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Abstract
This paper demonstrates the development of a methodology using the micro four-point probe (μ4PP) technique to electrically char-

acterize single nanometer-wide fins arranged in dense arrays. We show that through the concept of carefully controlling the elec-

trical contact formation process, the electrical measurement can be confined to one individual fin although the used measurement

electrodes physically contact more than one fin. We demonstrate that we can precisely measure the resistance of individual

ca. 20 nm wide fins and that we can correlate the measured variations in fin resistance with variations in their nanometric width.

Due to the demonstrated high precision of the technique, this opens the prospect for the use of μ4PP in electrical critical dimension

metrology.
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Introduction
The transition from planar to three-dimensional transistor archi-

tectures such as the fin field-effect transistor (finFET) [1] has

raised the need for measuring the electrical properties of nano-

meter-wide conducting features [2]. Recently, it has been shown

that the micro four-point probe (μ4pp) technique, which is com-

monly used for sheet resistance measurements on blanket mate-

rials or relatively large pads (larger than 80 × 80 µm2) [3-5],

provides a solution to this requirement [6]. The μ4pp technique

was demonstrated to provide (sheet) resistance measurements in

single fins without the need for dedicated Kelvin resistor or

transmission line structures [7]. However, the results demon-

strated in [6] focused on isolated fins whereby the fin pitch was
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larger than the contact size of the μ4pp electrodes such that only

one single fin was contacted at a time. Intuitively, this suggests

that the technique developed therein fails when trying to

measure dense structures where a fin pitch smaller than the

apparent contact size of the electrodes is used (see below in

Figure 2). In that case, the μ4pp technique appears to be of

limited value in routine semiconductor manufacturing where

state-of-the-art chips use much smaller fin pitches [8].

In this paper, we describe further developments of the μ4pp

technique, as implemented by the CAPRES A300 tool, which

enable the electrical characterization of single nanometer-wide

fins in dense fin arrays (pitch < 200 nm) with high precision and

repeatability. First, we describe the general concept of how to

establish and control the electrical contact between the metallic

(Ni-coated) μ4pp electrodes and the semiconducting (Si) fins.

Next, we show that, by carefully controlling this process, the

electrical contact can be confined to one single fin such that the

resistance of individual fins in dense arrays can be measured

with a high precision. Finally, we use the technique to deter-

mine the electrical resistance of individual fins in a dense array

and we demonstrate that the measured resistance correlates with

the geometrical width of the fins, as measured with transmis-

sion electron microscopy (TEM). Due to the demonstrated high

precision, a critical dimensional sensitivity of ca. 0.5 nm could

be achieved.

Experimental
Before discussing the electrical contact between the μ4pp

electrodes and an individual fin, a general description of

a μ4pp measurement on large blanket semiconducting

samples is needed. The μ4pp electrodes comprise four

Ni-coated Si cantilevers with a spacing of 8 µm and a contact

size dcontact ≈ 300 nm [6,9,10]. In a μ4pp measurement, the

electrodes are landed on the sample surface after which a cur-

rent Iin is injected into the investigated sample via two of the

electrodes while the induced voltage drop V is measured be-

tween the other two electrodes. Initially, however, the native

oxides present both on the semiconducting material and the

Ni-coated electrodes act as highly resistive barriers and there-

fore prevent any electrical contact [11]. To establish the elec-

trical contact, the μ4pp technique uses the so-called punch-

through current, i.e., a short current pulse of magnitude Ipulse

applied between two electrodes, which causes the breakdown of

the native oxide barrier [12-14] and hence creates the conduc-

tive path required to inject Iin into the investigated material.

Empirically, it is observed that the magnitude of Ipulse must be

chosen larger than a certain threshold current (Ithreshold, typical-

ly >100 µA for blanket materials) in order to reduce the contact

resistance RC between the electrodes and the sample and hence

activate the required electrical contact.

Figure 1: Top-view schematic of the four μ4pp electrodes landed on
(a) a single fin and (b) two fins. The electrode contact size and the
contact resistance for each electrode–fin contact are, respectively, in-
dicated by dcontact and RCj (j = 1, 2,…, 8). Note that all contact resis-
tances are initially considered to be highly resistive because the native
oxides present on both the fins and electrodes prevent current flow into
the fin. Rfin is defined as the resistance of the fin between the two inner
contacts, i.e., Rfin = Rs × s/Wfin, where s is the distance between the
two inner contacts and Wfin is the fin width.

The given description of the punch-through mechanism is also

valid for more confined structures, such as fins. This does, how-

ever, require some additional considerations, starting with the

distinction between isolated and dense fins. First, for isolated

fins (Figure 1a), i.e., fins are separated by a distance (= pitch)

larger than dcontact, the procedure is identical to the previously

described case of blanket materials. The electrical contact is

indeed created, i.e., contacts j = 1, 2, 3, 4 are activated, when

Ipulse ≥ Ithreshold and the electrical resistance Rfin of the region

of the fin included between the two inner contacts is readily ob-

tained from the ratio Rfin = V/Iin [6]. Secondly, in the more

complex case of dense fins, i.e., fin pitch < dcontact, the μ4pp

electrodes can physically contact multiple fins at the same time.

For simplicity, this paper only considers the case of two fins

physically contacted by the electrodes (Figure 1b). In this situa-

tion, electrical contact is formed on both fins, i.e., contacts j = 1,

2, …, 8 are activated, when the magnitude of Ipulse is similar as

used on blanket materials. The measured resistance is then de-

termined by the ratio between the two currents Iin1 and Iin2

injected into the two electrically connected fins. Since this

ratio depends on the contact resistances RCj (j = 1, 4, 5, 8),

this leads to a high measurement variability, i.e., a loss in

precision [3]. As a consequence, in order to precisely determine

Rfin in a dense fin array, Ipulse should be carefully controlled

(Ipulse < 2 × Ithreshold) to only allow for the formation of elec-

trical contact to one single fin, i.e., only contacts j = 1, 2, 3, 4 or

j = 5, 6, 7, 8 are activated. On top of that, to make sure that all

four electrodes indeed form electrical contact with the same fin,

the punch-through mechanism between electrode pairs must be
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Figure 2: (a) Measured fin resistance Rfin as a function of fin width Wfin on isolated (triangle) and dense (diamond) fins using high (red) and low (blue)
punch-through currents. (b) Relative standard deviation of the measured values of Rfin of Figure 2a as a function of the fin pitch. When using a low
punch-through current (blue), the relative standard deviation remains stable (≤3%) regardless of fin pitch, indicating that the electrical contact remains
restricted to a single fin, even in the grey area where the electrodes are in physical contact with more than one fin.

sequenced properly. For example, when first applying the

punch-through mechanism on the top two electrodes, which

then form electrical contact with the left fin in Figure 1b, i.e.,

contacts j = 1 and j = 2 are activated, the next electrode pair

should use an already activated contact to make sure the

contacts on the same fin, i.e., j = 3 or j = 4, are activated next.

Note that, however, the exact behavior of the electrical contact

formation on dense fins is still not fully understood and a more

thorough description would also include pulse duration, peak

voltage, and material properties.

Results and Discussion
The experimental demonstration of using the punch-through

current Ipulse to individually contact single Si fins in dense

arrays is shown in Figure 2a, where the measured Rfin is plotted

as a function of the fin width Wfin after using a high (100 µA)

or low (25 µA) punch-through current to form the electrical

contact. To highlight the impact of the fin pitch, we have addi-

tionally separated the isolated and dense fins, assuming the

approximately 300 nm physical contact size of the electrodes as

measured with scanning electron microscopy (SEM) [9]. It can

be observed that, while Ipulse does not affect the precision on

isolated fins (red and blue triangles), for dense fins a major

improvement in precision can be achieved by decreasing the

punch-through current from 100 μA (red diamonds) to 25 μA

(blue diamonds). Based on the previous theoretical considera-

tions, the improvement in precision is achieved by restricting

the electrical contact to one single fin despite the electrode

being in physical contact with two fins. To show this improve-

ment more clearly, the relative standard deviation of the

measured values of Rfin can be plotted against the fin pitch, as

shown in Figure 2b. Excitingly, the precision of the 25µA

punch-through current measurement remains stable at around

3%, making the measurement feasible even for fin pitch much

smaller than dcontact. Note that Figure 2 also shows that the fin

width has no impact on the measurement precision.

The ability to probe individual fins in dense arrays allows us to

exploit the high precision of the μ4pp tool [15] to electrically

characterize nanometer-wide fins regardless of the fin pitch. To

demonstrate this, Figure 3 shows that we can now measure

variations in fin resistance induced by nanometric variations

in fin width in a dense array of narrow Si fins. For this, we

used an array of ten ca. 20 nm wide Si fins implanted with B

(3 × 1015 cm−2, 5 kV) and laser-annealed three times at

1150 °C. Note that Wfin is assumed constant, i.e., the very small

tapering of the fins along the shallow (ca. 60 nm) implant depth

[6] is ignored. These fins, having a pitch of 200 nm, were

measured individually by using a punch-through current of

25 µA to restrict the electrical contact to a single fin. Moreover,

by running the μ4pp measurement over the fin array with a step

size of ca. 25 nm, we could assign the measured values of Rfin

to each specific fin. As can be observed for the four out of ten

fins shown in Figure 3a, Rfin varies in accordance with the fin

width measured by TEM. Note that the error in Figure 3a is

3.0% for each fin, which was obtained by taking the lowest

precision achieved out of all ten measured fins. Since Rfin is ob-

tained by taking the average of several subsequent measure-

ments, the precision includes the variation in the exact position

of the electrical contact points for each landing of the elec-

trodes, i.e., a variation in contact spacing s, which may result

both from a variation in the electrode positioning itself and from

the exact location of the small electrical contact under the wider

electrode. Additionally, using the widths measured with TEM
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Figure 3: (a) TEM image of four ca. 20 nm wide Si fins where the measured Rfin is indicated on top of each fin. The measured values of Rfin correlate
to the respective fin width Wfin according to Rfin = Rs

fin × s/Wfin. The error for each fin refers to the lowest precision (3.0%) achieved on all measured
fins. (b) Measured fin resistance as a function of Wfin fitted to a constant sheet resistance Rs

fin using the relation Rfin= Rs
fin × s/Wfin (using s = 8 µm).

The slope of the fitted curve at Wfin = 20 nm is indicated (ca. 4.0 kΩ/nm). (inset) Sheet resistance (Rs
fin) of the ten Si fins obtained using the inversed

relation Rs
fin = Rfin × Wfin/s, plotted against fin width Wfin. For comparison, the dashed red line shows the low sheet resistance Rs

pad = 135 Ω
measured on a large pad of the same material as the fins.

and the relation Rfin = Rs
fin × s/Wfin (using s = 8 µm), the inset

of Figure 3b shows that all ten fins have the same sheet resis-

tance Rs
fin ≈ 200 Ω/sq, indicating that the observed variations in

Rfin are indeed caused by variations in fin width. This allows us

to evaluate the sensitivity of the technique by plotting the

measured values of Rfin as a function of the fin width

(Figure 3b) and subsequently fitting the data with a constant

sheet resistance Rs
fin using the relation Rfin = Rs

fin × s/Wfin. By

comparing the slope of the fitted curve at Wfin = 20 nm

(ca. 4 kΩ/nm) to the achieved precision (ca. 2.3 kΩ, Figure 3a),

we can deduce that the technique has a sensitivity to variations

in fin width down to about 0.5 nm, opening the prospects for its

use in electrical critical dimension metrology. As also interest-

ingly shown in the inset of Figure 3b, the measured Rs
fin is

higher than the sheet resistance Rs
pad = 135 Ω (dashed red line)

measured in a large 80 × 80 μm2 pad having undergone the

same implantation and annealing treatment. This increase in

sheet resistance when going to nanoscale elongated geometries

was expected and understood to originate from the presence of

interface states as well as defects at the fin sidewalls [6].

Conclusion
This paper demonstrates the capability of μ4pp to electrically

characterize individual nanometer-wide Si fins in dense arrays

regardless of fin pitch. By carefully controlling the electrical

contact, we were able to measure the resistance of individual

ca. 20 nm wide fins in dense arrays even though the μ4pp elec-

trodes physically contact more than one fin. Thanks to the high

precision of the measurements, the correlation between

measured resistance and nanometer-scale variations in fin width

could be demonstrated with a sensitivity as small as 0.5 nm.
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