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a b s t r a c t 

The aim of a personalized heating system is to provide a desirable microclimate for each individual when 

heating is needed. In this paper, we present a method based on machine learning algorithms for genera- 

tion of predictive models for use in control of personalized heating systems. Data was collected from two 

individual test subjects in an experiment that consisted of 14 sessions per test subject with each session 

lasting 4 h. A dynamic recurrent nonlinear autoregressive neural network with exogenous inputs (NARX) 

was used for developing the models for the prediction of personalized heating settings. The models for 

subjects A and B were tested with the data that was not used in creating the neural network (unseen 

data) to evaluate the accuracy of the prediction. Trained NARX showed good performance when tested 

with the unseen data, with no sign of overfitting. For model A, the optimal network was with 12 hid- 

den neurons with root mean square error equal to 0.043 and Pearson correlation coefficient equal to 

0.994. The best result for model B was obtained with a neural network with 16 hidden neurons with 

root mean square error equal to 0.049 and Pearson correlation coefficient equal to 0.966. In addition 

to the neural network models, several other machine learning algorithms were tested. Furthermore, the 

models were on-line tested and the results showed that the test subjects were satisfied with the heating 

settings that were automatically controlled using the models. Tests with automatic control showed that 

both test subjects felt comfortable throughout the tests and test subjects expressed their satisfaction with 

the automatic control. 

© 2018 The Authors. Published by Elsevier B.V. 

This is an open access article under the CC BY license. ( http://creativecommons.org/licenses/by/4.0/ ) 

1. Introduction 

Individualized conditioning systems in commercial buildings 

are able to provide an improvement in the thermal comfort of oc- 

cupants while reducing energy consumption [1–5] . Building occu- 

pants have a different perception of the thermal environment and 

what they perceive as a comfortable environment differs due to in- 

dividual differences (e.g. gender, age, body composition) [6,7] . Pre- 

vious studies showed that individuals with different body compo- 

sition react differently to the same thermal environment [8–11] . 

Personalized local conditioning systems provide the option that ev- 

ery user can create their own environment based on their individ- 

ual comfort requirements and preferences. The interaction of the 

user with personal conditioning systems is explained in detail in 

the study by Verhaart et al. [12] . Personal conditioning systems are 
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mostly user controlled where users determine the heating or cool- 

ing setting of the system at any given time [13] . 

Studies by Brager et al. [14] and Boerstra et al. [15] showed 

that having personal control over the thermal environment has a 

positive impact on perceived comfort. In another study by Boerstra 

et al. [16] , it was shown that perceived control was higher in the 

session where occupants had control over their desk fan, but there 

were no differences in perceived thermal comfort between the ses- 

sions with control and without. On the other hand, self-reported 

and objectively measured performance was better in the session 

with no control [16] . 

The benefit of automated control in personalized conditioning 

systems is that it can enhance concentration of occupants, and pre- 

vent inefficient energy use as well as thermal sensation overshoot 

[13,17] . A method for automated control of personalized condition- 

ing system using control equations was introduced by Vesely et al. 

[13] . 

In commercial buildings, the most commonly used control 

method is still proportional-integral-derivative (PID) control and 

on/off control [18,19] . However, recently many simulation and ex- 
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perimental research showed that model predictive control (MPC) 

provides a higher quality of control performance in terms of lower 

energy consumption while providing optimal thermal comfort [20] . 

Modeling in MPC can be divided into physical-based modeling 

(white box) and data-driven modeling (black box) method and the 

combination approach called grey box [20,21] . Artificial neural net- 

work (ANN) as a data-driven technique is a widely used method 

for building energy prediction and HVAC system control [22–24] . 

In recent years, machine learning methods were suggested in 

a number of areas including the building environment [25,26] . 

Machine learning algorithms are applied for predicting short- 

term peak electrical demand [27] , developing occupancy prediction 

model [28] or predicting building energy consumption [29] . There 

are also studies where machine learning models such as neural 

network models are applied for control of heating, ventilation and 

conditioning systems (HVAC) [30–32] . 

A method using support vector machine classifiers was pro- 

posed by Megri and Naqa [33] to improve prediction of thermal 

comfort indices. In a study performed by Kariminia et al. [34] , ex- 

treme learning machine approach was shown to be a good method 

to accurately predict visitors’ thermal sensations in public urban 

places. Dai et al. [17] suggested applying the trained predictive 

model to control heating and cooling systems. Zhao et al. [35] in- 

troduced a data-driven individualized complaint model using a 

multi-linear-class classifier that can be used for individual comfort 

control and indoor environment set-point control. Michael et al. 

[36] created predictive models of core body temperature and local 

skin temperature by applying neural network algorithms. A neu- 

ral autoregressive network with exogenous input (NARX) model for 

prediction of the indoor temperature of a residential building was 

developed by Mechaqrane and Zouak [26] . 

Neural network modeling is often applied in the building sector 

as part of model-based predictive control for HVAC systems [37] . 

Mustafaraj et al. [38] looked at the potential of using neural net- 

work was investigated to predict room temperature and relative 

humidity for different time scales ahead. As a follow up of this 

study, Mustafaraj et al. [39] proposed a neural network model in 

order to predict the room temperature and relative humidity in an 

open office in a modern building. 

An increasing number of studies are investigating how ma- 

chine learning methods can be utilized for predicting thermal com- 

fort needs as well as personal thermal comfort. In the study per- 

formed by von Grabe [37] , the potential of neural networks to 

predict the thermal sensation votes under varying conditions was 

tested. Liu et al. [32] created a neural network model based on 

the back propagation algorithm for evaluation of individual ther- 

mal comfort. The result showed that the neural network model 

that predicts individual comfort can be an important part for 

control strategy the air conditioners [32] . Chen et al. [40] pre- 

sented a novel dynamic thermal sensation (DTS) model that is 

used as a part of the model predictive control of HVAC systems. 

The model predictive control was based on the DTS model and 

it was evaluated in chamber experiments [40] . In order to deter- 

mine thermal state of an occupant in a built environment, Chaud- 

huri et al. [41] developed a Predicted Thermal State (PTS) model. 

The model was created using skin temperature and its gradient 

together with machine learning classifiers (Support Vector Ma- 

chine and Extreme Learning Machine). A different approach was 

introduced by Lee at al. [42] where a novel Bayesian modeling 

was used as a method for learning individual occupants’ thermal 

preferences. 

Kim et al. [43] created personal comfort models using ma- 

chine learning algorithm that predicts individual’ thermal comfort 

responses. In the study by Kim et al. [43] , for developing per- 

sonal comfort models occupants’ behavior with PCS chairs was 

used as an input to predict individuals’ thermal preference. Ma- 

chine learning algorithms were tested to solve multiclass classifi- 

cation problems of an occupant’s thermal preference (‘warmer’/’no 

change’/’cooler’) [43] . 

Until now, machine learning models were successfully demon- 

strated in many fields as presented earlier. However, to the best 

of our knowledge, there are no studies that use machine learn- 

ing methods to predict individual settings of personalized heating 

systems. Furthermore, there are limited studies that focus on the 

on-line implementation of such predictive models. Therefore, this 

paper aims is to apply a learning method for the prediction of in- 

dividual models to control personalized heating system. The main 

focus is on developing models using machine learning algorithms 

that will be able to predict individual settings of the personalized 

heating system and on-line implementation of created predictive 

models. 

The remaining sections of this paper are structured as fol- 

lows: Section 2.1 provides details of the methodology which in- 

cludes the method and data type collected. Section 2.2 provides 

details on the predictive models that were developed using ma- 

chine learning method (artificial neural network) using the col- 

lected data. The nonlinear autoregressive neural network with 

exogenous inputs (NARX) is also described in more details in 

this section. Section 2.3 presents a description of other machine 

learning techniques that were tested and compared to NARX. In 

Section 2.4 on-line implementation of the predictive model is pre- 

sented. In Section 3 , the results and discussion of the different ma- 

chine learning algorithms to find the optimal solution is provided 

as well as the results of the on-line implementation. In Section 4 , 

the conclusions of this research are presented. 

2. Methodology 

2.1. Experiment–data collection 

Data collection is the first step in developing the prediction 

model and demonstration of the feasibility of the machine learn- 

ing model to predict the settings of the personalized heating sys- 

tem. An experimental study was conducted in order to collect the 

data used for the learning algorithm. Experiments were conducted 

in the climate chamber of Department of Built Environment, Eind- 

hoven University of Technology. The set-up of the climate chamber 

is shown in Fig. 1 . The dimensions of the climate chamber where 

all tests were conducted is 3.6 × 5.7 × 2.7 m 

3 . The outside air was 

conditioned by an air-handling unit and was supplied from two 

positions in the room, via a slit on the top of the room and the 

bottom along the whole width of the room. The air exhaust was 

positioned at the top of the opposite wall. 

Two healthy female test subjects participated in the experi- 

ment. The test subjects were informed about the purpose and 

the procedure of the experiment before the start of the tests 

and they signed a consent form. Prior to the experiment, body 

weight, height, and a 4-point skin fold measurements were ob- 

tained to determine the body composition of each test subject. The 

fat percentage was obtained according to Durnin and Womersley 

[44] . The basal metabolic rate (BMR) was calculated according to 

Cunningham [45] . 

Their body characteristics and age are presented in Table 1 . The 

test subjects wore typical winter indoor clothing. During all tests, 

the average clothing insulation was 0.75 ± 0.03 clo for test subject 

A and 0.89 ± 0.04 clo for test subject B. 

All the tests were performed during winter in January and 

February 2017. The experiment included in total 28 test sessions 

with each session lasting 4 h. Each test subject participated in 14 

test sessions, one test session per day. Each experimental session 

started with an acclimatization period in the climate chamber of 

approximately 10 min during which test subjects prepared their 



K. Kati ́c et al. / Energy & Buildings 174 (2018) 199–213 201 

Fig. 1. Climate chamber set up: (a) schematic view of the climate chamber, (b) view of the two user’s desk in the climate chamber, (c) close-up of the one desk with the 

slider and the chair, (d) position of the environmental measurement stand in the climate chamber. 

Table 1 

Anthropological characteristics of the test subjects. 

Test subject Gender Age Weight (kg) BMI Fat percentage (%) BMR (W/m 

2 ) 

A F 29 57 26.7 34.9 38.2 

B F 29 62 22.9 27.8 38.6 

Fig. 2. (a) Slider, (b) heated chair, (c) slider for on-line implementation. 

work station. The acclimatization was followed by a four-hour test 

in the climate chamber. During the experimental session, the test 

subjects performed typical office work on their computer. They 

were allowed to drink and eat during the test, and leave to use 

the toilet if needed. Test subjects were encouraged to adjust the 

setting of personalized heating at any time in order to be ther- 

mally comfortable. 

For the experiment, a heated chair ( Fig. 2 b) was used as it has 

been shown to be an effective personalized heating system in sev- 

eral studies [2,13,46] . Maximum power of the heated chair was 

36 W. The two heated mats were integrated under the fabric sur- 

face of the chair seat (40 × 28 cm 

2 ) and backrest (30 × 28 cm 

2 ). 

The heated chair was controlled by the user during the tests with 

an interface (slider) as shown in Fig. 2 (a). The position of a slider 

related to the control voltage between 0 V and 2 V (0% −100%). 

The setting of personalized heating during the tests was logged via 

Labview with one second intervals. 

During all tests, air temperature, relative humidity, air speed 

and black globe temperature were measured and logged every sec- 

ond. As shown in Fig. 1 (d), the measurement instruments were at- 

tached to the environmental measurement stand. The attached in- 

struments were three air temperature sensors, three anemometers, 

three relative humidity sensors and a black globe temperature sen- 

sor. The black globe was positioned at height of 0.9 m and air tem- 

perature, air speed, and relative humidity were measured at three 

heights of 0.1, 0.7 and 1.1 m. 
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Fig. 3. Questions of the head and back thermal sensation and comfort in the computer-based questionnaire. 

Subjective perception of the thermal comfort, thermal sensation 

and their well-being during all tests was evaluated using question- 

naires via a computer app installed on the laptops that test sub- 

jects were using. The questionnaire was a modified version of the 

one that was already developed by Vesely et al. [13] . The question- 

naire included questions about clothing, thermal sensation (overall, 

head, back, hands and feet), thermal comfort (overall, head, back, 

hands and feet), and well-being. Well-being questions include air 

quality and self-estimated productivity. To evaluate thermal com- 

fort and thermal sensation the ASHRAE 7-point scale was used. The 

well-being questions included air quality and self-estimated work 

performance. During the experimental session, the questionnaire of 

thermal comfort and thermal sensation was filled every 15 min. 

The questions concerning the test subjects’ well-being were filled 

in every one hour. Fig. 3 shows the example of the question tab of 

the questionnaire. 

2.2. Machine learning-artificial neural network 

The use of the artificial neural network (ANN) for control and 

optimization has been increasing and it can be applied to both lin- 

ear and nonlinear relationships between inputs and outputs [47] . 

For a time series prediction, dynamic neural network is very suit- 

able [48] . In this study, a dynamic recurrent ANN architecture 

called a nonlinear AutoRegressive network with exogenous inputs 

(NARX) was used for dynamic prediction of personalized heating 

settings. The NARX network is a powerful modeling and validation 

tool that offers sim plicity and flexibility of network architecture, 

time series predictions, as well as fast and accurate training [49] . 

The equations for the NARX model can be expressed as follows 

[47,50] : 

y ( t ) = f [ y ( t − 1 ) , y ( t − 2 ) , . . . , y ( t − n y ) , u ( t − 1 ) , 

u ( t − 2 ) , . . . , y ( t − n u ) ] (1) 

u = [ u 1 ( t ) . . . u r ( t ) ] 
T (2) 

u = [ y 1 ( t ) . . . y m 

( t ) ] 
T (3) 

where 

u = input of the network at time t, 

y = output of the network at time t, 

n u = input memory order, 

n y = output memory order, 

r = number of inputs, 

m = the number outputs. 

A nonlinear function f describes the systems behavior and in 

the case of NARX network it is approximated by a Multi Layer Per- 

ceptron [49,50] . 

To create a personalized model that predicts settings of the per- 

sonalized heating system, two different NARX networks (for sub- 

ject A and B) were created using the individual data of each test 

subject collected in the experiment. The NARX networks were cre- 

ated using Matlab 2017a. 

The experimental data for each test subject consisted of data 

collected during 14 test sessions. The data that included inputs 

and outputs were separated into two parts. The first part consisted 

of 13 sessions that were used for training, validation, and testing 

with the optimal NARX architecture. The majority of data session 

were used for training because larger training datasets reduce the 

chance of overfitting [37] . Overfitting occurs when the trained net- 

work memorized the data used in the training and all the training 

points are well fitted but when the new data is introduced the er- 

ror is large [48] . Overfitting means the model is incapable of gen- 

eralizing in the new situations [51] . Early stopping is a method for 

improving generalization and it is automatically provided in Mat- 

lab for all ofsupervised network creation functions [48] . 

The second part represents unseen data that was independent 

of the other data used for training. It consisted of a randomly se- 

lected session used to assess the performance of the trained model 

predicted with the new data. 

The inputs for the model were environmental conditions (air 

temperature, humidity, and radiant temperature) and the output 

to be predicted were the setting of the personalized heating set- 

ting. Considering practical measurements and applying the model 

it was desirable to minimize the number of input features that 

were used to train the model. The setting of the heating system 

corresponded to the control voltage of the slider between 0 V (0%) 

and 2 V (100%), where 0 V translates to heating was off and 2 V to 

the maximum power of the personalized heating system. The con- 

trol voltage was used as the target of the predictive model. 

The collected data was available as 14 sessions and each ses- 

sion lasted four hours. This means that the data was not avail- 

able in one long sequence but as several short sequences. For these 

cases, to avoid discontinuity in the data, fourteen sequences of four 

hours were combined in a concurrent set of sequences using the 
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Fig. 4. The architecture of the NARX for predicting settings of the personalized heating system elements with one hidden layer that includes 12 hidden neurons, where w 

and b are adjustable network parameters called weights and biases (based on [48] ). 

catsamples function in Matlab. The data were then averaged for 

every 10 s, representing the setting of the heated chair every 10 s. 

The input environmental data (air temperature, relative humidity, 

and radiant temperature) was averaged for every 10 s as well. 

NARX network can have two different configurations, parallel 

and series-parallel architecture. In case of parallel architecture, the 

output of the NARX network that is estimated is fed back to the 

input of the feedforward neural network [48] . Since in this study, 

the real output was available during the training of the network a 

series-parallel architecture (open-loop form) was created. The real 

output was used instead of feeding back the estimated output. In 

this way, a more accurate input to the feedforward network was 

provided and the created network had a complete feedforward ar- 

chitecture [48] . Neural networks can have a different architecture 

that is defined by a number of hidden layers and hidden neurons. 

The example of the architecture of the NARX neural network used 

in this study is shown in Fig. 4 . The network consists of the input 

layer of the network that includes three input features (air temper- 

ature, humidity and radiant temperature), hidden layer that con- 

sisted of hidden neurons, and the output layer includes one out- 

put target (setting of the personalized heating system) network, 

respectively. During the training the actual target values are feed 

back to the network. 

The transfer function for hidden layers was a tangent sigmoid 

transfer function and for the output layer was linear transfer func- 

tion. A common procedure is to preprocess the data to ensure 

faster and efficient training. The network inputs and targets were 

normalized and scaled so that they fell in the range [ −1,1] when 

the input processing function “mapminmax” in Matlab is utilized. 

The trained neural network then provided outputs in the range [–

1, 1]. These outputs were reverse-processed with the same pro- 

cessing function back into the same units as the original tar- 

gets. The Levenberg–Marquardt back-propagation method was se- 

lected for training the developed neural network using a training 

algorithm programmed in Matlab R2017a, Statistic and Machine 

learning toolbox [48] . The aim of the Levenberg–Marquardt back- 

propagation is to minimize the mean squared error (MSE) between 

the outputs of the network and the targets [36] . The training is 

stopped when generalization stops improving. More details on the 

Levenberge–Marquardt back-propagation and training parameters 

can be found in [48] . 

In this study, various configurations were tested by varying the 

number of hidden neurons (2, 6, 8, 10, 12, 14, 16 and 18) in or- 

der to find a network with optimal performance. Eight different 

networks were created for each test subject to represent individ- 

ual predictive model using collected data. The various architectures 

of the neural network were investigated in order to find an opti- 

mal one. An optimal network was generated for both individual 

test subjects, providing individual predicting models. 

The neural network was fed with training data that consisted 

of 1441 data points for each of the 13 sessions. This meant 18733 

entry points for each individual model. To avoid overfitting a com- 

monly used method during training neural network models con- 

sists of randomly dividing available data into three subsets: train- 

ing, validation and test set [48] . In this case, the available training 

data (13 sessions) is randomly divided as follows: 70% of the data 

were used for training, 15% of the data for testing and 15% of the 

data for validation. 

The accuracy of the network was first assessed by looking into 

performance during training and the accuracy of the network pre- 

dictions with the unseen data. In order to optimize network per- 

formance, a performance function was defined during training that 

tuned the values of the weights and biases. The performance func- 

tion was a mean squared error (MSE), which was used to assess 

the performance of the neural network. MSE represents the calcu- 

lated error between outputs of the network and targets. 

The performance of the created neural network model with the 

new unseen data was assessed with two calculated metrics. Root 

mean square error (RMSE) was used to evaluate the prediction ac- 

curacy and express average model prediction error Eq. (1) , and the 

Pearson correlation coefficient (PCC) was calculated to show the 

degree of linear correlation between the real value and the pre- 

dicted value [29] . 

RMSE = 

√ 

1 

n 

n ∑ 

i =1 

( A i − P i ) 
2 (4) 

where n is the number of multi-steps prediction, A i is the real 

value for the time-step i and P i is the predicted value of the model 

at the same time-step. 

2.3. Other machine learning techniques 

2.3.1. Nonlinear autoregressive (NAR) network 

The nonlinear autoregressive (NAR) network is used to predict a 

time series from past values. The performance of the NAR network 

was investigated and compared to the NARX model. The advantage 

of NAR and NARX network is that they can be fed with dynamic 

data in the form of time series sets [52] . Compared to NARX that 

needs inputs and past outputs, the NAR model uses the past output 

values of the time series to predict future values [53,54] . 

The expression for the NAR model can be written as follows 

[54] : 

y ( t ) = f [ y ( t − 1 ) , y ( t − 2 ) , . . . , y ( t − d ) ] (5) 
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Table 2 

Features of the neural network models. 

Characteristics NARX NAR_1 NAR_2 

Inputs Air temperature 

Humidity 

Radiant temperature 

– –

Outputs (targets) Setting (intensity) of the personalized heating 

system 

Setting (intensity) of the personalized heating 

system 

Setting (intensity) of the personalized heating 

system 

Data Averaged every 10 s Averaged every 10 s Averaged every 5 min 

Evaluation metrics MSE, RMSE, PCC MSE, RMSE, PCC MSE, RMSE, PCC 

The Eq. (5 ) describes a NAR network’s function to predict series 

target y(t) given d past values of y(t) [54] . 

The data was used in the same manner as when NARX model 

as created. The output data that represents the output to be pre- 

dicted were the setting of the personalized heating setting. For 

training, validation and testing of the neural network model, 13 

sessions were used. One session was left as independent to test 

the trained model with the new unseen data. With the NAR we 

created and compared two different trained models for each indi- 

vidual. The first one that will be referred as NAR_1 was fed with 

the data averaged every 10 s as in NARX models. The second model 

that will be referred NAR_2 was fed with the data averaged every 

five minutes. The summary of the characteristics of the models can 

be seen in Table 2 . 

As in the NARX model, for the NAR network the Levenberg–

Marquardt back propagation procedure was implemented. The data 

was prepared in the same manner as previously described for the 

NARX model and was randomly divided as follows: 70% of the 

data were used for training, 15% of the data for testing and 15% 

of the data for validation. Randomly dividing available data into 

three subsets: training, validation and test set is commonly used to 

avoid overfitting [48] . Six configurations were tested by varying the 

number of hidden neurons (8, 10, 12, 14, 16 and 18) and were com- 

pared with the best-performed configuration of the NARX model. 

2.3.2. Regression techniques for machine learning 

In this paper so far neural network algorithms (NARX and NAR) 

were tested; however, there is a wide variety of algorithms in ma- 

chine learning. Furthermore, four different machine learning algo- 

rithms that aim to solve regression problem will be tested and 

compared. Since the aim is to predict settings of the personal- 

ized heating chair that is a real value output, the learning problem 

is considered a regression problem. The selected regression tech- 

niques tested are: Support Vector Regression (SVR), Gaussian pro- 

cess regression (GPR), Bagged trees and Boosted trees. 

The main idea behind the ensemble algorithms is to combine 

“weak” learners and their strengths in order to create higher- 

performance ensemble model [55,56] . Bagging and boosting are 

main techniques that are part of an ensemble together with the 

basic learner [55] . More information about bagging and boosting 

methods can be found in [57] . Two ensemble methods for regres- 

sion were tested in this study. Boosted trees that consist of the 

least squares boosting (LSBoost) procedure together with decision 

trees [56] . The other procedure is bagged trees that use bagging 

technique with decision trees [56] . 

Support vector machine (SVM) analysis is a popular machine 

learning method that can be applied for classification and regres- 

sion [56,58–60] . The idea behind the SVM to find an optimal sep- 

arating hyperplane with a maximum margin [58] . SVM regression 

depend on kernel function and is considered a nonparametric tech- 

nique [56] . Support vector regression (SVR) is an efficient method 

that is used for regression problems. In this study, Matlab 2017a 

regression learner was used to test SVR that implements linear 

Table 3 

Characteristics and settings of tested algorithms. 

Algorithm Characteristics 

Individual 

model A 

Individual 

model B 

SVM Kernel 

function 

Fine Gaussian 

(SVR_FG) 

Kernel scale 0.5 0.5 

Box constrain 1.4 0.712 

ε-insensitive loss 0.04 0.071 

Medium Gaussian 

(SVR_MG) 

Kernel scale 1 1 

Box constrain 1.4 1.712 

ε-insensitive loss 0.04 0.071 

Coarse Gaussian 

(SVR_CG) 

Kernel scale 7 8 

Box constrain 1.4 1.712 

ε-insensitive loss 0.04 0.071 

GPR Kernel 

function 

Rational quadratic 

(GPR_RQ) 

Kernel scale 1040 10 0 0 

Kernel sigma 0.260 0.365 

Squared exponential 

(GPR_SE) 

Kernel scale 1040 10 0 0 

Kernel sigma 0.260 0.365 

Matern 5/2 (GPR_M) Kernel scale 1040 10 0 0 

Kernel sigma 0.260 0.365 

Exponential (PPR_E) Kernel scale 1040 10 0 0 

Kernel sigma 0.260 0.365 

Boosted trees Minimum leaf size 8 8 

Learning rate 0.1 0.3 

Number of learners 80 70 

Bagged trees Minimum leaf size 8 8 

Number of learners 60 30 

epsilon-insensitive SVM ( ε-SVM) regression. The ε-insensitive loss 

function is representing training error [56] . 

Gaussian process regression (GPR) is a nonparametric prob- 

abilistic learning method based on kernel function [56,61] . The 

Gaussian process aims to describe the distribution of the unknown 

target function that is characterized by its mean function and ker- 

nel (covariance) [62,63] . In this study, four different common co- 

variance functions [56] were tested. The settings and features of 

tested algorithms are presented in Table 3 . 

10-fold cross-validation was used to randomly split the data 

into training and test sets to estimate the predictive performance 

of a model. The data used for training contained 13 sessions and 

one session was left as independent to test the model with the un- 

known data. The data were averaged every 10 s. The performance 

of the models was evaluated in the same manner as previous al- 

gorithms. In order to use regression to predict time series, time- 

based feature (seconds) was used as an input (predictors) together 

with three other inputs (air temperature, radiant temperature and 

humidity). 

2.4. On-line implementation of the predictive model 

The validation of the predictive model accuracy and automatic 

control effects were evaluated in the on-line implementation. Ex- 

periments were conducted in order to test the predictive model 

in real time with tests subjects in November and December 2017. 

For the on-line implementation LabVIEW in connection with Mat- 

lab was used as shown in Fig. 5 . 

The same test subjects (A and B) participated in on-line test- 

ing. The average clothing insulation during these series of test was 
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Fig. 5. General control framework. 

0.72 ± 0.05 clo for test subject A and 0.92 ± 0 clo for test subject B. 

The on-line validation of the predictive model consisted of 12 tests, 

each test subject participated in 6 tests. During 3 test the settings 

were predicted with the model and the test subjects could not 

change the settings. After that, 3 tests were performed with com- 

bined control. This meant test subject could overrule predictive 

control if they wanted a different setting. When they moved the 

right side of the slider ( Fig. 2 c) the system would take into account 

the new setting provided by the test subject. When they moved 

the right side of the slider to 0, the predictive control would take 

over without taking the user input into account 

The setting of personalized heating during the tests was pre- 

dicted every 10 s. During the tests, the test subjects could see the 

predicted setting of the heated chair on the left side of the inter- 

face ( Fig. 2 c). The settings of a slider corresponded to the control 

voltage between 0 V and 2 V (0% −100%). 

Thermal environmental data were measured and logged in the 

same manner as in the experiments during data collection de- 

scribed in Section 2.1 . Test subjects answered the same question- 

naire every 15 min during the test sessions. 

Selected predictive model for test subject A was the one with 

12 hidden neurons and for test subject B the model with 16 nodes. 

These models showed the best results in off-line validation as 

showed in Section 3.2.1 . 

3. Results and discussion 

3.1. Experiment results-data collection 

The indoor environment during all test had an average air tem- 

perature of 20.1 ± 0.03 °C, relative humidity of 36 ± 1% and radiant 

temperature of 20.5 ± 0.03 °C. The average air speed in the occu- 

pied zone during all tests was maintained below 0.2 m/s. 

The user control inputs for the heating personalized system 

during 14 sessions for two test subjects are shown in Figs. 6 and 

7 . The figures show the hourly distribution of average, maximum 

and minimum user settings of all 14 test sessions Subject A dur- 

ing all 14 sessions never used the heating in first 15 min. Subject 

B, the user never used heating in the first 46 min in any of the 

tests. After starting to use the heating, the setting increase during 

the test period and tend to stabilize towards the end of the test 

session. For subject B the highest heating setting used was 74% of 

the maximum. Test subject A for a brief moment used a heating 

setting of 83.5% of the maximum. The number of interactions with 

the slider per test was 2.6 ± 1.02 for subject A and 3.07 ± 1.03 for 

subject B. 

3.2. Modeling results 

3.2.1. Neural network NARX 

Table 4 shows results of different networks with a varying num- 

ber of hidden neurons for individual model A and B. Table 4 shows 

the network performance during training (MSE is taken as the 

network performance). A low MSE of the algorithm indicates good 

training. If the predicted values are very close to the true values 

the MSE will be small. In case that the predicted and true re- 

sponses differ substantially, the MSE values will be large [64] . The 

values of MSE < 0.001 are described as acceptable in [49] , and in 

this study the models with values of MSE closer to 0 are consid- 

ered to have good performance. Significant improvement in accu- 

racy and performance was observed in models with a higher num- 

ber of hidden neurons. 

This initial assessment showed that for both test subjects, the 

individual neural network with a higher number of hidden nodes 

showed the best performance. One thing that should also be con- 

sidered is overfitting. Fig. 8 shows performance plot of the neu- 

ral network with 12 hidden neurons for the individual model A. 

Fig. 9 shows performance plot of the neural network with 16 hid- 

den neurons for the individual model B. In the performance plot 

it can be seen at which iteration (epoch) the best validation per- 

formance was achieved and the training stops if the validation 

performance does not improve in 6 additional iterations. The sign 

of overfitting is that in the performance plot the test MSE increases 

significantly before the validation MSE increases. As it can be seen, 

both Figs. 8 and 9 do not show any major problems with the train- 

ing since the validation and test curves are very similar. For all cre- 

ated network the performance plots were evaluated to ensure that 

overfitting did not occur. 

The results of the evaluation of how the trained network pre- 

dicts with the unseen data are shown in Table 4 . The neural net- 

works with lower performance (lower number of hidden neurons) 

showed lower ability to accurately predict with new unseen data. 

In the case of a model with a higher number of hidden neurons 

(10–18), RMSE values showed a good agreement between the mea- 

surements and the model predicted values for both models (A and 

B). The lower RMSE values (zero being the best possible result) the 

better agreement is between the real values and the model esti- 

mated values [65] . The best performances were shown for a neu- 

ral network with 12 and 16 hidden neurons. In addition, the good 

prediction accuracy was confirmed with correlation coefficient PCC 

that was in these cases larger than 0.90. The Pearson correlation 

coefficient can result in values within the range [ −1, 1]. Values 

close to zero demonstrate that there is no relationship between 

the predicted and the real numbers. The positive or negative rela- 
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Fig. 6. Settings of the personalized heating system collected during 14 sessions (days) for test subject A. 

Fig. 7. Settings of the personalized heating system collected during 14 sessions (days) for test subject B. 

Table 4 

Performance of the created network with a different number of hidden neurons and the evaluation of the created networks 

to predict using the new unseen data for the test subject A and B. 

Individual model A 

Performance of the trained network 

Hidden neurons 2 6 8 10 12 14 16 18 

Network performance (MSE) 0.0138 0.0026 0.0011 0.0 0 06 0.0 0 029 0.0 0 029 0.0 0 028 0.0 0 026 

Evaluation of the trained network with the unseen data 

RMSE 0.326 0.096 0.148 0.057 0.043 0.071 0.060 0.078 

PCC 0.889 0.972 0.946 0.986 0.994 0.986 0.991 0.983 

Individual model B 

Performance of the trained network 

Hidden neurons 2 6 8 10 12 14 16 18 

Network performance (MSE) 0.0148 0.0036 0.0018 0.0 0 09 0.0 0 04 0.0 0 03 0.0 0 02 0.0 0 03 

Evaluation of the trained network with the unseen data 

RMSE 0.335 0.299 0.242 0.240 0.082 0.118 0.049 0.092 

PCC 0.855 0.877 0.920 0.922 0.990 0.982 0.996 0.989 

tionship is defined with the sign of the correlation coefficient [66] . 

Values close to 1 present strong relationship in case of few pairs 

in data, and in case of a large amount of data pairs values closer 

to 0 can still be considered statistically significant [29] . It is stated 

in [37] that correlation coefficient values above 0.90 demonstrate 

a high level of prediction and acceptable quality of the results. In 

this study, the selection of the optimal models included the model 

that has PCC value closer to 1. 

The high correlation coefficient in cases with networks with a 

higher number of hidden neurons for both individual models indi- 

cates that the developed predictive model is capable of describing 

the behavior of the targets with good accuracy. 

For model A, the optimal network that provided the best re- 

sults was the network with 12 hidden neurons with RMSE = 0.043 

and PCC = 0.994. The best result for model B was obtained with 
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Fig. 8. Training performance of the neural network with 12 hidden neurons for individual model A. 

Fig. 9. Training performance of the neural network with 16 hidden neurons for individual model B. 

Fig. 10. Prediction error for the neural network model during the four-hour session for test subject A (model with 12 hidden nodes) and test subject B (model with 16 

hidden nodes). 

a neural network with 16 hidden neurons with RMSE = 0.049 and 

PCC = 0.966. 

Fig. 10 represents absolute error between predictions and un- 

seen data obtained with the best NARX model for test subject A 

and B. The NARX model for test subject A achieved a mean abso- 

lute error of 0.032 which corresponds to 1.6% of maximum value 

and for test subject B 0.029 which corresponds to 1.45% of maxi- 

mum value, respectively. 

The results of best correlation coefficient are shown in Fig. 11 

and these values were comparable to the results in [26] , where 

the correlation coefficient was equal to 0.997 (obtained with NARX 

model). 
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Fig. 11. A comparison between the unseen target data against the predicted personalized heating settings: left-test subject A model with 12 nodes and right-test subject B 

model with 16 nodes. 

Fig. 12. RMSE values for three different models using the neural network with a different number of nodes. 

3.2.2. Nonlinear autoregressive (NAR) network 

The model that used NAR algorithm and averaged data of 10 s 

(NAR_1) showed average MSE for all tested architectures (number 

of hidden nodes) of 0.0 0 05 for model A and 0.0 0 06 for model B. In 

case of NAR algorithm with averaged data of 5 min (NAR_2) the av- 

eraged MSE calculated is 0.0116 for model A and 0.008 for model B. 

These values are slightly higher than the best values obtained with 

the NARX model. Fig. 12 shows RMSE values obtained with NAR_1 

and NAR_2 models in comparison to the best values obtained with 

the NARX model for individual A and B. The RMSE values represent 

the prediction accuracy of the models with the new unseen data. 

For both individual models, NAR_2 results in average lower RMSE 

values obtained with the NAR_2 model. Furthermore, when com- 

pared to best results with NARX models for both individuals NARX 

network showed better results. 

3.2.3. Regression techniques for machine learning 

Table 5 summarizes all the results obtained with regression al- 

gorithms. The prediction accuracy of the models with the new un- 

seen data is expressed with RMSE and PCC. The lower values of 

RMSE that evaluate the prediction accuracy and ability to predict 

with minimum average error show better performance. In case of 

the individual model A, the best performance was obtained with 

the SVR with the coarse Gaussian function with RMSE equal to 

0.175. This result is still showing lower prediction abilities when 

compared with the best results obtained with NARX. Gaussian pro- 

cess regression with Matern 5/2 kernel function showed the best 

performance with RMSE equal to 0.319 for model B. However, com- 

pared to the best results obtained with the NARX model it is show- 

ing lower performance. 

3.3. On-line implementation results 

During the on-line tests, the indoor environment had an aver- 

age air temperature of 20.1 ± 0.08 °C, relative humidity of 36 ± 1.4% 

and radiant temperature of 20.2 ± 0.09 °C. The average air speed in 

the occupied zone during all tests was maintained under 0.2 m/s. 

As mentioned, there were six tests for each test subject where 

in three tests it was automatic control and in three the test subject 

could overwrite the automatic control if the preferred different set- 

ting. Both test subjects did not overwrite the predicted settings at 

any moment of the test. Not interfering with the predicted settings 

was also reflected in the thermal comfort votes. Average overall 

thermal comfort over the whole session is shown in Fig. 13 . It can 

be seen that in both modes of control both test subjects felt com- 

fortable throughout the test. There was a slight increase in comfort 

in tests with predictive control. For subject B average overall com- 

fort votes were 3.86 ± 0.49 in user control mode and 4.88 ± 0.22 in 

predictive control mode. Average overall comfort votes of subject A 

were 0.91 ± 0.33 in user control mode and 1.77 ± 0.45 in predictive 
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Table 5 

Performance of the models using regression algorithms. 

Individual model A Individual model B 

Regression algorithm Network performance The performance with the unseen data Network performance The performance with the unseen data 

MSE RMSE PCC MSE RMSE PCC 

SVR-FG 0.02 0.336 0.604 0.02 0.394 0.613 

SVR-MG 0.02 0.334 0.687 0.03 0.340 0.767 

SVR-CG 0.06 0.175 0.865 0.08 0.362 0.817 

Bagged trees 0.01 0.286 0.737 0.01 0.334 0.809 

Boosted trees 0.03 0.221 0.858 0.03 0.445 0.717 

GPR-E 0.02 0.320 0.670 0.06 0.327 0.803 

GPR-M 0.01 0.318 0.693 0.02 0.319 0.798 

GPR-SQ 0.02 0.308 0.746 0.02 0.328 0.773 

GPR-RQ 0.01 0.304 0.740 0.01 0.323 0.805 

Fig. 13. Average overall thermal comfort over the whole session. 

control mode. This suggests that the user control and predicted 

control provided the same level of thermal comfort under given 

environmental conditions. 

The same trend was seen in local thermal comfort, where the 

increase can be seen in local comfort votes between control modes 

in both test subject. The local thermal comfort of the head, the 

back, the hands, and the feet after 1 h and at the end of the session 

are shown in Fig. 14 . Both control modes provided a similar level of 

comfort for each subject, with a slight increase in comfort vote on 

a scale in favor of predictive control mode for every investigated 

body part. 

User control settings of fourteen sessions and predicted settings 

during predictive control mode are shown in Fig. 15 . The predicted 

settings during tests with subject A increased at the beginning of 

the session and tended to stabilize from the middle of the test to- 

wards the end of the test session. The predicted settings had only 

for a brief moment after 75 min of the test a higher value of 1% 

of maximum possible setting than the maximum value in the user 

control tests. The predicted settings of subject B increased during 

the whole session, but remained in the same range as the user 

controlled settings except during six minutes in the third hour 

of the session when the predicted value went slightly below the 

minimum (less than 1% of difference) of tests with user control 

settings. 

In the test cases, when personalized heating was user con- 

trolled, the settings remained stable over the last 30 min of the 

session. Energy consumption of the personalized chair is shown 

in Fig. 16 . The two tested control modes for subject A sessions 

showed average energy consumption of 22.8 ± 8.7 Wh in user con- 

trol mode and 25.8 ± 2.3 Wh in predictive control mode. The aver- 

age energy consumption of subject B sessions was 15.8 ± 10.1 Wh 

in user control mode and 13.2 ± 0.9 Wh in predictive control 

mode. 

It is important to mention that the test subjects expressed their 

satisfaction with automatic control and commented that their self- 

evaluated performance was higher in the tests with automatic con- 

trol in comparison with the user control. They expressed they 

could focus more on their work tasks. 

4. Discussion 

Artificial neural network is a powerful data-driven method that 

is able to deal with linear and nonlinear characteristics. However, 

the limitation of black box models is that the user cannot inter- 

pret the physical meaning and to know how learning from input 

data was performed. The main advantage of the models is that it 

is learning individual settings, therefore the gender, age or BMI are 

implicitly included in the model since each predictive model was 

trained using data collected from a specific person. The model in- 

puts at the moment only include environmental data, and the in- 

formation on clothing and activity level (metabolic rate) that also 

influence thermal state is not included as an input but was taken 

as a fixed condition. In the performed experiment the test sub- 

jects were wearing clothing of similar insulation grade during all 

sessions and were performing their usual office activities. In a nor- 

mal office environment, it is expected that the people maintain a 

similar clothing level during the heating season and perform sim- 
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Fig. 14. Local thermal comfort during user control (UC) and predictive control (PC): (a) for subject A after 1 h, (b) for subject A at the end of the session, (c) for subject B 

after 1 h, (d) for subject B at the end of the session. 

ilar activities. Furthermore, the used inputs are considered in the 

model for practical reasons and on-line implementation in a real 

office environment as they are easily implemented in climate con- 

trol systems. 

The approach of multiple tests for each subject instead of a 

large number of subjects that participate in a single test was done 

to be able to create a specific individual model, not a model for 

the average person. The personalized model is used for personal 

control of the personalized heating system and is a necessary step 

before considering multi-person modeling. The first step in this 

methodology is to be able to predict settings of each individ- 

ual. Based on this method if we have more people sitting in the 

open office space in their permanent spot, their individual mod- 

els can be created by collecting the data in the first few days 

when they use their personalized conditioning system. The next 

step would be developing grey-box models that could be used for 

multi-person cases that would be categorized by their physiologi- 

cal differences as age, BMI, gender. In addition, with the future de- 

velopment of the wearable sensor, skin temperature could be used 

as a real-time input for the predictive model. 

Keeping in mind that more experiment is needed, the impact 

of a number of training data sets was also investigated by train- 

ing the models in order to see if the size of the dataset could 

be reduced that would reduce the time and resources for col- 

lecting the data. The training was done with 3, 5 and 8 ses- 

sions. It was found that all model training with three and five ses- 

sions of data and different architecture often resulted in signs of 

overfitting in the performance plots. This was expected because 

a small dataset has higher possibility to result in overfitting. We 

also found that the results with the eight days dataset resulted in 

the similar trend as training with thirteen sessions dataset (average 

RMSE = 0.067 and PCC = 0.982 for model A; average RMSE = 0.099 

and PCC = 0.979). This could be helpful when performing future 

experiments for different individuals and would ensure a shorter 

period of data collecting. As overfitting can be serious issue in case 

of limited amount or missing data there are few approaches that 

can be taken. The best case scenario is to get more data if pos- 

sible for each individual. The other steps that can be taken is to 

test the generalization of different algorithms (different models) 

and its ability to handle unseen data. In this study, several algo- 

rithms were tested with the unseen data and the performance of 

each was compared. Other step that could be considered in cases 

with limited data as presented in Jin et al. [67] is to adopt other 

machine learning techniques such as transfer learning. 

There are limitations in this study that should be noted for fu- 

ture work. The first limitation is that the tests were performed in 

a uniform thermal environment. In the real office, indoor condi- 

tions vary more during the day. Unlike the HVAC system that aims 

to create a uniform environment in the whole space for a large 

group, PCS aims to condition the space around individual occu- 

pants by exposing them to non-uniform and non-steady-state con- 

ditions [13,68] . This leads to a necessity to research comfort under 

the effect of combined methods of conditioning [68] . There is a 

lack of studies that are predicting settings of personalized heating 

systems, and to our knowledge, there are no studies with imple- 

menting their predictive models into automatic control. Therefore, 

the approach of testing this methodology in a more controlled en- 

vironment in a climate chamber was determined as a first step. 

This approach gave us information how the preferable heating set- 

tings for each test subject changed with time even though the in- 
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Fig. 15. User control and predicted settings for (a) subject A and (b) subject B. 

Fig. 16. Maximum, minimum and average consumption during user control and average energy consumption during predictive control. 
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door conditions did not change. One of the main aims was to test 

if the user interaction can be substituted with the predictive con- 

trol. The results of comfort feedback of the occupants showed it 

can, however, it has to be noted that the test presented in this 

study were performed only at ± 20 °C air temperature. For future 

work, it is recommended to further investigate and test over a 

wider range of environmental conditions including the transient 

conditions during the testing day. The other limitation is size of 

the tested occupants. This study presents the whole procedure of 

collecting the data, developing the predictive models and imple- 

menting the models in the automatic control. The focus is on indi- 

vidual models and not a model for an average person. We recom- 

mend testing more people in a field study where it is possible to 

test more subject at the same time. The climate chamber study has 

the advantage of greater control of irrelevant variables, however 

testing multiple test subjects takes more time. The results that are 

obtained in a controlled experiments in a climate chamber result 

in new approaches and methodologies that should be investigated 

in the field. As Parsons [69] noted, climate chamber experiments 

and field studies should complement to each other. Furthermore, 

on-line learning in the real office that can capture new patterns 

in the data and update the model should be considered as future 

research. 

5. Conclusion 

In this paper, we demonstrated how to use machine learning 

can be successfully used for the control of personalized heating 

systems. Individual predictive models were developed using artifi- 

cial neural network algorithm and validated with the offline analy- 

sis and the on-line implementation. Neural networks were trained 

and tested using collected data from two individuals. Data was col- 

lected during four-hour experiments for 14 days in a mild cool 

environment. NARXs were created that represent individual mod- 

els for each test subject. The neural network was trained with 

Levenberg–Marquardt back-propagation algorithm and various ar- 

chitectures were tested. The analysis showed that the networks 

with a higher number of hidden neurons (10–18) have better per- 

formance. The predictability of the developed models was evalu- 

ated with new unseen data. For test subject A the best results 

were obtained with a neural network with 12 hidden neurons: 

RMSE = 0.043 and PCC = 0.994. For test subject B, the best results 

were yielded with a neural network with 16 nodes: RMSE = 0.049 

and PCC = 0.996. These models were then used in the on-line im- 

plementation where extra six tests were performed for both test 

subjects. In addition, other algorithms were tested including NAR 

and regression algorithms (SVR, GPR, Bagged and Boosted trees). 

Even though the performance of these models tested with the un- 

seen data were satisfying, the best results obtained with NARX 

model showed unmatched performance. Among all algorithms, it 

was noticed that Gaussian process regression requires the most 

time to finish the training process. 

The first contribution of this study is the demonstration of us- 

ing learning algorithms to directly predict individual settings of the 

heating chair. The second contribution is the implementation of 

predictive models in automatic control of the heating chair and the 

online testing. The model validation and the on-line implementa- 

tion showed that the developed predictive models are accurate to 

predict individual setting of the personalized heating system and 

the model can provide a quality substitute for user’s control. The 

predictive control provided a slightly better level of thermal com- 

fort and resulted in similar power consumption when compared to 

user control. Furthermore, it is important to emphasize that these 

individual predictive models are valid for environmental conditions 

similar to the test conditions. 
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