

General rights
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright
owners and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

 Users may download and print one copy of any publication from the public portal for the purpose of private study or research.

 You may not further distribute the material or use it for any profit-making activity or commercial gain

 You may freely distribute the URL identifying the publication in the public portal

If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately
and investigate your claim.

Downloaded from orbit.dtu.dk on: Oct 23, 2019

Three Categories of Context-Aware Systems

Shishkov, Boris; Larsen, John Bruntse; Warnier, Martijn; Janssen, Marijn

Published in:
Business Modeling and Software Design

Link to article, DOI:
10.1007/978-3-319-94214-8_12

Publication date:
2018

Document Version
Peer reviewed version

Link back to DTU Orbit

Citation (APA):
Shishkov, B., Larsen, J. B., Warnier, M., & Janssen, M. (2018). Three Categories of Context-Aware Systems. In
B. S. (Ed.), Business Modeling and Software Design: 8th International Symposium, BMSD 2018, Vienna,
Austria, July 2-4, 2018, Proceedings (pp. 185-202). Springer. Lecture Notes in Business Information Processing,
Vol.. 319 https://doi.org/10.1007/978-3-319-94214-8_12

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Online Research Database In Technology

https://core.ac.uk/display/160014936?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
https://doi.org/10.1007/978-3-319-94214-8_12
https://orbit.dtu.dk/en/publications/three-categories-of-contextaware-systems(60762df7-03b9-4284-8b05-9ff893e9a02f).html
https://doi.org/10.1007/978-3-319-94214-8_12

Delft University of Technology

Three Categories of Context-Aware Systems

Shishkov, Boris; Larsen, John Bruntse; Warnier, Martijn; Janssen, Marijn

DOI
10.1007/978-3-319-94214-8_12
Publication date
2018
Document Version
Accepted author manuscript
Published in
 Proceedings of Business Modeling and Software Design - 8th International Symposium, BMSD 2018

Citation (APA)
Shishkov, B., Larsen, J. B., Warnier, M., & Janssen, M. (2018). Three Categories of Context-Aware
Systems. In Proceedings of Business Modeling and Software Design - 8th International Symposium, BMSD
2018 (Vol. 319, pp. 185-202). (Lecture Notes in Business Information Processing; Vol. 319). Springer
Verlag. https://doi.org/10.1007/978-3-319-94214-8_12
Important note
To cite this publication, please use the final published version (if applicable).
Please check the document version above.

Copyright
Other than for strictly personal use, it is not permitted to download, forward or distribute the text or part of it, without the consent
of the author(s) and/or copyright holder(s), unless the work is under an open content license such as Creative Commons.

Takedown policy
Please contact us and provide details if you believe this document breaches copyrights.
We will remove access to the work immediately and investigate your claim.

This work is downloaded from Delft University of Technology.
For technical reasons the number of authors shown on this cover page is limited to a maximum of 10.

https://doi.org/10.1007/978-3-319-94214-8_12

Three Categories of Context-Aware Systems

Boris Shishkov1,4, John Bruntse Larsen2, Martijn Warnier3, Marijn Janssen3

1 Institute of Mathematics and Informatics

Bulgarian Academy of Sciences, Sofia, Bulgaria
2 Department of Applied Mathematics and Computer Science

Technical University of Denmark, Lyngby, Denmark

jobla@dtu.dk
3 Faculty of Technology, Policy, and Management

Delft University of Technology, Delft, The Netherlands

M.E.Warnier@tudelft.nl, M.F.W.H.A.Janssen@tudelft.nl
4 Institute IICREST, Sofia, Bulgaria

b.b.shishkov@iicrest.org

Abstract. With regard to context-aware systems: some optimize system-internal processes, based on the context

state at hand; others maximize the user-perceived effectiveness of delivered services, by providing different service

variants depending on the situation of the user; still others are about offering value-sensitivity when the society

demands so. Even though those three perspectives cover a broad range of currently relevant applications there are

no widely accepted and commonly used corresponding concepts and terms. This is an obstacle to broadly under-

stand, effectively integrate, and adequately assess such systems. We address this problem, by considering a (com-

ponent-based) methodological derivation of technical (software) specifications based on underlying enterprise

models. That is because context states are about the enterprise environment of a (software) system while the deliv-

ery of context-aware services is about technical (software) functionalities; hence, we need a perspective on both.

We consider the SDBC (Software Derived from Business Components) approach that brings together enterprise

modeling and software specification. On that basis: (a) We deliver a base context-awareness conceptualization; (b)

We partially align it to agent technology because adapting behaviors to environments assumes some kind of pro-

activity that is only fully covered by agent systems, in our view. We partially illustrate our proposed conceptualiza-

tion and particularly - the agent technology implications, by means of a case example featuring land border securi-

ty.

Keywords: Modeling; System design; Context-awareness; SDBC; AORTA

1 Introduction

Whenever a group of entities collectively realize a goal, we consider them to belong to a system [17]. An

adaptable system has the ability to adjust to new conditions [8]. We argue that an essential feature of

adaptable systems is context-awareness [22] – this is adjusting the system behavior depending on the sit-

uation at hand (context state). Our observation is that context-aware systems are all about adjusting

“something” to the context state; however, what is adjusted differs: (i) Some context-aware systems optimize

system-internal processes based on the context state at hand [3,12], for example: regulating the electro-

consumption of home appliances for the sake of keeping the overall building consumption within some bounda-

ries. (ii) Other context-aware systems maximize the user-perceived effectiveness of delivered services, by

mailto:M.E.Warnier@tudelft.nl
mailto:b.b.shishkov@iicrest.org

2

providing different service variants depending on the situation of the user [1], for example: treating a distantly

monitored patient in one way when his/her condition is normal and in another way in case of emergency. (iii)

Still other context-aware systems are about offering value-sensitivity when the society demands so [7], for

example: in the case of supporting judiciary processes, different levels of transparency are to be provided to

different categories of stakeholders. Not claiming exhaustiveness, we argue that those three context-awareness

perspectives cover a broad range of currently relevant applications, while corresponding system categorizations

are observed to be missing in literature, especially as it concerns real-life (business) processes. Hence, we pro-

pose and elaborate (in the following section) the above categorization.

Further, there are no widely accepted and commonly used concepts and terms with respect to (i), (ii), and

(iii). This is considered to be an obstacle with regard to broadly understanding, effectively integrating, and

adequately assessing such systems. We address this problem, by taking a (component-based-) technical / soft-

ware design perspective, assuming a desired methodological derivation of the technical (software) spec-

ifications on the basis of underlying enterprise models. That is because context states are about the

enterprise environment of a (software) system while the delivery of context-aware services is about technical

(software) functionalities; hence, we need a perspective on both. Stepping on previous work, we consider the

SDBC (Software Derived from Business Components) approach that brings together enterprise model-

ing and software specification [17,18,20]. On that basis:

 We deliver a base context-awareness conceptualization (inspired by the current discussion and the analysis

carried out in Section 2) that is claimed to hold for all (i), (ii), and (iii).

 We partially align that conceptualization to agent technology [11,27] because adapting behaviors to envi-

ronments is considered to assume some kind of pro-activity that is only fully covered by agent systems, in

our view.

We partially illustrate our proposed conceptualization and particularly - the agent technology implications,

by means of a case example featuring land border security.

The remaining of the current paper is organized as follows: Section 2 elaborates and discusses the above-

mentioned context-awareness perspectives (optimizing internal processes, maximizing the user-perceived ef-

fectiveness, being value-sensitive). In Section 3, we: (a) briefly outline the SDBC approach that gives the gen-

eral methodological guidelines we follow; (b) elicit (in line with SDBC) the base context-awareness system

concepts, referring to the analysis in Section 2; (c) enrich those concepts from the AORTA (agent-technology)

perspective; (d) distill on that basis a meta-model that is considered a key contribution of this paper and pro-

pose guidelines refinements. Assuming the SDBC methodological guidelines and referring to a real-life case

study that is featuring the usage of drones in support of land border security, we partially illustrate in Section 4

the meta-model and the AORTA framework influence, emphasizing the applicability with regard to all three

categories of context-aware systems, as discussed above. We justify the adequacy of the delivered contribution

in Section 5, by analyzing related work. Finally, in Section 6 we conclude the paper.

2 System Behavior Perspectives

Referring to the notions considered in the Introduction, we will firstly elaborate on the context-driven optimi-

zation of system-internal processes (Sub-section 2.1), secondly – on the context-driven maximization of the

user-perceived effectiveness (Sub-section 2.2), and finally, on the context-driven value-sensitivity (Sub-section

2.3). It is often that the context-awareness is enabled by sensor technology [21] allowing to “know” what is

happening around; alternatively, there should be other ways of “sensing” the environment [1]. As it concerns

3

(i), (ii), and (iii) ­ see the previous section ­ this counts for all of them. Further, considering the essence of

their underlying system behaviors, we use the following labels: SELF-MANAGING CONTEXT-AWARE

SYSTEM for (i); USER-DRIVEN CONTEXT-AWARE SYSTEM for (ii), and VALUE-SENSITIVE

CONTEXT-AWARE SYSTEM for (iii). Finally, even though most often context-aware systems are “sensi-

tive” to changes in the system environment, it is also possible that the “sensitivity” is towards internal issues

(things happening inside the system (not in the environment) may trigger either internal optimizations, or

changes in the services delivered to the user, or a reconsideration of the “covered” values). In this paper, we are

not restrictive with regard to the “sensitivity” (whether it concerns the system or the environment).

2.1 Self-Managing Context-Aware Systems (SMCAS)

SMCAS’ context-awareness is directed towards internal (system) optimization purposes [16]. Such

autonomic solutions [12] are proposed as a way to reduce the cost of maintaining complex systems, and to

increase the human ability to manage these systems properly, by automating (part of) their working. In essence,

self-managing system can be characterized by a feedback loop mechanism that allows them to opti-

mize their working based on input from the environment. For the basic feedback loop, the system receives

input from the environment (monitor) and can change its behavior which in turn has an effect on the environ-

ment (effector). In Autonomic Computing [10] this basic loop is extended into four components, resulting in

the MAPE Cycle, see Figure 1 (left). Next to the “monitor” and “effector” phases, the system internally has an

analyze phase that processes environmental input and a plan phase that changes the internal and external

working of the system.

Taking this one step further, an autonomic system can manage another system (the managed system)

by placing it in the MAPE Cycle as shown in Figure 3 (right). Placed in such a configuration, the autonomic

and managed systems together form a SELF-MANAGING SYSTEM or self-adaptive system [14].

 system

analyze plan

 environment

monitor effector

 autonomic system

analyze plan

 managed system

monitor effector

SELF-MANAGING SYSTEM

Fig. 1. Monitor-Analyze-Plan-Effect (MAPE) cycle (left); A managed system and an autonomic system that together form a

self-managing system (right)

Internally self-managing systems optimize their behavior based on inputs to and outputs from the managed

system. Such state updates can range from simple if-then rules (for example: if the temperature is below zero

degrees, then pre-heat the car) to more sophisticated approaches such as those based on machine learning

techniques (e.g., neural networks or inference engines that determine the best action based on a large internal

knowledge base). Thus, the main objective of self-managing systems is to optimize their internal

working based on inputs from the environments.

4

2.2 User-Driven Context-Aware Systems (UDCAS)

The UDCAS’ context-awareness is directed towards the maximization of the external (user) sat-

isfaction [1]. Hence, such systems should be able to: (i) identify the situation of the user (possibly through

sensors); (ii) deliver a service to the user, that is suited for the particular situation, as illustrated in Figure 2

(left).

As it is seen from the figure, a service is delivered to the user and the user is considered within his or her

context, such that the service is adapted on the basis of the context state (or situation) the user finds himself /

herself in. That state is to be somehow sensed and often technical devices, such as sensors, are used for this

purpose. UDCAS actually deliver services to the user by means of ICT (Information and Communication

Technology) applications [17] (applications, for short). Hence, unlike “traditional” applications assuming

that users would have common requirements independent of their context, user-driven context-aware applica-

tions are capable of adapting their behavior to the situation of the user (this is especial-

ly relevant to services delivered via mobile devices). Hence, such applications are, to a greater or lesser extent,

aware of the user context situation (for example, user is at home, user is traveling) and provide

the desirable services corresponding to the situation at hand. This quality points also to

another related characteristic, namely that user-driven context-aware applications must be able to capture or be

informed about information on the context of users, preferably without effort and conscious

acts from the user part [18]. Hence, a basic assumption underlying the development of user-driven

context-aware applications is that user needs are not static, however partially dependent on the par-

ticular situation the user finds himself / herself in, as already mentioned. For example, depending on his / her

current location, time, activity, social environment, environmental properties, or physiological properties, the

user may have different interests, preferences, or needs with respect to the services that can be provided by

applications.

UDCAS

USER-DRIVEN SYSTEM

…
user situations (context states)

…
system behavior variants

Fig. 2. The UDCAS vision (inspired by [18,22]): a schematic representation (left); Context-states-driven system behavior

variants (right)

User-driven context-aware applications are thus primarily motivated by their potential to increase

the user-perceived effectiveness, i.e. to provide services that better suit the needs of the user, by

taking account of the user situation. We refer to the collection of parameters that determine the situation of a

user, and which are relevant for the application in pursue of user-perceived effectiveness, as user context, or

context for short, in accordance to definitions found in literature [5].

Finally, UDCAS are hence about delivering behavior variants to corresponding user situations (con-

text states), as illustrated by Figure 2 (right). The idea is that for each context state, the system has a be-

havior variant. Nevertheless, this would not be always realistic because if the possible context states are too

5

many (for example: tens or hundreds), the effort for “preparing” (at design time) behavior variants would be

huge. For this reason, statistical data analysis and probability studies are needed, as studied in [17], for estab-

lishing the context states of high occurrence probability (for example, during a normal working

day, an employee would most probably be either at work or at home, or traveling, and it is not very likely that

the employee is somewhere else, especially during day hours). Hence all other (possibly hundreds) low proba-

bility context states would not need to be addressed at design time; instead, a “collecting” context state (for

example, labelled: OTHER) may be considered at design time, assuming a more generic behavior algorithm,

such that the behavior is “tuned” at real time (possibly in a rule-based way). This would of course lead to lower

quality-of-service which is nevertheless justified since it would be very rare that the OTHER behavior variant

is triggered. Thus, this is a matter of “trade-off” between quality-of-service and resources.

2.3 Value-Sensitive Context-Aware Systems (VSCAS)

VSCAS’ context-awareness is directed towards a sensitivity to public values [7]. Public values

(values for short) like privacy and data protection, security, accountability, integrity and provenance, and

sustainable data storage, often need to be incorporated in the functionalities of information systems. Hence,

the first question to be answered is: How do values relate to requirements (we mean particularly non-functional

requirements because values are essentially non-functional)? In answering this question, we refer to [19] who

argue that values are desires of the general public (or public institutions / organizations that claim to represent

the general public), that are about properties considered societally valuable, such as respecting the privacy of

citizens or prohibiting polluting activities. Even though values are to be broadly accepted (that is why they are

public), they may concern individuals (for example: considering privacy). Hence, put broadly, values concern

the societal expectations with regard to the way services should be delivered and with regard to the above

question: values are desires or goals, not requirements. Values are abstract and not directly related to an enter-

prise or software system, as opposed to requirements. Moreover, values are construct by and for society and

not by and for the enterprise domain in which a specific system will be used. Those domains may overlap but

are not the same. Values that are adopted as goals by an enterprise would therefore impact the requirements on

a system that the enterprise wants to introduce in order to realize its goals. For this reason, the impact of values

cannot be limited to non-functional requirements. It is therefore considered important to clearly distinguish

values from requirements and acknowledge the limitations of requirements engineering with regard to the de-

velopment of value-sensitive (software) systems.

Hence, the development of systems should take into account the objective, the user needs, but also the oper-

ating and societal context. In this way values can be used as a guidance for making choices when developing

systems; looking at possible tensions among values is an issue as well. Thus, we have identified challenges in

several directions:

Firstly, values are normative by nature and different stakeholders might prefer different values; also, values

might differ among countries and cultures.

Secondly, even though different societies may agree on a value at high-level, their cultural and other differ-

ences may “push” for different value “realizations”. This may result in different operationalizations and im-

plementations of the same value.

Thirdly, values may be conflicting to each other (for example: fulfilling two values at the same time may be

impossible). Searching for criminals might lead to violating the privacy of innocent people, for example.

Thus, in considering VSCAS, it is important to be aware that different context states may as-

sume the consideration of different values, which in turn would mean different system

functionality variants. Nevertheless, this goes beyond a mapping just between values and non-

6

functional requirements and would assume a broader consideration of the software functionalities specifica-

tion.

Overall: computing power becomes larger, wireless telecommunications are advancing, and sensor tech-

nology is developing fast [17]; this allows for ubiquitous network connectivity and numerous capabilities of

smart devices, as a basis for developments in several directions: (a) Systems that are traditionally

designed for one specific situation and task can be augmented to become “smarter”,

being able to operate in complex environments. (b) Systems are empowered to “sense”

what is going on inside them and also what is going on with the end user while

(s)he is utilizing corresponding services. This concerns the system-internal processes, the way

services are delivered to users, and the way values are considered, as discussed in the current section. In the

following section, we will present our proposed way of modeling context-aware systems, taking into account

those three system behavior perspectives.

3 Proposed Modeling and Design

Furthering previous work, we consider SDBC (see Section 1) as the approach of choice (generally) because of

several reasons: its strengths in aligning enterprise modeling and software specifications, its component-

orientation and support for re-use, and its previous use for specifying context-aware and privacy-sensitive

systems [17,18,20]. We will thus briefly introduce SDBC in this section. We will then present the main con-

cepts we consider, making sure that they are consistent with SDBC and relevant to the three categories of con-

text-aware systems, as considered in the previous section; we will also provide a conceptual enrichment from

an agent-technology perspective (see Section 1). We will then reflect this in a meta-model derived accordingly.

And in the end, we will narrow the design scope (in the above context) to only touch upon issues that concern

the key features of the considered three categories of context-aware systems.

3.1 SDBC

SDBC is an approach (consistent with MDA [15]) that is focused on the derivation of software specification

models on the basis of corresponding (re-usable) enterprise models. SDBC is based on three key ideas: (i) The

software system-to-be is considered in its enterprise context, which means that the software specification mod-

els are to stem from corresponding enterprise models; this means in turn that a deep understanding is needed

on real-life (enterprise-level) processes, corresponding roles, behavior patterns, and so on. (ii) By bringing

together two disciplines (enterprise engineering and software engineering), SDBC pushes for applying social

theories in addressing enterprise-engineering-related tasks and for applying computing paradigms in address-

ing software-engineering-related tasks, and also for integrating the two, by means of sound methodological

guidelines. (iii) Acknowledging the value of re-use in current software development, SDBC pushes for the

identification of re-usable (generic) enterprise engineering building blocks whose models could be reflected

accordingly in corresponding software specification models. We refer to [17] for information on SDBC and we

are reflecting the SDBC outline in Figure 3.

7

Fig. 3. SDBC - outline (Source: [20], p. 48)

As the figure suggests, there are two SDBC modeling milestones, namely enterprise modeling (first

milestone) and software specification (second milestone). The first milestone has as input a case brief-

ing (the initial (textual) information based on which the software development is to start) and the so called

domain-imposed requirements (those are the domain regulations to which the software system-to-be should

conform). Based on such an input, an analysis should follow, aiming at structuring the information, identifying

missing information, and so on. This is to be followed by the identification (supported by corresponding social

theories) of enterprise modeling entities and their inter-relations. Then, the causalities concerning those inter-

relations need to be modeled, such that we know what is required in order for something else to happen [23].

On that basis, the dynamics (the entities’ behavior) is to be considered, featured by transactions [17]. This all

leads to the creation of enterprise models that are elaborated in terms of composition, structure, and dynamics

(all this pointing also to corresponding data aspects) – they could either “feed” further software specifications

and/or be “stored” for further use by enterprise engineers. Such enterprise models could possibly be reflected

in corresponding business coMponents (models of business components [17]). Next to that, re-visiting such

models could possibly inspire enterprise re-design activities, as shown in Figure 3.

Furthermore, the second milestone uses as input the enterprise model (see above) and the so called user-

defined requirements (those requirements reflect the demands of the (future) users of the software system-to-be

towards its functioning).

That input “feeds” the derivation of a use case model featuring the software system-to-be. Such a software

specification starting point is not only consistent with the Rational Unified Process - RUP [13] and the

Unified Modeling Language – UML [25] but is also considered to be broadly accepted beyond RUP-UML

[17]. The use cases are then elaborated, inspired by studies of Cockburn [4] and Shishkov [17], such that soft-

ware behavior models and classification can be derived accordingly. The output is a software specification

model adequately elaborated in terms of statics and dynamics. Applying de-composition, such a model can be

reflected in corresponding software components, as shown in the figure. Such an output could be inspiration

for proposing in the future software re-designs, possibly addressing new requirements.

Further, in bringing together the first milestone of SDBC and the second one, we need to be aware of pos-

sible granularity mismatches. The enterprise modeling is featuring business processes and corresponding busi-

ness coMponents but this is not necessarily the level of granularity concerning the software components of the

8

system-to-be. With this in mind, an ICT application is considered as matching the granularity level of a

business component – an ICT application is an implemented software product realizing a particular functionali-

ty for the benefit of entities that are part of the composition of an enterprise system and/or a (corresponding)

enterprise information system. Thus the label software specification model, as presented in Figure 3,

corresponds to a particular ICT application being specified. Software components in turn are viewed as

implemented pieces of software, which represent parts of an ICT application, and which collaborate among

each other driven by the goal of realizing the functionality of the application (functionally, a software compo-

nent is a part of an ICT application, which is self-contained, customizable, and composable, possessing a clear-

ly defined function and interfaces to the other parts of the application, and which can also be deployed inde-

pendently). Hence: a software coMponent is a conceptual specification model of a software component; the

second SDBC milestone is about the identification of software coMponents and corresponding software com-

ponents.

3.2 Conceptualization

In this sub-section, we will firstly consider the basic concepts aligned with SDBC and the system behavior

perspectives, as considered in the previous section.

BASIC CONCEPTS (GENERAL)

SYSTEM: A collection of elements possibly interacting with each other, driven by the pur-

pose of delivering a service to another entity or group of entities.

SUB-SYSTEM: A system part identified based on a functional decomposition with regard to

the system (hence, a system can optimize itself, by optimizing corresponding sub-systems).

ENVIRONMENT: Anything not belonging to a system belongs to the system environment

 Part of the environment concerns those environmental entities that are assumed to

have some interaction with the system.

ENTITIES: Composition elements with regard to a system / environment

 - Human vs Artificial entities;

 - Passive (a passive entity is an entity that only performs actions when another

entity

 interacts with it) vs Autonomous (an autonomous entity is an entity that performs

 actions on its own initiative) entities;

 - Sensing (capturing context data in support of the system’s service delivery) vs

 Actuator (causing changes in the environment on behalf of the system) entities.

ROLE: The state of carrying out certain objectives

 - The entity-role combination is labelled “actor-role”.

ACTOR: An autonomous entity that can enact a role.

USER: An actor that the system services.

ACTION: Something done by an entity

 - A sequence of actions, occurring between two entities that are collaborating in

 support of the service delivery, is labelled “inter-action”.

OBJECTIVE: The motive behind the service delivery.

REGULATIONS: Reflection of the existing norms that have impact on the service delivery,

prescribing what is allowed in some situations, forbidden in others, and so on.

VALUES: Reflection of the public perception towards what is important regarding the ser-

vice delivered by the systems*

 * We address values that are shared among environmental human entities.

9

BASIC CONCEPTS (FEATURING SYSTEM ADAPTATION DIMENSIONS)

SELF-MANAGING BEHAVIOR: Context-driven enforcement of syst.-internal optimizations.

USER-DRIVEN BEHAVIOR: Context-driven service adaptation based on the user situa-

tion.

VALUE-SENSITIVITY: Service adaptation inspired by values, delivered through the opera-

tionalization of values.

Wishing to enrich those concepts from an agent-technology perspective (see the Introduction) AORTA is par-

tially considered as a meta-model for enabling agents to perform organizational reasoning

based on the OperA model [6] for agent organizations [11]. Organizational reasoning enables an agent to iden-

tify the objectives it is expected to solve, the other agents that it depends on for solving those objective, and

whether an action is permitted, obliged, allowed or forbidden. In doing so the social expectations are made

explicit through the AORTA concepts, which is considered an advantage when creating and reiterating the

design of agents. Those concepts are shown below in the form of logical predicates:

CONCEPT MEANING

role(Role, Objs) Role is the name of a role and Objs is a set of main objec-

tives of that role.

obj(Obj, SubObjs) Obj is an objective that has SubObjs as a set of sub-

objectives.

dep(Role_1, Role_2, Obj) Role_1 depends on Role_2 in order to complete Obj.

rea(Ag, Role) Agent Ag enacts Role.

cond(Role, Obj, Deadline, Cond) When the condition Cond holds, Role is obliged to com-

plete Obj before the objective Deadline.

obl(Ag, Role, Obj, Deadline) Agent Ag is obliged to enact Role to complete Obj before

Deadline.

viol(Ag, Role, Obj) Agent Ag enacting Role has violated the obligation to

complete Obj.

A role defines a role in the organization, and the primary objectives associated with that role. By enacting a

role, an agent announces to other agents in the organization that it takes upon itself that role and thus that oth-

er agents can expect it to work towards solving the objectives associated with that role. It is also possible to

make an explicit notion for how an objective can be decomposed into sub-objectives, and how a role may de-

pend on other roles to solve an objective. Finally, normative statements are supported that define conditions on

how agents should solve an objective in a certain context.

AORTA divides organizational reasoning into three phases: obligation check (OC), option generation

(OPG) and action execution (AE). In the OC-phase the agent uses its beliefs to check if obligations are activat-

ed, satisfied or violated, and updates its beliefs accordingly. Following that it generates possible organizational

options in the OPG-phase, which it then considers in the AE-phase when deliberating an action. Figure 4 visu-

alizes such a reasoning “component”.

10

organizational beliefs

OC

organizational component

OPG AE

Fig. 4. Reasoning component

Further, in specializing some of the basic concepts (see above) from an agent-technology perspective (con-

sistent with AORTA), we consider the following:

 Autonomy: agents operate without the direct intervention of humans or others, and have some kind of

control of their actions and internal state;

 Social “ability”: agents interact with other agents (and possible humans) via some kind of agent com-

munication language;

 Reactivity: agents perceive their environment (which may be the physical world, a user via a graphical

user interface, a collection of other agents, the Internet, or perhaps all of those combined), and re-

spond in a timely fashion to changes that occur in it;

 Pro-activeness: agents do not simply act in response to their environment, they are also capable of ex-

hibiting goal-driven behavior, by taking the initiative.

Hence, we define an agent as an entity that is capable of operating autonomously, in-

teracting with other agents, perceiving and reacting to changes in the environ-

ment, and taking actions toward solving an objective.

Next to that, it is considered common to have agent systems where an agent represents a larger group of

agents; such an agent is often tasked with coordinating the other agents in the group (such tasks can be cap-

tured with the notions of role and objective, with agents enacting roles). Thus, by applying the agent concept,

we could conveniently capture the notions of autonomy, social ability, reactivity and pro-activeness that we

find useful with regard to the challenge of modeling complex (context-aware) systems where it is not straight-

forward understanding how every system part works in detail.

Finally, we present below the enrichment (from an agent-technology perspective) with regard to the

basic concepts that were presented above:
SYSTEM: A system is represented through the notion of an agent that enacts a designated

system role. The role specifies the objectives (obj) of the system, reflecting its purpose.

These objectives can be decomposed into sub-objectives by obj-statements. We decompose

the objective of the system into sub-objectives, matching the objectives of the sub-systems.

We show the dependencies (dep) between the system and its sub-systems by dep-statements.

SUB-SYSTEM: We represent individual sub-systems by agents enacting roles, specifying

the sub-objectives of the system that they address. We also make explicit the dependency

between the system and its sub-systems by dep-statements.

ENVIRONMENT: We represent the parts of the environment that we assume interact with

the system by agents. An environmental agent may enact a role, meaning that the sys-

tem can expect it to carry out a certain objective, but this is not required.

ENTITIES: Inspired by the agent notion as considered in [Wolldr95], we represent entities

in general by agents and roles

 - human vs artificial entities – no distinction; an agent can represent a

human and implement a human behavior model but from a model perspective,

human and artificial agents are indistinguishable;

 - passive vs autonomous entities; agents that implement proactive behavior

models are inherently capable of autonomous behavior, whereas agents that

11

implement reactive behavior models are suited for representing passive entities;

 - sensing vs actuator entities; we have roles dedicated to sensing and actua-

tor such that we represent these entities by agents enacting those roles.

ROLE and ACTOR-ROLE: We represent roles and their designated objectives by role-

statements, and the entity-role combination by rea-statements, stating that an agent enacts a

role.

ACTOR: We represent an actor by its designated agent.

USER: The user is a specific agent that plays the role of user. For context-aware systems,

the system agent depends on the user to deliver its service and for gaining feedback. The

user role may have certain objectives but this is not required.

ACTION and INTERACTION: An agent is capable of performing actions, and in the OPG-

phase, it generates options based on its beliefs. It then deliberates the action to take in the

AE-phase. We represent the concept interaction by dep-statements, meaning that multiple

agents are collaborating in solving an objective.

OBJECTIVE: We represent objectives primarily by role- and obj- statements.

REGULATIONS: We represent regulations by condition statements, stating situations

where obligations to carry out objectives get activated. In the OC-phase, the agent updates

itself for current active obligations and violated obligations with obl- and viol- statements.

VALUES: Values are reflected in the regulations expressed by cond-predicates.

3.3 Proposed Meta-Model

After having introduced our concepts (in synch with SDBC), we have derived a meta-model accordingly,

considered a key contribution of the current paper. The meta-model is presented in Figure 5, using the nota-

tions of UML – Class Diagram [25].

As it is seen in the figure, we consider a system and its environment. Both are composed of numerous

entities which in turn can be components (non pro-active) or agents (pro-active and intelligent). One

entity (an agent, for example) can enact many different roles (and in this research, we limit ourselves to four

role categories, namely: user, sensor, actuator, and processor) that are restricted by corresponding

rules and are subject of regulations. A regulation in turn is composed of many rules and is affecting not only

the roles but the system as a whole.

Fig. 5. Proposed meta-model

12

Since we are taking particularly an agent perspective, we consider it important matching roles to

their corresponding executing agents because it is not for sure that anybody would have the right

capabilities of fulfilling a role.

With regard to what an agent is capable of doing, AORTA takes a discrete approach to capabilities: the

capabilities of an agent are defined as the set of states that an agent can

achieve. More concretely, an agent is defined as the tuple (α, MS, AR, F, C, µ) where α is the name of the

agent, MS is its “mental” state, AR are its rules of reasoning, F is a set of transitioning functions (Action × MS

→ MS), C are its capabilities and µ is a “mailbox” for incoming messages from and outgoing messages to

other agents.

When considering a role enactment, an agent checks whether its capabilities overlap the objectives of that

role (if not, an enactment would be impossible). One can split a role into two roles where one defines what

objectives are expected of an agent enacting the "partial" role and what is expected of an agent enacting the

"full" role.

As mentioned in the Introduction, we propose at the end of this section refined guidelines (inspired by

SDBC and the meta-model).

3.4 Refined Design Guidelines

In following SDBC (see Figure 3) and implementing the meta-model (see Figure 5), we propose refined design

guidelines, and we limit ourselves only to considering the strengths of agent technology with regard to the

three categories of context-aware systems addressed in the current paper.

The three system behavior perspectives (SMCAS, UDCAS, and VSCAS – see Section 2) considered in com-

bination, referring to the meta-model, inspires a proposed design vision; according to it, a system uses an

AORTA Engine considered for doing all three things simultaneously, as it is illustrated in Figure 6.

As the figure suggests, the user is situated in the environment and the system uses sensors to receive

info from the environment, including the user, and actuators to manage sub-systems, realizing internal

optimizations. The AORTA Engine allows the system to conform to rules and regulations (regulations are

encoded, reflecting the values the system should consider). The AORTA Engine checks the input from the

Analysis Engine to identify obligated, forbidden or allowed actions, and what organizational influence

those actions have (enacting a role involves notifying other entities). The output is provided as input to the

Planner that in turn decides the action to be taken

Fig. 6. A system combining features of SMCAS, UDCAS, and VSCAS

13

4 The Border Security Case

Unmanned aircraft (for example, drones) are a way to facilitate the surveillance along land borders, as ac-

cording to a case example considered in [21].

SELF-MANAGING PERSPECTIVE
 power consumption optimization

 cam adjustments (to weather conditions)

Goal DT

System D

User PO

Behavior
USER-DRIVEN PERSPECTIVE
 monitoring adjustments

 data processing

VALUE-SENSITIVITY PERSPECTIVE
 facial distance observation

 noise minimization

Fig. 7. Exemplifying the SMCAS, UDCAS, and VSCAS perspectives

Drones are capable of carrying and running infrared (and regular) surveillance cameras and based on their

input, scarce capacity can be allocated. The goal is to find illegal activities. Despite drones’ advantages, there

can be some unintended effects: Drones can make noise and scare ordinary people who are passing the borders

in a legitimate way, often at check-points; custom officials and/or police officers might be scared and/or dis-

graced by drones. Next to that, (video) recording activities might be violating the privacy of people. Hence, it

should be avoided that: (i) drones come too close to legitimate activities; (ii) data that is not needed is record-

ed and shared. This asks for balancing between the internal objectives of finding illegal activities and the socie-

tal demands that are two-fold: it is needed to avoid drones getting too close to people and it is also needed to

ensure their privacy.

We hence make the following explicit: (A) We do address SYSTEM D – a drone system, featuring a drone

flying over a border and supporting border police officers; (B) System D is delivering services to USER PO –

the border police officers who are patrolling the border; (C) The goal in context is: GOAL DT, featuring the

detection of illegal activities in general (trespassers, in particular). This is reflected in Figure 7.

As also seen from the figure, we have identified six case-specific behavior lines, two per each of the sys-

tem behavior perspectives:

[POWER CONSUMPTION OPTIMIZATION] [SMCAS PERSPECTIVE]: When a drone is

flying, it is exchanging information with the ground station – the drone is sending sensor

data to the station that is in turn generating instructions. Hence, it is at the ground station

where the flight is controlled such that it is guaranteed that the drone mission is completed.

This requires that the power consumption is optimized, such that the drone has enough pow-

er to complete the mission and get back.

[CAM ADJUSTMENTS] [SMCAS PERSPECTIVE]: When a drone is flying, it counts on

its cameras, such that it is capable of adjusting its flight accordingly. Hence, those cameras

need to be adjusted when weather conditions change.

[MONITORING ADJUSTMENTS] [UDCAS PERSPECTIVE]: When a drone is flying, it

is realizing its mission to support border police officers (the “user”) and for this, it should

adjust its monitoring to mainly cover those areas that are not close to where police officers

14

are.

[DATA PROCESSING] [USCAS PERSPECTIVE]: When a drone is flying, raw sensor data

is processed by the drone itself and/or by the ground station, such that higher-level context

information is derived and delivered to border police officers.

[FACIAL DISTANCE OBSERVATION] [VSCAS PERSPECTIVE]: When a drone is

flying, it is to act in a privacy-sensitive way, which means that without explicit instructions,

the drone should not (video) capture people’s facial information or if this happens, the pho-

to/video material should be blurred accordingly.

[NOISE MINIMIZATION] [VSCAS PERSPECTIVE]: When a drone is flying, it should

avoid noise-polluting residential environments, which means that if this wouldn’t be mis-

sion-critical, the drone should avoid approaching residential areas.

Acting adequately with regard to all those perspectives is considered important because it wouldn’t be ac-

ceptable neither “sacrificing” the drone, nor compromising the mission, nor disregarding values. Nevertheless,

it is sometimes impossible to satisfy all this. For example: If from a SMCAS perspective, the drone should

immediately turn back (with indications of insufficient power to go on) but from a UDCAS perspective, the

drone should go on to approach an area of interest, then what is the solution? Resolving such TENSIONS is

considered non-trivial because we argue that “universal rules” cannot work in cases like this. Thus, it is a mat-

ter of sophisticated prioritization to come to the “right” solution. If, for example, a border control mission is on

and a noise pollution is observed, then if the mission is just a routine surveillance, probably the noise-pollution

should be avoided but if the mission is targeting trespassers, then the neighborhood silence may be sacrificed

and for sure the residents would understand and appreciate such actions. For this reason, the AORTA drone

mission modeling is to be complemented by a “prioritization scheme” which is not shown in the current sec-

tion, for the sake of brevity.

What we are demonstrating is the OVERALL model (simplified to what Figure 7 suggests) where all three

perspectives are “super-imposed” (such that tensions could be straightforwardly identified) – this is presented

in Table 1.

Table 1: Exemplifying the overall behavior, by applying AORTA.

role(drone, {reportTrespassing(Trespasser, Location, Time), optimizeVision(Camera), optimizePower})

role(officer,{apprehend(Trespasser)})

obj(reportTrespassing(Trespasser, Location, Time), {patrol(Location,Time), record(Trespasser, Location,

Time)})

dep(drone, officer, reportToOfficer)})

dep(drone, camera, optimizeVision)})

cond(camera, lightSensing, optimizeVision, clearWeather /\ daytime)

cond(camera, darknessSensing, optimizeVision, cloudyWeather)

cond(drone, keepDistance, record, recordingFace)

cond(drone, reduceNoise, patrol, ¬alarm)

5 Related Work

AORTA is based upon the OperA meta-model for agent organizations. MOISE+ [26] is another meta-model for

agent organizations that is well known in AI (Artificial Intelligence)-communities, and which is implemented

in the agent-programming platform JaCaMo [2]. With regard to agent-based AI systems: “Pepper” is a robot

working together with humans in a socially acceptable way. Pepper perceives its environment through visual

15

sensors and can also receive input through a touch screen. Pepper is able to make simple gestures, speak, and

move around on wheels. Pepper’s behavior is programmed using the agent-based language GOAL [9] in which

an agent is specified in terms of a mental state with personal info. In contrast, we propose using AORTA in

which an agent maintains personal information and organizational information separately. This relates to

user-driven context-aware systems where for example Body-Area Networks are implemented to capture vital

signs from the body of a patient from distance, such that this information is processed and communicated in an

intelligent way [1] while self-managing systems were widely used in home appliances that adjust their opera-

tion with regard to some goal that concerns a unit, such as neighborhood [24]. This all concerns values that are

abstract and non-functional and that is how they are considered to date [7], not aligning them adequately with

the processes that concern the design of software. We believe that the current work is a step forward in ap-

proaching methodologically context-aware systems, in general and particularly – the three categories of con-

text-aware systems addressed in this paper.

6 Conclusions

Furthering previous research that touches upon the enterprise-modeling-driven software specification, we have

particularly addressed context-aware (software) systems in the current paper. We have identified and studied

three categories of context-aware systems, featuring context-based system behavior adaptations that concern

the optimization of system-internal processes, the maximization of the user-perceived effectiveness, and the

consideration of relevant public values. Super-imposing those three system behavior perspectives and in synch

with previous work (the SDBC approach), we have identified concepts and we have enriched them from an

agent-technology perspective (in line with the AORTA framework), reflecting this in a meta-model that is

considered a major contribution of the paper. Inspired by the meta-model, we have provided a partial refine-

ment of the SDBC design guidelines, taking an agent technology perspective and focusing on the three above-

mentioned system behavior perspectives, and we have partially illustrated this by means of a case example

featuring land border security. As future work we plan to CONSOLIDATE our SDBC-AORTA-driven pro-

posal into one dedicated design approach that is specific to context-aware systems.

Acknowledgements

This work is supported by: (i) the TU Delft - Delft Pilot project; (ii) Technical University of Denmark and the

PDC A/S project. We would like to thank Jeroen van den Hoven for his support and guidance.

References

1. AWARENESS, 2008. Freeband AWARENESS Project. http://www.freeband.nl.

2. Boissier O., Bordini R.H., Hübner J.F., Ricci A., Santi A. (2013) Multi-Agent Oriented Programming

with JaCaMo. Sci. Comput. Program. 78, 6.

3. Brun Y. et al. (2009) Engineering Self-Adaptive Systems through Feedback Loops. In: Cheng B.H.C., de

Lemos R., Giese H., Inverardi P., Magee J. (eds) Software Engineering for Self-Adaptive Systems.

Lecture Notes in Computer Science, vol 5525. Springer, Berlin, Heidelberg.

16

4. Cockburn, A., 2000. Writing Effective Use Cases, Addison-Wesley.

5. Dey A.K. (2001) Understanding and Using Context. In: Personal and Ubiquitous Computing, 5(1), 4-7.

6. Dignum v. (2004) A Model for Organizational Interaction: Based on Agents, Founded in Logic. PhD

Thesis, Utrecht University.

7. Friedman B., Hendry D.G., Borning A. (2017) A Survey of Value Sensitive Design Methods. In A

Survey of Value Sensitive Design Methods , 1, Now Foundations and Trends, 2017, pp.76-

8. Google Dictionary, 2018. The website of Google Dictionary: http://www.google.com.

9. Hindriks, K.V. (2009) Programming Rational Agents in GOAL. In El Fallah Seghrouchni, A., Dix, J.,

Dastani, M., Bordini, R.H. (eds) Multi-Agent Programming: Languages, Tools and Applications,

Springer, 119–157.

10. Huebscher M.C., McCann J.A. (2008) A Survey of Autonomic Computing - Degrees, Models, and

Applications. ACM Comput. Surv. 40, 3, Article 7.

11. Jensen, A.S., Dignum, V., Villadsen, J (2017) A Framework for Organization-Aware Agents. Auton.

Agent. Multi-Agent Syst. 31(3), 387–422.

12. Kephart, J. O., & Chess, D. M. (2003). The vision of autonomic computing. Computer, 36(1), 41-50.

13. Kruchten, P., 2003. The Rational Unified Process, An Introduction, Addison-Wesley.

14. Mahdavi-Hezavehi S., Avgeriou P., Weyns D. (2016) A Classification Framework of Uncertainty in

Architecture-Based Self-Adaptive Systems With Multiple Quality Requirements. In: Mistrik I., Ali N.,

Kazman R., Grundy J., Schmerl B. (eds) Managing Trade-offs in Adaptable Software Architectures, 1st

Edition. Elseiver Inc.

15. MDA, 2018. The OMG Model Driven Architecture. http://www.omg.org/mda.

16. Muehl G., Werner M., Jaeger M.A., Herrmann K., Parzyjegla H. (2007) On the Definitions of Self-

Managing and Self-Organizing Systems. Communication in Distributed Systems - 15. ITG/GI

Symposium, Bern, Switzerland, 2007, pp. 1-11.

17. Shishkov, B., 2017. Enterprise Information Systems, A Modeling Approach, IICREST. Sofia.

18. Shishkov B., Janssen M. (2018) Enforcing Context-Awareness and Privacy-by-Design in the

Specification of Information Systems. In: Shishkov B. (eds) Business Modeling and Software Design.

BMSD 2017. Lecture Notes in Business Information Processing, vol 309. Springer, Cham.

19. Shishkov B., Mendling J. (2018) Business Process Variability and Public Values. In: Shishkov B. (ed)

Proc. of BMSD 2018 - 8th Int. Symposium on Business Modeling and Software Design. Lecture Notes in

Business Information Processing, vol 319. Springer, Cham.

20. Shishkov B., Janssen M., Yin Y. (2017) Towards Context-Aware and Privacy-Sensitive Systems. In

BMSD’17, 7th International Symposium on Business Modeling and Software Design. SCITEPRESS

21. Shishkov B., Mitrakos D. (2016) Towards Context-Aware Border Security Control. In BMSD’16, 6th

International Symposium on Business Modeling and Software Design. SCITEPRESS

22. Shishkov B., van Sinderen M. (2008) From User Context States to Context-Aware Applications. In:

Filipe J., Cordeiro J., Cardoso J. (eds) Enterprise Information Systems. ICEIS 2007. Lecture Notes in

Business Information Processing, vol 12. Springer, Berlin, Heidelberg.

23. Shishkov, B., Van Sinderen, M.J., Quartel, D., 2006. SOA-Driven Business-Software Alignment. In

ICEBE’06, IEEE International Conference on e-Business Engineering. IEEE.

24. Shishkov B., Warnier M., Van Sinderen M. (2010) On the Application of Autonomic and Context-aware

Computing to Support Home Energy Management. In Proc. ICEIS 2010 - the 12th Int. Conference on

Enterprise Information Systems; 8-12 June 2010; Funchal, PT. SCITEPRESS, Setúbal

25. UML, 2018. The Unified Modeling Language. http://www.uml.org.

17

26. Van Riemsdijk M.B., Hindriks K., Jonker C. (2009) Programming Organization-Aware Agents. In:

Aldewereld H., Dignum V., Picard G. (eds) Engineering Societies in the Agents World X. ESAW 2009.

Lecture Notes in Computer Science, vol 5881. Springer, Berlin, Heidelberg

27. Wooldridge M., Jennings N.R. (1995) Intelligent Agents: Theory and Practice. The Knowledge

Engineering Review, vol. 10, no. 2. pp. 115–152.

