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Abstract: Mode-locked lasers with strong high order dispersion exhibit rich nonlinear 
dynamics. Here we numerically and experimentally demonstrate coexistence of dissipative 
soliton (DS) and stretched pulse (SP) in a dual-wavelength mode-locked Tm-doped fiber laser 
with strong third-order dispersion (TOD), where the DS and SP show completely different 
pulse duration and peak power. Wavelength-dependent feature of the net cavity group-
velocity dispersion (GVD) leaded by the strong TOD plays a key role for the coexistence 
patterns. To our best knowledge, this is the first demonstration of the coexistence of different 
mode-locked pulse regimes with strong laser cavity TOD. 
© 2018 Optical Society of America under the terms of the OSA Open Access Publishing Agreement 
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1. Introduction 

Group-velocity dispersion (GVD) in passively mode-locked fiber laser plays a key role for 
pulse regimes. Generally, conventional soliton (CS) and DS will be respectively formed at 
large anomalous and normal net cavity GVD regions, where the former is dominated by the 
balance of nonlinearity and anomalous GVD [1], but the latter mainly depends on the 
interplay of nonlinear gain and loss [2]. Compared with CS, energy flux of dissipative system 
across DS produces strong chirp and thus large pulse duration of tens of picosecond level [3]. 
When mode-locked laser is dispersion managed with segments of positive and anomalous 
GVD components, the pulse duration of soliton will periodically broaden and compress in the 
laser cavity and result in increased average pulse duration and higher pulse energy [4, 5]. 
Especially, in the case of dispersion management with near zero net cavity GVD, SP 
characterized by high stretching ratio will be formed with narrow pulse duration of 
femtosecond level [5], where the mechanisms of CS and DS will coexist and compete with 
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each other [6]. Dissipative soliton resonance with feature of wave-breaking free can also be 
formed by properly setting the net cavity dispersion [7]. In these pulse regimes, the GVD is 
usually treated as wavelength insensitive due to their weak TOD and narrow spectrum range, 
and as a result the study of strong TOD on mode-locked pulse behavior is rarely reported. In 
fact, when mode-locked oscillator operates with strong TOD, the GVD becomes greatly 
wavelength dependent and inevitably give mode-locked pulses some additional features [8–
10]. Usually, mode-locked pulses in this case develop asymmetric temporal and spectral 
profiles owing to the combined effect of GVD and TOD [10–12]. When the GVD is 
appropriately set, the TOD can even lead to compressing or broadening of pulse duration [11, 
13]. Chaotic and quasi-periodic pulse regimes have also been reported with strong TOD in 
mode-locked lasers [14, 15]. 

Some fascinating coexistence patterns have also been delivered from mode-locked 
oscillator with appropriate GVD. L. Wang has demonstrated the coexistence of bright pulses 
and dark solitons in an Er-doped mode-locked fiber laser with large normal GVD [16]. X. Liu 
has demonstrated the coexistence of strong and weak pulses in large anomalous GVD region 
at 1.5 μm band [17]. Although these reports reveal such appealing coexistence patterns 
through designing suitable net cavity GVD, further exploring of complex coexistence patterns 
based on strong TOD even higher order dispersion is still unexplored as we best known. Here 
we numerically and experimentally demonstrate the coexistence of DS and SP by introducing 
strong TOD with a 10 m dispersion compensation fiber (DCF) in a dual-wavelength mode-
locked Tm-doped fiber laser. The performance of the coexistence patterns is investigated in 
detail. 

2. Experiment setup and mechanism 

 

Fig. 1. Setup of dual-wavelength mode-locked fiber laser. 

Figure 1 shows the experimental setup. The ring fiber cavity with a total length of ~20.2 m is 
composed of 1.5 m Tm-doped double-cladding fiber (Coractive, DCF-TM-10/128), 8.5 m 
SMF 28e fiber, 10 m DCF (OFS, LP980), and 0.2 m polarization maintained fiber (PMF). 
The Tm-doped fiber served as a gain medium is pumped by a 793 nm diode lasers (BWT) 
with a max output power of 6 W via a (2 + 1) × 1 pump combiner (ITF, Canada). The DCF is 
used to compensate the net cavity GVD and induce strong TOD effect. A polarization 
dependent optical isolator (PDISO) with a polarization extinction ration of 35 dB at 2 µm 
(Advanced Photonics, USA) is used to induce nonlinear polarization evolution (NPE) effect 
and ensure the unidirectional propagation. Two polarization controllers (PCs) are used to 
control the mode-locking performance. The 0.2 m PMF with beat length of 5.3 mm at 1950 
nm is adopted to induce comb filter effect which served as a wavelength selector for the 
multi-wavelength operation [18–20]. The comb filter period is calculated to be 51.2 nm 
according to the formula of ∆λ = λLB/LPMF, where λ is the center wavelength, LB and LPMF are 
the length and beat length of the PMF respectively [21]. Note that the mode-locked fiber laser 
without the PMF always operates at single-wavelength mode-locking, suggesting that all 
fibers in the cavity have a weak birefringence coefficient except the PMF. The mode-
competition of multi-wavelength operation is suppressed by the wavelength-dependent loss of 
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the NPE effect [22]. 20% port of a 2/8 coupler is used as output port. A single-wall carbon 
nanotube (SWCNT) sandwiched between two optical ferrules is served as a slow saturable 
absorber (SA) to self-start and stabilize the mode-locking [23]. The measured modulation 
depth, nonsaturable loss and saturation intensity of the SWCNT SA are 21.2%, 59.6% and 
2.23 MW/cm2, respectively. 

Table 1. Measured GVD and TOD of three kinds of fibers at 1950 nm. 

Fiber type GVD (ps2/km) TOD (ps3/km) 
Tm-doped fiber −84 0.3 
SMF 28e −80 0.3 
DCF 85 1.67 

The output signal is detected by an InGaAs photodetector (EOT ET-5000F, USA) 
connected to a 500 MHz digital oscilloscope and a radiofrequency (RF) spectrum analyzer, 
respectively. Interference autocorrelator (APE Pulsecheck USB 150, Germany) and optical 
spectrum analyzer (Yokogawa AQ6375, Japan) are used to measure the pulse duration and 
optical spectrum. Since the GVD and TOD of the fiber laser play a key role in our 
experiment, we measure them with interferometric method [24]. Table 1 lists the measured 
results. Among them, the DCF with a strong TOD of 1.67 ps3/km is the main contributor of 
the net cavity TOD. The net cavity TOD is calculated to be ~0.02 ps3 at 1950 nm. Stronger 
TOD effect can be induced by using longer DCF in the cavity. However, when we increase 
the length of DCF from 10 m to 20 m, the stationary pulse regime becomes unstable and 
easily switches into noise-like pulse regime because of the long laser cavity and high 
nonlinearity coefficient of the DCF. With the same reason, even if the laser operates in 
stationary soliton regime, both the DS and SP will split into a number of sub-pulses due to the 
strong pulse splitting effect. Therefore, only 10.0 m DCF is used in our experiment. 

3. Simulation modeling 

Numerical simulation is performed based on coupled extended Ginzburg-Landau equations 
[25]. The coupled equations are expressed by 
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 (1) 

where, U and V are envelopes of the optical pulses along the two orthogonal polarization axes 
of the fiber. 2β = 2π∆n/λ is the wave-number difference between the two modes. 2δ = 
2βλ/2πc is the group velocity difference between the two polarization modes. β2 donates the 
GVD coefficient. γ refers to the cubic refractive nonlinearity of the medium. Ωg = 2πc∆λ/λ2 is 
the bandwidth of the laser gain. The variable T and z are the time and the propagation 
distance, respectively. g is the net gain, which is nonzero only for the gain fiber. It describes 
the gain function of Tm doped fiber and is expressed by g = g0exp(-EP/ES), where g0 is the 
small-signal gain, EP is the pulse energy, and ES is the gain saturation energy which is pump 
power dependent. An arbitrary small pulse is served as initial signal to repeatedly propagate 
in the ring fiber cavity until the optical field becomes self-consistent. When the signal passes 
through the polarizer, the intensity transmission function is expressed as 

 2 2 2 2
BirefringenceT= sin ( )sin ( ) cos ( )cos ( ) 0.5sin(2 )sin(2 )cos( )PC NLθ ϕ θ ϕ θ ϕ ϕ ϕ ϕ+ + + + (2) 

Where θ is the angle between the polarization direction of the light and the fast axis of the 
birefringent fiber, φ is the angle between the orientation of polarizers and the fast axis of the 
birefringent fiber. φPC, φBirefringent and φNL are the phase delays induced by polarization 
controllers, fiber birefringent and nonlinearity effect, respectively. Among them, φBirefringent 
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and φNL are crucial for the mode-competition suppression of multi-wavelength operation 
because they are wavelength dependent. The filter depth is decided by the term of 
sin(2θ)sin(2φ). Finally, the SWCNT is simulated by the simple two-level saturable absorber 
model [26]: 

 ( ) 0

1 /ns
sat

I
I I

αα α= +
+

 (3) 

where α(I) is the intensity-dependent absorption coefficient, and α0, αns and Isat are the linear 
limit of saturable absorption, nonsaturable absorption, and saturation intensity, respectively. 

Predictor-corrector split-step Fourier method is adopted to precisely solve the Eq. (1) [27]. 
Like the experiment setup, the numerical cavity is composed of a polarizer + 8.5 m 
SMF_fiber + 1.5 m Tm_fiber + 0.5 m SMF_fiber + 2/8 output coupler + 1.5 m SMF_fiber + 
10 m DCF + 1 m SMF_fiber + 0.2 m PMF + 1 m SMF_fiber + SA + 1.5 m SMF_fiber. The 
time window is 896 ps with time step of 54.7 fs. The center wavelength is set to 1950 nm. 
Beat length of PMF and other fibers are set to 5.3 mm and 1 m respectively. The nonlinearity 
coefficient of the gain fiber, DCF and SMF28e are respectively set to be 0.8 W−1m−1, 0.8 
W−1m−1, and 4.4 W−1m−1. The GVD and TOD of these fibers are the same as Table .1. Gain 
bandwidth Ωg and small-signal gain g0 are respectively set to be 30 THz and 6 m−1. For 
SWCNT SA model, α0 = 38.5%, αns = 58.3% and Isat = 2.23 MW/cm2 are used. To reflect 
general physical behaviours of the coexistence patterns, we simplify the numerical model by 
ignoring some inessential parameters such as insertion loss of all components and higher 
order dispersion of fiber. 

4. Simulation results 

 

Fig. 2. Simulation of coexistence of DS and SP: (a) and (b) are spectrum and waveform 
evolution as a function of round-trip number, (c) and (d) are optical spectrum and waveform at 
round-trip number of 250. Red line in (c) is calculated net cavity GVD as a function of 
wavelength. Inset of (b) is a zoom-in of the waveform evolution within the round-trip number 
of 0-20. 

In the simulation, increasing of the gain saturation energy ES corresponds to enhance pump 
strength [28]. Both θ and φ are set to 0.5π to maximize the filter depth so that the comb filter 
can effectively induce the multi-wavelength mode-locking. By setting φPC = 1.7π, stable dual-
wavelength mode-locking is obtained when ES increases to 130 pJ. Note that the center 
wavelength separation of dual-wavelength mode-locking in our simulation less than the com 
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filter period since the laser wavelength at each filter channel tends to close the gain center of 
the Tm-doped fiber. Figure 2(a) presents the spectrum evolution as a function of round-trip 
number at the ES of 150 pJ. Stable spectrum evolution is formed after the round-trip number 
of ~150. The sub-spectra centered at 1925.7 nm and 1964.5 nm show different intensity 
distributions. The corresponding evolution of its waveform is presented in Fig. 2(b). The two 
pulse trains, as shown in inset of Fig. 2(b), start from the same initial weak pulse and quickly 
split into two pulses with completely different peak intensities and durations. The different 
evolution slopes of the two pulse trains suggest their different propagation velocities. 
According to the evolution in Fig. 2(b), the calculated separation between the two pulses 
increases ~550 fs per round trip. With the assumption of 10.0 MHz repetition rate (decided by 
cavity length) for one of the two pulses, their repetition rate difference is calculated to be 55 
Hz, indicating that the two pulses collide with each other 55 times per second in principle. In 
the simulation, however, because the 896 ps time window far less than the actual time 
window of ~100 ns (~1/10MHz), the colliding frequency is up to ~605 kHz in fact. With such 
high colliding frequency, if the simulation of the coexistence patterns is performed with round 
number trips of 1000, the both pulses will cross the one side of the time window and come 
into the time window again from another side, and consequently they will collide with each 
other. After colliding, interestingly, the both pulses completely maintain their original pulse 
waveform and phase, indicating that no any modulation or energy exchange occur during the 
colliding process and they simply obeys the linear superposition principle and independent 
propagation principle of light wave. Figure 2(c) and 2(d) respectively show the spectrum and 
waveform at the round number trip of 250. In Fig. 2(c), the sub-spectrum at 1964.5 nm with 
Gauss profile implies the operation of SP regime, while the other sub-spectrum at 1925.7 nm 
with steep edges and flat top reflects the feature of DS regime. Weak asymmetry of the 
spectrum profiles of the DS and SP are caused by strong TOD effect of the laser cavity. Their 
3 dB bandwidth are calculated to be 9.6 nm and 9.9 nm, respectively. The weak disturbance 
formed at the wavelength of 1974.0 nm is sign of Kelly sideband, which caused by resonant 
enhancement between dispersive wave and soliton is a powerful evidence of SP or CS regime 
GVD [29]. The Kelly sideband with strong intensity can be obtained when φPC and Esat are 
adjusted. Figure 2(c) also shows the calculated net cavity GVD in the wavelength range of 
1900 nm to 2020 nm according to the approximate formula of β3≈dβ2/dω, where β2 and β3 are 
net cavity GVD and TOD respectively. The calculated GVD decreases from normal to 
anomalous region toward long wavelength direction. The DS and SP operate at 1925.7/1964.5 
nm respectively have corresponding normal/anomalous GVD values of 0.41 ps2/-0.30ps2. Due 
to the different pulse regimes, their waveforms also exhibit contrasting features, as shown in 
Fig. 2(d): the SP shows narrow pulse duration of 830 fs and high peak power of 20 W, but the 
DS has large pulse duration of 19.8 ps and low peak power of only 0.98 W. 

In order to further validate the features of the DS and SP of the coexistence patterns, we 
investigate their pulse evolutions along the laser cavity, as shown in Fig. 3(a) and (b). During 
the evolution, although the pulses change their velocities at different segments, they don’t 
overlap and interact with each other because of their large pulse separation of ~140 ps. As a 
comparison, the SP shows narrower pulse duration with obvious broadening and compressing 
behaviour relative the DS. To better clarify, we plot their pulse duration evolutions along the 
laser cavity in Fig. 3(c) and 3(d). In Fig. 3(c), the high stretching ratio of 3.7 from 2.43 ps at 
1.64 m to 660 fs at 0.38 m reflects the typical ‘stretching’ feature of the SP. Compared with 
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Fig. 3. Evolution of coexistence of DS and SP inside the laser cavity: (a) and (b) are waveform 
evolution of SP and DS as a function of laser cavity position, respectively, (c) and (d) are 
corresponding calculated results of pulse duration and slope of chirp at pulse center region. 

the SP, the stretching ratio of DS in Fig. 3(d) is only 1.2 calculated by 23.1 ps at 1.65 m to 
and 19.5 ps at 0.65 m. Besides, the DS and SP respectively stretch and compress once and 
twice per cavity round trip, and the chirp sign, as indicated in Fig. 3(c) and 3(d) by their chirp 
slopes at the pulse center region, always maintains negative for DS but varies between both 
signs for SP. All these keep accordance with the reported features of DS and SP [4, 5, 30]. 

 

Fig. 4. Simulation of coexistence of DS and bounded SPs: (a) waveform evolution as a 
function of round-trip number, (b) optical spectrum at round-trip number of 250. 

The SP in the coexistence patterns is easily broken into multiple SPs due to its low wave-
breaking threshold leaded by its high pulse peak power. Figure 4(a) shows an instance of this 
case, where the SP is broken into two sub-pulses. The two SPs have nearly identical 
waveform as a result of soliton energy quantization mechanism in multi-soliton formation 
[31]. The separation between the two SPs keep constant when the evolution becomes stable, 
indicating that they belong to bounded SPs. Figure 4(b) shows the corresponding optical 
spectrum. The spectrum of SP shows obvious modulation which is the typical feature of pulse 
splitting. Note that the SP will split into more sub-pulses if the SE  further increases, whereas 

the DS always operate at single pulse regime. 
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Fig. 5. Simulation of spectra and waveforms of the coexistence of DS and SP with different 
types of filters: (a) and (b) are spectra based on comb filter with 0.3 m and 0.6 m PMF, 
respectively, (c) is spectrum with an artificial dual-bandpass filter. (d), (e) and (f) are 
waveforms corresponding to (a), (b) and (c) respectively. Red curve in (c) is the transmission 
of the dual-bandpass filter, where the center wavelength separation between the neighboring 
channels is twice of the comb filter period with 0.6 m PMF. 

In the simulation, we find that the comb filter period has important influence on the 
performance of the coexistence patterns. When we shorten the PMF, the mode-locking tends 
to operate at single-wavelength regime due to the limited gain bandwidth of 30 THz and 
limited modulation depth of 50% of the comb filter. Therefore, we only investigated the 
performance of the coexistence patterns with longer PMF. Figure 5(a) and 5(d) respectively 
show the pulse spectrum and waveform of the coexistence patterns with 0.3 m PMF. Because 
the filter period decreases to 34.5 nm in this case, the 3 dB bandwidths of the DS and SP 
respectively reduce to 6.4 nm and 4.2 nm, and the SP pulse duration dramatically extends to 
1.2 ps. In addition, the required value of ES in this case drops down to 90 pJ because the 
decreased pulse splitting threshold of the SP with a narrow filter period. When we further 
increases the length of PMF to 0.6 m, net cavity GVD difference between the neighbouring 
wavelength channels becomes smaller, and the features of DS and SP become obscure and 
exhibit some similar feature with each other. Figure 5(b) shows a typical spectrum of this case 
at ES of 28 pJ with φPC = 1.3π, where, instead of SP, a sub-spectrum with basically flat top 
and steep edges is formed. Because of the narrow comb filter period of 17.2 nm, their pulse 
durations, as shown in Fig. 5(e), are calculated to be 2.7 ps and 8.9 ps, respectively. Note that 
the coexistence patterns with typical spectral features of DS and SP can still be obtained by 
enlarging the center wavelength separation of the dual-wavelength mode-locking without 
expanding the comb filter period. In order to validate that, we replace the PMF with an 
artificially set dual-bandpass filter, as shown in Fig. 5(c) with red curve, where its center 
wavelength separation expands to 34.4 nm but the passband width is the same as the comb 
filter with 6 m PMF. Blue curve in Fig. 5(c) shows the simulation spectrum of this case, 
where the dual-wavelength mode-locked pulses at neighboring channels will respectively 
operate with adequate normal/anomalous net cavity GVD, and typical DS and SP are formed 
again. Their corresponding waveforms are shown in Fig. 5(f). Compared with Fig. 5(e), the 
pulse duration of SP is compressed to 1.7 ps. 
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5. Experiment results and comparisons 

 

Fig. 6. Experimental results of coexistence of DS and SP with 0.2 m PMF: (a) optical spectrum 
(b) oscilloscope trace with a scanning range of 600 ns, (c) RF spectrum with a scanning range 
of 150 Hz, (d) interference autocorrelation traces of the DS (bottom) and SP (top) with 
scanning range of 20 ps and 2 ps respectively. Inset of (b) is snapshot of the oscilloscope trace 
of the coexistence patterns. 

With ~0.2 m PMF in the fiber cavity, the coexistence of DS and SP is observed by carefully 
adjusting the PCs and pump power. The output power in this case is 16.3 mW. Note that this 
coexistence patterns are very sensitive to PCs’ position and environmental disturbance 
because of the difficulty of mode competition suppression in dual-wavelength mode-locking 
with large comb filter period of 51.6 nm. In addition, with the large comb filter period, mode-
competition of the dual-wavelength mode-locking is in fact suppressed by the combined 
functions of NPE induced wavelength-dependent loss and unflattened gain of Tm-doped 
fiber, and as a result the center wavelength separation of the dual-wavelength mode-locking is 
not only decided by the comb filter period of 51.6 nm. Note that the unflatteness of the gain 
profile can also be validated by our previous work with a fiber taper filter based dual-
wavelength mode-locking [32], where the gain unflatteness is a reasonable explain for mode 
competition suppression because no any additional measure is used. Here, by carefully 
adjusting the PCs, the coexistence patterns with a large center wavelength separation of 73.8 
nm is obtained, which is greatly different from the simulation where unflattened property of 
gain fiber is ignored. Figure 6(a) shows the optical spectrum in this case, where the dual-
wavelength mode-locking centered at 1923.6 nm and 1997.4 nm respectively show the feature 
of DS and SP regime with 3dB bandwidths of 31.4 nm and 13.85 nm. The SP shows weak 
Kelly sidebands at 2017 nm, which only appear in the long-wavelength side of the SP due to 
the strong TOD effect. The DS/SP operates at 1923.6/1997.4 nm has estimated 
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normal/anomalous group delay values of 0.12 ps2/-0.19 ps2. Compared with simulated 
spectrum in Fig. 2(c), the DS spectrum in Fig. 6(a) slightly losses its features of flat top and 
steep edges, which might be caused by the uncontrollable modulation depth of the comb filter 
in our experiment. In order to estimate the average power of the DS and SP, we respectively 

calculate their integral scale in Fig. 6(a) with the formula of 
2

1

( )I d
λ

λ
λ λ , where I( ) is the

spectrum intensity distribution of the coexistence patterns, [λ1 λ2] is the wavelength range of 
DS or SP. With the calculated scales of 52% and 48% for the DS and SP, their average 
powers are respectively estimated to be 8.47 mW and 7.82 mW. Figure 6(b) shows the 
corresponding oscilloscope trace, where two pulse trains are formed simultaneously. Due to 
the higher pulse average power of the DS, we deduce that the pulses with high amplitude in 
the oscilloscope trace correspond to the DS trace. Inset of Fig. 6(b) shows a snapshot of the 
oscilloscope trace of the coexistence patterns with scan range of 2.8 μs, where once one pulse 
train is triggered, another pulse train will move randomly on the oscilloscope screen, 
indicating that the two pulse trains have different propagation velocities [21]. This point can 
also be validated by their RF spectrum, as shown in Fig. 6(c) with a scanning range of 150 Hz 
and resolution of 1 Hz, where two fundamental repetition rates with a separation of 67 Hz are 
formed, which basically matches with the simulation result in Fig. 2(b). Their signal-noise-
ratio of better than 60 dB suggests the good stability of the coexistence patterns. In order to 
measure the pulse duration of the DS and SP, a Lyot-filter is connected before the 
autocorrelator to respectively extract each of them. To reduce the distortion of the extracted 
pulse spectrum, the centre wavelength and bandwidth of the filter are controlled by adjusting 
the temperature and length of the PMF [33]. Figure 6(d) shows the measured traces of the two 
pulse train with scanning range of 20 ps and 2 ps, respectively. Their pulse durations are 
respectively measured to be 4.18 ps and 468 fs if Gauss fit is assumed. The time-bandwidth-
product of the DS and SP are respectively calculated to be 10.63 and 0.49, indicating that they 
are all chirped. With the calculated pulse duration and average power, the peak powers of the 
DS and SP are respectively estimated to be 203 W and 1.68 kW. Note that although their peak 
powers and pulse durations are very different with the simulation results in Fig. 2 due to the 
simplified numerical mode, the pulse durations and high peaks power of the DS and SP 
always show sharp contrast in both experiment and simulation. 

Fig. 7. Experimental results of coexistence of DS and bounded SPs with 0.2 m PMF: (a) (see 
Visualization 1 and Visualization 2) optical spectrum and (b) interference autocorrelation 
traces of the bounded SPs with scanning range of 50 ps. Inset of (a) is a zoom-in of the spectral 
fringe from 1990 nm to 2000 nm. 

Like the simulation, the SP in the coexistence patterns can easily operate at multi-pulse 
state if the PCs or pump strength is changed. Figure 7(a) shows an example of this case, 
where the SP shows obvious spectral modulation, suggesting that the broken SP pulses are 
bounded with each other [34]. Inset of Fig. 7(b) shows a zoom-in of the spectral fringe from 

Vol. 26, No. 14 | 9 Jul 2018 | OPTICS EXPRESS 18199 

https://doi.org/10.6084/m9.figshare.6194891
https://doi.org/10.6084/m9.figshare.6194900


1990 nm to 2000 nm, where the modulation period is calculated to be ~0.59 nm. The DS in 
this case still operate in single pulse regime. Figure 7(b) shows the corresponding 
autocorrelation trace of the SP, where the side pulses around the main pulse also indicates the 
regime of bounded SPs. The separation of 23 ps between the main peak and sub-peak matches 
well with the spectrum modulation period of ~0.59 nm. 

The performance of the coexistence patterns is investigated by gradually increasing the 
length of PMF. As the length of PMF increases from 0.2 m to 0.6 m, the required pump 
strength of the coexistence patterns reduces from 1.9 W to 1.2 W, and the pulse duration of 
SP quickly increases to picosecond level, which matches well with simulation results. Here 
we present the performance of the coexistence patterns with 0.6 m PMF. Unlike the 
coexistence 

 

Fig. 8. Experimental results of coexistence of DS and bounded SPs with 0.6 m PMF: (a) 
optical spectrum with center wavelength separation of 31 nm, (b) interference autocorrelation 
traces of the DS (top) and SP (bottom) with scanning range of 40 ps and 12 ps respectively. 
Inset of (a) is dual-wavelength mode-locking with center wavelength separation of ~15 nm. 

patterns with 0.2 m PMF, the coexistence patterns in this case become self-started (See 
Visualization 1). The spectrum evolution switching from single-wavelength operation to dual-
wavelength mode-locking during the self-start evolution keeps accordance with our previous 
works [32 ,35]. Spectrum modulation of the SP indicates the pulse splitting. Stable 
coexistence patterns without pulse splitting are formed under appropriate pump strength. 
Visualization 2 shows an example of the stable operation of the coexistence patterns without 
pulse splitting, where the spectrum stably operates. Figure 8(a) shows a stable-state spectrum 
of Visualization 2, where the center wavelengths of DS and SP are 1953.6 and 1984.9 nm 
respectively. Their separation of 31.3 nm is twice of the comb filter period of 17.5 nm, which 
attributes to the unflattened gain of Tm-doped fiber. With the total average power of 5.4 mW, 
the average powers of the DS and SP are calculated to be 2.2 mW and 3.2 mW respectively. 
By adjusting PCs and pump power, dual-wavelength mode-locking is also observed at 
neighbouring comb filter channel, as shown in inset of Fig. 8(a). However, like simulation, 
their spectrum profiles show similar feature with each other, indicating that the net cavity 
GVD difference between neighbouring wavelength channel is too small to form obviously 
different pulse regimes. Figure 8(b) shows the measured autocorrelation traces. Here 
autocorrelation traces present weak signal response and loss their fringes due to their weak 
average powers. With this, the pulse duration of DS and SP are estimated to be 12.9 ps and 
2.8 ps with Gauss fit, respectively. Their peak power are calculated to be 17 W and 115 W. 
Compared with the SP in Fig. 6, the pulse duration and peak power of SP in this case is 
dramatically changed, indicating that the comb filter period surely has importance limitation 
on pulse duration of the SP in the coexistence patterns. 
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6. Conclusion 

We numerically and experimentally demonstrate the coexistence of DS and SP regimes in a 
dual-wavelength mode-locked Tm-doped fiber laser with strong TOD. Due to the coexistence 
of different types of pulse shaping mechanism, the pulse durations and peak powers of DS 
and SP show sharp contrast. In the case of dual-wavelength mode-locking with 0.2 m PMF, 
coexistence of 4.18 ps DS and 468 fs SP is observed experimentally. Compared with DS, the 
SP shows low pulse splitting threshold and can easily split into multi-pulses. The comb filter 
period decided by the length of PMF is crucial for the performance of the coexistence 
patterns: although large filter period is favorable for the formation of narrower pulse duration 
of SP, narrow filter period ensures its stability and self-start feature. Single wavelength mode-
locked pulse with combined features SP and DS is also presented to suggest the strong TOD 
effect. 

Funding 

National Natural Science Foundation of China (Grant No. 61722503, 61435003 and 
61421002), Fundamental Research Funds for the Central Universities (Grant No. 
ZYGX2016J068), and International Scientific Cooperation Project of Sichuan Province (No. 
2017HH0046). 

 

                                                                                              Vol. 26, No. 14 | 9 Jul 2018 | OPTICS EXPRESS 18201 


