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Abstract 

Results from quantitative exposure and life cycle assessments are often complex, rendering their interpretation and communication to non-
experts difficult. However, such data can be disaggregated and structured using visualization techniques to increase their interpretability. We 
present a simple, interactive tool that allows disaggregating data according to user preferences and flexibly visualizing these data in quantitative 
network maps and hierarchical column charts. We show in a case study on a chemical in flooring that our tool can help users to rapidly identify 
exposure hot-spots and trace back related pathways. Our tool can be applied to various types of results from chemical substitution, life cycle 
impact assessment, and high-throughput risk screening to improve decision support by better results interpretation and communication. 

© 20 7 The Authors. Published by Elsevier B.V. 
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1. Introduction 

1.1. Understanding complex results for better decisions 

Humans and ecosystems are exposed to various chemical 
substances contained in and used along life cycles of our many 
consumer products. Some substances may cause negative 
effects on human health or the environment, such as flame 
retardants, paraben preservatives, or pesticides [1-3]. The need 
to address the societal challenge of identifying and minimizing 
negative effects from releases of and exposures to potentially 
hazardous chemicals is therefore integral part of the United 
Nations Sustainable Development Goals (SDGs). 

Aiming to address this challenge and providing related 
decision support for e.g. helping product designers to identify 
sustainable materials has resulted in developing different 
methodological frameworks. This includes methods to assess 
human and ecological exposures in the context of chemical 
alternatives assessment (CAA), life cycle impact assessment 
(LCIA), and risk-based high-throughput screening (HTS), as 
well as relevant for sustainability-focused strategies, such as 
striving toward a circular economy [4] and a non-toxic 
environment [5]. In addition, exposure-related decision 

support is required in frameworks targeting sustainable 
management of chemicals and international phase-out 
programs, such as the Stockholm Convention on Persistent 
Organic Pollutants [6], have led to replacing harmful 
chemicals with safer alternatives in many product applications 
[7,8]. Nevertheless, several substitution efforts resulted in only 
incremental rather than fundamental improvement, leading to 
shifting the burden from one type of impact (e.g. human 
toxicity) to another (e.g. groundwater contamination) or 
replacing chemicals with similarly harmful alternatives [1,8], 
which is due to the lack of understanding all relevant aspects 
and their contribution to exposure and related effects. In 
response, metrics and methods have emerged that 
quantitatively couple exposures across populations and 
pathways in a full life cycle perspective [9-12] with the aim to 
uncover related trade-offs, avoid burden shifting and target 
relevant exposure hot-spots along product life cycles. Such 
hot-spot results are ideally integrated with other impact 
categories, e.g. in a life cycle assessment (LCA) or product 
design context to ultimately provide comprehensive and 
science-based decision support for improved technologies. 

However, interpreting and communicating rather complex 
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results that consider multiple environmental media, exposure 
pathways and populations is challenging for practitioners, 
demanding at times the interpretation of mathematical models 
involving matrix or other complex structures [11,13-16]. 

As an illustrative example, we take a framework recently 
proposed to couple near-field (i.e. the direct vicinity of 
exposed workers or consumers; usually indoors) and far-field 
(i.e. exposures mediated via outdoor emissions) environments 
for different population groups on a consistent mass balance 
basis [11]. In this framework, product, near-field and far-field 
compartments, and humans are arranged in columns and rows 
of a matrix whose elements describe direct transfers of 
chemicals between compartments or to human receptors. 
Matrix inversion yields cumulative transfer and exposure 
estimates passed on to practitioners for interpretation (see [11] 
for details). While elegant and transparent in deriving such 
exposure results, practitioners might find it difficult to trace 
back pathways and transfers contributing to overall exposure. 
Hence, there is a practical need to visualize and communicate 
such results in a structured, simple and flexible way to 
accommodate different user perspectives and interests without 
requiring extensive expertise in quantitative exposure science. 

1.2. Techniques to visualize complex data 

Impact, exposure and similar data are commonly structured 
in tables, column, line, or pie charts, spider diagrams [17-19], 
or network diagrams for presenting model results; Sankey 
diagrams for visualizing flows; and tree maps for illustrating 
hierarchies [17,20]. Matrix, property, and cluster heat maps 
have been discussed to inform, respectively, decision makers 
and stakeholders in CAA [21], HTS [22], and LCA [17], 
where especially the latter help in contrasting large amounts of 
heterogenic data using hierarchical trees and color scales [23]. 
Multi-dimensional graphs are proposed to support LCA-based 
decisions using influence diagrams [24]. Finally, California’s 
Department of Toxic Substances Control (DTSC) proposes a 
qualitative (receptor) network map to visualize relationships 
between chemicals in consumer products and human and 
ecological receptors, including information on sources, 
exposure mechanisms, media and routes, and receptor groups 
[25]. Each map is specific to a particular scenario, relying on 
expert knowledge to manually construct relevant pathways. 

All mentioned techniques are designed to support decision 
making involving quantitative data, yet, familiar and easy to 
interpret column charts are preferred by practitioners for 
visualizing quantitative results [26]. DTSC’s conceptual map 
could be valuable to complement column charts or other 
visualizations, but needs to be adapted to process quantitative 
exposure (or other relevant) data. Combining both easy to use 
charts and network maps is necessary to provide practitioners 
and decision makers with tools to more transparently interpret 
and more easily communicate complex assessment results. 

1.3. Study objectives 

To address this gap, our objectives are to (a) develop a tool 
of network maps and hierarchically nested column charts to 
structure and visualize complex assessment results at different 
disaggregation levels, and (b) test our tool in an illustrative 
example on a set of quantitative receptor and pathway specific 
exposure data to support decisions by e.g. product designers. 

2. Methods 

We construct a data set for an illustrative case study along 
which we develop and test our methods for structuring and 
visualizing complex information. As a starting point, we use 
results representing a set of cumulative exposure estimates of 
different population groups (adult workers, adult and children 
(<5 years old) consumers, and adult and children general 
population) via several exposure pathways (inhalation of air, 
gaseous and aqueous dermal uptake, and ingestion of drinking 
water, fish, and other food) and environments (near-field and 
far-field) to phenoxyethanol (CAS 122-99-6) used as adhesive 
in wood flooring. We define that workers are exposed during 
50 days of installing the floor, adult and children consumers 
are exposed over 10 years of living in a household with the 
installed floor, and the (general) population is exposed over 10 
years to related emissions reaching outdoor environments. 
Quantitative exposure estimates are calculated by combining 
models for chemicals in building materials [27] and far-field 
emissions [28] structured in a matrix of Product Intake 
Fractions (PiF) linking chemical mass taken in by the different 
population groups to the mass originally contained in flooring 
[11]. We disaggregate our exposure estimates according to 
different categories, i.e. population and age groups, exposure 
environments and pathways. Overall cumulative exposure as 
sum over all contributing estimates is calculated to relate the 
contribution of each category (e.g. ‘exposure pathways’) or 
individual category items (e.g. ‘inhalation’ as a particular 
exposure pathway). Overall exposure is finally disaggregated 
at different levels of detail to contrast e.g. ‘inhalation’ and 
‘ingestion’ pathways for particular population groups. 

For structuring and visualizing exposure results in this case 
study, we first develop quantitative network maps to provide 
an overview of links between all categories and items. In a 
summary network map, we summarize all relations between 
categories by showing numerical values in connected boxes 
representing the items for each category (in columns), where 
the sum over each column equals the overall aggregated result. 
Box shadings indicate relative contributions to the overall 
result, while line thickness of connections indicates relative 
distribution of the overall result to items of a given category. 
Weights can be exaggerated by a scroll bar to further highlight 
differences between connections of similar magnitude. The 
user is able to select the order of the categories to explore the 
relationships between adjacent items. 

To trace specific connections, e.g. focusing on exposure of 
children in the near-field environment, we develop a partial 
network map, where the user can progressively disaggregate 
the overall aggregated result following a single item per 
category column with flexible order of categories. The item 
with the highest value in its category is always disaggregated 
by default, although we allow for the manual selection of any 
given item. This network map yields the highest possible level 
of detail for any given dataset, while limiting its information 
to a set of user-selected items. Connection weights and box 
shading apply as described for the summary network map. 

To provide an easy to understand overview of results at all 
given levels of detail and in flexible order, we finally develop 
column charts following the category order and item selection 
defined by the user for the partial network map. Each chart’s 
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x-axis corresponds to a column of items in the partial network 
map, while all y-axes show the magnitude of results. Charts 
are hierarchically nested where each chart represents a distinct 
level of disaggregation. The first chart distributes the overall 
aggregated result over items of the first user-selected category, 
while all subsequent charts represent an item of their superior 
chart, further disaggregated according to the subsequent user-
selected category. The chart count equals the category count. 
Values in the two most aggregated charts sum to overall 
aggregated result, and values in all other charts sum to totals 
per item of their respective superior chart. Our charts provide 
more details than our network maps, while only providing 
comparative information at each level. 

Network maps and charts are implemented in Microsoft 
Excel, created interactively, and linked to consider user input. 
We use conditional formatting to display and shade boxes, and 
Visual Basics for Applications (VBA) to display and weight 
connections between boxes, and to reset dropdown lists upon 
user change. Our tool is available free of charge upon request. 

3. Results 

Exposure assessment results presented in our case study  
for phenoxyethanol in wood flooring are meant for illustration 
purposes only and do not indicate any actual risk for humans. 

3.1. Summary network map 

The summary network map for our case study is arranged 
according to user-defined order of categories, i.e. for example 
environment, population group, age group, and exposure 
pathway (Fig. 1). Values of all items per category sum up to 
an overall exposure of 6.78 10–3 mg intake across population 
groups per mg phenoxyethanol in flooring. Items per category 
are arranged in decreasing order with highest values on top. In 
our case, adult consumers are exposed highest, namely via 
inhalation in the near-field (i.e. in households). Ranks and 
values of items per category, and connections between items 
change with chemical and scenario as a function of chemical 
properties and exposure duration per population group. 
 

 
Fig. 1. Summary network map for our exposure case study. Shading of items 
indicates relative difference in exposure magnitude [mg intake/mg in product] 
and thickness of connections indicates contribution of right-side item to left-

side items. Items are ranked within columns with highest always topmost. 

For the defined scenario, our summary network map 
communicates distributions of overall exposure within the 
different categories at the first disaggregation level, and 
quantitative exposure connections between items of distinct 

categories. Arranging items by decreasing magnitude and 
using color shading and scientific number formats allow users 
to quickly identify items with highest exposure per category 
(e.g. ‘adults’), and to compare exposure magnitudes across 
items and relative to overall exposure. Missing connections 
(e.g. ‘workers’ to ‘child’) indicate non-quantifiable relations. 
Sometimes, there is no model available to quantify a relation, 
which should be indicated by e.g. a dotted connection, to be 
clearly distinguishable from non-quantifiable connections. 
Existing connections show the contributions of individual 
items to items of another category, with variable line weights 
indicating relative differences in exposure magnitude, e.g. in 
our case adults show highest exposure as ‘consumers’ and 
‘workers’, and to a lesser extent as general ‘population’. 

3.2. Partial network map 

We use partial network maps to complement the overall 
exposure distribution given in the summary map with detailed 
information on the distribution of specific items within any 
category, e.g. ‘far-field’, among items of other categories, e.g. 
‘inhalation’, ‘food ingestion’ and ‘water ingestion’ (Fig. 2). 
 

 
Fig. 2. Partial network maps for our case study with focus on (a) far-field 

population exposure and (b) children consumer exposure. Shading of items 
indicates relative difference in exposure magnitude [mg intake/mg in product] 
and thickness of connections indicates contribution of right-side item to left-

side items. Items are ranked in columns of (a) and (b) as selected by user. 

Partial network maps thereby visualize only part of the 
overall network of items according to users’ preferences (e.g. 
disaggregating ‘far-field’ exposure will only show inhalation 
and ingestion pathways, while ignoring dermal uptake in our 
example only relevant in the near-field (see Fig. 2a). This 
would also be seen when rearranging Fig. 1 in a way such that 
environments are linked to exposure pathways, where ‘near-
field’ but not ‘far-field’ would have connections to ‘dermal’ 
pathways. While only showing part of the picture, partial 
network maps allow setting focus on specific points of interest 
or taking a particular perspective. In our example, the order of 
selected categories (in Fig. 2a starting from ‘age groups’ and 
then disaggregating to ‘population groups’ etc. compared to 
starting in Fig. 2b from ‘population groups’ and further going 
to ‘environments’ etc.) and manual selection of an item for 
further disaggregation (in Fig. 2a choosing the general 
‘population’ even though it is not the population group with 
highest exposure, and in Fig. 2b choosing the ‘child’ age 
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group to see how children are exposed via different pathways, 
despite again not being the age group showing the highest 
exposure) can be flexibly selected to accommodate any user 
preference. By default, items with highest values within each 
category are automatically disaggregated further. Changes to 
the selection of category order have the effect of clearing all 
downstream items and categories, and returning the 
immediately upstream items to their default order. Clearing 
downstream categories is necessary, since categories cannot 
be disaggregated at more than one level; hence, such a 
selection requires a new category order from this point of 
disaggregation onwards. 

While partial network maps can display more details than 
summary maps, the progressively more narrow definition of 
the population groups and other categories does not allow for 
cross-comparisons between all categories, e.g. only ‘far-field’ 
is shown in Fig. 2a as a result of disaggregating ‘general 
population’ exposure, while only ‘near-field’ is shown in Fig. 
2b as result of  disaggregating ‘consumers’. Eventually, with 
selections made for every category, the resulting exposure is 
e.g. for one completely disaggregated population and age 
group that cannot be broken down further from the given 
input data. While connections in the summary network map 
only directly link two items of distinct categories, connections 
in partial network maps also relate to upstream linked items 
due to the progressive disaggregation. Items with zero 
contributions are not visualized and are also unable to be 
selected for further disaggregation. The default order of items 
(i.e. largest contributing item per category always topmost) is 
intended to organize the partial network map logically for 
easy interpretation by users. Arranging items according to 
their category contribution yet allowing users to further detail 
different items offers flexibility and a comprehensive level of 
disaggregation detail. However, caution should be taken when 
interpreting resulting partial maps as user-chosen items may 
not necessarily have the highest contribution to overall results 
within their respective categories. 

3.3. Hierarchical column charts 

In addition to network maps and to provide easy to use and 
familiar charts, we use nested 2D vertical unstacked column 
charts to represent quantitative results for given categories, 
ordered in a hierarchical way according to any user-defined 
category order (Fig. 3). Such a series of hierarchical column 
charts is attractive for immediate analytical use and as input 
for decision making [26,29,30] We use column grouping 
rather than stacking to allow for a representation of quantities 
in logarithmic scale on all y-axes, which accommodates the 
structuring of results that typically span several orders of 
magnitude, such as exposure or toxicity results [31-33]. 

A distribution of overall result (in our case again overall 
cumulative exposure) at the first user-selected category is 
provided in the first chart (Fig. 3a). Here, we can see for our 
example how exposure is distributed within ‘pathways’ (with 
inhalation being highest) but aggregated over environments, 
population and age groups, corresponding to the left-most 
column of above network maps if the same category is 
chosen. The same category is used for disaggregation in the 
second chart (Fig. 3b), while using another user-defined 

category (in our example ‘population’ groups) to split the first 
category (‘pathway’) into separate columns (with ‘consumers’ 
as largest contributor to ‘inhalation’ and ‘dermal’ pathways), 
where the sum of each column cluster equals the same item’s 
value in Fig. 3a. Columns in both charts sum up to the overall 
result, while providing different levels of detail. 
 

Fig. 3. Hierarchical column charts for our case study structuring results at (a) 
first (most aggregated) category level: exposure pathways, (b) second 

category level: population group, (c) third category level: exposure 
environment, and (d) fourth (most disaggregated) category level: age group. 

Whenever further details are required, additional charts are 
required. Fig. 3c distributes for a single item of the first-level 
user-defined category (in our case ‘inhalation’ as selected 
exposure pathway) the values across the same second-level 
category (‘population’ groups in our example) as in Fig. 3b, 
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but provides an additional disaggregation step (in our example 
the ‘environment’), while maintaining the same column color 
code in both charts (e.g. ‘consumers’ in blue in both Fig. 3b 
and 3c). In our case, Fig. 3c provides insight into the exposure 
environment of each population group, highlighting the 
relevance of near-field exposure in this particular scenario. 
Finally, Fig. 3d further details the third-level category for a 
user-specified item, in our example distributing ‘far-field’ 
population exposure across age groups. Additional details in 
Fig. 3c and 3d also come with a loss of information in these 
charts for the items not selected from the higher levels, 
highlighting that the last two charts do not necessarily show 
details for the largest contributing items to overall results. 

4. Discussion 

4.1. Applicability and limitations 

Structuring and visualizing complex data according to 
user-specified categories helps to build trust in the data at 
hand by providing at the same time both an easy-to-
understand overview of the data and a disaggregation of the 
data beyond which they cannot (easily) be further detailed. 
This allows the identification of important contributors or 
focus on areas of specific interest for the user. 

While some studies have advocated to go beyond column 
charts for visualizing complex results from exposure, risk or 
sustainability assessments [19,34], hierarchical column charts 
allow to meaningfully conveying quantitative information in a 
structured way when focusing on individual chemicals, life 
cycle stages, impact categories or scenarios, if they are 
systematically nested in a way to represent different levels of 
information detail (hierarchical column charts) or if they are 
organized to provide an overview of important connections 
(summary network map) or pathways (partial network maps). 
For example, contrasting exposure levels in our example for 
different population groups for each exposure pathway 
separately (Fig. 3b) allows identifying from a single chart the 
predominantly exposed group per pathway and at the same 
time shows the relative importance of all pathways across 
population groups. If this level of detail is not required, 
population groups can be summed per pathway (Fig. 3a), 
while additional details for a particular pathway (Fig. 3c) or 
population group can be presented in a subsequent chart. 
Hence, our set of hierarchical column charts (or only a subset 
of these) can be applied in various decision-making contexts 
and assessment frameworks, where quantitative results need 
to be interpreted or communicated to other stakeholders. 
However, this representation of quantitative data also comes 
with an important limitation. The representation of the data 
through aggregating exposure (or any other) results in column 
charts does not provide any information on uncertainty. 
Relative differences in column heights should be interpreted 
with care, regardless whether results are presented in log scale 
or not and regardless whether results represent relative or 
absolute values. 

Using comparative metrics for expressing quantitative data 
in CAA, LCIA and HTS studies, including exposure matrix 
data used in our illustrative case study, allows contrasting 
different aspects at distinct levels of detail, such as in our 

example contrasting population groups, exposure pathways 
and environments. Despite the intrinsic complexity, the 
visualization of the raw information as interactive pathways 
and hierarchical charts is intended to make the results easy to 
interpret and communicate to others. Access to an easily used 
and interpreted data structuring and visualization tool can 
support practitioners and decision makers contrasting 
scenarios and better understanding the data they are working 
with. The first step, however, is always that the user identifies 
a suitable set of categories and items that should be applied to 
structure and visualize the data at hand. This can be 
challenging if the data are reported using loose or inconsistent 
terminology. Hence, while the application of our tool has been 
demonstrated in our case study by linking it to the results of 
an exposure matrix, any data reported in disaggregated units 
can be used as input as long as different aggregation levels or 
connections between categories are possible. Thereby, our 
tool allows the use of any absolute or relative metric and unit 
as long as data remain comparable across levels of detail. 

Our network maps and column charts can complement 
higher level screening frameworks that compare for example 
different chemicals or products by focusing on specific 
pathways or parameters, such as heat maps as demonstrated 
by e.g. [22]. While in such cases other frameworks show the 
differences between substances, our visualization tool 
provides a high level of detail across pathways and processes 
for one chemical, meaning that it can be implemented at a 
more detailed stage of assessment and allows the comparison 
of exposures within a particular product application scenario. 
Although only one chemical or product can be visualized at a 
time, the insight into key drivers and pathways is valuable. 

Another advantage of our tool is that four disaggregation 
levels with a maximum of four items per category were 
shown in the example application; however, a larger number 
of both items and categories can be incorporated into the 
structure with manual changes to the data input structure 
defined by the user. However, in some cases it is necessary to 
adapt the visualization structure to specific input data 
structures, which requires manually adapting formatting and 
formulae. This is a limitation of our current tool and further 
development could focus on implementing an automatized 
check of the data to be used, determining the number of items 
and categories required to be shown and adapting the data 
structure accordingly. Removing the need for manual changes 
can vastly improve the applicability of the tool and reduce the 
complexity of implementing new scenarios. 

4.2. Future research needs 

Our network maps and hierarchical column charts should 
be tested and adapted to the requirements of different LCIA, 
CAA, and HTS application contexts. To then further improve 
transparency and increase confidence in quantitative results 
used in decision support, it is important to also visualize the 
uncertainty of complex data in network maps and column 
charts at hand. This requires reporting uncertainty ranges, 
which can usually be obtained via different techniques in the 
different assessment frameworks, along with nominal results. 
In column charts, e.g. error bars can represent uncertainty 
intervals, disaggregated according to the shown level of detail 
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if available. In network maps, uncertainty can be represented 
by separate boxes adjacent to the nominal results, perhaps 
with a shading scheme to indicate the relative magnitude. 

5. Conclusions 

Our data structuring and visualization tool can provide 
users in CAA, LCIA, and HTS as well as other fields using 
quantitative data with an automatized and visually appealing 
way of structuring complex results from e.g. quantitative 
exposure assessment, requiring only minimal user input while 
offering flexibility on the level of detail and the desired user 
focus. Furthermore, if results are clearly structured, less time 
is required to compare scenarios and identify most 
problematic or most desired solutions as input to improved 
decision support for expert and non-expert users. 
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Appendix A. Visualization tool in spreadsheet format 

Our visualization tool is available free of charge upon request 
from the authors (corresponding contact: pefan@dtu.dk). 
 

 


