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Abstract  —  We introduce surfaces of black silicon (bSi) 

fabricated by reactive ion etch (RIE) and passivated by 

hydrogenated amorphous silicon (a-Si:H). We demonstrate 
minority effective lifetime over 1.5 ms for the best bSi surfaces, 
corresponding to over 700 mV of implied open circuit voltage, 

values higher than on reference surfaces prepared by KOH 
etching. Fabrication of solar cells resulted in promising efficiency 
of 16.1 % for bSi as compared to 18.5 % for KOH references. 

Quantum efficiency measurements revealed that the bSi cells lose 
approximately 0.5 mA cm-2 of current density in the visible and of 
0.8-1 mA cm-2 in the infrared (IR) region. Current work is ongoing 

to further reduce surface damage during RIE to maximize the 
open circuit voltage and to optimize the deposition of a-Si:H on 
our bSi in order to reduce the loss in current density.  

Index Terms — silicon heterojunction, a-Si:H, black silicon. 

I. INTRODUCTION 

Black silicon (hereinafter bSi) [1,2] has demonstrated great 

potential as texturing method Si photovoltaics thanks to its 

excellent intrinsic antireflective properties both at normal and 

at high incidence angles [3]. Power conversion efficiencies 

between 18 and 22% have been achieved in the lab using laser-

doped selective emitters [4], Al2O3/SiNx passivation stacks, [5], 

and interdigitated back contact (IBC) cells [6]. These results 

have been obtained using maskless reactive ion etch (RIE) for 

the Si texturing. The increased surface recombination due to 

increased surface area and process-induced damage currently 

limits the open circuit voltage (Voc) and therefore the efficiency 

of RIE textured solar cells. Hydrogenated amorphous Si (a-

Si:H) is an outstanding passivation layer on Si [7] and is the 

core of the silicon heterojunction solar cell (SHJ) technology 

that holds the current record for single junction Si solar cell at 

26.7% [8]. a-Si:H seems therefore an appropriate candidate to 

passivate a notoriously challenging surface such as RIE-

textured Si. Passivation of bSi fabricated via metal assisted 

chemical etch using a-Si:H was attempted by Mews et al. and 

showed promising results [9]. Here, we present our first attempt 

at combining RIE bSi with a-Si:H passivation. We demonstrate 

excellent lifetime results, with the best bSi wafer showing 

higher implied Voc (iVoc) than a microstructured surface with 

pyramids obtained by conventional alkaline texturing. 

Preliminary results from solar cell fabrication showed lower 

conversion efficiency for the bSi-based cells as compared to the 

reference cells. Quantum efficiency measurements give 

indications on how to improve the efficiency of cells based on 

a-Si:H/bSi .     

II. METHODS 

4’’, 350 µm thick CZ n-type (100) Si were used as substrates. 

RIE texturing was performed in a SPTS Pegasus system with: 

process temperature of -20 °C, SF6 and O2 plasma with 7:10 gas 

flow ratio, 38 mTorr chamber pressure, 3000 W coil power, 10 

W platen power. The process time was varied between 6 and 30 

min. These wafers where then RCA cleaned, without the last 

HF dip to keep the chemically grown SiO2 layer on the surface. 

The pyramid texture, as for the reference, was prepared by 

KOH based alkali etching at 83 °C for 20 min. The a-Si:H i/p 

an i/n passivation layers were deposited by plasma enhanced 

chemical vapor deposition (PECVD) at temperature range of 

140–160 °C with SiH4, H2 gas for intrinsic and also B2H6 and 

PH3 gas for p- and n-doped layer.  Scanning electron 

microscopy was performed in a SEM (Hitachi S-4300) at an 

accelerating voltage of 10 kV. Minority carrier lifetime was 

measured using the quasi-steady state photoconductance 

(QSSPC) method with a Sinton WCT120TS instrument. The 

lifetime shown in this study was obtained for the sample with 

both the front and rear surface passivated with only i a-Si:H 

layer. Prior to fabrication of solar cells, the Si substrates were 

cleaned according to [10]. The cell structure was the following: 

Ag-grid / ITO (75 nm) / p a-Si:H (5 nm) / i a-Si:H (10 nm) / n 

c-Si substrate (350 m) / i a-Si:H (10 nm) / n a-Si:H (7 nm) / 

ITO / Ag. The cell designated area was 1.045 cm2, including 

the Ag grid. The performance (Voc, Jsc, FF) was characterized 

by the current-voltage (J-V) measurements at a standard 

condition (AM1.5 1-Sun at 25 °C). The external quantum 

efficiency spectra were measured under white light bias.  



 

III. RESULTS 

Fig.1 shows cross-section SEM images of bSi samples with 

different RIE time, as well as of the KOH textured reference. 

The surface of the bSi is characterized by hillock-like structure 

with height and base that generally increase with increasing 

RIE time. In particular, the height changes from approximately 

200 nm for 6 min RIE to more than 1 µm for 30 min RIE.  

Measurements of minority carrier effective lifetime eff as 

function of injection level n reveal that the quality of 

passivation by a-Si:H is strongly affected by the RIE time, as 

shown in Fig. 2(a). For 6 min RIE, eff is above the one 

measured on the KOH textured surface for injection higher than 

5×1014 cm-3 (eff = 1.52 ms for 6 min RIE and eff = 1.27 for 

KOH texturing.) eff decreases considerably for 12 min RIE, 

remains approximately the same for 16 min RIE and then drops 

further for 20 and 30 min RIE. These values translate into iVoc 

values of 706 and 695 mV, respectively (see Fig. 3(c)). If fully 

exploited, this would lead to the highest Voc measured on bSi 

based solar cells. We speculate that the drastic decrease in eff 

for RIE time of 12 min and longer may be due to less-completed 

surface coverage of the i/p and i/n a-Si:H passivation layer, 

which is currently under investigation.  

Solar cells were fabricated from the 6 min RIE wafers as well 

as from the KOH textured wafers as reference. Results are 

summarized in Fig. 3. It is clear from the J-V curves (top panel) 

that the KOH textured cells average performance is higher than 

that of the bSi cells. The KOH textured cells display a higher 

Jsc by 1.33 mA cm-2, a higher Voc by 16 mV, and a higher fill 

factor (FF) by 5.9%, resulting in a 2.4% higher efficiency (18.5 

against 16.1%). We note that there is quite some room for 

improvement as the results presented here are from our first 

batch of cells. The trend between iVoc and Voc is reversed: the 

net loss going from lifetime samples to full solar cells is of 27 

mV when replacing KOH texturing with RIE. Possible reasons 

for this may include ITO sputtering damage to bSi and a higher 

shunt resistance caused by non-optimal contact between bSi 

and ITO. Poor contacting could also explain the rather large 

difference in FF is rather large between these samples. There 

are two spectral regions where the KOH cells perform better 

than the RIE cells (see bottom panel of Fig.3), in the visible 

(400-700 nm) and close to the bandgap of Si (1000-1200 nm). 

By spectral weighted integration of the QE curves, we 

concluded that the loss in Jsc for the RIE cells is of 0.5 mA cm-

2 in the visible and of 0.8-1 mA cm-2 in the IR. Interestingly, 

Mews et al. reported a higher Jsc loss in the visible and a lower 

loss in the IR as compared to our results, which may be 

connected to difference in the characteristic shape and size of 

bSi. In our case, the loss in the IR is due to poor light trapping 

of the bSi caused by the relatively small characteristic size and 

by the shape of the nanostructures, as discussed in [11]. While 

Fig. 1. Cross-section SEM images of Si surfaces textured by RIE 

and KOH. Both scale bars represent 1 µm.   

Fig. 2.  Summary of lifetime measurements. (a) Effective lifetime as 

function of injection level. (b) Effective lifetime measured at injection 

level of 1015 cm-3. (c) Implied open circuit voltage calculated at 

injection level of 1015 cm-3. 



 

texturing both sides of the cell might ameliorate this issue, 

further work on the RIE is needed to produce structures with 

more appropriate shape and even lower additional surface 

damage. It is difficult to determine the cause of loss in the 

visible from the data presented here, nonetheless we speculate 

that this could be due to enhances parasitic absorption in the a-

Si:H as compared to the KOH textured cells. Since the bSi 

nanostructures are more convex than the pyramids, the effective 

thickness of incoming photons in the bSi textured surface could 

be higher.  

IV. CONCLUSIONS 

We presented a combination of black silicon fabricated by 

RIE and a-Si:H films for surface passivation. We measured 

minority effective lifetime exceeding 1.5 ms for the best bSi 

surface, corresponding to over 700 mV of implied open circuit 

voltage, a higher value than a reference KOH textured wafers. 

Fabrication of solar cells resulted in promising efficiency of 

16.1 % for bSi as compared to 18.5 % for KOH references. 

Quantum efficiency measurements revealed that the bSi cells 

lose approximately 0.5 mA cm-2 of current density in the visible 

and of 0.8-1 mA cm-2 in the IR. Current work focuses on further 

reducing surface damage during RIE and on optimizing the 

deposition of a-Si:H on the bSi. In addition, the efficiency is 

likely to be increased by resorting to substrates with better bulk 

quality.  
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Fig. 3.  Top: Averaged J-V curves for 6 min RIE textured cells and 

for KOH textured reference cells. Bottom: quantum efficiency 

measurements  


