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Abstract
Confocal Annular Josephson Tunnel Junctions (CAJTJs) which are the natural generalization of the circular annular Joseph-

son tunnel junctions, have a rich nonlinear phenomenology due to the intrinsic non-uniformity of their planar tunnel barrier
delimited by two closely spaced confocal ellipses. In the presence of a uniform magnetic field in the barrier plane, the periodi-
cally changing width of the elliptical annulus generates a asymmetric double-well for a Josephson vortex trapped in a long and
narrow CAJTJ. The preparation and readout of the vortex pinned in one of the two potential minima, which are important for
the possible realization of a vortex qubit, have been numerically and experimentally investigated for CAJTJs with the moderate
aspect ratio 2 : 1. In this work we focus on the impact of the annulus eccentricity on the properties of the vortex potential
profile and study the depinning mechanism of a fluxon in more eccentric samples with aspect ratio 4 : 1. We also discuss the
effects of the temperature-dependent losses as well as the influence of the current and magnetic noise.

I. INTRODUCTION

The problem of a particle in a double-well potential
(DWP), characterized by two adjacent - in general un-
equal - potential minima, is almost as old as Quantum
Mechanics1, and one of the first applications was the
calculation of an inversion frequency of the ammonia
molecule back in 19322. During the last two decades, the
phenomenon of tunneling in asymmetric DWPs was ac-
tively considered across several branches of physics and
found application in the study of systems, such as the
Bose-Einstein condensates in trapped potentials3–7 and
the quantum superconducting circuits based on of low-
capacitance Josephson Tunnel Junctions (JTJs)8–12. The
latter have attracted great attention due to their po-
tential use as elementary bits of quantum information
(qubits, i.e., two-state quantum-mechanical systems) ca-
pable of implementing quantum computing operations.

Long and narrow, annular JTJs are potential qubit can-
didates due to their unique capability to trap a Joseph-
son vortex (a supercurrent loop carrying one magnetic
flux quantum also called fluxon) whose center of mass
becomes the macroscopic collective coordinate of a mas-
sive particle: at sufficiently small temperatures, the par-
ticle enters the quantum regime as it shows discrete en-
ergy levels within a potential well13 and can escape from
a potential well via macroscopic quantum tunneling14.
Different techniques have been adopted to implement a
two-minima fluxon potential in a long JTJ by the applica-
tion of an external magnetic field and/or on some abrupt
changes of the tunnel barrier properties, either the curva-
ture radius14 or the Josephson current density15,16. An

alternative approach has been proposed17 which takes ad-
vantage of the proportionality between the fluxon spatial
potential and the local width of the long JTJ18. It follows
that a large variety of spatially dependent fluxon poten-
tials can be engineered by means of JTLs having a non-
uniform width19. In particular, a magnetically tunable
double-well potential was conjectured in a variable-width
annular JTL named Confocal Annular Josephson Tunnel
Junction (CAJTJ)20 where the tunneling area is delim-
ited by two ellipses having the same focal length. Fig. 1
shows the scanning electron microscope image of a CA-
JTJ made of Nb doubly-connected electrodes. The CA-
JTJs represent a generalization of the well-known circular
(i.e., zero-eccentricity) annular JTJs intensively studied
to experimentally test the perturbation models developed
to take into account the dissipative effects in the prop-
agation with no collisions of sine-Gordon kinks21–23 and
to investigate both the static and the dynamic properties
of a fluxon in the spatially periodic potential induced by
an in-plane magnetic field24–26. At variance with the
ring-shaped JTLs which have a constant width, it is seen
that for the CAJTJs the width of the planar tunnel bar-
rier is smallest at the equatorial point and largest at the
poles; the width variation is smoothly distributed along
one fourth of the elliptical annulus (mean) perimeter. It
is this smooth periodic change of the width of the planar
tunnel barrier that makes the physics of CAJTJs very
rich and interesting especially since the modeling is very
accurate20,27. Recently28, experiments have shown that
a fluxon trapped in a long and narrow CAJTJ experi-
ences a finely tunable DWP and both the preparation
and readout of the vortex states in either the left or right
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FIG. 1. Scanning electron microscope image of a confocal an-
nular Josephson tunnel junction (CAJTJ) made ofNb doubly-
connected electrodes. The ratio of the major axis and the
minor axes is 2 : 1 that implies that the equatorial annulus
width is one half of the polar width.

state, that are important with respect to the possible re-
alization of a vortex qubit, can be achieved by simple
and robust procedures. The previously presented find-
ings concerned CAJTJs with the moderate aspect ratio
of 2 : 1 in which, as in Fig. 1, the (mean) major diame-
ter is twice larger than the minor one. In this paper we
investigate the effect of the annulus eccentricity on the
properties of the intrinsic fluxon DWP and present both
numerical and experimental findings on CAJTs with as-
pect ratio of 4 : 1. In particular, we will focus on the
mechanisms influencing the depinning of a fluxon from
each of the potential wells.

The paper is organized into five sections. Section II in-
troduces the theoretical framework for the study of a
current-biased CAJTJ subjected to an external magnetic
field in a modified and perturbed sine-Gordon equation;
we then consider the two-minima periodic potential expe-
rienced by a trapped fluxon and discuss how the potential
changes with the system aspect ratio and how it can be
tuned by means of an external in-plane magnetic field
and/or bias current. In Sec. III we present numerical
simulations of the depinning of a fluxon from each of the
two stable states of the DWP in underdamped CAJTJs
and describe a protocol to reliably prepare and deter-
mine the vortex state. In Sec.IV we present the experi-
mental data obtained with high-quality low-loss Nb/Al-
AlOx/Nb window-type CAJTJs in the presence of in-
plane magnetic fields and discuss the role of the temper-
ature and noise on the fluxon depinning. The conclusions
of our work are presented in Section V.

II. THEORY OF ONE-DIMENSIONAL CAJTJS

The tunneling area of two CAJTJs with different aspect
ratios are sketched by the hatched area in the top panels
of Figs. 2(a) and (b) where the principal diameters of
the confocal ellipses are made parallel to the X and Y
axes of a Cartesian coordinate system. The common foci
(small gray closed circles) lie on the X-axis at (±c, 0). As
the focal points move towards the origin, the eccentricity
vanishes and the confocal annulus progressively reduces
to a circular annulus (with uniform width).
The geometry of our system suggests the use of the (pla-
nar) elliptic coordinate system (ν, τ), a two-dimensional
orthogonal coordinate system in which the coordinate
lines are confocal ellipses and hyperbolae. In this sys-
tem, any point (x, y) in the X-Y plane is uniquely ex-
pressed as (c cosh ν sin τ, c sinh ν cos τ) with ν ≥ 0 and
τ ∈ [−π, π] for a given positive c value. According to
these notations, the origin of τ lies on the positive Y -
axis and increases for a clockwise rotation. In the limit
c→ 0, the elliptic coordinates (ν, τ) reduce to polar coor-
dinates (r, θ), where θ is the angle relative to the Y -axis;
the correspondence is given by τ → θ and c cosh ν → r
(note that ν itself becomes infinite as c → 0). Each
possible ellipse with focal points in (±c, 0) is uniquely
identified by a value of ν; we will name νi and νo > νi
the characteristic values of, respectively, the inner and
outer elliptic boundaries of a CAJTJ. Their mean value,
ν̄ = (νo + νi)/2, labels one more confocal ellipse in be-
tween, called mean or master ellipse - see the dashed
ellipses in the top panels of Figs. 2(a) and (b). As the
minor and major axes of the master ellipse are given by,
respectively, 2c sinh ν̄ and 2c cosh ν̄, we define the aspect
ratio of a CAJTJ as ρ ≡ tanh ν̄ and its (mean) eccentric-
ity as e2 ≡ 1− ρ2 = sech2 ν̄.

For closely spaced inner and outer ellipses, ∆ν ≡ νo −
νi << 1, the expression of the local annulus width is20:

∆w(τ) = cQ(τ) ∆ν, (1)

where Q(τ) is the elliptic scale factor defined by Q2(τ) ≡
sinh2 ν̄ sin2 τ + cosh2 ν̄ cos2 τ = sinh2 ν̄ + cos2 τ =
cosh2 ν̄ − sin2 τ = (cosh 2ν̄ + cos 2τ)/2. The width of
the confocal annulus is smallest at the equatorial points,
with ∆wmin = c∆ν sinh ν̄, and largest at the poles, with
∆wmax = c∆ν cosh ν̄; then ∆wmin = ρ∆wmax, i.e., in-
terestingly, as we make the confocal annulus more eccen-
tric we enhance the width spread ∆wmax/∆wmin. This
is clearly seen in Fig. 2 where the annuli are made to
have the same equatorial widths, ∆wmin = 0.1: as we
halve the aspect ratio, ρ, passing from 1/2 to 1/4, the
polar width, ∆wmax, doubles from 0.2 to 0.4. The an-
nuli width variations with the angular elliptic coordinate,
τ , are shown in the bottom panels of Figs. 2(a) and (b)
as given by (1).

In the small width approximation, ∆wmax << λJ , where
λJ , called the Josephson penetration length, gives a mea-
sure of the distance over which significant spatial vari-
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ations of the Josephson phase occur, the system be-
comes one-dimensional. It has been derived that the
ν-independent Josephson phase, φ(τ, t̂), of a narrow CA-
JTJ in the presence of a spatially homogeneous in-plane
magnetic field H of arbitrary orientation, θ̄, relative to
the Y -axis, obeys a modified and perturbed sine-Gordon
equation with a space dependent effective Josephson pen-
etration, λJ/Q(τ), length inversely proportional to the
local junction width20:[

λJ
cQ(τ)

]2(
1 + β

∂

∂t̂

)
φττ−φt̂t̂−sinφ = αφt̂−γ(τ)+Fh(τ),

(2)
where t̂ is the time normalized to the inverse of the so-
called (maximum) plasma frequency, ωp. The critical
current density, Jc, was assumed to be uniform. The
subscripts on φ are a shorthand for derivative with re-
spect to the corresponding variable. Furthermore, γ(τ) =
JZ(τ)/Jc is the local normalized density of the bias cur-
rent and

Fh(τ) ≡ h∆
cos θ̄ cosh ν̄ sin τ − sin θ̄ sinh ν̄ cos τ

Q2(τ)
(3)

is an additional forcing term proportional to the ap-
plied magnetic field; h ≡ H/Jcc is the normalized field
strength for treating long CAJTJs and ∆ is a geometri-
cal factor which sometimes has been referred to as the
coupling between the external field and the flux density
of the annular junction24. As usual, the α and β terms in
(2) account for, respectively, the quasi-particle shunt loss
and the surface losses in the superconducting electrodes.
The perimeter of the master ellipse is L = 4c cosh ν̄ E(e2),
where E(e2) ≡ E(π/2, e2) is the complete elliptic integrals
of the second kind of argument e2. Then the normalized
or electric length, ` = L/λJ , of the CAJTJ of a given
aspect ratio grows linearly with the foci distance, 2c.

When cooling an annular JTL below its critical tempera-
ture one or more flux quanta may be trapped in its dou-
bly connected electrodes. The algebraic sum of the flux
quanta trapped in each electrode is an integer number
n, called the winding number, counting the number of
Josephson vortices (fluxons) trapped in the junction bar-
rier. To take into account the number of trapped fluxons,
(2) is supplemented by periodic boundary conditions29,30:

φ(τ + 2π, t̂) = φ(τ, t̂) + 2πn, (4a)

φτ (τ + 2π, t̂) = φτ (τ, t̂). (4b)

A. The single fluxon potential

In the absence of dissipative and driving forces, the
simplest topologically stable dynamic solution of (2) on
an infinite line, in a first approximation, is a 2π-kink
(single fluxon) centered at a time-dependent coordinate

s0(t̂) and moving with instantaneous (tangential) veloc-
ity û ≡ d(s0/λJ)/dt̂ = (c/λJ)Q(τ0)dτ0/dt̂:

φ̃(τ, t̂) = 4 arctan exp
{
℘[s(τ)− s0(t̂)]/λJ

}
, (5)

where ℘ = ±1 is the topological charge, i.e., the fluxon
polarity31 and s(τ) the non-linear curvilinear coordinate
s(τ) = c

∫ τ
0
Q(τ ′)dτ ′. Inserting the phase profile in (5)

into (2) it was derived that27, in the absence of external
forces, the energy of a non-relativistic fluxon (û << 1),

Ê = K̂ + Ûw, is conserved. The circumflex accents de-
notes normalized quantities. Ê is normalized to the char-
acteristic energy, E = Φ0JcλJc∆ν/2π. Both the kinetic

energy, K̂(τ0) ≈ 4Q(τ0)û2, and the intrinsic potential en-

ergy, Ûw(τ0) ≈ 8Q(τ0), are position dependent through
the scale factorQ, that is, in force of (1), they are propor-
tional to the annulus width. This is consistent with the
relativistic expression Ê = m̂(τ0)/

√
1− û2(τ0) reported

by Nappi and Pagano18, provided that we introduce the
position dependent reduced rest mass m̂(τ0) = 8Q(τ0)
of the fluxon. Note that the energy, E0, of a CAJTJ
containing one static vortex is 8E sinh ν̄. With exper-
imentally accessible geometrical and electrical parame-
ters the normalizing energy is much larger than kBT -
E = O(104K) - and the fluxon rest mass, m0 ≡ E0/c̄

2,
happens to be much smaller than the electron rest mass
me - m0 = O(10−3me) -, where the so-called Swihart
velocity32, c̄, is the characteristic velocity of the electro-
magnetic waves in JTJs.

As can be discerned from the plots in the bottom pan-
els of Figs. 2(a) and (b), Ûw ∝ ∆w expresses a π-periodic
potential energy function independent on the fluxon po-
larity, and uniquely determined by the CAJTJ aspect
ratio. The potential wells are located at τ0 = ±π/2,
where the confocal annulus is narrowest. The left |L〉
and right |R〉 wells of the potential constitute stable clas-
sical states for the vortex with degenerate ground state
energy. Considering that sinh ν̄ ≤ Q(τ) ≤ cosh ν̄, the
potential wells are separated by a normalized energy bar-
rier, ∆Ûw ≡ Ûw,max − Ûw,min = 8 exp−ν̄, uniquely de-
termined by the system aspect ratio. As an example, the
change of the aspect ratio from 2 : 1 to 4 : 1 in Figs. 2
results in the triplication of the energy barrier (and so of
the potential gradient).

In the presence of small applied magnetic field and bias
current, two more terms contribute to the total potential
energy, Û , experienced by the fluxon:

Û(τ0) = Ûw(τ0) + Ûh(τ0) + Ûγ(τ0). (6)

Ûh(τ0) is the magnetic potential such that dUh/dτ =
2π℘(λJ/c)Q2(τ)Fh(τ), i.e.,:

Ûh(τ0) = Ûh⊥(τ0) + Ûh||(τ0) ≈

≈ 2π℘(λJ/c)∆
(
h⊥ cosh ν̄ cos τ0 + h|| sinh ν̄ sin τ0

)
,
(7)
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where h⊥ ≡ h cos θ̄ and h|| ≡ h sin θ̄ are the components
of the in-plane magnetic field, respectively, perpendicular
and parallel to the CAJTJ’s major diameter. Ûh(τ) is

2π-periodic and π-antiperiodic in τ , i.e., Ûh(τ + π) =

−Ûh(τ), then it averages to zero over one period. It is

important to note that Ûh⊥ is even in τ0 as the intrinsic

potential Ûw, while Ûh|| is odd and breaks the system
parity.
Furthermore, Ûγ(τ0) is the current-induced potential

such that dÛγ/dτ = 2π℘(λJ/c)Q2(τ)γ(τ); assuming a
uniform current distribution γ(τ) = γ0, it is:

Ûγ(τ0) ≡ π℘(λJ/c)γ0

(
τ0 cosh 2ν̄ +

1

2
sin 2τ0

)
. (8)

Fig. 3 qualitatively explains how the width-dependent
fluxon potential can be tuned by means of an externally
applied magnetic field and/or a bias current. The dotted
curve at the bottom of Fig. 3 shows the fluxon potential
in the presence of a (negative) perpendicular magnetic

field h⊥; the potential Ûw + Ûh⊥ is still invariant under
a parity transformation (τ0 → −τ0) and develops into a
field-controlled symmetric potential with finite walls and
two spatially separated minima. Increasing the ampli-
tude of the magnetic field, eventually the minima coalesce
and the perturbed potential becomes single-welled for a
(perpendicular) threshold field strength h∗⊥. The evolu-

tion of the potential Û with an increasing parallel field,
h||, follows a quite different pattern (not shown in Fig. 3),
but again a threshold value, h∗||, exists where the poten-

tial Ûw + Ûh|| becomes single-welled. It means that the
inter-well barrier can be fine-tuned and made arbitrarily
small by means of both a perpendicular or a parallel in-
plane magnetic field. The dashed line in Fig. 3 shows the
total potential when a bias current is feeding the CA-
JTJ. The resulting potential, Ûw + Ûγ , is qualitatively
similar to the well-studied tilted washboard potential for
the phase difference of a small JTJ biased below its crit-
ical current; the only difference is that in our case the
degree of freedom is the spatial coordinate, rather than
the Josephson phase difference. Indeed, the potential
profile can be tilted either to left or to right depending
on the polarity of the bias current, γ0. The inclination is
proportional to the Lorentz force on the vortex which is
induced by the bias current applied to the junction. At
last, the total fluxon potential, Ûw + Ûh⊥ + Ûγ , in the
presence of both an applied magnetic field and bias cur-
rent is depicted by the solid line at the top of Fig. 3. We
note that the left well is very shallow and an increment of
the bias current would further tilt the potential; a static
fluxon pinned in the left well would become unstable and
gets trapped in the right well as, in this specific example,
it does not have enough energy to move further to the
right. The smallest tilting that allows the vortex to es-
cape from a well defines the so-called depinning current,
γd. Clearly, the depinning current depends on the ap-
plied magnetic field and, in general, for a given field, the
depinning currents, γLd and γRd , from the left and right

wells are different. The deeper is the original potential
well from which the fluxon has to escape and the larger
is the corresponding depinning current.

III. THE NUMERICAL SIMULATIONS

In the Figs. 4(a) and (b) we report the numerically com-
puted field dependencies of the positive left and right
depinning currents, γLd+ (open circles) and γRd+ (crosses),
for a (positive) fluxon in the presence of a uniform in-
plane magnetic field, respectively, parallel and perpendic-
ular to the CAJTJ’s major axis. The numerical simula-
tions of (2) become mandatory whenever the applied bias
current and/or magnetic field cannot be considered as
perturbations. The commercial finite element simulation
package COMSOL MULTIPHYSICS (www.comsol.com)
was used to numerically solve (2) subjected to the cyclic
boundary conditions in Eqs.(4a) and (4b) with n = 1.
We set the damping coefficients α = 0.05 to simulate a
weakly underdamped regime and β = 0 as we are con-
sidering quasi-static phase solutions. We assumed a uni-
form current distribution, i.e., γ(τ) = γ0. In addition,
the field coupling constant, ∆, was set equal to 1. In
order to compare the numerical results with the experi-
mental findings presented in the next section, we set the
annulus aspect ratio to ρ = 1/4 corresponding to a CA-
JTJ whose largest width is four times larger than the
smallest one - as depicted in Fig. 2(b). Furthermore,
the normalized length, ` = L/λJ , was set to be 10π;
then, the (smooth) variation of the annulus width oc-
curs over a length, L/4 = 2.5πλJ ≈ 8λJ , quite large
compared to the fluxon size. A static fluxon centered
either in the left (τ0 = −π/2) or right well (τ0 = π/2)
was chosen for the system initial condition with γ0 = 0
in (2); then the normalized bias current was ramped-up
in small adiabatic increments of 0.05 and the stationary,
i.e., time-independent solutions recorded until the fluxon
was depinned from its initial state.

We first note that the field dependencies of the depin-
ning current shown in Figs. 4(a) and (b) are qualita-
tively similar despite the quite different ways the par-
allel and perpendicular fields affect the fluxon potential.
The most evident discrepancy resides in the magnetic
scales and reflects the fact that the junction cross-section
seen by a perpendicular field is larger than its paral-
lel counterpart33,34. In both cases the exchange of the
fluxon initial position is equivalent to a field reversal, i.e.,
γLd+(h||) = γRd+(−h||) and γLd+(h⊥) = γRd+(−h⊥). As ex-
pected, the zero-field depinning currents are degenerate,
γLd+(0) = γRd+(0), and constiture an appreciable fraction,
that is 41%, of the zero-field critical current; a smaller
value, that is 19%, has been reported28 for a CAJTJ with
aspect ratio ρ = 1/2. These different values reflect the
fact that the deeper is the potential well and the largest
is the bias current needed to unpin the fluxon. As a par-
allel magnetic field is turned on, it is seen from Fig. 4(a)
that, the left and right depinning currents change quite

4



linearly and in opposite directions, as long as the ampli-
tude of the applied field is smaller than a characteristic
field value h∗|| where one of the depinning currents van-

ishes. In other words, for |h||| ≤ h∗|| the fluxon escape

from the |L〉 and |R〉 states occurs at quite different bias
currents. The state with the higher depinning current
corresponds to a deeper potential well when the CAJTJ
is unbiased; numerical simulations show that when the
fluxon escapes from the state with higher depinning cur-
rent it starts to travel along the annulus perimeter and
switches the junction into a dynamic state with a finite
voltage across the junction proportional to the fluxon
time-averaged speed. Therefore, in this particular case,
the depinning current identifies with the switching cur-
rent that can be easily determined experimentally. This
is not necessarily the case for the state with lower de-
pinning current, as it might happen that, once depinned,
the fluxon gets trapped in the opposite well which has
an higher depinning current35, so that the junction re-
mains in a time-independent, i.e. zero-voltage, state.
Numerical analysis shows that this situation only occurs
for magnetic fields whose absolute values are close to -
but lower that - h∗||. Furthermore, the re-trapping dras-

tically depends on the junction losses that may dissipate
the energy of the depinned fluxon well before it over-
comes the opposite well. When the loss parameter α
in (2) is decreased to 0.01 the re-trapping field range
shrinks, but does not vanish; therefore, even lower losses
should be used in the numerical analysis to investigate
the re-trapping conditions. However, great care must be
taken to simulate low-damping nonlinear systems, since,
besides the longer transients, the results are very sen-
sitive to the numerical algorithm adopted to integrate
the partial differential equation. Nevertheless, setting
α = 0.05 the fluxon escaping from the state with the
lower depinning range jumps over the opposite well and
enters the running mode in a field range of approximately
|h||| ≤ h∗||/2. In this range we can talk again of a switch-

ing current that coincides with the depinning current. We
recall that in the experiments with high-quality JTJs the
losses drastically decrease with the temperature36 and
it is not difficult to reach damping parameters as small
as 0.00137. Notably, the existence of a range of parallel
fields in which also the lower depinning current turns the
CAJTJ into a finite voltage state implies that a switching
current measurements38 allows to localize the vortex in
one of the two states (this technique has been successfully
used to prove the existence of a DWP in other Joseph-
son vortex qubit prototypes14,35,39). As |h||| exceeds h∗||
the unbiased fluxon potential becomes single welled, the
information about the vortex initial state is lost and the
left and right depinning currents suddenly coincide. At
this point an eventual reduction of the field amplitude
below h∗|| and even its full removal leaves the fluxon in

the left or in the right well depending on its original sign;
in different words, the proper ramping up and down of
just the parallel field represents a viable procedure to

TABLE I. Some electrical parameters (at 4.2K) of our CA-
JTJs and the geometrical details of their tunneling area.

Jc λJ ρ ν̄ ∆ν c ∆wmin ∆wmax A L

kA/cm2 µm µm µm µm µm2 µm

1.1 6.2 0.25 0.256 0.18 45.1 2.1 8.4 1310 200

prepare the vortex state. Similar considerations also ap-
ply to the case of a perpendicular magnetic field; the only
significant difference is that the preparation of the fluxon
state, beside a magnetic field |h⊥| > h∗⊥, also requires a
small bias current that breaks the system symmetry40.

IV. THE MEASUREMENTS

In this section we report on the switching currents mea-
sured on high-quality window-type Nb/Al-AlOx-Al/Nb
CAJTJs with a single fluxon trapped during the zero-field
cooling of the samples through their critical temperature,
Tc ≈ 9.2K. This process is known to spontaneously
generated one or more fluxons on a statistical basis41,42

with a probability that increases with the speed of the
normal-to-superconducting transition; at the end of each
quench the number of trapped fluxons is determined by
carefully inspecting the junction current-voltage char-
acteristic (IVC) and measuring the voltage of possible
current branches, the so-called zero-field steps, associ-
ated with the traveling of the Josephson vortices around
the annulus. The samples designed to test the theory
had the so called Lyngby-type geometry21 that refers to
a specularly symmetric configuration, as that shown in
Fig. 1, in which the width of the current carrying elec-
trodes matches one of the axes of the outer ellipse and
the tunneling area is obtained by the superposition of
two superconducting rings. More details on the samples
description end their fabrication were reported, respec-
tively, in Ref.28 and Ref.43. Some electrical parameters
(measured at 4.2K) and the geometrical details of the
tunneling area for our CAJTJs are listed in Table I. The
samples normalized length is L/λJ ≈ 32.2 ≈ 10π. We
observe that the annulus polar width, ∆wmax, slightly
exceeds the fluxon size, λJ , meaning that the samples
are not strictly one-dimensional. In addition, the small-
est curvature radius of the master ellipse occurring at
the equatorial points, cρ sinh ν̄ ≈ 2.9µm, is smaller than
the fluxon size, a fact that may induce an interaction
(repulsion) between the leading and trailing edges of the
fluxon.

Several nominally identical CAJTJs fabricated on differ-
ent chips within the same run of a standard Nb−AlOx−
Nb trilayer process were investigated. Their electrodes
were either parallel, as shown in Fig. 1, or perpendicular
to the annulus major diameter and they all gave qual-
itatively similar results regardless of the orientation of
the bias. More important was found to be the orien-
tation of the externally applied in-plane magnetic field;
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in Figs. 5(a) and (b) we report the field dependence of
the positive and negative switching currents measured
at T = 4.2K on two representative samples subject to
in-plane magnetic fields having orthogonal orientations,
respectively, H|| and H⊥. The switching currents, ISW ,
were obtained by continuously sweeping the bias cur-
rent with a sufficiently large symmetric triangular wave-
form with a frequency of few hertz and automatically
recording the largest (and smallest) zero-voltage current
ten times for each value of the externally applied mag-
netic field. In agreement with the numerical expectations
presented in the previous Section, in a field range cen-
tered around zero, the switching current was found to be
double-valued. This is a clear indication that the fluxon
experiences a potential profile with two stable states and,
when the sweeping current crosses zero, the decelerating
fluxon stops on a statistical basis in either one of the two
different-depth potential wells. The pinning process of
a particle slowing down in a DWP drastically depends
on the drag force experienced by the particle; in fact, by
repeating the measurements at different temperatures,
the double-valued field range progressively shrank as the
temperature, and so the losses, was increased. Higher
temperatures also means larger thermal fluctuations that
might induce hopping between the two states. Other
noise sources, such as current and/or field noise, con-
cur on limiting the field range of the fluxon state having
the lower switching current; in fact, few more values of
the magnetic field were found to show a double-valued
switching current using a manual battery-operated ramp-
ing of the bias current. The moderate skewness of the
switching current plots is ascribed to fact that for both
samples the bias current flow occurs in the direction or-
thogonal to the applied field44; in this configuration the
self-field adds to the external field in the second and
fourth quadrants, while in the first and third quadrants
it partially compensates the applied field. We found the
switching current field dependence to be quite linear and
the dashed lines in Figs. 5(a) and (b) are the linear ex-
trapolations that help to locate the threshold field H∗||,⊥,

i.e., the largest theoretical absolute value of the field that
would yield a double-valued switching current whenever
both the dissipation and noises can be neglected. There-
fore, according to our measurements, the determination
of the fluxon state can be reliably achieved by applying
to an unbiased CAJTJ an in-plane magnetic field that is
known to have quite different switching currents for the
the two states and then incrementing the bias current
with a constant rate until a sudden jump of the voltage
from zero to any finite value is detected.

It is worthwhile to mention that the finite voltage ob-
served after a switch does not necessarily have to be
vΦ0/L corresponding to the fluxon continuous motion
along the annulus perimeter, L, with a certain time-
averaged speed v. In most cases the junction switched
to a state of free-running phase on the McCumber curve,
i.e., at a voltage close to the junction gap voltage Vg ≈
2.8mV , in particular when the switch occurred from the

state with the higher switching current. It means that
the fluxon potential is too steep to allow a steady motion;
in fact, as the numerical analysis shows, the plasma waves
emitted by the leading (trailing) edge of the accelerating
(decelerating) fluxon might grow in size as far as they
break in a fluxon-antifluxon pair; the process of pair nu-
cleation continues until the system becomes unstable45.
Beside the potential gradient, this radiative process heav-
ily depends on several factors, such as the fluxon speed
and the annulus perimeter, but again, above all it is de-
termined by the system dissipation. Indeed, for the high
aspect-ratio CAJTJs considered in this paper, tempera-
tures larger than T = 4.2K were needed to observe the
zero field steps. This fact indicates that, as the system
losses are increased, for a given bias current, the fluxon
average speed gets smaller; in turn, the emitted plasma
waves not only have a smaller amplitude but also die
away faster and then the conditions are restored for a
regular stable motion of the fluxon.

V. CONCLUSION

A Josephson vortex trapped in a long and narrow CA-
JTJ in the presence of a in-plane magnetic field is subject
to a periodic asymmetric and fine-tunable double well po-
tential accurately modeled by a modified and perturbed
one-dimensional sine-Gordon equation. The key ingredi-
ent of this potential is the smoothly distributed modula-
tion of the planar tunnel barrier width whose gradient is
related one-to-one to the eccentricity of the elliptical an-
nulus. Numerical simulations and experiments carried
on high-quality Nb/Al-AlOx-Al/Nb samples with one
trapped fluxon demonstrate that a robust two-minima
potential can be tailored whose inter-well barrier grows
as the annulus is made more eccentric. We have found
that the depinning of the fluxon occurs at bias current
that, among other things, depends on the potential well
from which the fluxon is escaping. We considered uni-
form magnetic fields applied in the barrier plane either
perpendicular or parallel to the major axis of the CA-
JTJ. In both cases, although for different reasons, a wide
range of magnetic field was observed characterized by
two-valued depinning currents, each value corresponding
to either one of the potential stable states. Experiments
carried out on CAJTJs with an aspect ratio of 4 :1 indi-
cate that these ranges grow as the temperature, and so
the fluxon losses, and/or as the noise sources are reduced.
The eccentricity of a CAJTJ also has a drastic effect on
the motion of a fluxon whose total energy exceeds the
potential energy. In fact, as the aspect ratio is increased,
the growing accelerations and decelerations the traveling
fluxon experiences when approaches the region of, respec-
tively, smallest and larger width are responsible of a peri-
odic radiation of small amplitude waves that destabilize
the forward fluxon advancement. Both numerical simu-
lations and experiments with slightly damped CAJTJs
having an aspect ratio of 4 :1 showed no manifestation of
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the fluxon propagation along the annulus perimeter.

Despite all the above considerations, we observed that
the eccentricity of the CAJTJs does not affect the ro-
bustness and reliability of the operation of a CAJTJ as a
Josephson vortex two-state system. Only small quantita-
tive differences were observed in the depinning currents
of samples with different aspect ratios. In conclusion, we
have demonstrated the full reliability of the procedures
for both the preparation and the determination of the
vortex in either one of the two potential minima, that are

important for the possible realization of a vortex qubit.
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(a)

(b)

FIG. 2. (Color online) Top panels: Drawings of two confocal
annuli delimited by closely spaced confocal ellipses (hatched
area) identified by the radial elliptic coordinates νi and νo;
they represent the tunneling areas of two CAJTJs having the
same foci - the gray dots at (±1, 0) -, but different aspect
ratios, ρ,: (a) ρ = 1/2, νo ≈ 0.6358 and νi ≈ 0.4628 and
(b) ρ = 1/4, νo ≈ 0.4495 and νi ≈ 0.0625. The dashed line
locates one more confocal ellipse, called mean or master ellipse
as ν̄ ≡ (νo + νi)/2. The annuli are built to have the same
equatorial or minimum width, ∆wmin = c sinh ν̄∆ν = 0.1,
with ∆ν ≡ νo − νi. Bottom panels: The annuli width, ∆w,
varies with the angular elliptic coordinate, τ , as given by (1).
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FIG. 3. (Color online) Schematic representation of the fluxon
potential under different conditions. The dotted line at
the bottom refers to the symmetric double-well potential
Ûw + Ûh⊥ in the presence of a uniform in-plane magnetic
field perpendicular to the long annulus diameter with two
minima at τ0 ≈ ±π/2 coincident with the degenerate states

|R〉 and |L〉; the dashed line corresponds to Ûw + Ûγ and dis-
plays the tilting of the potential due to a uniform bias current;
the solid line shows the asymmetric potential Ûw + Ûh⊥ + Ûγ
in the more general case of applied (perpendicular) magnetic
field and bias current. The three potentials are shifted by
arbitrary vertical offsets.
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(a)

(b)

FIG. 4. (Color online) Numerically computed field dependen-
cies of the positive fluxon depinning currents of the |L〉 (open
circles for γLd+) and |R〉 (stars for γRd+) states for two values
of the in-plane field orientation with respect to the annulus
major axis: (a) parallel field, h||, and (b) perpendicular field,
h⊥. The magnetic fields are normalized to Jcc.
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(a)

(b)

FIG. 5. (Color online) Positive and negative switching cur-
rents, ISW , recorded at T = 4.2K, by continuously sweep-
ing the bias current as an in-plane magnetic field is changed;
the dashed lines are the extrapolations of the almost linear
branches that help to locate the threshold field H∗||,⊥; (a)
parallel field, H||, and (b) perpendicular field, H⊥.
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