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Abstract  —  Black silicon is a promising texturing method for solar 

cells since it suppresses optical reflection in a broad spectral range. 

This relaxes the usual antireflection requirements on the coatings 

used for surface passivation of silicon. Fabrication of n-type 

emitters requires diffusion of phosphorous through the 

nanostructures of black silicon, which may need different optimal 

conditions as compared to diffusion through e.g. pyramidal wet-

etched structures due to the different characteristic dimensions. In 

addition, the diffusion process should ideally not deteriorate the 

antireflective properties of black silicon. Here, we have 

investigated the effect of temperature and time during the doping 

process on optical reflectance and sheet resistance of black silicon. 

Doping temperatures of 875 °C and lower result in negligible 

increase of reflectance as compared to pristine black silicon. In 

addition, the sheet resistance of black silicon emitters is confirmed 

to be lower than that of planar Si under identical annealing 

conditions.  

Index Terms —black silicon, phosphorous emitter, diffusion 

 

I. INTRODUCTION 

 

Black silicon (bSi) [1,2] has great potential as texturing 

method for Si-based photovoltaics thanks to its intrinsic 

antireflective properties both at normal and at high angle of 

incidence of light [3]. Power conversion efficiencies between 

18 and 22% have been achieved in the lab on bSi solar cells 

using laser-doped selective emitters [4], interdigitated back 

contact (IBC) [5], and on multicrystalline substrates [6]. These 

results were obtained by texturing Si using maskless reactive 

ion etch (RIE). Maskless RIE is of commercial interest because: 

(i) it is a single-step process and therefore potentially 

industrially scalable, (ii) it works indifferently mono-, quasi-

mono- and multicrystalline Si, and (iii) can be used on 

diamond-wire cut wafers. Diffusion of phosphorous (P) in p-

type Si substrates is the de facto industrial standard for 

fabrication of emitters in back-surface field Si solar cells [7]. 

Diffusion of P through the nanostructures of bSi is likely to 

require different optimal conditions as compared to diffusion 

through e.g. pyramidal wet-etched structures due to the 

different characteristic dimensions. In addition, the diffusion 

process should ideally not increase the reflectance of bSi. Here, 

we have investigated the effect of temperature and time during 

the doping process on optical reflectance, morphology and 

sheet resistance of bSi. 

II. METHODS 

All wafers were 100 mm, 350 µm thick CZ p-type (100) Si. 

BSi was obtained by non-cryogenic RIE using a SPTS Pegasus 

system using the following process parameters: temperature of 

-20 °C, SF6 and O2 plasma with 7:10 gas flow ratio, total 

chamber pressure of 38 mTorr, 3000 W coil power, 10 W platen 

power and 14 min process time. The wafers where then cleaned 

using the standard RCA procedure. Doping with P was 

performed in a Tempress furnace with a pre-deposition step 

(with POCl3 vapors as a source of P) followed by a drive-in step 

in N2 atmosphere. For each wafer, the temperature and time 

were the same for pre-deposition and drive-in. For different 

wafers, the temperature was varied between 850 °C and 1050 

°C, while the time was either 15 or 30 min. Planar Si samples 

were doped along with textured wafers for reference purposes. 

P-doped glass layers were removed by etching in buffered 

hydrofluoric acid (bHF). 

Scanning electron microscopy was performed in a VP 40 

SEM (Zeiss) at an accelerating voltage of 10 kV. Reflectance 

measurements were carried out using a UV-2600 

spectrophotometer (Shimadzu Co.) equipped with an 

integrating sphere. The sheet resistance was measured 10 times 

for each wafer using a FPP-500 (Veeco).  

III. RESULTS 

Reflectance measurements in the wavelength range 280 -

1100 nm are shown in Fig. 1 for pristine bSi and for bSi surfaces 

after doping, as well as for a reference Si surface. The pristine 

bSi is characterized by reflectance lower than 5% in the range 

300-1000 nm. Doping at temperature between 850 °C and 865 

°C  has a very similar effect on the reflectance, which increases 

to 10 % or higher between 280 and 400 nm while remaining 

around 7% or lower throughout the visible and up to 1000 nm. 

Doping temperatures between 875 °C and 950 °C also results in 

rather similar reflectance spectra, with values larger than 15% 

in the UV and between 15% and 8% in the visible and NIR. 

Doping at 1050 °C results in a further, considerable increase in 

reflectance (30% or higher in the UV and at least 17% in the 

visible and NIR. These differences in reflectance can also be 

appreciated by the naked eye, as photographs of selected 

surfaces after doping show Figure 2. It is worth to note that 

these values of reflectance are most likely to drop further with  



 

 

 

deposition of relevant coatings for passivation of bSi 

(SiNx:H, Al2O3, or a stack of these two).  

During the doping process, a layer of P doped glass is grown 

into the Si, and subsequently removed by wet etch. This 

processing may lead to appreciable modifications of the 

nanostructures in the textured surface, depending on the process 

parameters. Indeed, cross-section SEM inspection reveals 

alterations in the morphology of all the textured surfaces 

following the doping process. Figure 3 shows a comparison 

between representative cross-section images of bSi before 

doping and after doping for 15 min at temperatures increasing 

from 850 °C to 1050 °C (from top to bottom). The texturing of 

the 850 °C samples is almost unaffected by the processing and 

presents typical conical-like hillocks of height between 300 and 

400 nm. Only the tips of these hillocks seem to have been 

oxidized and subsequently etched in bHF, leaving slightly 

truncated features. Such a process is slightly more pronounced 

for the surface doped at 900 °C, however the average height of 

the truncated hillock remains rather uniform. Doping at 950 °C 

results in smoothening of a considerable amount of features. 

Finally, doping at 1050 °C results in uniformly smoothed 

Fig.1. Optical reflectance in the wavelength range 280-1100 nm for 

pristine bSi before and after doping at different temperature, as well as 

for a planar reference Si surface. 

Fig.2. Photographs of bSi and planar reference Si before doping 

and after doping at different temperatures for 15 min. 

Fig. 3. Cross-section SEM images of pristine bSi and of bSi after 

doping at temperature increasing from 850 °C to 1050 °C. The scale 

bar represents 200 nm. 



 

 

cylinder-like featured about half as high as the original hillocks. 

We conclude that the microscopic modification of the surface 

texturing due to the doping processing explain the increase in 

optical reflectance observed after higher doping process 

temperatures.  

We performed macroscopic four point probes measurements in 

order to determine the sheet resistance of the fabricated P 

emitters. Decreasing values of sheet resistance were recorded 

for increasing temperatures, and for increasing time at the same 

temperature. Results are summarized in Figure 4, where the 

sheet resistance is plotted as function of inverse temperature. 

Data for both bSi and flat Si can be fit well by a straight line, 

which indicates that the diffusion coefficient has a temperature 

dependency that does not differ much from the behavior 

predicted by Arrhenius law. In addition, the sheet resistance of 

bSi is consistently lower than that measured on the 

corresponding planar Si reference by a factor between 10% and 

20%, depending on the process conditions. This is an 

experimental confirmation that diffusion of P is faster in bSi 

than in planar Si doped under the same conditions. 

Furthermore, we note that the bSi emitter doped at 865 °C for 

15 min shows a sheet resistance of 74  sq-1, which is very 

promising for device fabrication. We conclude that such 

process conditions result in surface with respectable 

antireflective properties and appropriate emitter sheet 

resistance. Ideally, in order to obtain further quantitative 

information on the properties of the p-n junctions fabricated 

here, the dopant profile in bSi should be directly measured. This 

is a rather challenging task for routine techniques such as 

secondary ion mass spectroscopy (SIMS), which is most 

reliable on polished surfaces. Scanning non-linear dielectric 

microscopy (SNDM) or electron holography may be more 

useful in this context. Electrochemical Capacitance-Voltage 

(ECV) measurements that account for the higher surface area 

of bSi by using a geometrical correction factor (as previously 

done for KOH etched pyramid surfaces) may also give useful 

information.  

IV. CONCLUSIONS 

We have investigated the effect of temperature and time 

during the phosphorous doping process, leading to the 

formation of n-type emitters, on optical reflectance, 

morphology and sheet resistance of black silicon. Doping for 

15 min at temperature between 850 °C and 865 °C result in bSi 

surfaces with respectable antireflective properties (lower than 

7% between 400 and 1000 nm). The sheet resistance measured 

on bSi emitters is consistently lower (between 10% and 20%) 

than that of planar Si doped under the same conditions. In 

particular, doping at 865 °C results in a sheet resistance of 73.9 

± 0.2   sq-1 suitable for device fabrication.  
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