complete inhibition at acidic pH (Traynelis et al., 1998; 
Choi and Lipton, 1999; Low et al., 2000; Erreger and Traynelis, 
2008). Interestingly, triheteromeric GluN1/2A/2B receptors re-
tain a high-affinity Zn2+ binding, although there is reduced in-
hibition at maximally effective concentrations of Zn2+ (Hatton 
and Paoletti, 2005; Hansen et al., 2014; Stroebel et al., 2014). 
Higher concentrations of Zn2+ can produce a voltage-dependent 
channel block (Williams, 1996), but it remains unclear whether 
changes in extracellular Zn2+ in brain tissue are large enough 
to produce voltage-dependent channel block (Vogt et al., 2000; 
Anderson et al., 2015).

The affinity for Zn2+ at the GluN2A ATD is high enough such 
that Zn2+ contamination in physiological levels of salts can pro-
duce significant inhibition (Paoletti et al., 1997). The effects of 
contaminant Zn2+ in functional experiments can be removed by 
inclusion of even low concentrations of divalent ion chelators, 
such as 10 µM EDTA. The high affinity of such chelators for Zn2+ 
means that even low micromolar levels of chelator will bind vir-
tually all of the nanomolar-contaminating Zn2+ ions but exert 
minimal effects on millimolar concentrations of Ca2+ or Mg2+ 
(Anderson et al., 2015).

Positive and negative allosteric modulation by neurosteroids
Several endogenous neurosteroids positively and negatively 
modulate NMDA receptor activity (Traynelis et al., 2010), al-
though the actions of these lipophilic molecules are complex. 
For instance, pregnenolone sulfate has dual actions on NMDA 
receptor responses, having both inhibitory and potentiating ac-
tivity over a wide range of potencies (Horak et al., 2006). The 
potentiating actions of pregnenolone sulfate are most prominent 
when applied before receptor activation, whereas inhibitory ac-
tions arise when applied continuously (Horak et al., 2006). The 
dual actions of pregnenolone sulfate lead to divergent effects de-
pending on the GluN2 subunit; when applied during steady-state 
NMDA receptor responses, GluN1/2A and GluN1/2B are potenti-
ated, whereas GluN1/2C and GluN1/2D are inhibited.

Other neurosteroid analogues, such as pregnanolone sulfate, 
inhibit all NMDA receptor subtypes (i.e., they are pan-inhibi-
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tors) in a use-dependent manner through actions that involve 
the extracellular portion of the conserved M3 SYT ANL AAF 
motif (Malayev et al., 2002). For GluN2A, pregnanolone sulfate 
has been proposed to increase the occupancy of a desensitized 
state (Kussius et al., 2009). In contrast, 24(S)-hydroxycholesterol 
and related analogues appear to be pan-potentiators, whereas 
25(S)-hydroxycholesterol may antagonize actions of endoge-
nous 24(S)-hydroxycholesterol (Paul et al., 2013; Linsenbardt et 
al., 2014). Some of these neurosteroids and analogues have been 
shown to exhibit agonist dependency, although this property is 
difficult to assess, because neurosteroids can have distinct ac-
tions on NMDA receptors, dependent on the timing of modulator 
application (i.e., see pregnenolone sulfate actions above). Addi-
tionally, steroid derivatives may partition into the membrane 
en route to their active site, which will alter the concentration–
response relationship of their actions (Borovska et al., 2012; 
Vyklicky et al., 2015). A recent study reported that cholesterol 
modulates NMDA receptor function and its removal inhibited 
receptor activity (Korinek et al., 2015), suggesting that the mem-
brane environment influences NMDA receptor activity and may 
be an important determinate of neurosteroid action. Although a 
clear binding site has not been resolved, it seems likely that neu-
rosteroid derivatives interact directly with the receptor rather 
than simply alter membrane fluidity. A subset of neurosteroid 
inhibitors also have voltage-dependent actions, suggesting that 
they may inhibit NMDA receptors through blocking the channel 
(Vyklicky et al., 2015). These findings highlight the complexity 
associated with neurosteroid activity, and more work is required 
to delineate the mechanism of action of these compounds.

Desensitization of NMDA receptors
The process of desensitization is broadly defined as a decrease in 
a response in the continued presence of a stimulus. NMDA recep-
tors exhibit several forms of desensitization, which can be distin-
guished on the basis of time course and mechanism, including 
glycine-, Zn2+-, and Ca2+-dependent desensitization. Most li-
gand-gated channels can desensitize in the continued presence 
of agonist by a mechanism thought to involve a conformational 
change to a stable and long-lived agonist-bound closed state. 
NMDA receptors can also desensitize in the continued presence 
of glutamate and glycine, presumably by this same mechanism, 
in a manner that is independent of glycine, Zn2+, and Ca2+. NMDA 
receptors exhibit only weak desensitization compared with the 
relatively strong desensitization of AMPA and kainate receptors. 
However, this desensitization is sensitive to intracellular dialy-
sis, being more prominent in excised outside-out membrane 
patches (Sather et al., 1990, 1992), and is perturbed by mutations 
in a wide range of domains, including the conserved M3 gating 
motif, the pre-M1 linker region, the ion channel pore, the ABD, 
and the TMD–ABD interface (Chen et al., 2004; Hu and Zheng, 
2005; Alsaloum et al., 2016).

Glycine-dependent NMDA receptor desensitization
Glycine-dependent NMDA receptor desensitization is pres-
ent only in subsaturating glycine concentrations (Mayer et al., 
1989) and occurs as a result of a negative allosteric interaction 
between the glutamate- and glycine-binding sites, such that the 

binding of glutamate decreases the glycine affinity and vice versa 
(Benveniste et al., 1990; Lester et al., 1993). Thus, when glutamate 
binds to GluN2 in the absence of high concentrations of glycine, 
the current will initially rise to a peak and then decline to a new 
equilibrium as glycine unbinds from the receptor after the al-
losteric reduction in glycine affinity. The time course for the 
desensitization is dictated by glycine unbinding (time constant 
∼0.3 s) and is temporally close to the synaptic NMDA receptor 
time course, raising the possibility that glycine-dependent de-
sensitization could impact synaptic signaling when glycine is 
subsaturating (Berger et al., 1998). Recent structural data for 
NMDA receptors provide plausible models for the negative al-
losteric coupling between glutamate- and glycine-binding sites, 
given their close proximity (Karakas and Furukawa, 2014; Lee 
et al., 2014; Tajima et al., 2016; Zhu et al., 2016). However, the 
structural features that enable glycine-dependent desensitiza-
tion remain poorly understood.

Zn2+-dependent NMDA receptor desensitization
Extracellular Zn2+ inhibits GluN1/GluN2A and GluN1/GluN2B 
receptors in a voltage-independent manner through a binding 
site located in the ATD (Williams, 1996; Traynelis et al., 1998; 
Choi and Lipton, 1999; Fayyazuddin et al., 2000; Low et al., 2000; 
Paoletti et al., 2000; Rachline et al., 2005; Karakas et al., 2009). 
However, NMDA receptors also display a rapid component of de-
sensitization in the presence of extracellular Zn2+ that occurs by 
a mechanism similar to glycine-dependent desensitization (Chen 
et al., 1997). This is the result of a positive intrasubunit allosteric 
interaction between glutamate binding to the GluN2 ABD and 
Zn2+ binding to the GluN2A ATD (Zheng et al., 2001; Erreger and 
Traynelis, 2005). As a result, in the presence of subsaturating 
concentrations of Zn2+, the glutamate-induced increase in Zn2+ 
affinity will cause a relaxation of the response to a new equilib-
rium as more Zn2+ ions bind and inhibit the receptor. The time 
course for Zn2+-dependent desensitization therefore follows the 
time course for Zn2+ binding.

Ca2+-dependent NMDA receptor inactivation
NMDA receptors also undergo Ca2+-dependent desensitization 
or inactivation, which requires an increase in intracellular Ca2+ 
over several seconds (Clark et al., 1990; Legendre et al., 1993; 
Vyklický, 1993; Rosenmund et al., 1995). The magnitude of this 
form of desensitization varies with different NMDA receptor 
subtypes; it is most prominent for GluN2A-containing NMDA 
receptors and more limited for GluN2B- and GluN2C-contain-
ing NMDA receptors (Medina et al., 1995; Krupp et al., 1996). The 
proposed mechanism involves an increase in the intracellular 
Ca2+ in the vicinity of the NMDA receptor that triggers uncou-
pling of the receptor from filamentous actin (Rosenmund and 
Westbrook, 1993). In addition, calmodulin binding to the GluN1 
CTD may play a role in this form of desensitization (Ehlers et 
al., 1996; Rycroft and Gibb, 2002; Iacobucci and Popescu, 2017b); 
Ca2+-dependent desensitization is absent in NMDA receptors 
containing GluN1 splice variants that lack calmodulin-binding 
sites (Ehlers et al., 1996, 1998) or harbor mutations in calm-
odulin-binding sites in the GluN1 CTD (Zhang et al., 1998; 
Krupp et al., 1999).
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Conclusion
Recent discoveries from genetic analyses that link NMDA recep-
tors to specific disease conditions, the emerging evidence of the 
antidepressant effects of NMDA receptor antagonists, and accel-
erating identification of new subunit-selective modulators have 
reinvigorated the long-standing interest in NMDA receptors as 
therapeutic targets. The field now seems poised to achieve new 
levels of understanding of the functional roles of NMDA recep-
tors in physiology and disease. The rapidly increasing volume of 
crystallographic and cryo-EM data has created an opportunity 
to view function through structure, which will inevitably im-
prove our insight to the mechanisms by which agonist binding is 
linked to channel gating and how different NMDA receptor sub-
units contribute to the conformational changes that occur during 
gating and allosteric modulation. These new developments can 
lead novel perspectives in the NMDA receptor field and create 
exciting opportunities to study the physiological roles of differ-
ent diheteromeric and triheteromeric NMDA receptor subtypes 
in distinct subcellular locations and neuronal populations. These 
converging advances in NMDA receptor pharmacology, mecha-
nistic understanding of receptor function, and the basis of CNS 
diseases involving NMDA receptor dysfunction are already cata-
lyzing the development of new therapeutic strategies.
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