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Abstract

Sound �eld control in outdoor concerts requires accurate estimates of the transfer functions between

sources and receivers. Feed forward approaches are based on direct measurements of the transfer

functions in a dense grid of points. This makes them intractable for large scale situations, showing the

need of propagation models in order to characterize the sound �eld in such large areas. Uncertainty

in the parameters introduced in the propagation models, such as meteorological, acoustical and

geometrical ones, lead to inaccurate estimates of the transfer functions and therefore to a poor

performance of the sound �eld control strategy. In this paper we present �rst results of the method

introduced by Heuchel et al. [1] to increase the accuracy of the predictions. The parameters of the

propagation model are optimized through auxiliary measurements and Bayesian inference.

PACS no. 43.60.Np, 43.60.Pt

1. Introduction

The performance of sound �eld control techniques
strongly relies on the precision of the estimation of the
transfer functions between sources and control areas
[2]. The most reliable procedure to get the transfer
functions is to directly measure them, where the con-
trol areas need to be densely sampled in order to avoid
aliasing. This is not feasible for outdoor concerts be-
cause the areas to be controlled are large.
An alternative method to calculate the transfer

functions is to use sound propagation modeling in
order to estimate the sound pressure at the desired
points of the control areas. In the speci�c case of out-
door sound propagation models we can distinguish
between geometrical acoustics based methods, dif-
fuse �eld methods and wave-based methods [3]. In
any case, the uncertainties in the parameters of the
model such as sources' responses, weather conditions
or acoustic properties of the materials in the propaga-
tion path can lead into poor predictions of the trans-
fer functions. Robust optimization applied to sound
�eld control has shown promising results introducing
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regularization terms directly proportional to the un-
certainties in the parameters of the model [4]. Finding
and reducing these uncertainties is important in order
to get optimized solutions that are not over regular-
ized, which will mean an over robust solution and poor
performance of the acoustic control strategy.
Bayesian inference provides a framework to study

uncertainties of a model based on data [5]. The hy-
pothesis of this paper is that Bayesian inference is a
suitable framework to quantify and reduce the uncer-
tainty of acoustic parameters in models when data
is available. This framework has been shown to work
in similar regression problems in relevant engineer-
ing �elds. Jeong et al. used it to characterize the
�ow resistivity of a sound absorber from reverbera-
tion chamber measurements [6]. Sadri et al. success-
fully improved the performance of a Statistical Energy
model of a railway coach [7].
In this work a �rst insight on modeling acous-

tic sources from real data measurements applying
the method presented in [1] is shown. The directiv-
ity response of a loudspeaker is measured in ane-
choic conditions and the amplitude and phase of a
monopole model with directional amplitude is �tted
to the measurements. The paper explains step by step
how Bayesian inference can be used in such a case and
sets the foundation to new research using the acoustic
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Figure 1. Loudspeaker unit used during the measurements.

source model developed in future sound �eld control
experiments. The paper is structured as follows. Sec-
tion 2 presents the methods and is structured in two
main subsections. Section 2.1 describes �rst the setup
and measurements of the directivity response, then
the monopole model with complex amplitude used
as generative model of the Bayesian inference and �-
nally the statistical model used during the inference.
Section 2.2 summarizes the Hamiltonian Monte Carlo
sampling method used to �nd the posterior distribu-
tion. In Section 3 the methods are applied to direc-
tional impulse responses measured in free �eld con-
ditions and results are shown and Section 4 presents
the analysis of the results. Section 5 discuss the ap-
plied methodology and presents future challenges and
Section 6 summarizes the present work.

2. Methods

In this section the directivity measurements and the
monopole model are presented, and the estimation of
the parameters of the model via Bayesian inference is
explained. Finally Hamiltonian Monte Carlo sampling
is summarized.

2.1. Bayesian Inference and Parameter Esti-

mation

Bayesian inference is the process of �tting a proba-
bility model to a set of data and summarizing the re-
sult by a probability distribution on the parameters of
the model [5]. This probabilistic model is updated as
more evidence or information is available. In this sec-
tion data, acoustic source model and statistical model
are presented.

2.1.1. Data

Accurate measurements of the directivity of 3 di�erent
units of the same loudspeaker model were measured in
free-�eld conditions. The directivity is only measured
on the azimuth angle. Figure 1 shows one of the units
and Figure 2 details the setup of the measurements.

The loudspeaker is mounted on a turntable and
three microphones are placed in front of the source at
the de�ned distances. The loudspeaker is rotated from

r1=1.044 m
r2=2.246 m

r3=3.346 m

φ

Figure 2. Schematic of the measurement setup.

ϕ = 0 to 360° playing a sine sweep every 5° (number
of angles measured Nd= 72). Frequencies from 500 to
1000 Hz with a frequency resolution of ∆f = 100 Hz
are used in this work (number of frequencies measured
Nf= 6).

2.1.2. Acoustic Source Model

The sound pressure created by a monopole at any
position r can be written as

p =
A exp(j(ωt− kr))

r
, (1)

where k is the wavenumber, r is the distance to the
monopole and A is a complex amplitude.
In real sound �eld control scenarios loudspeakers

are used. Fitting A and r in Eq. (1) to a loudspeaker
response is equivalent to �nding the so called acous-

tic center, de�ned as "the point from which the ap-
proximately spherical wavefronts appear to diverge"
[8]. In addition, loudspeakers will usually have direc-
tional response, presenting radiation patterns at dif-
ferent frequencies which are dependent on the geome-
try and size of the source. This means that both A and
r need to be function of frequency and angle (A(f, ϕ)
and r(f, ϕ)).

2.1.3. Bayes' theorem and data �tting

The basis of Bayesian inference is the well known
Bayes' theorem. Given N noisy sound pressure mea-
surements p̃i,j = pi,j + ni,j at i = 1...Nf frequencies
and j = 1...Nd angles, the Bayes theorem can be writ-
ten as

π(θ|p̃i,j ,M) =
π(p̃i,j |θ,M)π(θ|M)

π(p̃i,j |M)
, (2)

where π is the probability density function and θ are
the parameters included in the model M . Every func-
tion involved in (2) has a particular and well known
name

posterior =
likelihood× prior

evidence
.

Given a particular model, the aim of Bayesian in-
ference is to �nd the posterior distribution, which



means to �nd the distribution for every parameter
conditioned to the data. One of the advantages of the
Bayesian framework is that prior knowledge about the
experiment and the di�erent parameters can be easily
included in the formulation via the prior distribution,
in�uencing the posterior distribution.
The posterior distribution is proportional to the

likelihood and the prior distributions. Because the ev-

idence is common for all the parameters given a par-
ticular model, it is usual to see Eq. (2) written as

π(θ|p̃i,j ,M) ∝ π(p̃i,j |θ,M)π(θ|M). (3)

If the noise is normally distributed n ∼ N (0, σi,j),
the likelihood distribution will be normally dis-
tributed

π(p̃i,j |θ) =

N∏
n=1

exp
(
− 1

2σ2
i,j

(
p̃ni,j − pMi,j(θ)

)2)√
2πσi,j

, (4)

where pM (θ) stands for the estimated pressure using
model M .

2.1.4. Bayesian inference model of the acoustic
source

In this section the Bayesian model is presented and
the dependency between the di�erent parameters of
the problem explained.
Eq. (1) is used as the mean of the generative process
of the data in Eq. (4), including a correction factor
in the acoustic dispersion as follows (time domain de-
pendency is dropped)

pMi,j =
Ai,j exp(−jkir)

r + ∆ri,j
. (5)

The correction ∆ri,j is introduced in order to model
the steepness of the dispersion accounting for the ef-
fect of the apparent acoustic center position. This cor-
rection is not explicitly included in the phase, but
implicitly in the complex amplitude A. Another dif-
ference with Eq. (1) is that Ai,j is now dependent
on frequency and azimuth angle, accounting for the
directivity of the source. Because Bayesian inference
applied to complex numbers is still to be developed in
the used software environment, the problem is split
into real and imaginary parts for each frequency and
direction as follows

R(pMi,j) =
Areal cos (kr) +Aimag sin (kr)

r + ∆r
, (6)

I(pMi,j) =
Aimag cos (kr)−Areal sin (kr)

r + ∆r
. (7)

Two di�erent models, named Model A and Model
B respectively, are investigated. Figures 3 and 4 show

Areal Aimag Δr

a b

σreal σimag

R(p)

Priors

I(p)

Figure 3. Inference diagram describing the relationship
between the parameters and their prior distributions in
Model A.

Areal Aimag Δr

a b

σreal σimag

Priors

R(p) I(p)

Figure 4. Inference diagram describing the relationship
between the parameters and their prior distirbutions in
Model B.

the relationship between the parameters of the models
as well as the prior distributions.
All the parameters are considered normally dis-

tributed. The support of the parameters modeling
variances, b and σx, is (0, ∞). The standard devia-
tion of the noise process σi,j is also split in σreal and
σimag. The parameters µxi,j and α

x
i,j of the prior dis-

tributions of the real and imaginary parts of A are
computed from measurements using Eq. (1). The dis-
persion correction ∆r is modeled in a hierarchical way
by two hyperparameters a and b which are the mean
and variance respectively. The only di�erence between



both models is the assumption of angular smoothness
in Model B. To do so, ∆r is modeled with a Kalman
�lter [9], which conditions the prior of ∆ri,j to have
the mean in the previous angle ∆ri,j−1. It implies that
during the sampling procedure explained in the fol-
lowing section, the next sample from ∆ri,j comes from
a normal distribution with mean the current sample
of ∆ri,j−1.

2.2. Sampling

Finding a closed solution to Eq. (2) is most likely
intractable. A common approach to approximate
the posterior distribution are the sampling methods.
These methods are based on obtaining random sam-
ples θs from the desired distribution p(θ|p̃). There
exist many di�erent sampling techniques such as re-
jection sampling, importance sampling and Markov
chain simulations to mention a few [5]. In this work a
speci�c sampling method called No-U-Turn Sampler
Hamiltonian Monte Carlo (NUTS HMC) is used. A
small summary of the method is written in this sec-
tion. For detailed explanation please follow Chapter 5
from [10] for HMC and [11] for NUTS.
HMC is based on the Hamilton's equations taking

advantage of physics' intuition and removing the lo-
cal random walk behavior of other sampling methods.
Samples are drawn from a joint distribution π(θ, φ)
where φ is an auxiliary momentum variable with the
same dimensions as θ. Usually φ is a multivariate nor-
mal that does not depend on θ

φ ∼ N (0,Σφ). (8)

The joint density de�nes what is called the Hamil-
tonian

H(φ, θ) = − log π(φ, θ) = − log π(φ|θ)− log π(θ) =

(9)

= T (φ|θ)︸ ︷︷ ︸
kinetic energy

+ V (θ)︸ ︷︷ ︸
potential energy

.

To generate a transition between states of the joint
distribution π(θ, φ), one should consider Hamilton's
equations and di�erentiate with respect to time

dθ

dt
= +

∂H

∂φ
= +

∂T

∂φ
(10)

,
dφ

dt
= −∂H

∂θ
= −∂T

∂θ
− ∂V

∂θ
= −∂V

∂θ
. (11)

Because the probability density function of φ is in-
dependent of θ, the �rst term of Eq.(11) is zero. Ac-
cording to this, a two-state di�erential equation has
to be solved to update the state of the joint distri-
bution. Most HMC implementations use the leapfrog
integrator, which can be summarized in three steps
(Chapter 12 from [5]).

1. Pick a random sample from the momentum variable
φ ∼ N (0,Σφ).

2. Take L leapfrog steps as follows.
(a) φ← φ− 1

2ε
dV
dθ ,

(b) θ ← θ + εΣφφ,
(c) φ← φ− 1

2ε
dV
dθ ,

where ε is a scaling factor and dV
dθ = −d log π(θ|p̃)

dθ .
Because the Hamiltonian has energy conservation,
getting closer to lower probability regions increases
the potential energy and reduces the kinetic energy
and vice versa, allowing easy exploration of high
probability regions.

3. The new candidate sample θ∗, φ∗ is the one drawn
after L steps. This new sample is accepted with the
following condition

θt =

{
θ∗ with probability min(r, 1),

θt−1 otherwise,
(12)

where r = π(θ∗|p̃)π(φ∗)
π(θt−1|p̃)π(φt−1) .

One of the challenging points of using HMC is to
tune the parameters ε and L. Ho�man et al. [11] pro-
posed an adaptive procedure called No-U-Turn Sam-
pler (NUTS) which tunes automatically the aforemen-
tioned parameters. This routine together with HMC is
tedious to implement so the existing platform for sta-
tistical modelling Stan [12] is used, which provides an
intuitive framework and computes NUTS HMC when
running the inferences.

2.2.1. Assessing Convergence

When running sampling methods it is necessary to de-
�ne a criteria to asses convergence. A useful method
is to run several sequences starting from di�erent dis-
persed points in the parameter space and monitor
the convergence between and within sequences un-
til stationarity is achieved [5]. In other words, when
the distribution of a single sequence is similar to the
mixed distribution of all the sequences, sampling is
getting close to convergence. With a set of samples ψlq
where l = 1, ..., L is the length of each sequence and
q = 1, ..., Q is the number of sequences, the between-
and within-sequence variances are

B =
L

Q− 1

Q∑
q=1

(ψ.q − ψ..), (13)

where ψ.q =
1

L

L∑
l=1

ψlq, ψ.. =
1

Q

Q∑
q=1

ψ.q,

and

W =
1

Q

Q∑
q=1

s2q, (14)

where s2q =
1

L− 1

L∑
l=1

(ψlq − ψ.q)2,



respectively. The convergence can be monitored by
the factor R̂ [5], an estimate of the scale by which the
current distribution ψ might be reduced if L→∞

R̂ =

√
v̂ar

+
(ψ|p)

W
, (15)

where

v̂ar
+

(ψ|p̃) =
L− 1

L
W +

1

Q
B. (16)

R̂ tends to 1 when L → ∞ and if it is high then
there exist a chance to improve the inferences by
running longer sequences.

3. Results

In this section the results of running NUTS HMC with
Stan over the two mentioned models are presented.
Four sampling sequences of 2000 samples are initial-
ized at random initial values. The �rst half of the
samples drawn are considered warm up samples and
are discarded to compute inference summaries. The
total amount of parameters �tted is 1333 in Model A
(Nd×Nf×6+1) and 1117 in Model B (Nd×Nf×5+7).
The mean and standard deviations of the prior distri-
butions of Areal and Aimag are calculated as follows

µreali,j = r ((R(p̃i,j) cos(kir)− I(p̃i,j) sin(kir)),

µimagi,j = r(I(p̃i,j) cos(kir) + R(p̃i,j) sin(kir)),

αreali,j = 4 Var (r(R(p̃i,j) cos(kir)− I(p̃i,j) sin(kir))) ,

αimagi,j = 4 Var (r(I(p̃i,j) cos(kir) + R(p̃i,j) sin(kir))) .

The variance is chosen less informative (multiplied
by a factor of 4) avoiding over constrains in the mod-
els and leading to a better analysis of their robustness
when sampling from a wider space. Figures 5 and 6
show prior vs. posterior samples of the joint distribu-
tions (Areal, Aimag) and (a, b) respectively. Marginal
prior and posterior distributions are also plotted with
kernel density estimation on the frame of the �gures.
Figure 7 shows the mean and standard deviation of

the inferred parameter ∆r for both models at three
di�erent frequencies 600, 800 and 1000 Hz. Model A
is plotted in full line and Model B in dashed line. The
same is shown for Areal and Aimag in Figures 8 and
9 respectively.
The factor R̂ is plotted for all the parameters of

both models in Figure 10. Because Model B only de-
�nes one a per frequency but doesn't distinguish per
angle, for a given frequency i each ai,j from Model A
is compared to ai in Model B.
The log-likelihood is presented in Figure 11 for the

data recorded at each microphone and the error be-
tween the data and the samples drawn is plotted in
Figure 12 per frequency and angle.
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Figure 5. Prior vs. Posterior samples of the complex am-
plitude A. Frequency: 900 Hz. Angle: 150 ◦.
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Figure 6. Prior vs. Posterior samples of the hyperparame-
ters a and b. Frequency: 900 Hz. Angle: 150 ◦.

4. Analysis

In this section the analysis of the results shown in
the previous section is presented.
From visual inspection of Figures 5 and 6 both
models present a very sharp posterior distribution,
showing Model B a narrower posterior on parameter
b for the chosen frequency and angle. This can be
seen also in Figures 7, 8 and 9 where the Kalman
smoothing reduces the variance. The variation
in standard deviation between models for all the
parameters is presented in Figure 13. It shows the
standard deviation di�erence in percentage between
both models ∆STD = STDB−STDA

STDA
× 100.
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Figure 7. Dispersion correction Dr. −: Model A. −−:
Model B. Mean and standard deviation of the posterior is
plotted for three di�erent frequencies, 600, 800 and 1000
Hz.
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Figure 8. Real part of the directional amplitude Areal. −:
Model A. −−: Model B. Mean and standard deviation of
the posterior is plotted for three di�erent frequencies, 600,
800 and 1000 Hz.

The uncertainty of most of the parameters is
reduced by more than 50% when using Kalman
�ltering, except a few outliers where Model B fails
to �t the data. These outliers are also seen in Figure
10 presenting a bad convergence for four parameters
where R̂ > 2. All these parameters correspond always
to f = 600 Hz and ϕ = 105◦, which could mean
an error in the measurements at that particular
frequency and angle.

One way of checking which part of the parameter
space is problematic is to study divergent transitions
during HMC sampling [13]. If many divergent tran-
sitions occur it means that the inference has to be
studied carefully as the parameter space wasn't ex-
plored properly. Model B has no divergences while
Model A presents 6% of divergent transitions. Figure
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Figure 9. Imaginary part of the directional amplitude
Aimag. −: Model A. −−: Model B. Mean and standard
deviation of the posterior is plotted for three di�erent fre-
quencies, 600, 800 and 1000 Hz.
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Figure 11. Total log-likelihood for the data recorded by
each microphone.

14 shows all the sampling sequences for all the pa-
rameters distinguishing between divergent and non-
divergent transitions. It can be seen a concentration
of the divergences when b gets closer to 0.
The likelihood shows over�tting of the data

recorded by the second microphone for both models.
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Figure 14. Divergent transitions during sampling Model
A. The left plot shows all the transitions for all the pa-
rameters. The right plot zooms around parameter b.

Model B equalizes the �tting of microphones 1 and 3
while keeping the same performance for microphone
2. Looking at Figure 12, Model B shows less error
in general, presenting higher improvement at higher
frequencies and reducing signi�cantly the uncertainty
for all frequencies and angles.

5. Discussion

During this section the pros and cons of each model
are discussed, especially those that are more relevant

in outdoor sound �eld control schemes.

The introduction of Kalman �ltering in Model B is
equivalent to regularizing the solution, smoothing the
transitions between angles not only in ∆r but also
in A, which would favor the reduction of artifacts.
Moreover, ∆r doesn't reach as high values as it does
in Model A. However the problem is not as sensitive
to changes in ∆r as it is to changes in A, which is due
to the fact that A models both amplitude and phase
of the data, while ∆r is only part of the amplitude.
This di�erence in sensitivity can be seen in the low
variance in the posterior distributions of A compared
to the variance in ∆r. The error between model
and data is reduced when using Kalman �ltering.
However, it is still quite high, with a standard
deviation above 1 dB in some cases, showing the di�-
culty of �tting a far �eld model to such measurements.

Both models over�t the data from microphone 2
compared to recorded pressure at microphones 1 and
3. This seems to arise from the experiment setup.
The rotation point is not taken at the diaphragm but
at 9 cm to the back of the loudspeaker. That means
that the directivity pattern changes depending on
the microphone considered unless the measurements
are taken in the far �eld. This means that A and ∆r,
which are assumed to be independent of microphone
position try to �t data that doesn't follow that
assumption when close to the source.

Stability is another issue that has to be studied,
specially if the sound �eld control strategy relies
on the convergence of the inferences. Model B
presented a consistent inference with execution time
always below 3 minutes, showing the same behavior
for any random initialization of the HMC. Model
A strongly depends on the initialization samples,
not always converging and varying from 10 to 30
minutes the execution time for several runs tried.
According to Section 2.2.1 and Figure 10, longer
sampling sequences would end in better inferences
for Model A. However, the improvement wasn't
signi�cant when trying 4000 samples. One way of
improving Model A stability is by getting rid of the
divergences. Divergences occur where the curvature
of the posterior is too high and the sampling routine
fails to explore that region. In this case, parameter b
provokes divergent transitions when sampling close
to 0. Comparing to the posterior found by Model B
it seems reasonable that HMC tries to explore that
area. One way of solving this problem is by rescaling
the prior distribution to a narrower one. A small hint
to keep computational stability in Stan, is that it is
usually better to sample from a generic distribution
N (0, 1) and then multiply each sample by a scaling
factor β << 1 than sampling directly from N (0, β).
Another way of trying to get around of divergences is



by reducing the step size of the HMC routine.

One main drawback of this simpli�ed model is the
lack of parameterization in its formulation. If it is
used as a source model in another scenario where the
angles to be assessed are di�erent from the ones used
in this optimization, interpolation is necessary. It
seems reasonable that Model B would behave better
than Model A in that regard due to its smooth shape,
but this is something that should be tested.

As future research, spherical harmonics could be a
good model because they include angular parameter-
ization by the Legendre functions. Another option is
to re�t the presented models in every new scenario
for the desired angles and frequencies, using the loud-
speakers' manufacturers frequency responses as the
mean of the normal processes of A and �tting the
model when playing several units at the same time,
as it happens in sound �eld control scenarios. If the
frequency resolution is high enough it is worth trying
to link both angles and frequencies through smooth
transitions via Kalman �ltering, so the posterior is
conditioned to more data at the same time.

6. Conclusions

In sound �eld control, the precise knowledge of trans-
fer functions in the control areas is crucial. A Bayesian
approach was proposed to update acoustic models
that can be used for estimating the transfer functions
instead of direct measurements. As a case of study the
directivity response of three di�erent units of the same
loudspeaker model were measured and modeled using
a monopole model and Bayesian framework. It was
shown that Bayesian inference is a proper framework
for dealing with inverse problems with uncertainties,
increasing the accuracy of the predictions when used
wisely. Prior knowledge has a big impact in the infer-
ences. Smooth angular transitions in the directivity
response is incorporated by tweaking the prior dis-
tributions using a Kalman �lter between angles. The
in�uence of the �lter is evident in the results pre-
senting much smoother solutions. The error was also
reduced and the model was in general more stable.
Over�tting was slightly reduced but the error of �tting
a far �eld model to directivity response data is still
present, showing the need of a more suitable model
for this problem. It was also shown how convergence
has to be studied when running sampling methods for
approximating the posterior distributions. It helps to
understand where are the weak points of the models
and to know if the inferences can be trusted or not.
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