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1 Introduction

The Beddoes-Leishman type dynamic stall model implemented in HAWC2 is described in [1].
It has been developed with the horizontal axis wind turbine in mind. In case of the horizontal
axis wind turbine, some added mass terms from thin airfoil theory can be neglected. Further, the
angle of attack (AOA) variations are typically small in normal operation. In standstill, where
the AOA variations could be large because the complete relative flow at the airfoil is affected
by turbulence, the blades can be in deep stall where the current dynamic stall model is not valid
anyway. Therefore previous validations in [1] and [2] have been mainly concerned about small
angle of attack variations.

The blades of vertical axis turbines (VAWTs) see much larger variations in AOA during normal
operation, especially at high wind speeds. Further, lift and drag contributions depending on the
torsion rate or the acceleration of the airfoil perpendicular to the chord become large and have
to be included in the modeling.

This report describes some modifications and extensions to the Beddoes-Leishman type dy-
namic stall model implemented in HAWC2. These modifications concern the attached flow
part of the model. The scaling of shed vorticity in the attached flow angle of attack lag pre-
sented in the report has been developed by Pirrung and Gaunaa in March 2016. The additional
contributions due to torsion rate and acceleration are mainly based on the appendix in Peter
Bæks PhD thesis [3].

2 Original model description

The present report does not go into detail about the stall part of the dynamic stall model, because
all the extensions and modifications in this report concern the attached flow part. Briefly, the
dynamic stall part works as follows:

• two polars are generated based on the input polar: a linear attached flow polar and a
nonlinear separated flow polar

• the separation point position fsep is used to interpolate between the polars.

– fsep = 1 means the separation point is at the trailing edge. The flow is fully attached.

– fsep = 0 means the separation point is at the leading edge. The flow is fully separated.

• a time lag is applied to the separation point position to model unsteady behavior of the
flow separation (’dynamic stall’).

The attached flow part models a lagging of the ’effective’ angle of attack αE behind the
geometric angle of attack at the three quarter chord point α3/4:

αE = α3/4(1−A1 −A2)+
x1

U
+

x2

U
, everything at time t (1)

xi(t) = xi(t −∆t)ebi∆t/T0 +
1
2
(α3/4(t −∆t)+α3/4(t))AiU(t)(1− ebi∆t/T0), (2)

where Ai and bi are factors of Jones’ indicial (impulse-response) function

Φ(s) = 1−A1e−b1s −A2e−b2s (3)

The time constant T0 is defined as T0 = c/(2U) with the chord length c (half chord b) and the
relative velocity U .

An attached flow lift coefficient cl,att,E and a separated flow lift coefficient cl,sep,E are deter-
mined by interpolating the airfoil polars at αE . The ’circulatory’ (for lack of a better term) lift
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coefficient is then determined by interpolation between attached and separated lift coefficient
based on the separation point position fsep, [1]:

cl,circ = cl,att,E fsep + cl,sep,E(1− fsep) (4)

Another contribution to the lift coefficient, that follows directly from thin airfoil theory, is the
’torsion rate lift’:

cl,tors = πT0θ̇ (5)

The total lift coefficient is the sum of the components above:

cl = cl,circ + cl,tors (6)

The drag coefficient has three contributions: a contribution that follows from the polar at the
efficient angle of attack, cd,E , a contribution due to separation cd,sep and an induced drag
componentcd,ind , see [1]. The induced drag is due to the change in lift direction between the
effective and geometric angle of attack and vanishes in steady state.

cd,ind = cl(α3/4 −αE) (7)

cd = cd,E + cd,sep + cd,ind (8)

3 Extended model description

3.1 Attached flow angle of attack lag

The original dynamic stall model produced very large AOA lags for VAWTs operating at high
wind speeds, cf. Section 4.1. These large lags occur because the attached flow angle of attack
lag is computed as if the airfoil was in attached flow continously. Because the angle of attack
lag is caused by vorticity shed from the trailing edge of the airfoil due to the variation in bound
circulation, this effect should not occur in stall to the same degree as in attached flow.

To adress this issue, the indicial function based algorithm for the angle of attack has been
rewritten into a version, where the new contributions to the angle of attack lag can easily be
scaled:

αE = α3/4 −
x1

U
− x2

U
, everything at time t (9)

xi(t) = xi(t −∆t)ebi∆t/T0 +(w3/4(t)−w3/4(t −∆t))
Ai

bi

T0

∆t
(1− ebi∆t/T0) fscale (10)

w3/4 = α3/4U, (11)

where w3/4 is the induced downwash at the three quarter chord point. If the scaling function
fscale = 1, this algorithm performs almost identically as the original algorithm above. Choosing
the separation point position of the previous time step effectively removes additional shed
vorticity in full stall and thus reduces the predicted AOA lags:

fscale = fsep(t −∆t) (12)

The modified model with the separation point position as scaling factor behaves virtually the
same way as the original model in attached flow.

3.2 Torsion rate and acceleration contributions

The additional terms introduced in this section are based on [3].
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Due to the circular motion of VAWT blades, the airfoils see a constant acceleration ÿ perpen-
dicular to the chord towards the center of rotation, which contributes to the lift coefficient:

cl,acc =−πT0
ÿ
U

(13)

The full lift coefficient is obtained as:

cl = cl,circ + cl,tors + cl,acc (14)

(15)

With cl,circ and cl,tors defined as in the original DS model, cf. Equations (4) and (5).

The induced drag, which is based on the complete lift coefficient in the original model, Equa-
tion (7), is now only based on the circulatory lift component:

cd,ind = cl,circ(α3/4 −αE) (16)

Further a torsion rate drag component is added. This component accounts for AOA differences
in the three quarter and quarter chord point due to the torsion rate. In Section 5.1 it is shown
that this drag term cancels out the unphysical aerodynamic power at zero wind speed due to
evaluating the AOA at the three quarter chord point and placing the lift force at the quarter
chord point.

cd,tors = cl,circT0θ̇ (17)

The total drag coefficient is:

cd = cd,E + cd,sep + cd,ind + cd,tors (18)

4 Force coefficient loops for VAWT operation
at high wind speed

4.1 VAWT operation at high wind and resulting cl and cd loops

The following figures are results for operation of a H-type VAWT with 13.3 meter blade length
and 9.85 meter rotor radius. The VAWT rotates at a constant 33 rpm and the incoming, uniform
wind has a speed of 18 m/s. Results are from the middle section of the blades, where the chord
length is 1.17 meters.

At these conditions, the geometric AOA varies between roughly -33 and +26.5 degrees during
each rotation. The time series of AOA is shown in the left plot of Figure 1. During the increase
of AOA, a maximum AOA rate of change of roughly 220 deg/s is reached. The right plot
in Figure 1 contains the effective AOA, determined in the attached flow part of the dynamic
stall model. The original model predicts a very large AOA lag, where the effective AOA is
a maximum of 14 degrees behind the geometric AOA. This is because the angle of attack
difference drives the attached flow timelag, independent of the flow state around the airfoil
(attached, partial stall or deep stall). In the updated model, where the new contributions to
the AOA lag are scaled with the separation function ( fsep=1 in fully attached, fsep=1 in fully
separated flow), the effective AOA is always within 3 degrees of the geometric AOA.
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The lift and drag coefficient loops predicted by both original and updated model are shown
in Figure 2. The lift coefficient loop in the original model has an extreme opening that has
not been seen in measurements. The large AOA lag in the original model also leads to a large
induced drag which is responsible for the large negative drag area in the cd loop.

The cl loop according to the updated model has a much smaller opening, and the drag coeffi-
cient only reaches slightly negative values.

The different contributions to the lift and drag coefficient loops will be evaluated in more detail
in the following section.

4.2 Investigation of different contributions to cl and cd coefficients

The lift coefficient excluding the torsion rate and accelaration term is shown along with the
fully separated and fully attached lift coefficient in Figure 3. The main differences between
both models here is that the loops of the attached flow and separated flow curves are much
more closed in the updated model due to the smaller effective AOA lag. Both original and
updated model predict that the lift coefficient follows the attached flow curve on the way down.
On the way from negative to positive AOAs, the rate of change of AOA is much larger (cf.
Figure 1). Because of the large effective AOA lag in the original model the lift coefficient
follows the separated curve until it starts attaching at a geometric AOA of roughly 15 degrees.
In the updated model, due to the smaller AOA lag, attachment starts at roughly 0 degrees.

The torsion rate and acceleration components of the lift coefficient are shown in Figure 4. Only
the torsion rate term was included in the original model (left plot). The added acceleration
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Figure 1: Left:Time series of geometric angle of attack during VAWT operation at high wind
speed. Right: loops of effective angle of attack in original and updated model.

Figure 2: Loops of lift and drag coefficient during VAWT operation at 18 m/s wind speed.
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Figure 3: Attached and separated components of cl from original (left plot) and updated (right
plot) dynamic stall model.

term in the updated model is shown to almost cancel out with the torsion rate term at high
relative velocities (when the AOA decreases and CL follows the attached flow curve). At low
relative velocities (increasing AOA) the acceleration term reaches almost a value of 0.8 and
becomes much larger than the torsion rate term. Therefore the updated model predicts a higher
lift coefficient when the AOA is on the way up, following the separated flow curve due to the
high rate of change of the AOA, than when the angle of attack decreases and the lift coefficient
follows the attached flow curve.

The different contributions to the drag coefficient are shown in Figure 5. This plot confirms that
the large negative drag area predicted by the original model is due to the induced drag caused
by the large effective angle of attack lag. The absolute value of the induced drag predicted by
the updated model is much lower. The torsion rate contribution to the drag coefficient in the
updated model reaches negative values at positive geometric AOA and pulls the drag coefficient
down slightly below zero.

The normal and tangential force coefficient loops are shown in Figure 6. As expected, the
normal force loops are very similar to the lift coefficient loops. The tangential force loop
according to the updated model is closer to the ’butterfly’ shaped loops obtained in experiments
[4, 5].

Figure 4: Complete lift coefficient and components due to torsion rate and acceleration from
original (left plot) and updated (right plot) dynamic stall model.

- 7



Figure 5: Complete drag coefficient, induced drag and drag due to torsion rate and acceleration
from original (left plot) and updated (right plot) dynamic stall model.

Figure 6: Loops of normal and tangential force coefficient during VAWT operation at 18 m/s
wind speed.
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5 VAWT at zero wind speed

There had been an issue with VAWTs producing power at zero wind speed when using the
Beddoes-Leishman type dynamic stall model. In this section, it is shown that, for a VAWT at
zero wind speed:

• the newly included acceleration lift term cancels out with the torsion rate lift term

• the driving moment due to the newly included torsion rate drag term cancels out with the
moment due to the angle of attack evaluation at 3/4 chord and lift application at the 1/4
chord

Therefore, with the updated model, a VAWT produces exactly zero power at zero wind speed if
a symmetric airfoil with no drag is used (as opposed to a positive power in the original model).

5.1 Canceling of acceleration and torsion rate lift terms

If the wind speed is 0, the torsion rate term and acceleration term in the lift coefficient will
cancel out. In these conditions, the relative velocity is simply ωr, the torsion rate is −ω and the
acceleration at the mid chord is −ω2r. It follows that:

cl,tors = bπ
θ̇

vrel
= bπ

−ω

ωr
=−b

r
π (19)

cl,acc =−bπ
ÿ

vrel
2 =−bπ

−ω2r
(ωr)2 =

b
r

π (20)

Therefore, if only the torsion rate term is included in the computations, there would be a
nonphysical constant lift component pulling the airfoil section forward (because the angle of
attack is not zero if the calculation point is not exactly on the midchord) that would create a
positive power at zero wind speed.

5.2 Canceling of moment around hub

A sketch of a simple H-rotor geometry is shown in Figure 7. The following analysis shows
that the moments due to lift and torsion rate drag around the center of rotation cancel out. It is
assumed that α, the AOA at the three quarter chord point due to the rotation, is small. Thus the
moment arm for the lift is bcosα≈ b and the moment arm for the drag is r/(cosα)−bsinα≈ r.

The angle of attack at the three quarter chord point is:

α =
b
2r

(21)

(22)

The lift coefficient is, assuming a symmetric airfoil:

cl = 2πα (23)

cl = π
b
r

(24)

(25)

The moment due to the lift force is found as:

ML =
ρ

2
v2

relclb =
ρ

2
v2

relπ
b2

r
(26)

(27)

- 9



b/2

b cos α

r/(cos  )-b sin αr

L D
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LE TE

ω

α

Figure 7: Sketch of geometry at one blade of an H rotor rotating.At zero wind speed, the AOA
at the three quarter chord point and thus lift and drag directions depend only on the geometry:
on the rotor radius r and the half chord b.

Similarly follows for the moment due to the torsion rate drag:

cd =−cl
θ̇b
vrel

= π
b
r
−ωb
ωr

= π
b2

r2 (28)

MD =−ρ

2
v2

relcdr =−ρ

2
v2

relπ
b2

r2 r =−ρ

2
v2

relπ
b2

r
=−ML (29)

Thus both moments cancel out, and an H-rotor with an airfoil with no airfoil drag (cd,polar = 0)
will produce zero power when rotating at zero wind.

Because the torsion rate drag coefficient is proportional to the lift coefficient, the same conclu-
sion holds for cambered airfoils.
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6 Validation on a pitching blade in standstill
against original model and measurements

• Comparison of results from original and modified model against measurements of the
pitching NREL/NASA Ames Phase VI blade in standstill, [6]

• Influence of the model modifications is generally small

• Influence tends to be in the right direction when it comes to the opening of the loop

• Acceleration term can become problematic for ’stiff’ blades that might undergo small
movements at very high frequencies. These movements would otherwise not affect the
aerodynamic forces.

• Differences are partly due to missing induction modeling at standstill, partly due to diffi-
culties modeling deep stall and partly due to measurement uncertainty.
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Figure 8: Loops of normal force coefficient for a pitching blade in standstill. Mean AOA at
47% radius: 7.91 degrees, pitching time 0.8496 s, pitching amplitude 5.55 deg.
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Figure 9: Loops of tangential force coefficient for a pitching blade in standstill. Mean AOA at
47% radius: 7.91 degrees, pitching time 0.8496 s, pitching amplitude 5.55 deg.
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Figure 10: Loops of normal force coefficient for a pitching blade in standstill. Mean AOA at
47% radius: 22.92 degrees, pitching time 1.1261 s, pitching amplitude 5.04 deg.
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Figure 11: Loops of tangential force coefficient for a pitching blade in standstill. Mean AOA at
47% radius: 22.92 degrees, pitching time 1.1261 s, pitching amplitude 5.04 deg.
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7 Conclusions

• The additional torsion rate and acceleration terms eliminate the power production at zero
wind speed.

• The modified attached flow indicial function algorithm reduces the previously very large
angle of attack lags at high wind speed.

• The modifications combined lead to much more reasonably looking lift and drag loops at
high wind speed.

• The influence of these modifications on the power curve prediction is currently being
investigated.

• The effect of the modifications on small loops at varying mean AOA is generally found
to be small. These conditions are typical for HAWT operation and thus the effect of the
modifications on HAWT in normal operation is small.
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