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Abstract. A study related to the fatigue behaviour of natural fibre composites was conducted to 
expand their industrial applications. Unidirectional flax/epoxy composites were fabricated, and 
their fatigue and creep behaviour was investigated by applying a range of different testing 
conditions. Stiffness was found to increase during fatigue loading, and this was accompanied by 
accumulation of residual strain. By arranging the results in a stiffness-strain diagram, a linear 
trend was established with a positive slope representing the stiffening effect.  A similar linear 
trend was obtained for creep loading, however, with a larger stiffening effect. For fatigue 
loading, the stiffening effect was found to be changed by the applied cycle frequency. The 
combined findings in the study suggest that stiffness change in the composites is reflecting a 
balance between stiffening due to residual strain, and softening due to fatigue damaging. 

1.  Introduction 
Replacing synthetic fibres, such as glass fibres and carbon fibres, with plant-based fibres, widely 
denoted as natural fibres, is an effective way to realize materials carbon neutrality because plants absorb 
CO2 during their growth. In addition, natural fibres are known to have mechanical properties comparable 
to glass fibres. Therefore, a large number of research studies related to natural fibres and their 
composites have been performed to evaluate materials characteristics, and to maximize materials 
performance.  

Recent industrial use of natural fibre composites is mostly limited to non-structural components, such 
as body panels of automobiles made from non-woven random mats of natural fibres. One of the reasons 
why industrial applications have been limited so far is the lack of knowledge related to the long-term 
reliability of natural fibre composites. Especially fatigue behaviour should be clarified to expand their 
application to load-bearing structural components. A common observation in studies of fatigue 
behaviour of natural fibre composites is stiffness increase during fatigue loading [1,2], while 
conventional composites based on glass and carbon fibres are known to show stiffness decrease, which 
typically is assumed to be due to damage progression [3-5]. Liang et al. [2] presented that a natural fibre 
composite based on a cross-ply flax fabric showed continuous increase of stiffness during almost all of 
the fatigue life, while a glass fibre composites with an identical fibre configuration exhibited significant 
decrease of stiffness. Baley [6] reported that cyclic tensile loading of single natural fibres also showed 
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stiffness increase. Nevertheless, the underlying mechanisms for this stiffness increasing behaviour 
remain unclear [1].  

In the present study, it is hypothesised that the stiffness change observed in natural fibre composites 
during fatigue loading is the result of two counteracting mechanisms taking place: stiffening (i.e. 
stiffness increase) and softening (i.e. stiffness decrease). This is investigated by performing tension-
tension fatigue tests of unidirectional natural fibre composites, and by focusing on the stiffness change 
and the concurrent change of residual strain. In addition, creep tests were performed to examine whether 
constant loading, i.e. a fatigue test without cyclic loading, induces a stiffening effect in the same way as 
fatigue loading does. This approach was used to separate the effects of the cyclic and constant loading 
components in fatigue loading. 

2.  Materials and methods 

2.1.  Fabrication of composite laminates and test specimens 
Unidirectional natural fibre composites were fabricated from a flax yarn (Smeraldo, Nm 1/9.7, Linificio 
e Canapificio Nazionale SpA, Italy) and an epoxy resin (Araldite LY1564SP, epoxy; Araldite 3486, 
hardener; Huntsman, USA). The density of the flax fibres and the cured resin was measured to be 1.59 
and 1.15 g/cm3, respectively. The same type of flax yarn has been used in a previous study of natural 
fibre composites, but with focus on static tensile properties [7].  

For fabrication of unidirectional flax/epoxy composite laminates, 14 layers of flax yarn were wound 
on to an aluminium plate (470 mm x 400 mm) using a custom-made winding machine. The misalignment 
of yarns was calculated to be negligible (≈ 0.1°). The plate with the wound yarn was packed in a vacuum 
bag. After a vacuum infusion process with the epoxy resin, the entire aluminium plate with the 
impregnated yarn was placed in a thermo-chamber for the curing process, 5 hours at 50°C. After 
demoulding, the composite laminates were post-cured at 80°C for 4.5 hours. The density, volume 
fraction of fibres, and porosity of the four fabricated laminates were measured to be 1.28 ± 0.02 g/cm3, 
31.4 ± 0.2%, and 0.3 ± 0.3% (mean ± standard deviation), respectively. The laminates were cut into (i) 
butterfly-shaped test specimens (length 410 mm, R = 900 mm, gauge section 60 x 25 mm), a type of 
specimen geometry specially designed for tensile fatigue testing of composites [8], and (ii) rectangular 
test specimens (length 180 mm, gauge section 100 x 25 mm). Tapered glass fibre composite tabs were 
mounted on both types of test specimens. 

2.2.  Static tensile tests 
To establish the testing conditions for the fatigue and creep tests, static tensile tests were initially 
performed with the rectangular specimens using a hydraulic testing machine (Instron, UK). The 
displacement rate was 2 mm/min. Strain was measured by two extensometers (50 mm gauge length) 
attached to each side of the specimens.  

2.3.  Fatigue tests and creep tests 
Fatigue tests were performed using an identical setup as used for the static tensile test. The applied 
fatigue testing mode was tension-tension, as indicated in Figure 1 (left), and with a constant stress ratio 
of R = 0.1. Different levels of stress amplitudes and frequencies were examined, as presented in Table 
1. Although almost all fatigue tests were performed on the butterfly-shaped specimens, a few tests that 
were focusing only on the stiffening effect were done on the rectangular specimens. During the fatigue 
tests, the stress-strain hysteresis loops were recorded intermittently, and stiffness was determined as the 
slope of a linear regression line fitted to the loops (see Figure 4). 

Creep tests were performed using an electronic testing machine (Instron, UK). Figure 1 (right) shows 
the general time course of the creep tests. For each test, two values of stiffness were determined from 
the slopes of linear regression lines fitted to the two loading phases (1st and 2nd ramp). Two stress levels 
(σc = 100 and 150 MPa) and several holding times (th = 0 to 1800 sec) were examined, as presented in 
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Table 2. The magnitude of the two stress levels were selected to be within the range of mean stress levels 
applied in the fatigue tests. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 1. Time course for fatigue tests (left) and creep tests (right). 
 

 
 
 
 
 

Table 1. Applied conditions for fatigue tests. 
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Table 2. Applied conditions for creep tests. 
 
 
 
 
 

 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
 

3.  Results and discussion 

3.1.  Tensile properties 
Based on the measured static tensile stress-strain curves of the unidirectional flax/epoxy composites, 

the stiffness and the ultimate tensile stress (UTS) were determined to be 18.5 ± 0.5 GPa and 282 ± 14 
MPa (mean ± standard deviation, n = 5), respectively. These properties are comparable to previously 
reported properties of unidirectional natural fibre composites with similar fibre contents of about 30 % 
[7, 9]. The stress-strain curves showed transition regions (or yielding regions) in the strain range 0.2 - 
0.4%. This specific characteristic has been reported in several studies both for flax fibres and for flax 
fibre composites [6, 10], though the underlying mechanism is still unclear. In the present study, the 
applied strain levels in the fatigue and creep tests are all above 0.5%, and therefore, they exceed the 
transition region of the composites. 

3.2.  Fatigue behaviour 
Figure 2 shows the typical fatigue failure mode of the composites. At first, a localized damage region 
appeared at the specimen edge within the gauge section. After another several hundreds of cycles, a 
splitting crack propagated from the initial damage region to the start of the tab, presumably due to the 
increase of shear stresses along the fibres. Finally, the decrease of the load carrying area induced bulk 
failure at the start of the tab. It can be noted that due to the stochastic nature of the fatigue failure mode, 
it is inevitable that the recorded maximum number of cycles at failure (N) will show some degree of 
scatter, even for identical materials and test conditions.  

Based on the results of the fatigue tests, the obtained S-N diagram is shown in Figure 3, together 
with the results of the static tensile tests. Generally, S-N data points of composites tested with a constant 
stress ratio (i.e. R-value) are known to be well fitted using an empirical power law relation, S = C⋅N-1/m, 
where S is maximum stress, and, C and m are fitting coefficients. As shown in Figure 3, the coefficient 
m, which determines the slope of the S-N curve, is 9.7 for the unidirectional flax/epoxy composites. 
This is similar to the m-value of about 10 seen for unidirectional glass/epoxy composites [11].  
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Figure 2. Typical fatigue failure mode observed for the unidirectional flax/epoxy composites.  
The red circles indicate the position of the visible initial damage region. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
Figure 3. The logS - logN fatigue diagram of the unidirectional flax/epoxy composites, together  

with the results of the static tensile tests. 
 
A special fatigue behaviour observed for unidirectional flax/epoxy composites, not seen for 

conventional types of composites, is the change in stiffness during fatigue testing. Figure 4 shows 
examples of the recorded stress-strain hysteresis loops during two fatigue tests with mean stress levels 
of 61 and 121 MPa (corresponding to maximum stress levels of 110 and 220 MPa). For both stress 
levels, the slope of the loops at halfway of fatigue life is increased compared with the slope at the start 
of the fatigue test. For the high mean stress level of 121 MPa, this trend is continued towards the end of 
fatigue life, whereas for the low mean stress level of 61 MPa, the slope is decreased at the end of fatigue 
life. For both stress levels, the position of the loops is consistently shifted to the right during the fatigue 
testing. The starting strain value for each loop is denoted residual strain. The two examples in Figure 4 
show that the composites become stiffer during a major part of their fatigue life, while at the same time, 
the residual strain is increased.  
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Figure 4. Examples of hysteresis loops recorded during two fatigue tests with mean stress levels of  
61 and 121 MPa. Dotted lines show linear regression lines of each loop to determine stiffness. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 5. Stiffness (A) and residual strain (B) as a function of fraction of fatigue life.  
Results are shown for fatigue tests with different mean stress levels. 
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For the performed fatigue tests with the different mean stress levels, Figure 5 shows the determined 
stiffness and residual strain as a function of the fraction of fatigue life (N/Nfinal). For both stiffness and 
residual strain, it is difficult to see a common trend with respect to the mean stress level. However, as 
shown in Figure 6, if the relative change in stiffness ((E-E0)/E0 = ∆E/E0, where E and E0 are the current 
and the initial stiffness, respectively) is plotted as a function of the residual strain, the curves for the 
different mean stress levels share a common linear trend. Such a diagram is hereafter referred to as a 
stiffness-strain diagram. The established correlation shown in Figure 6 suggests that stiffening of the 
composites is induced during accumulation of residual strain. The stiffening effect is represented by the 
slope of the linear trend line. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 6. Stiffness-strain diagram for fatigue. Relationship between relative change in stiffness and 
residual strain. Numbers at the curves indicate the applied mean stress levels.  

Dotted black line is a linear regression line for all stress levels. 

3.3.  Creep behaviour 
In the results of the fatigue tests presented above, a stiffening effect was clearly observed. If this 
stiffening effect is induced by the residual strain, a similar effect should expectedly be observed in creep 
tests, which correspond to fatigue tests with no stress amplitude, i.e. the applied creep stress can be 
assumed equivalent to the mean fatigue stress (see Figure 1). In Figure 7, an example of results of a 
creep test with an applied stress of 150 MPa is shown. As can be observed in Figure 7A, the onset strain 
value is increased above zero for the 2nd ramp, which shows that residual strain is generated. In addition, 
as can be observed in Figure 7B, the slope of the 2nd ramp is steeper than the slope of the 1st ramp. This 
is indicating a stiffening of the composites as an effect of the constant loading. Analogous to the fatigue 
test, the relative change in stiffness ((E2-E1)/E1 =∆E/E1, where E1 and E2 are stiffnesses obtained from 
the 1st and the 2nd ramps, respectively) can be calculated.  
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Figure 7. An example of results of a creep test with a stress level of 150 MPa,  
and a holding time of 30 sec. A: Strain-time, B: Stress-strain. 

 
For the applied two stress levels in the creep tests (100 and 150 MPa), Figure 8 shows the determined 

relative change in stiffness and the residual strain as a function of the holding time. It is clearly indicated 
that the effect of holding time on stiffness and residual strain is similar. Both properties are increased 
rapidly in the range of short holding times, and the rate of increase is reduced in the range of long holding 
times. In addition, as expected, the increase of the stress level leads to an increase of both the stiffness 
and the residual strain.  

 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 8. Relative change in stiffness (A) and residual strain (B) as a function of  
the holding time in the creep tests. 

 
Based on the results from the creep tests, Figure 9 shows the stiffness-strain diagram, i.e. the relative 

change in stiffness as a function of residual strain. The results from the two stress levels share a common 
linear trend, as was also observed for the fatigue tests. Thus, it is clearly demonstrated that the stiffening 
effect does not require the repeated loading-unloading cycles of the fatigue tests. 

3.4.  Fatigue and creep behaviour 
Figure 10 is a co-plot of the results of the fatigue tests and the creep tests in the same stiffness-strain 
diagram. As can be observed, the slope of the linear trend line is clearly lower for the fatigue tests, than 
for the creep tests. This indicates the existence of a concurrent mechanism in the fatigue test that is 
counteracting the stiffening effect. This mechanism is likely to be the damage induced by the repeated 
loading in the fatigue tests, which is the typically stated reason for the softening seen for conventional 
composites, such as glass fibre composites [3, 4]. In the case of the flax/epoxy composites in the present 
study, it is indicated that stiffening proceeds simultaneously with softening, and this explains why the 
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fatigue tests result in a lower slope of the linear trend line compared to the creep tests. Thus, the slope 
in the stiffness-strain diagram is reflecting the balance between stiffening related to residual strain, and 
softening related to fatigue damaging.  

Next, the balance between stiffening and softening will be studied by changing the applied loading 
frequency in the fatigue test. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 9. Stiffness-strain diagram for creep. Relationship between relative change  
in stiffness and residual strain. Dotted black line is a linear regression line for all data points. 

 
 
 
 
 
 
 

 
 
 
 
 

 
 
 
 
 
 
 
 
 

 
 
 
 

Figure 10. Stiffness-strain diagram for fatigue and creep. 
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3.5.  Effect of loading frequency on fatigue behaviour 
Additional fatigue tests were performed with a mean stress level of 121 MPa, and with loading 
frequencies of 0.25, 0.5, 1 and 2 Hz (see Table 1). In these tests, the constant stress component is the 
same, which means that the induced residual strain per unit of time can be assumed to be the same. The 
number of cycles per unit of time is however different between the tests, and this is assumed to lead to 
a difference in the amount of induced damage. Therefore, the balance between stiffening and softening 
is expected to be affected by the loading frequency, e.g. a lower frequency is expected to lead to a larger 
resulting stiffening effect due to less damaging. Figure 11 presents the results of these additional fatigue 
tests. As shown in Figure 11A, the relative change in stiffness proceeds faster for the lower frequencies, 
when the results are plotted as function of the number of fatigue cycles. Furthermore, as can be seen in 
the stiffness-strain diagram in Figure 11B, the slope of the curves is clearly steeper for the lower 
frequencies. Thus, as expected, the stiffening effect is getting larger when the cycle frequency is 
reduced. For a given residual strain induced by the constant stress component, the induced damage is 
lower for the fatigue tests with the lower frequency. 

In the study by Shah [12] of comparable unidirectional natural fibre composites, fatigue testing was 
performed using a loading frequency of 10 Hz, and a negligible change of the stiffness was found. 
Qualitatively speaking, the results by Shah [12] are supporting the findings in the present study, i.e. an 
increase in loading frequency is leading to a decrease in the stiffening effect (Fig 11B).    

Figure 11A shows that the specimens tested by the lower frequencies exhibit shorter fatigue life, 
although the fatigue damage per cycle should be same, i.e. it should be independent of the loading 
frequency. Interestingly, it can be observed that the final level of the relative change in stiffness is almost 
the same (about 16 %) for all frequencies. It is therefore indicated that the failure criterion for 
unidirectional natural fibre composites is not only governed by the number of loading cycles, i.e. by the 
magnitude of accumulated damage, but also the magnitude of the stiffening must be taken into account. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 

Figure 11. Results of fatigue tests performed with a mean stress level of 121 MPa and  
with various loading frequencies. Broken lines in B are linear regression lines for each curve. 

3.6.  Underlying mechanisms for stiffening and softening 
In the present study, mechanical tests have been performed to quantify and analyse the mechanical 
response of unidirectional natural fibre composites to fatigue and creep loading. This has been done, 
however, without knowing the exact nature of the underlying mechanisms. In preliminary investigations 
by the authors, X-ray microtomography were used to observe the microstructure of the unidirectional 
flax fibre/epoxy specimens before and after testing, however, no clear differences were found (data not 
shown). In the case of natural fibres, Kohler and Spatz [13] reported a lowering of the cellulose 
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microfibril angle during the initial phase of loading until the yielding region, where after the angle 
remained almost constant. Upon unloading, a residual deformation of the fibres remained. In the case of 
natural fibre yarns, as used in the present study, it must be considered that the twisting angle of the fibres 
in the yarn becomes lowered during fatigue and creep tests. These changes on the two structural levels 
of fibres and yarns support a stiffening effect in the composites. 

4.  Conclusions 
In the present study, fatigue and creep tests under variable conditions were performed on unidirectional 
flax/epoxy composites. The results were analysed, and the following findings were obtained. 

a) Increase of stiffness was correlated to increase of residual strain in both fatigue and creep tests. 
By arranging the results in a stiffness-strain diagram, a linear trend was established with a positive 
slope representing the stiffening effect. 

b) Creep tests induced a larger stiffening effect than fatigue tests. 
c) Fatigue tests performed with lower frequencies induced a larger stiffening effect. 
Based on these findings, it is suggested that stiffening proceeds simultaneously with softening in the 

composites. The resulting stiffness change is reflecting the balance between stiffening due to residual 
strain, and softening due to fatigue damaging. Further work is needed to elucidate the underlying 
mechanisms. 
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