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Abstract: We demonstrate a low-cost 343 nm solid-state laser delivering up to 20 µJ per 

pulse, with a pulse width of 2.3 ns at a repetition rate of 100 Hz. The 343 nm is obtained 

through a third harmonic generation of a passively Q-switched 1030 nm Yb:YAG laser with 

pulse energy of 190 µJ at 100 Hz and a pulse width of 5.4 ns. The IR-UV conversion 

efficiency is 10.4%, comparable to that achieved with mode-locked IR lasers. The light 

source is electronically controlled for easy synchronization with a detection circuit. The low 

repetition rate specifically targets applications exploiting the millisecond scale lifetime of 

lanthanides employed in fluoroimmunoassay measurements for time-resolved fluorescence 

spectroscopy. Low repetition rate and even pulse-on-demand operation is demonstrated. 

© 2018 Optical Society of America under the terms of the OSA Open Access Publishing Agreement 

1. Introduction 

An excitation wavelength of 343 nm matches the absorption peaks of many fluorophores, 

including long lifetime lanthanides (europium, terbium) [1] and other nanosecond scale 

lifetime biological markers such as NADH [2]. This circumstance motivates us to develop a 

laser at 343 nm for fluorescence spectroscopy applications. 

Lanthanides have been mostly excited by flash lamps [1]. The Xenon flash lamp such as 

the 5 W L9455 by Hamamatsu, employed in a state-of-the-art flash lamp based time-resolved 

system, emits 5 µJ per pulse in the spectral range of 300-394 nm [3]. In this work we aim to 

obtain at least the same pulse energy with a solid-state UV laser. The narrow (<1 nm) spectral 

bandwidth of the laser allows precise targeting of the lanthanides absorption peak. Moreover, 

the spatial beam quality of the laser enables easy light shaping and additionally makes 2D 

scanning of a sample possible with high spatial resolution. We believe the precise spectral 

and spatial targeting of lanthanide fluorophores will allow for improved signal-to-noise-ratios 

in fluoroimmunoassay measurements. 

One approach to obtain a UV light source is to use a cascade of nonlinear conversion 

processes from the infrared to the UV wavelength to generate the third harmonic of a solid-

state laser. Laser transitions of an Yb:YAG crystal allow for emission at the 1030 nm 

wavelength, which can then be tripled to obtain the desired 343 nm. The long upper state 

lifetime of Yb:YAG (1 ms) promotes high pulse energies and low repetition rates in a Q-

switched configuration. Other advantages of Yb:YAG crystals are the small quantum defect 

and relatively simple energy level diagram, however, the latter at the same time leads to 

reabsorption due to quasi-three-level operation. Advantages of passively Q-switched lasers 

include simplicity, cost-effectiveness and compactness compared to actively pulsed light 

sources. Here we demonstrate, that through the control of the repetition rate of a pulsed 

pumped passively Q-switched laser, the generated pulses can be conveniently synchronized 

with a detection system in time-resolved fluorescence measurements, without complex 

electronics. The low repetition rate is required to avoid cross talk between successive 

measurements when using lanthanides with long fluorescence lifetime (approximately 1 ms). 
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Such low repetition rates cannot be obtained with mode locked lasers without using pulse 

pickers [4]. 

At 343 nm, the following pulse energies have been obtained: 28.6 µJ at a repetition rate of 

3.5 MHz, obtained from a mode locked IR laser delivering 177 µJ and a peak power of 240 

MW, corresponding to IR-UV conversion efficiency of 16% [5], 780 µJ at 300 kHz, pumped 

with a mode locked thin disk laser amplifier with 4.7 mJ and a peak power of 590 MW, 

corresponding to IR-UV conversion efficiency of 17% [6]. These laser sources possess high 

degree of complexity and are therefore expensive. In addition, the high peak power of mode 

locked lasers promotes high conversion efficiency of the third harmonic generation. 

High-power passively Q-switched Yb:YAG/Cr4+:YAG lasers have been demonstrated [7]. 

The highest pulse energies at 1030 nm have been achieved with composite 

Yb:YAG/Cr4+:YAG microchip lasers: 1.6 mJ at a repetition rate of 50 Hz (pumped with 86 

mJ at 50 Hz and a peak diode power of 100 W) [8], 3.6 mJ (pumped with 60 mJ at 20 Hz and 

peak diode power of 120 W) [9]. Third harmonic generation of passive Q-switched 1064 nm 

lasers has been demonstrated generating 355 nm with pulse energies of 57 µJ at 38.6 kHz 

[10]. To the authors’ best knowledge, the generation of 343 nm in passive Q-switched lasers 

has not been reported. This work presents a low-cost and simple 343 nm solid-state laser 

system with controllable repetition rate and pulse energies sufficient for a range of 

fluorescence spectroscopy applications. 

We demonstrate a pulse energy of 20 µJ (2.3 ns pulse width) at 343 nm when operating at 

the target repetition rate of 100 Hz, converted from a 1030 nm laser pulse of 190 µJ and peak 

power of 33 kW. The IR to UV conversion efficiency is 10.4% which is comparable to that 

obtained with mode locked lasers. The controllable repetition rate allows the emission of 

pulses on demand and easy synchronization with a detection circuit. The low repetition rate 

matches the requirements for use with long lifetime lanthanide fluorophores, whereas the 

laser output spectrum matches their excitation peak. The laser is simple and provides a low-

cost solution compared to other solid-state laser solutions. We also show that the impact of 

timing jitter from this laser is negligible for lanthanide time-resolved fluorescence 

spectroscopy. For fast fluorophores with decay time at nanosecond scale, an optical feedback 

synchronization circuit will allow for the use of the presented laser source. 

2. Experimental setup 

The experimental setup is shown in Fig. 1. The pump diode (LD) is manufactured by 

Lumentum Operations LLC with a center wavelength of 940 nm. The fiber core diameter is 

105 µm, with a 0.15 NA and power output of up to 10.6 W. The laser diode is externally 

triggered at a repetition rate of 10 to 180 Hz and with a fixed pulse width of 2 ms. The pump 

pulse width is limited by the output power of the laser diode. The pulse width of 2 ms is 

chosen to reach the pump energy threshold while operating at the maximum specified current 

of 12 A. The same electronic trigger signal can also be used for a detection circuit relevant for 

our target application. The diode pump energy is 21 mJ per pulse with a peak power of 10.6 

W. At 100 Hz, the average power is then 2.12 W. The laser diode is operated at a constant 

temperature of 18°C. The light emitted from the pump diode is focused into the laser crystal 

with a magnification of 3.33 (lens system L1) resulting in a pump beam diameter of 350 µm. 

The laser crystal (10%Yb:YAG) is manufactured by Castech Inc. and has a transverse 

dimension of 5x5 mm2 and a thickness of 3 mm. The laser crystal is wrapped in indium foil to 

improve thermal conductivity at the interface between the crystal and the heat sink. The laser 

crystal is coated: HR@1030 nm and HT@940 nm at the front surface facing the pump diode 

and AR@1030 nm at the intracavity surface. A temperature controller keeps the temperature 

of the laser crystal fixed at 15°C. For a quasi-three-level gain medium keeping the 

temperature low is highly important as the population of the lower laser level increases with 

temperature thus reducing the laser efficiency. A Cr4+:YAG crystal is employed as a saturable 

absorber enforcing Q-switched operation of the laser. The Cr4+:YAG crystal is manufactured 
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by FEE GmbH and measures 5x5x1 mm3 designed for a small signal transmission of 90% 

when installed at Brewster’s angle. The saturable absorber is placed approximately 6 mm 

after the laser crystal at Brewster’s angle to enforce a linearly polarized output. The output 

coupler (OC) is a plane mirror with 60% reflection at 1030 nm. The cavity length is in total 

13 mm (optical length). 

Second harmonic (SHG) and sum frequency generation (SFG) is obtained with LBO 

crystals. LBO is selected due to its high optical damage threshold and relatively large angular 

acceptance bandwidths [11]. The second harmonic to 515 nm is obtained with a 15 mm long 

LBO crystal kept at 193°C (LBO1) using noncritical phase matching (NCPM). The 1030 nm 

laser beam is focused into the LBO1 crystal with a magnification of 1.25 (lens system L2) 

relative to the beam size in the laser cavity. For the SFG stage both the 1030 nm and 515 nm 

laser beams, respectively, are focused with a magnification of unity in the center of a 20 mm 

long LBO crystal kept at 18°C (LBO2), with a cut angle of 50.1°. The SFG crystal is cut for 

type II critical phase matching. 

 

Fig. 1. Experimental setup including the diode laser (LD), the Yb:YAG laser crystal, the 

Cr4+:YAG saturable absorber (SA), the laser output mirror (OC), lens systems (L1-L4), two 

LBO crystals and a dispersive prism (P). 

3. Results and discussion 

3.1. Passively Q-switched 1030 nm laser 

An important feature is that the repetition rate of the Q-switched laser is controllable and 

dictated by the trigger circuit for the pump diode. We have therefore characterized the 

Yb:YAG laser operation as a function of repetition rate. 

The generated spectra are measured with an optical spectrum analyzer (OSA) AQ6317B 

with a resolution of 50 pm. The pulse duration (FWHM) is measured with a Melles Griot 

detector 13DAH001 with a bandwidth of 3 GHz and an oscilloscope WaveSurfer 104Xs with 

a bandwidth of 1 GHz. The optical spectrum of the passively Q-switched laser is centered at 

1029.94 nm with a full width at half maximum (FWHM) of 0.33 nm measured at a repetition 

rate of 100 Hz, as shown in Fig. 2(a). The linewidth is measured with no additional frequency 

selective element inserted in the cavity. Varying the repetition rate from 10 Hz to 180 Hz, the 

center wavelength is found to fluctuate in the range 1029.94-1030.68 nm, shown in inset 

figure in Fig. 2(a), while the emission bandwidth remains constant. The spectral width would 

be reduced and stabilized using a frequency selective element locking the output spectrum 

and center wavelength. The calculated SHG conversion efficiency as a function of 

wavelength is also shown in Fig. 2. For the calculation we used a 15 mm long NCPM LBO 

crystal at 193°C and a beam radius of 156 μm. The model is described later in text. The 

calculated spectral acceptance bandwidth FWHM is 1.8 nm which is about five times wider 

than the bandwidth of the laser emission. The optical spectrum of the 515 nm output is 

centered at 515.28 nm with a FWHM of 0.27 nm, see Fig. 2(b). The optical spectrum of the 

343 nm output is not measured since it was beyond the spectral range of the OSA available. 

However, the spectrum of the 343 nm beam is the convolution of the interacting beams, 1030 

nm and 515 nm. Thus, the FWHM of the UV spectrum is below 0.2 nm. 
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Fig. 2. a) Spectrum of the 1030 nm output centered at 1029.94 nm with a FWHM of 0.33 nm 

measured at 100 Hz, and calculated conversion efficiency as a function of wavelength with the 

spectral acceptance bandwidth of 1.8 nm; inset: center wavelength as a function of repetition 

rate; b) spectrum of the 515 nm output centered at 515.28 nm with a FWHM of 0.27 nm. 

The pulse energy at 1030 nm monotonously increases from 142 µJ at 10 Hz to 204 µJ at 

180 Hz, as shown in Fig. 3(a). The pulse energy is calculated from measured average power 

and repetition rate. We believe the reason of the pulse energy growing with the repetition rate 

is the following. With increasing repetition rate, the thermal load increases and the crystal 

temperature rises because of higher incident pump energy. The stimulated emission cross-

section of the laser medium decreases with temperature [12], which was experimentally 

confirmed in [12,13]. According to these references, higher population inversion is needed to 

reach the threshold, hence a pulse with higher energy is emitted. This explanation was also 

confirmed by measurement of the delay time of the Q-switched pulse relative to the leading 

edge of the pump diode pulse: the delay time increases with higher repetition rate, thus with 

the higher thermal load, so that the Q-switched pulse is emitted later, which can be seen in the 

inset in Fig. 3(a). With the increased delay time, more pump energy is stored in the gain 

medium before the emission of the pulse, corresponding to larger pump energy threshold, 

resulting in larger pulse energy of the Q-switched pulse. Interestingly, starting approximately 

at the repetition rate of 130 Hz the Q-switched pulse is emitted after the end of the pump 

diode pulse. Another effect which could reduce the pulse energy, is the temperature 

dependence of the SA transmission. However, it has been demonstrated that this effect is 

negligible [14]. 

 

Fig. 3. a) Pulse energy of the 1030 nm output as a function of repetition rate; inset: delay of the 
emitted Q-switched pulse relative to the falling edge of the pump pulse; b) pulse energy at the 

515 nm output (blue), and SHG conversion efficiency as a function of repetition rate, measured 

(red) and calculated (green); c) pulse energy of the 343 nm output (blue), and IR-UV 

conversion efficiency, measured (red) and calculated (green). 

The upper lasing limit of our system is 250 Hz, which corresponds to the average incident 

pump power of 5 W and the pump diode duty cycle of 50%. Operation at higher repetition 

frequencies is hampered by the thermal load on the laser crystal. Therefore, the Q-switched 

laser operation with a continuous pumping cannot be obtained because of too high thermal 

load. At the same time, there is no lower limit of the laser repetition rate. The system can emit 

single Q-switched pulses on demand using single pump pulses. Potentially, the repetition rate 

operation range can be extended by improving the thermal design of the system. The peak 
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power at 1030 nm is in the range of 25 to 36 kW at 10 to 180 Hz assuming a Gaussian pulse 

shape. The pulse width fluctuates only about 6.8% when changing the repetition rate, 

however, without clear correlation to the repetition rate, see inset in Fig. 4(a). Although the 

infrared laser operates up to 250 Hz, the harmonic generation is measured only up to 180 Hz, 

as higher repetition rates lead to damage of the achromatic lenses L3. 

The beam waist is measured as a function of repetition rate in Q-switched operation with 

the knife-edge method (data not shown). The measured beam waist (radius) does not change 

significantly with the repetition rate and is in the range from 121 µm at 10 Hz to 139 µm at 

180 Hz. The measured beam radius is 123.7 µm at 100 Hz. 

3.2. Third harmonic generation 

A numerical model is used to predict the SHG and THG conversion efficiencies. The model is 

based on the coupled wave theory [15]. Using the plane wave approximation (large beam 

size), and considering quasi-stationary fields (long temporal pulses) it is possible to calculate 

SHG and SFG power conversion efficiencies as shown in Fig. 3(b) and 3(c), respectively, by 

integration of temporal pulses. Furthermore, the beam walk-off is included in the SFG 

calculations. The measured values of beam size, peak power and pulse duration of the 

fundamental 1030 nm beam are used as input parameters in the model. The refractive indices 

are calculated as in [16] with the temperature dependence from [17]. The effective nonlinear 

coefficients are taken from [18]. 

The pulse energy of the 515 nm output increases from 45 µJ at 10 Hz to 87 µJ at 180 Hz. 

The measured SHG conversion efficiency exhibits rather constant behavior in the range of 

40-45%, see Fig. 3(b), red squares. It should be noted, that the SHG crystal was slightly angle 

readjusted to compensate for the fluctuating center wavelength of the infrared laser and 

varying temperatures for different repetition rates, as shown earlier in the paper, see inset in 

Fig. 2(a). The SHG conversion efficiency is calculated to be 44% at 100 Hz and does not 

change with the repetition rate, see Fig. 3(b), green dots, calculated based on measured beam 

sizes and peak powers as a function of repetition rate from the laser. Furthermore, the beam 

quality is seen to deteriorate at higher repetition rates. The calculated temperature acceptance 

bandwidth is 2.5°C and the angular acceptance bandwidth Δφ is 2°. 

 

Fig. 4. a) Pulse profile of the 1030 nm with a FWHM of 5.4 ns; inset: pulse width of the 1030 
nm as a function of repetition rate; b) pulse waveform of the 515 nm output with a FWHM of 

3.2 ns; c) pulse waveform of the 343 nm output with a FWHM of 2.3 ns. All pulse profiles are 

measured at 100 Hz. 

The pulse energy of the 343 nm laser increases from 2 µJ at 10 Hz to 26 µJ at 180 Hz 

repetition rate. The measured THG conversion efficiency (IR-UV) increases from 1 to 13% as 

shown in Fig. 3(c), red squares. We explain the reduced conversion efficiency measured at 

lower repetition rates as follows: the SHG crystal was not readjusted during the measurement 

of the SFG efficiency. Only the SFG crystal was slightly readjusted to compensate for the 

center wavelength fluctuations. Thus, the phase matching in the first crystal might be not 

optimal, particularly not at low repetition rates, as it was optimized for 180 Hz. The 

theoretically predicted IR-UV conversion efficiency is 22% at 100 Hz which is by a factor of 

2 higher than measured. This is probably due to a misaligned overlap of the interacting 
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beams, or the uncertainty of the nonlinear coefficient. The calculated temperature acceptance 

bandwidth is 3.1°C and the angular acceptance bandwidth, Δθ is 0.08° for the SFG process. 

Figure 4 presents measured temporal profiles of the 1030 nm output, SHG and THG, with a 

FWHM of 5.4 ns, 3.2 ns and 2.3 ns, respectively. The UV beam after the collimating lens L4 

is measured with the knife-edge method (data not shown). The beam is elliptic with radii of 

wx = 1.54 mm and wy = 0.95 mm, where wx and wy are radii defined at the intensity decrease 

of 1/e2. The effective area ( / 2eff x yA w w ) is 2.3 mm2 and the ellipticity is 1.5. 

3.3. Time-resolved fluorescence immunoassays 

The developed passively Q-switched laser at 343 nm is intended for time-resolved 

measurements of immunoassays. In such measurements, excitation and detection are 

separated in time to avoid fast background fluorescence and exploit the long lifetime of 

europium-based fluorophores (about 1 ms). In immunoassay diagnostics, measurements of 

very low analyte concentrations are of interest [19]. At these low signal levels, any noise 

sources and instabilities are relevant. Timing jitter and peak power fluctuation of the 

excitation light source contribute as noise sources to the fluorescence measurements. 

Therefore, in the following we investigate potential noise source contributions from the 

developed laser source. 

The 1030 nm pulse-to-pulse peak power fluctuation is 1.6% calculated from >1000 

measured optical pulses. The histogram and normal distribution curve are shown in Fig. 5(a). 

The Q-switched pulse is emitted approximately 1.9 ms after the positive edge of the pump 

pulse (operating at 100 Hz). The timing jitter of the 1030 nm pulses is 32.6 µs which is 0.3% 

relative to the cycle duration of 10 ms, used in europium-based systems. The 1030 nm timing 

jitter is measured as the standard deviation of the delay time distribution of >1000 optical 

pulses plotted in Fig. 5(b). Since the Q-switched pulse is emitted only about 100 µs before the 

end of the pump pulse, the pulse width fluctuation of the pump is also measured. The standard 

deviation of the pump pulse width is 2.5 µs. The fall time is 21.5 µs, calculated from an 

average of >1000 pulses, with a standard deviation of 114 ns. In addition, the diode pump 

pulse amplitude fluctuation is measured to be very low (0.06%). The timing jitter of a 

passively Q-switched system is fundamentally limited by the spontaneous emission noise 

[20]. Additional factors include pump pulse fluctuations, resonator mode fluctuations, and 

temperature fluctuations of the laser medium and consequently the emission wavelength [21–

24]. A few methods of reducing timing jitter of passive Q-switched lasers have been 

suggested, such as the use of composite pump pulses [22] and bleaching the saturable 

absorber [23]. 

 

Fig. 5. a) Peak power distribution of 1030 nm pulses, >1000 measurements, pulse-to-pulse 

amplitude fluctuation is 1.6%; b) distribution of delay time of the Q-switched pulse relative to 
the positive edge of the pump pulse, >1000 measurements, average value 1.9 ms, standard 

deviation 32.6 µs, variation 1.7%; c) peak power distribution of the 343 nm laser output with a 

pulse-to-pulse amplitude fluctuation of 2.4% measured with >1000 pulses. 

The distribution of the 343 nm pulse peak power values is measured using >1000 pulses, 

as shown in Fig. 5(c). The pulse-to-pulse peak power fluctuation is 2.4%. The accuracy of the 

peak power measurement is limited by the rise time of the detector. The peak power 
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fluctuation reflects the pulse-to-pulse energy fluctuation as the pulse width does not change at 

fixed repetition rate. 

As mentioned before, the obtained cycle duration of 10 ms matches the decay lifetime of 

lanthanides which are often used in time-resolved fluorescence spectroscopy. The measured 

timing jitter is only 0.3% relative to the cycle of the measurement (10 ms) and 3.2% relative 

to a typical lifetime of europium (1 ms). We have calculated the impact of the timing jitter on 

the collected signal from a fluorophore with a decay lifetime of 1 ms. The timing jitter of 32 

µs results in a fluctuation in the range of ± 3% of the emitted fluorescence signal, within one 

standard deviation and ± 7% within two standard deviations. Depending on the exact 

application this noise source can be neglected. For example, in our previous work we show 

that in a state-of-the-art time-resolved fluorescence immunoassay measurement system, the 

variation from sample to sample can be up to 6%, and from system to system up to 11% [19]. 

We note that the noise can be further reduced by signal averaging. For applications requiring 

higher sensitivity, or when employing short (nanosecond) lifetime fluorophores, the timing 

jitter noise factor can be avoided by optically triggering the detection circuit. With a peak 

power fluctuation of 2.4% the collected signal changes within 2.4% as well. 

4. Conclusion 

A low repetition rate, simple and cost-effective 343 nm solid-state laser source is developed 

through THG of a passively Q-switched diode-pumped Yb:YAG laser source. At 343 nm, 

pulse energy of 20 µJ, pulse width of 2.3 ns and operation at a repetition rate of 100 Hz is 

obtained, converted from 1030 nm with pulse energy of 190 µJ and pulse width of 5.4 ns. The 

conversion efficiency is 10.4% at 100 Hz which is comparable to that obtained with mode 

locked lasers. The UV laser emits pulses on demand and can be electronically synchronized 

with a detection circuit. The low repetition rate matches particularly the millisecond scale 

lifetime of lanthanide fluorophores, targeting applications in fluoroimmunoassays and time-

resolved fluorescence spectroscopy. The 343 nm output targets the excitation peak of the 

lanthanides. To the authors’ knowledge, this is the first demonstration of 343 nm passively Q-

switched solid-state laser. 

In addition, the obtained timing jitter can be neglected when using the long fluorescence 

lifetime (about 1 ms) fluorophores, i.e. lanthanides widely used in fluoroimmunoassays. The 

timing jitter, however, can be avoided by implementing an optical feedback system. The UV 

pulse-to-pulse peak power fluctuation is 2.4%. The impact of these noise sources can be 

further decreased by signal averaging. High spatial beam quality and narrow spectral 

emission of the laser will allow for further decrease of the unwanted background 

contributions in fluoroimmunoassay measurements. 

For future work, the system will benefit from a frequency selective component stabilizing 

the output spectrum. 
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