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Introduction
Several non-human animal studies have demonstrated a per-
manent loss of auditory nerve (AN) fiber synapses after noise
over-exposure, termed cochlear synaptopathy, without caus-
ing hair cell loss nor altering normal auditory thresholds (e.g.,
Kujawa and Liberman, 2009). Studies in human listeners are
generally inconclusive, mainly because assessing the status
of the AN in humans represents a major challenge. In a
previous study, we proposed the use of envelope following
responses (EFR) as a tool to investigate synaptopathy both
in mice and humans (Encina-Llamas et al., under review;
Parthasarathy et al., 2017). Similar patterns in synaptopathic
mice and humans were found. The use of a "humanized" ver-
sion of the AN model by Zilany et al. (2009, 2014) could
qualitatively account for the patterns obtained in the human
listeners. Nevertheless, the use of the original animal ver-
sion of the AN model (based on the cat) failed to simulate
EFRs in mice. It was argued that a species-specific AN model
could improve the non-human animal simulations. Given that
the mouse is the most used and best characterized species
in connection with cochlear synaptopathy, the present study
proposes a modification of the original AN model by Zilany et
al. (2009, 2014) based on cat data adapted to the mouse.

Aim of the project
• Modify the AN model by Zilany et al. (2009, 2014) based

on the cat to adapt it to the mouse.

• Due to the complexity of the AN model, it was intentionally
decided to modify as few parameters as possible.

• Three main blocks were modified: the middle-ear filter, the
cochlear tuning (Q10 dB values), and the range of sensitive
characteristic frequencies (CF).

• The ultimate goal was to use the model to simulate EFRs
in non-synaptopathic and synaptopathic mice.

Methods
Model:

- "Mousified" version based on the AN

model by Zilany et al. (2009, 2014).

- 200 characteristic frequencies (CF),

ranging from 4.5 to 75 kHz.

- Synapses per IHC are simulated by

several independent computations

of each AN CF (30-60 fibers per CF

with a total of 10000 fibers).

- Synaptopathy is simulated by computing

a given CF less times..
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Fig. 1 Synaptic counts in the control (black)

and exposed (gray) 32 weeks-old mice.
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Fig. 2 Example of a simulated AN output at the synaptopathic frequency and level of 80 dB SPL.

Stimuli:
- Non-synaptopathic frequency: ƒc = 12.1 kHz @ ƒm = 1024 Hz

- Synaptopathic frequency: ƒc = 30.5 kHz @ ƒm = 1024 Hz

Levels:
- EFRs in mice: 20 to 80 dB SPL, 10 dB steps.

- Simulated EFRs: 10 to 100 dB SPL, 5 dB steps.

Modulations:
- Strong m = 85%; shallow m = 25%.

"Mousification" of the AN model
Middle-ear filter:
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Fig. 3 Magnitude and phase responses of

the middle-ear (ME) filters.

Panels A & B show the ME filters in the

cat model. The solid lines correspond to

the original 11th -order IIR filter in Bruce et

al. (2003). The dashed lines correspond to

the simplified 5th -order in a second-order

section structure filter in Zilany & Bruce

(2006).

Panels C & D show the ME filter in the

mouse model. The solid lines correspond

to the measurement of the stapes veloc-

ity relative to the sound pressure at the

eardrum of C57BL mice (Dong et al., 2013).

The dashed lines represent the ME filter

designed based on the stapes measure-

ment and adjusted to the 5th -order ina a

second-order section structure.

AN tuning:
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MOUSE fitting - Q10 dB | Mouse = 10(0.2977 log10(CF/1e3) + 0.3855)

Fig. 4 AN tuning (Q10 dB values). Cat AN data (plus signs, Miller et al., 1997) and fitted

line (Zhang et al., 2001) are represented in brown. Mouse (CBA/CaJ) AN data (crosses,

Taberner & Liberman, 2005) and fitted line are represented in green.

AN threshold:
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Fig. 5 Gray dots show AN threshold in CBA/CaJ mice (Taberner & Liberman, 2005). Light

green squares compound action potential (CAP) thresholds in CBA/CaJ mice (Yoshida et

al., 2000). Dark green line shows simulated AN thresholds using the mouse model.

Results I
EFRs recorded in mice:
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Fig. 6 EFR level-growth function recorded

at the non-synaptopathic (Panel A, ƒc =

12.1 kHz) and synaptopathic (Panel B, ƒc =

30.5 kHz) frequencies for exposed (circles,

solid lines) and non-exposed (squares,

dashed lines) mice using strongly (blue)

and shallowly (red) modulated tones. (For

more information, attend to the podium PD

112 by Parthasarathy et al., 2018).

Simulated EFRs using the CAT model:
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Fig. 7 Simulated AN EFR level-growth

function using the CAT model at the non-

synaptopathic (Panel A, ƒc = 2.28 kHz)

and synaptopathic (Panel B, ƒc = 12.93

kHz) frequencies in the healthy (circles,

solid lines) and the model with synap-

tic loss (squares, dashed lines) using

strongly (blue) and shallowly (red) modu-

lated tones.

Simulated EFRs using the MOUSE model:
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Fig. 8 Simulated AN EFR level-growth

function using the MOUSE model at the

non-synaptopathic (Panel A, ƒc = 12.1

kHz) and synaptopathic (Panel B, ƒc =

30.5 kHz) frequencies in the healthy (cir-

cles, solid lines) and the model with

synaptic loss (squares, dashed lines) using

strongly (blue) and shallowly (red) modu-

lated tones.

Results II
Analysis at on- and off-frequencies and different fiber types:
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Fig. 9 Simulated EFR level-growth functions in the MOUSE model using strongly (blue) and shallowly (red) amplitude modulated tones. Columns show simulated EFR level-growth

functions at on- and off-frequencies. Rows show simulated EFRs for different types of AN fibers.

Conclusion
• The modifications applied to "mousify" the AN model (ME

filter, AN tuning and range of sensitive CFs) were sufficient
to generally account for the mouse AN thresholds.

• The mouse model improved significantly the simulation of
EFR level-growth functions in mice with respect to the use
of the cat model.

• Although the model simulations capture the general trend
of the EFR level-growth functions, there are still discrepan-
cies in particular at the lower and higher stimulus levels at
the synaptopathic frequency.

• Simulated EFRs using the mouse model at supra-threshold
levels are dominated by the activity of high-SR fibers at
off-frequency contributions, similarly to the humanized AN
model (Encina-Llamas et al., under review).
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