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Abstract 

Many workplaces in New Zealand can be described as hazardous. That is, the nature 
of the work and/or workplace, or the combination of the two, can lead to situations 
where workers may be at risk of workplace accidents. One contributor to such 
accidents is worker fatigue, which is the result of the nature and intensity level of the 
work they are undertaking. This can be exacerbated by factors such as the length of 
the working day, shift work and roles that require high levels of concentration. 
Most existing risk minimization processes rely on self-reporting methodologies 
and health and safety procedures; neither of these are necessarily the most effective 
methods for dealing with workers in hazardous jobs and work environments. 

Wearable technology which collects physiological data, such as step and heart rates, 
as an individual performs workplace tasks has been proposed as a possible solution. 
While wearable devices are minimally intrusive to the individual and so 
can be used throughout the working day it is unclear how suitable they are for in-
situ measurements in real-world work scenarios. In this work, we describe a series 
of studies conducted with New Zealand forestry workers and present an analysis 
of the data gathered to consider the suitability of the collection methods as well 
as the suitability of the data itself as a method to identify fatigue and reduce risk in 
the workplace. 



Introduction

Judy Bowen, March 2018

This collection of work is based on research and writing undertaken by Christo-
pher Griffiths during his enrolment as a PhD candidate in the Department of
Computer Science from February 1st 2016 to September 2017. It begins with
introductory material written by Chris as part of his PhD research proposal,
and as such describes the domain of this studies and his intended research plan.

Following this introduction are three publications arising from his work. The
first of these is “Investigating Wearable Technology for Fatigue Identification in
the Workplace” which was accepted for publication and presentation by IFIP
TC13 Conference on Human-Computer Interaction (INTERACT) 2017 [1]. This
is an ‘A’ ranked peer-reviewed conference (CORE rankings). Chris was the
primary author on this paper which described his preliminary investigations
into the use of wearable technology to capture physiological and psychological
data under differing (physical and mental) loading types. It summarised the
results of studies conducted during the first 6 months of his enrolment.

The second publication is a journal paper “Investigating Real-Time Mon-
itoring of Fatigue Indicators of New Zealand Forestry Workers” accepted by
Accident Analysis and Prevention for their special issue: Managing Fatigue to
Improve Safety, Wellness, and Effectiveness [2]. Most of the writing for this
paper was done by myself and Annike Hinze, but all of the data comes from
Chris’s first in-situ study with forestry workers with insights drawn from his
analysis.

The third publication, “Personal Data Collection in the Workplace: Ethical
and Technical Challenges” [3] was accepted for publication and presentation
by British HCI Conference 2017. This peer-reviewed conference is ranked as
a National conference by CORE and as an A ranked conference by ERA. The
work in this paper describes some of the wider research project that Chris’s
PhD work contributes to and as such draws on findings from the first 8 months
of his PhD research.

We are currently working through several data-sets from studies conducted
by Chris between February 2017 and September 2017. The largest of these
include another in-situ study with forestry workers which investigate correla-
tions between heart-rate variability (HRV), reaction time and task load mea-
surements. The others are smaller ad-hoc studies and include an investigation
into HRV and reaction time of night-shift workers and experiments into differ-
ing driving conditions over long periods and how these affect both HRV and
reaction time and how they are mitigated by recovery time. We are in the pro-
cess of writing a journal paper which will include the forestry study data, and
anticipate that the rest of the data will contribute to a conference publication.
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Research Introduction by Christopher Griffiths

The New Zealand workplace is fraught with potential harm, high injury rates
have seen large numbers of claims made to ACC, with some 226,100 reported
in 2014 alone [4]. More importantly,44 workplace fatalities wer reported for the
same year. Recent reforms to health and safety legislation have been imple-
mented by way of the Health and Safety Reform Bill [5] designed to address
the high levels of accident and injury rates. Amendments to the Bill have seen
the shifting of focus to a more employee-centred approach; stating the need for
effective worker engagement and participation, with the anticipation of cutting
the current injury rate by twenty five percent by 2020.

Risk within the workplace is defined as anything that has the potential to
cause harm, and places emphasis on both employer and employee participation
in addressing workplace risk. Current risk assessment practices require the iden-
tification of risk, impact of identified risk, and procedures to eliminate, isolate or
minimise the risk. This process is usually undertaken on a task by task basis by
a company nominated Health and Safety representative and is generally based
on the practical aspects of the nature of the task, in conjunction with legislative
guidelines. This method has many pitfalls as it is subjective by nature, the as-
sessor of a task may have a holistic view of the energy requirements of a worker
required for task completion rather than the true energy requirements (amount
of energy used for task completion). Furthermore, the process can result in
a generic view of a task and its physical requirements, whereas in reality this
is unique to the individual performing the task. It must also be remembered
that the effects of energy expenditure are cumulative; frequent task repetition
adds to the daily total of energy expenditure and can lead to excessive levels of
fatigue. Such high levels of fatigue can negatively impact employee well-being,
increase the risk of accident, and negatively impact performance [6, 7, 8].

The Department of Labour recognise fatigue as a contributor to workplace
safety and reference their 2003 document ‘Healthy work managing stress and fa-
tigue in the workplace’ when providing identification and preventative measures
in dealing with fatigue. Recommended measures for identification are predom-
inantly self reported; employees complete questionnaire’s designed to identify
fatigue by way of how they feel. Results of these questionnaires are used by
health and safety representatives to both measure and minimise the impact of
fatigue within the workplace.

Current technologies exist that facilitate the automatic collection of activity
levels. Targeted as fitness trackers these devices are minimally intrusive to the
user and operate autonomously. The current generation of fitness trackers [9] are
typically wrist worn devices connecting via Bluetooth to a smart phone device to
view the collected data. Devices such as those manufactured by Fitbit, Jawbone,
Polar etc. provide additional data analysis which can be viewed through a
web portal. It is my intention to use the physiological data supplied by these
devices, and other similar non-intrusive data gathering methods, in conjunction
with targeted subjective workload assessments to assess the impact of task and
role based activity on performance. Quantitative physiological data collected
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automatically as individuals perform their daily duties will facilitate a better
understanding of task/role energy requirements. Health and Safety professionals
provided with this information will be able to better identify workplace risk and
therefore better address risk mitigation techniques. It is hoped that a more
accurate risk assessment that identifies task loading can both minimise risk and
increase productivity. Furthermore, by identifying early signs of impairment,
timely intervention can minimise the risk of harm within the workplace.

Study Domain

This work builds on the studies and relationships from work undertaken during
my MSc, in which non-intrusive monitoring technologies were investigated for
use with forestry employees. The forestry industry is one of the most dangerous
occupations in New Zealand, employees being 15 times more likely to suffer a
workplace injury compared to other NZ based industries [5].The nature of the
work is physically demanding, employees can expend as much energy through-
out the course of their day as an athlete would in running a marathon [10]. Such
a high level of energy expenditure combined with hazardous working environ-
ments can substantially contribute to the levels of risk employees are exposed
to. Worksites are generally remote, requiring the working day be lengthened
to incorporate travel time. This extension to the working day combined with
the physically demanding workload can cause issues with fatigue in workers and
adversely impact safe working practices [11]and be a contributor to the high
numbers of incidents within the industry.

Background

There is limited information on physiological monitoring of forestry employees
and most information to date focuses on heart rate and aerobic capacity [12,
13, 14, 15]. Similar limited information is present for fatigue investigation in
forestry workers and existing literature is predominantly based on subjective
reporting [16, 17]. This method of data collection has many pitfalls as it is
subjective by nature and susceptible to response bias; individuals tend to agree
with questions [18].

As part of my Masters degree I investigated tools and methods for data
capture of forestry workers. This involved collecting data on physiological vari-
ables (activity) and investigating their relationship with performance (reaction
time). Roles investigated were varied, tree felling and log making roles required
large amounts of physical activity, conversely machine operator roles were of
a more sedentary nature. This highlighted a problem for determination of ac-
tivity in roles of a sedentary nature. These roles are generally more biased to
cognitive rather than physical activity as they are using machinery for loading
trucks, hauling logs, stacking logs within confined work areas, which requires
high levels of attention.

Measurement of activity in cognitive biased roles requires additional mon-
itoring technologies and techniques to those originally used. This proposal is
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designed to investigate real-time data capture of both physical and mental ac-
tivity. It is hoped that data collected in conjunction with reaction time testing
can be used as indicators of increasing fatigue levels within forestry workers.
In my work I will consider the nature of fatigue, both generally and within a
workplace context and suggest physiological indicators negatively impacted by
fatigue. Furthermore I will build on previous works undertaken on the identifi-
cation of fatigue by use of autonomic activity indicators.

Fatigue

Fatigue, which is often misrepresented as a feeling of sleepiness, can be classi-
fied into two general types; mental fatigue that affects an individual’s cognitive
processes and physical fatigue that affects an individual’s ability to maintain
physical actions. Both types of fatigue are cumulative by nature in that the
more a task is performed the level of fatigue generated by performing the task
increases. Both types of fatigue lessen after a period of rest. Although quantifi-
able by such indicators as reduction of muscle strength for physical fatigue, and
slower response times for mental fatigue, it is a subjective physiological state
experienced by individuals as a result of either physical or mental exertion. The
levels of fatigue experienced are determined by the individual’s perception of
these physiological changes. The nature of this physiological state can be best
explained as:
“The taking possession of the mind by a sense of lassitude. It is a reduction in
the capacity and desire to react. It is characterised by tiredness and an aversion
to the continuation of goal-directed work. It is accompanied by a strong desire
for rest through the cessation of ongoing activity.” [19]
This desire for rest is an evolutionary physiological process designed to protect
an individual from harm. Fatigue provides a barrier designed to leave enough
energy available to an individual should unexpected threats occur and rapid
reaction be required. This barrier is able to be overcome by an individual’s de-
termination or desire to complete a goal. This can be thought of as a ‘return on
investment’, with energy expenditure being the invested variable. For example,
does the reward from the goal completion justify the energy expenditure?

Fatigue is classified into two separate types, physical and mental, each con-
tributing to the overall fatigue levels experienced by an individual. When ex-
amining these fatigue types within a workplace context we can, in most cases,
identify the major contributor to the overall fatigue levels experienced. Roles
requiring high levels of task repetition, or forceful extensions of muscle groups
are inclined to see individuals at risk from physical fatigue, conversely roles re-
quiring large amounts of sustained attention are more inclined to see individuals
at risk from mental fatigue.

The impact of high fatigue levels

There have been many investigations into the impact of high levels of fatigue,
both physical and mental. Typical findings are that there is a decline in mus-
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cle performance on repeated exertions and a decline in performance as load
duration increases [20, 7]. Furthermore, Gregory et al. investigating muscle ac-
tivation patterns during highly physically demanding tasks identified significant
differences (p ¡ 0.05) between muscle groups in pre- and post-test conditions[21].
Similar traits exist for mental fatigue, the higher the loading the more impacting
the fatigue. In a study Linden et al. found:
“Willingness to exert effort on the experimental tasks and to do ones best on
these tasks, as measured directly after the manipulation, was significantly lower
for the fatigued participants than for the non-fatigued participants.” [22]
As such, a higher the level of mental fatigue experienced by an individual can
result in lower productivity levels. This conclusion was reinforced in [23], where
the authors found “fatigue is usually related to a loss of efficiency and disincli-
nation to work.”
subsubsection*Fatigue in the workplace Work is seen as a ‘must do’ rather than
a ‘desire to do’ activity. One does not encounter fatigue to the same extent as
and when goal completion is not imposed. Hockey states:
“The widespread interpretation of fatigue as a negative consequence of work
may be true for externally imposed goals; meaningful or self-initiated work is
rarely tiring and often invigorating.”[24]
Work related goals, by their nature, impose stressors on an individual. Work is
a reward for activity based concept being reliant on imposed expectations for
goal completion (performance). These stressors are multi-faceted, consisting of
both internal (workplace) and external (social) elements. Identifying the causal
nature of workplace fatigue can lessen the risks encountered in the workplace,
however it must be remembered that external stressors are also contributors.
Limited or poor quality sleep and insufficient recovery time also impact perfor-
mance. While investigating sleep quality Akerstedt, et al. found that disturbed
sleep is an important predictor of fatigue. They also state that fatigue is closely
related to high work demands, immersion in work and disturbed sleep [8].

Recovery time is also a contributor to fatigue, in a study into cumulative
fatigue Pichot et al. used measurements of the autonomic nervous system index
using ECG readings taken nocturnally from six male French rubbish collectors.
They found a progressively increasing resting heart rate throughout the working
week with a reduction occurring as the recovery period between work periods
extended [25].

Monitoring technologies

Fitness monitoring existing previously within the realms of athletes and the
military has now become commonplace, with individuals collecting physiologi-
cal data for their own personal use. Developed from the simple pedometer, the
later generations of these devices use combinations of three axis accelerometers
to determine cadence. Proprietary algorithms, based on height and weight are
used to calculate calorific burn and distance travelled. Further developments
have seen the incorporation of technology similar to pulse oximetry where LEDs
illuminate an area of the skin (usually the wrist) and reflected light is measured
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by a photo electric cell. This facilitates the collection of heart-rate data, how-
ever this methodology shows variation when compared to measurements taken
using chest strap monitoring systems. Sleep quantity and quality can also be
determined based on time stamp and movement data. Interruptions in sleep are
recorded when the device registers movement data at times during the night,
conversely long periods of inactivity are defined as sleep periods.

The use of these devices is becoming more commonplace in experimental
studies with automated physiological data collection by these devices facilitat-
ing research into areas that lie beyond providing goal-centred information to
users. Recent research has seen the use of commercially available devices for in-
vestigation into areas beyond that of activity monitoring. Zambotti et al. used
the FitBit Charge HR to investigate cardiac functioning of adolescents during
sleep. They found that the device showed good agreement with polysomnogra-
phy and electrocardiography in measuring sleep and heart rate whilst sleeping
[26].

Current iterations of commercially available activity monitors (e.g. Microsoft
Band 2) facilitate the collection of additional metrics such as galvanic skin re-
sponse and body temperature. Updates to sensor technologies also allow for
improved heart rate determination using pulse oximetry. Cormack et al. in-
vestigated the suitability of these trackers in monitoring cognition, mood and
behaviour, suggesting
”these devices may be used for daily cognitive testing, complementing periodic
in-person assessment in clinical research or interventions.”[9]
Driven by sales, refinement of these devices is constant with additional metrics,
improved accuracy, and data granularity all being added to improve market
share. Perpetual development cycles add to the value of commercially avail-
able activity monitors in experimental research, facilitating data collection in
domains where traditional methodologies may not be practical.

Measurable Indicators of activity

When examining fatigue indicators we are faced with a choice, do we use mea-
sured activity as a determinant or do we focus on the body’s response to activity?
I suggest that regulatory change in response to activity is a preferred measure-
ment technique when collecting data on mental loading. Physical loading by
way of movement, heart rate and calorific burn rates have been successfully
employed in the determination of activity in our proposed domain [27] as such
I suggest these as indicators of physical loading.

However, it must be remembered that everyone is unique, although the re-
sponse to activity is universal; faster heart rates, lower beat to beat intervals
of heart beat and differing suppression levels in brainwave activity. All these
changes occur automatically in response to external stressors, and are governed
by the autonomic nervous system, a brief overview of which is presented next.
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The autonomic nervous system

Part of the peripheral nervous system, the autonomic system controls the in-
voluntary processes in the body, automatically regulated without conscious
thought. Heart beat, digestion perspiration etc. are all functions regulated
by this system, activation rates being controlled in response to physiological
stressors. Split into two parts the sympathetic nervous system is responsible for
the fight or flight grouping of processes such as increasing respiration and heart
rate. Complementary to this is the parasympathetic nervous system responsible
for the rest or digest processes such as decreasing respiration and heart rate.
Changes in the balance between these two systems occur when the body expe-
riences the addition or removal of physiological stressors. Imbalance between
these two systems can be used to determine the impact of external stressors,
and as such can be used as indicators of fatigue [28, 29].

Human performance measures

Seen as the response variable, human performance will be impacted by the
variation in activity one performs. Reaction time has long been a stalwart
for the measurement of human performance. Developed by Galton in 1889, the
simple reaction time test is a measure of the length of time it takes an individual
to respond to either a visual or auditory stimulus. Response is usually the press
of a button on presentation of the stimulus. The test itself is usually comprised
of a predetermined number of sub trials with the result being presented as an
average of these sub trials. It is used in the testing of general alertness and
motor speed of an individual with uncertainty being introduced by a variable
time period between individual trials.

Being somewhat similar to simple reaction time, choice reaction times mea-
sures the response time of an individual when presented with a visual stimulus,
although this test requires the subject to make a choice. These choices are usu-
ally presented visually and require a certain response to a stimulus. A prime
example being that a user is presented with a visual representation of an arrow
pointing either left or right and they must select the corresponding button on a
keypad. The act of having to choose the correct response requires more cogni-
tive processing than simple reaction time and can indicate delays that may be
caused by impairment such as fatigue. Tests are usually comprised of a prede-
termined number of sub trials which require selection of the correct response to
a stimulus. Uncertainty is added by the requirement to choose, and a variable
time between presentations of the stimulus.

Both of these methodologies have been used many times in the investigation
of activity in human performance, with most of these studies reporting increas-
ing reaction times as a result of cognitive or physical loading [30, 31, 32]. Simi-
lar investigations have been undertaken within workplace contexts, Baulk et al.
investigated fatigue levels experienced by individuals with varying workloads.
Using a similar methodology to that proposed for this research they identified
both slower reaction times and an increasing trend of subjective fatigue across
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work periods [33].

Research Questions

Based on the identified problem and the background literature, my aim is to
address the following research questions:

• What are the physiological variables that we should measure as determi-
nants of activity?

• What are the technological solutions we can use to measure them?

• How do we infer meaning from the data?

• What do we do with the data?

I will answer these through in-situ studies with forestry workers as well as addi-
tional experiments and studies as required. Ultimately we aim to discover what
is measurable and what is meaningful so that we can incorporate the measured
data into real-time solutions for worker safety.
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Abstract. Fatigue has been identified as a significant contributor to
workplace accident rates. However, risk minimisation is a process largely
based on self-reporting methodologies, which are not suitable for fatigue
identification in high risk industries. Wearable technology which is capa-
ble of collecting physiological data such as step and heart rates as an indi-
vidual performs workplace tasks has been proposed as a possible solution.
Such devices are minimally intrusive to the individual and so can be used
throughout the working day. Much is promised by the providers of such
technology, but it is unclear how suitable it is for in-situ measurements
in real-world work scenarios. To investigate this, we performed a series of
studies designed to capture physiological and psychological data under
differing (physical and mental) loading types with the intention of find-
ing out how suitable such equipment is. Using reaction time (simple and
choice) as a measure of performance we found similar correlations exist
between loading duration and our measured indicators as those found
in large-scale laboratory studies using state of the art equipment. Our
results suggest that commercially available activity monitors are capa-
ble of collecting meaningful data in workplaces and are, therefore, worth
investigating further for this purpose.

1 Introduction

Fatigue is, by nature, cumulative, and is influenced by many variables such as
activity, time of day, sleep levels and social pressures. The impact of high fatigue
levels, especially in high-risk workplaces, can lead to increased risk for employ-
ees, and is seen as a large contributor to workplace accident rates [12,19,29].
Risk assessment processes include attempts to assess the impact of workplace
activities on fatigue levels. Typically these use qualitative self-reporting method-
ologies rather than quantitative data measurements. This type of data collection
in workplace contexts is susceptible to response bias [24] and can result in a
generalised view of risk. However the actual impact of activity upon fatigue is
individualised. For example, tasks performed by a young person impacts fatigue
levels to a lesser extent than tasks performed by an older person [2].

Many studies investigating the impact of activity upon performance have
been undertaken. Most identify that an individual’s performance is negatively

c© IFIP International Federation for Information Processing 2017
Published by Springer International Publishing AG 2017. All Rights Reserved
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impacted by activity, both physical and mental [9,16,23,27]. Each of these stud-
ies collected data using different methods, but the majority are conducted in a
laboratory setting with large numbers of participants. In real-world work envi-
ronments, individuals encounter naturally occurring stressors that may not be
observed in laboratory experiments. Similarly the longer-term nature of fatigu-
ing activities in the workplace and the limited number of participants who can
be measured in in-situ studies may make it hard to reproduce known results.

The rise in popularity of wearable devices has provided additional tools for
quantification of individualised activity levels. These devices are designed to
operate autonomously and enable the real-time collection of quantifiable data in
the field throughout the day. Physiological markers such as step and heart rates
can be used to determine workload intensities, especially in physically-biased
roles. Conversely, changes in the balance of the autonomic nervous system can
be used to quantify cognitive loading. However, it is unclear how accurate these
measures are when using commercial products designed primarily for the per-
sonal user. As a first investigation into this, we performed a series of single-person
studies designed to see if we could reproduce known correlations between activ-
ity (both mental and physical) and response times. If we find similar correlations
can be identified by these devices then it is worth further investigating their use
in real-world work environments.

In this paper, we present the results of these initial studies investigating the
use of low cost commercially available devices as a means of collecting data
that has sufficient accuracy and granularity to identify physiological changes
associated with mental and physical activity types which may indicate fatigue.
We examine the suitability of such devices for use in the field, specifically for
gathering data and monitoring of forestry workers throughout their working day.

1.1 Motivation

The forestry industry in New Zealand has a poor Health and Safety record with
some 12,921 active Accident Compensation Corporation (ACC) claims between
2008 and 2013. More importantly the number of reported fatalities for the same
period is 32. Such high levels of fatalities are concerning to the industry with
reforms being planned to address safety of employees. Suggestions based on
experimental data are limited, and difficult to source. Currently, the only practi-
cable solution is seen as increasing the level of mechanisation resulting in removal
of the employee from the worksite.

Recently (2014), the large numbers of incidents reported prompted the Inde-
pendent Forestry Safety Review [1], designed to investigate factors that impact
on health and safety within the forestry industry and to provide guidelines
designed to minimize the number of incidents. It was identified that the forestry
industry is one of the most dangerous occupations in New Zealand. Employees
are 15 times more likely to suffer a workplace injury compared to other NZ based
industries.

The physical nature of the work, long working days and tasks requiring high
levels of concentration can all exacerbate the impact of fatigue [13,28] with high
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demand tasks requiring more energy to complete. In workplaces with high task
demands employees may experience the effects of fatigue earlier. There is also a
recognition that the lack of welfare facilities in the forestry environment may be
an additional contributor to fatigue.

1.2 Measurements

There are numerous physiological indicators that can be used to quantify activity.
Step and heart rates have been successfully used to quantify physical activity
[8], whereas changes in the balance of the autonomic nervous system have been
used as an indicator of cognitive activity [25].

Currently seen as the gold standard for measurement of these variables are
step counting for ambulatory activity and, electrocardiography for heart rate
data collection. However, we must remember that in our proposed domain the
devices we choose need to be minimally intrusive and capture data autonomously.
Before we can assess suitable devices for the data collection we must first consider
what the appropriate data to collect is. We discuss proposed identifiers of activity
next, these will then inform subsequent choices of appropriate apparatus for data
capture.

Step Rate: The use of pedometers to measure an individual’s daily activity has
been used many times in differing domains. Designed to capture accelerations of
the hip during gait cycles they count the number of steps taken by an individual
over a given time period. Using the number of steps taken we can gain an insight
into how role-based activity may contribute to excessive fatigue levels. This
method has been used successfully to differentiate activity levels by role types
in forestry harvesting operations [17] with large differences between manual and
mechanised activity types being identified.

Heart Rate: Heart rate data captured throughout the course of a work period
can be an used as an indicator of task demand. Higher heart rates typically
accompany higher periods of physical activity as higher levels of oxygenated
blood are required due to increased physiological demand. Increases in heart
rate are individualized with demand being dependent on such criteria as age and
fitness levels. However, maximal heart rate can be calculated from the general
formula equation Maximal Heart Rate = 220 minus Age [20]. The resultant figure
can then be used in conjunction with resting heart rate to determine periods of
high and low activity where activity is defined as deviation from the resting
heart rate.

Heart Rate Variability (HRV): Heart rate variability is the time interval
between successive heart beats. Shorter periods are indicative of active loading
while longer time periods are indicative of rest. There are a large number of
variables that can be extracted from collected data each providing an insight
into autonomic nervous system activity. For our studies we use the low fre-
quency/high frequency ratio of the power spectrum density of the heart. This
variable has been found to correlate well with mental activity across differing
levels of cognitive load [7,10,26].
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Workload Intensity: Workload intensity, or how hard an individual perceives
their workload can be an indicator of increasing fatigue levels. Monotonous or
repetitive tasks have been identified as a contributor to motivational levels [22]
with individual performance slowing as motivational levels decrease [34]. The
Task Load Intensity Tool (TLX) developed at the Ames Research Center is
designed as a self-reporting estimator of how difficult an individual perceives
their workload. Using a six point scale it provides a workload score for workplace
activities [18]. Increasing workload scores for tasks where the only change is
duration can indicate increasing workplace fatigue [3].

Performance: Reaction time (both simple and choice) has been used many
times to measure individual performance. It is a measure of the elapsed time
between the presentation of a given stimulus and the participant’s response. In
simple reaction time the user responds to one stimulus whereas in choice reaction
time the user must identify the correct response from a set of choices. Reaction
time has been found to deteriorate with increasing fatigue [5,13,21] furthermore
the time difference between choice and simple reaction time can give insights
into the speed of mental processing.

2 State of the Art Methods and Tools

When considering our methodologies for collecting data we must also consider
the accuracy of our proposed devices. The most accurate measure for step count-
ing is manual counting. However, this is impractical for many purposes and in
particular for our chosen domain - one cannot manually count steps in the work-
place. The Yamax range of pedometers are widely regarded as the most accurate
equipment for automatic step counting [32] and have been used in many studies
investigating step rates [6,8,30]. When comparing the accuracy of our chosen
device (Fitbit Charge HR) many studies have found good agreement between
actual and recorded steps taken [14,15].

Real-time data collection of cardiovascular activity in the workplace presents
additional challenges. This type of data collection is typically done using an
electrocardiograph and is undertaken at hospitals or dedicated research labora-
tories. The equipment can be bulky and cumbersome with an individual having
wired sensors placed on the body. As previously discussed, our proposed domain
is forestry operations in which traditional ECG measurement is not practical.

Wearable devices exist that are designed to capture data in free living activ-
ities. These devices range from chest strap based monitoring through to smart
clothing containing electrodes to capture the electrical signals produced during a
heart beat cycle. Devices are designed to be minimally intrusive to the individual
and collect data autonomously facilitating use in the field.

The Polar range of products have been used extensively in studies investi-
gating the cardiovascular system. For example, Paritala’s work investigating the
effects of physical and mental activity used the Polar RS800 monitor to cap-
ture the heart rate of 24 participants during laboratory testing [25]. In a similar
study the relationship between markers of work related fatigue and HRV of 28
participants used Polar devices for the data capture [33].
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In the above section we have discussed the gold standards for data collection
and identified limitations for use in workplace domains. Tools for performance
and perceived workload intensity are numerous however, given our proposed
domain our choice is limited. Any devices used to measure our required metrics
will be worn throughout the working day by forestry workers and so should
not cause discomfort during their physical activities. In order to collect data we
therefore selected to use Fitbit Charge HR activity trackers to collect ambulatory
data and the Polar RS8020CX fitness watch paired with a Polar chest strap to
collect heart-rate data. In addition, field-based testing must be quick to conduct
to minimise the impact on both productivity and the individual and as such we
implemented an electronic version of the unweighted NASA TLX to collect data
on perceived workload intensity as this will be quicker than a paper-based survey.
For performance data we selected the Deary-Liewald Reaction Time application
developed by the Centre for Cognitive Ageing and Cognitive Epidemiology [11].
It is an application specifically designed for conducting reaction time testing
using portable computing devices.

3 Studies

The aim of these initial studies was to investigate whether the tracking devices
and tools listed above could be used to replicate the results of large-scale,
laboratory-based tests which investigate the effects of activity on fatigue. Per-
forming monitoring studies of forestry workers is time-consuming and requires
considerable buy-in from a number of different entities (forestry owners, con-
tracting companies, health and safety organisations and the workers themselves).
Before undertaking the field studies with workers, we therefore wanted to be cer-
tain that our equipment choices would be suitable and we could gather meaning-
ful data. As such we focussed on evaluating combinations of different measure-
ments across different activity types. Each of the studies described below were
conducted with a single participant over short periods of time (the course of a
day or a focussed activity) as a means to conduct such an evaluation.

3.1 Activity and Recovery

To assess the impact of activity on the physiological and psychological systems
our first study was designed to assess the impact of differing loading types (phys-
ical and mental) on performance and psychological indicators. During physical
loading the measurements were undertaken in an ad-hoc manner as and when
opportunities presented themselves. Workload intensity was measured using an
electronic implementation of the NASA TLX running on a dedicated server and
measured at the same time as reaction time testing. Apparatus was worn for the
duration of the monitoring exercise.

3.2 Physical Loading

Monitoring sessions were undertaken over the course of a working day. The
participant worked as a floor team member at a large retail outlet, a position
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requiring large amounts of ambulatory activity. Both ambulatory activity and
heart rate data collection commenced at the start of the work day and concluded
at the end of the work period. Workload intensity and performance measurement
was undertaken at the start and end of the work period and at the participant’s
designated break times (2× 15min and 1× 30 min).

When extracting data for heart rate variability, the raw data is put through
an analysis program that computes the various indicators of cardiographic activ-
ity. For this task we used the gHRV software developed by Milegroup based at
the University of Vigo in Spain. The application is specifically designed for the
analysis of heart rate variability.1

As mentioned in 1.2, we use the ratio of low frequency to high frequency of
the power spectrum density of the heart as an indicator of autonomic nervous
system activity, inferring increasing fatigue from the increase of this ratio. The
large datasets we create during monitoring can be used to provide point data,
however, for our estimation of increasing fatigue we use the cumulative mean of
the data over the duration of the monitoring period.

When assessing performance as the speed of mental processing (choice reac-
tion time minus simple reaction time) we see an initial period of improvement
followed by a period of slowing as the workday lengthens. The psychological
impact was found to increase across duration with increasing perceived task
intensity being reported (Fig. 1).

Fig. 1. Speed of mental processing (left) and workload intensity (right) vs cumulative
mean LF/HF ratio

Activity during this period was measured as 22,322 steps (18.8 km) with the
majority occurring within the first 6 h of the work session. The graphs indicate
that speed of mental processing and perceived workload intensity are impacted
by this high physical loading.

3.3 Cognitive Loading

To investigate the impact of cognitive load we conducted experiments where
driving was used as the mental activity and stressor. Driving is a task requir-
ing constant vigilance and high levels of spatial awareness. The experimenter
1 Available from https://milegroup.github.io/ghrv/doc.html.

https://milegroup.github.io/ghrv/doc.html
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performed a 3 h driving exercise on real roads encountering typical driving con-
ditions. Reaction time testing in conjunction with workload intensity monitoring
was undertaken at 30 min intervals for the duration of the experiment. On com-
pletion of the driving exercise monitoring was continued to assess performance
through a recovery period.

We found a similar increasing trend as that in physical loading however, the
increase in LF/HF ratio was found to be higher. Workload intensity and perfor-
mance were also negatively impacted over the duration of the experiment (Fig. 2).

Fig. 2. Speed of mental processing (left) and workload intensity (right) v cumulative
mean LF/HF ratio for driving experiment

The higher number of data points collected during the driving experiments
facilitates further analysis of existing relationships between our variables. We
identified a good correlation for the majority of our measured variables. Table 1
presents the results of the correlation between our measured variables.

Table 1. Correlation of physiological and psychological variables

Condition Correlation R Comments

Driving v speed of mental
processing

0.73 Speed of mental processing increases
with loading duration

Driving v workload
intensity

0.98 Perceived workload increases with
loading duration

Driving v LF/HF ratio 0.89 LF/HF ratio increases with loading
duration

Recovery v speed of
mental processing

−0.69 Speed of mental processing decreases
on loading cessation

Recovery v LF/HF ratio −0.75 LF/HF ratio decreases on cessation of
loading

LF/HF ratio v workload
intensity

0.92 LF/HF ratio increases with increasing
workload perception

LF/HF ratio v speed of
mental processing driving

0.72 Speed of mental processing increases
with increasing LF/HF ratio

Speed of mental
processing v workload
intensity

0.56 Speed of mental processing increases
with increasing perceived workload
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4 Discussion

When examining the results of our studies, we can see that each of our mea-
sured variables indicate an impact resulting from activity. In both physical and
cognitive loading types, we see a reduction in performance across loading dura-
tion indicated by slowing of reaction times. We also observe that this reduction
in performance occurs as the cumulative mean of low frequency/high frequency
ratio increases (Fig. 1). Furthermore, we note that cognitive load impacts the
cumulative mean of low frequency/high frequency ratio to a greater extent than
physical loading with higher values being recorded (Fig. 2) for our driving study.
These results are similar to the findings of other studies investigating the impact
mental and physical loading on the autonomic nervous system [10,23,27].

In our driving study, we found a good correlation between our measured
variables (Table 1) indicating relationships between performance and increasing
levels of the high frequency/low frequency ratio. We also identified that per-
formance continues to degrade on cessation of activity prior to improvement
facilitated through a recovery period. These findings agree with those of previ-
ous studies investigating the impact of loading on the autonomic nervous system
[9,10].

Similar to other studies [9], we found perceived workload intensity increases
as loading duration lengthens, individuals report higher workload scores later in
the day for the same tasks. The perception of workload intensity was also found
to relate to our measured physiological indicators. We identified higher work-
load scores were reported with increasing cumulative mean low frequency/high
frequency ratios.

What we are seeking to identify here is the suitability of wearable devices
for capturing meaningful data. As such the results described are not intended
to prove relationships between activity, fatigue and response times per se. But
rather act as a proof of concept that such methods and tools can replicate known
correlations in such data. Given that they indicate this is possible, we can then
move on to study their use in the field within our larger-scale studies with forestry
workers.

5 Conclusions and Future Work

Our research question asked if low cost lightweight methods can be used for
meaningful data collection of data pertaining to physiological indicators related
to the impact of activity on performance. As found in other studies [4,31] the
Fitbit Charge HR successfully collected data on ambulatory activity. Having a
similar footprint to a wrist watch we found the device minimally intrusive, and
caused no discomfort to the individual.

The Polar chest strap used for the collection of heart rate variability proved
to be capable of collecting meaningful data. However, the practicality of this
device can be called into question. We found the fastening clasp on the chest
strap can cause discomfort to the individual, resulting in reluctance to wear the
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device over longer periods. We also note a period of spiking may be present due
to insufficient moisture between skin and electrode to accurately record heart
rate data. This can be overcome by the application of electrode gel prior to the
commencement of data capture.

As in other studies [3,16,29], our results indicate workplace activity impacts
both physiological and psychological states. We identify increasing values of
the cumulative mean low frequency/high frequency ratio as loading duration
extends. Furthermore, we identify that cognitive loading has a greater impact
on the individual than physical loading. We have also identified that on cessation
of activity performance continues to degrade prior to improvement. We acknowl-
edge that monitoring undertaken during our study was brief and extended data
collection over longer time frames is required to further identify any trends that
maybe present. Furthermore, we acknowledge that the data collected represents
a single individual as such future studies should incorporate a larger partici-
pant base to gain a better understanding of the physiological and psychological
impact of workplace activity.

In conclusion, we assessed commercially available fitness monitoring devices
as tools for physiological data capture under differing loading types. We found
that the selected activity trackers are capable of collecting meaningful data pro-
viding researchers with additional tools for monitoring activity in free living.
The use of the cumulative mean of the power spectrum density of the heart may
be a useful indicator of the impact of activity on the autonomic nervous system
and as such may be useful for the determination of workplace role/task intensity.
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A B S T R A C T

The New Zealand forestry industry has one of the highest fatality and injury rates of any industrial sector in the
country. Worker fatigue has been identified as one of the main contributing factors. Currently no independent
and objective large data source is available that might support an analysis of this, or provide the basis for
ongoing monitoring to further investigate. In order to successfully manage fatigue in the forestry workplace, we
must identify suitable ways of detecting it. Industry partners are increasingly looking at monitoring solutions
(particularly lightweight, wearable technology) that aim to measure worker activities and physiological metrics
in order to determine if they are fatigued.

In this article we present the results of studies which investigate whether or not such technology can capture
meaningful data in a reliable way that is both practical and usable within the forestry domain. Two series of
studies were undertaken with in-situ forestry workers using reaction and decision-making times as a measure of
potential impairment, while considering activity levels (via step count and heart rate) and job-roles. We present
the results of these studies and further provide a comparison of results across different ambient temperatures
(winter vs. summer periods). The results of our studies suggest that it may not be possible to identify correlations
between workloads (based on both physical and cognitive stresses) and fatigue measures using in-situ mea-
surements as results are highly personalised to individual workers and can be misleading if the wider context is
not also taken into consideration.

1. Introduction

Forestry has one of the highest fatality and injury rates of any in-
dustrial sector in New Zealand.1 Since 2008 there have been 32 fatal-
ities, with claims to the NZ accident compensation scheme (ACC) in
excess of two million NZ dollars each year. There were 12,921 active
ACC claims between 2008 and 2013.2 As a result of these poor safety
statistics an independent review was conducted by Adams et al. (2014)
for the Forestry Industry Contractors Association (FICAday). Data was
gathered through interviews and self-reporting of all involved in the
sector, from forestry owners and managers to the workers themselves,
although the actual number of respondents was relatively small in
comparison to the size of the industry. The initial report identified a
number of factors contributing to the high accident rate (such as fa-
tigue, lack of training, poor health and safety cultures) and included
recommendations primarily aimed at increased participation in training
and certification for workers and contractors. However, the report did
not consider how the potential underlying causes of accidents might be

identified or monitored, nor did it address potentially unsafe work
practices or question why these continue to exist.

Aside from the FICA report there has been no large-scale data col-
lection on fatigue in the forestry industry in NZ; information to date has
been based on questionnaires and self-reporting of selected groups of
workers. This method of data collection has many pitfalls, being sub-
jective by nature and therefore susceptible to response bias, for example
it is known that the structure of a questionnaire can have an impact on
results as individuals tend to agree with questions (Morrel-Samuels,
2002).

The poor safety statistics and lack of large-scale data collection or
analysis of accident causes beyond worker compliance provided the
initial motivation for our work. In order to collect a meaningful amount
of data from workers going about their everyday tasks, we needed to
identify appropriate types of data that could be collected unobtrusively
as well as suitable ways to collect such data from forestry workers. In
conjunction with this, the industry health and safety organisations
began to take an interest in such an approach, and began looking at
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technological solutions used in industries such as the military, mining,
haulage driving, etc. Before committing to large-scale purchases of ei-
ther bespoke or off-the-shelf solutions they also wanted more in-
formation about the feasibility of monitoring workers in this way.

We initially considered the use of light-weight mechanisms, such as
off-the-shelf activity trackers (e.g., Fitbit, Jawbone, etc.), to gather data
on levels of activity (via steps and hill-climbing measurements) and
quality and quantity of sleep of forestry workers (Bowen et al., 2015).
The goal of this work was two-fold: firstly we wanted to develop an
actual data set (rather then self-reported data) from which to under-
stand the working environment and identify worker fatigue (a known
cause of accidents and contributor to risk). Secondly we aimed at
identifying data that may be used by real-time technological interven-
tions to identify potentially hazardous situations. We began with a
series of experiments conducted within the research team and with a
small group of forestry workers to validate equipment, methods and
data types before moving on to the larger studies described in this ar-
ticle.

From these initial experiments we found that the steps and distances
walked by workers did not seem to be significant factors leading to
fatigue; relevant aspects seemed to lie in the stress caused by the ne-
cessity to pay close and ongoing attention to tasks performed in a po-
tentially hazardous environment. Furthermore, although sleep data was
relevant, there were issues of privacy and ethics that needed to be
considered when collecting such data, particularly if we were to retain
worker buy-in to our studies. We also found that the off-the-shelf so-
lutions for sleep tracking were in some cases unreliable or impractical
(levels of discomfort made it unlikely study participants would engage
with longer studies involving their use). In these initial investigations
we also encountered some resistance to this out-of-work tracking (for-
estry workers were concerned about privacy and how the data may be
interpreted) and as such we decided that we would not include sleep
data in our larger studies. We discuss this in more detail in Sections 4.3
and 7.

Some observations from the initial investigations (Bowen et al.,
2015), relating to cumulative fatigue were confirmed by analysis of
accident statistics made available by one of the independent forestry
management companies. The data, collected over 8.75 years, indicates
an increasing incident rate throughout the working day, mitigated by
breaks taken for lunch (see Fig. 1). As well as the date and time of day,
the accident data contains information about which activity and task
was involved (we discuss roles and activities of workers later in Section
4) as well as a self-reported reason for the accident. We do not discuss
the details of these reports further in this article other than to consider
the time-of-day for accident occurrence in Section 7.

Contributions. In this article, we present the results of two studies
designed to investigate methods for identifying and measuring con-
tributors to fatigue in the workplace. Each study consisted of a series of
visits undertaken with groups of in-situ forestry workers. We use re-
action and decision-making times as a measure of potential impairment
and compare this with activity levels (measured by step count and heart
rate) and job-roles, to try and identify contributors to fatigue. We also

introduce a comparison of results across different ambient temperatures
(taken during summer and winter periods) to consider any amplifica-
tion effect this may have on the same measures. We present the results
of our studies and discuss the limiting factors of capturing and using
such data in a meaningful way.

Structure of the article. The article is structured as follows: Section 2
provides background information on NZ forestry and the concepts of
fatigue and reaction time. In Section 3 we discuss related work in the
context of both forestry and workplace monitoring more generally.
Section 4 describes the methodology used for our studies and the results
are given in Section 5 (Study 1) and Section 6 (Study 2). We also
provide a comparison across different working temperatures (seen in
winter and summer). A discussion of the results is given in Section 7
with a final summary, conclusions and future work presented in Section
8

2. Background

This section briefly discusses aspects of managerial structures and
work organisation in NZ forestry, and introduces concepts and mea-
sures of fatigue that are relevant to this article.

2.1. NZ forestry

According to the New Zealand Treasury (2016), the forestry in-
dustry contributes about 1% of New Zealand's GDP and provides about
10% of New Zealand's total merchandise exports. There are roughly 1.8
million hectares of plantation forests split between state and private
ownership. The industry is governed by four primary associations. The
New Zealand Institute of Forestry is the main professional body and
there are three separate associations beneath it: Forest Owners Asso-
ciation (FOA); Forest Industry Contractors Association (FICA); the New
Zealand Farm Forest Association (NZFFA). Management and con-
sultancy companies exist to source and manage contractors for opera-
tions such as harvesting, planting and forest maintenance. In addition
these bodies monitor contractors, ensuring on-site operations comply
with both operational standards and relevant legislation such as the
Health and Safety at Work Act (The Parliament of New Zealand, 2015).

Work is distributed by way of tender for which smaller companies
compete for contracts covering the operational aspects of harvesting,
transport and siviculture. Each of these smaller companies generally
has a workforce of less than 20 employees, with roles split between
manual and mechanical operators.

An industry census conducted in 2012 by FITEC (the independent
trade organisation now merged with Competenz) found the workforce
is biased towards both younger and Māori3 employees: 21.5% are aged
15–24 (5.6% higher than in the total New Zealand workforce) with
38.5% identifying as Māori (27.2% higher than the total New Zealand
workforce) (Competenz, 2012). Low levels of educational achievement

Fig. 1. Reported accidents in forestry by time of day over an 8
year period.

3 The indigenous population of New Zealand.
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are prevalent within the industry with over 60% of workers having no
formal post-school qualifications. However, current competency re-
quirements are seeing more and more individuals completing industry-
specific training.

The work is both physically and mentally demanding, with opera-
tions being performed irrespective of the weather. This combined with
a poor pay rate of $17.50 per hour median (Payscale, 2014), which is
only slightly higher than the New Zealand minimum wage of $15.25
per hour (Legislation, New Zealand) has contributed to a high rate of
worker attrition, 45% of forestry workers change jobs within the first 12
months leading to a start rate of around 3000 individuals annually
(Ministry for Business and Innovation, 2014). The structure and
workforce demographics are relevant to the wider consideration of
safety as they provide the context of the workforce and working con-
ditions. For example, one of the contractors involved in our early stu-
dies stated that he would like his workers to do fewer hours and to pay
them more, but if he did “the contracting company down the road
would get all my business as his guys would do more for less and so they
would win all the tenders for work”.

2.2. Fatigue

Fatigue is a subjective physiological state experienced by in-
dividuals as a result of either physical or mental exertion (Hockey,
2013). Mental fatigue affects an individual's cognitive processes and
physical fatigue affects an individual's ability to maintain physical ac-
tions. Both types are cumulative by nature, i.e., the level of fatigue
generated by a task increases the more a task is performed. Both types
of fatigue lessen after a period of rest.

Fatigue is quantifiable by indicators such as reduction of muscle
strength (physical fatigue) and slower response times (mental fatigue).
Studies into physical fatigue typically seek to replicate high levels of
exertion by taxing muscle groups and measure how much force can be
exerted over time. For example, Kumar et al. (2002) found that as the
duration of muscle contractions increased the level of fatigue also in-
creased.

Mental fatigue can impact the execution of complex thoughts and
behaviour and reduce their efficiency (Alvarez and Emory, 2006). It can
be induced by long periods of cognitive processing and the effects are
particularly pertinent in high-risk work environments. Norman and
Shallice (1986) identified five situations that are potentially impacted
when an individual is suffering from mental fatigue: (1) planning and
decision making, (2) error correction and troubleshooting, (3) un-
rehearsed or novel sequences of actions, (4) dangerous or technically
difficult situations, and (5) situations that require the overcoming of a
strong habitual response or resisting temptation.

The levels of fatigue experienced are determined by an individual's
perception of these physiological changes. The energy required for a
task (physical or cognitive) are personal to the individual concerned;
they are also dependent upon factors such as age, physical fitness and
mental ability.

2.3. Measuring fatigue

Physiological changes occurring as one enters a fatigued state can be
used as indicators of reduced performance. For example, increased
heart rate and core temperature may indicate physical activity, while a
reduced reaction time may indicate mental fatigue.

In physically demanding roles, physiological monitoring may pro-
vide a better understanding of the impact of the roles and tasks upon an
individual. Cumulative measurements taken throughout the workday
can provide an understanding of both role- and task-based activities
allowing for causes of fatigue to be identified and the associated risk to
be managed.

We consider reaction time measurements as a potential indicator of
fatigue within an individual over the course of a work period, where a

reduction in reaction time indicates the effects of fatigue. The two ‘gold-
standard’ tests for reaction time are simple reaction time and choice
reaction time. We describe these next.

The Simple Reaction Time (SRT) test by Galton (1889) is a measure of
the (averaged) length of time it takes an individual to respond to either
a visual or auditory stimulus. The reaction is typically the pressing of a
button. This test is appropriate for gaging general alertness and motor
speed of an individual, with an uncertainty factor being introduced by
the variable time period between the individual trials.

Brisswalter et al. (1997) examined the influence of physical exercise
on SRT with participants exercising at 20%, 40%, 60% and 80% of their
maximal aerobic power. During the exercise period they identified a
decrease in cognitive performance measured by SRT, although on
completion of the exercise period no significant difference in simple
reaction time was apparent. This suggests that while we might identify
workers as being impaired during the task, post-task measurement may
not be able to identify this.

Choice reaction time (CRT) is similar to SRT, but measures the
(averaged) response time of an individual by requiring them to make a
choice when presented with a visual stimulus. For example, a visual
representation of an arrow pointing either left or right is presented and
the participant is required to select the corresponding button on a
keypad. Having to choose the correct response for CRT requires more
cognitive processing than SRT.

Tests are typically run as a number of trials, with uncertainty being
added by the choice and a variable time between the stimuli.

3. Related work

This section discusses related work on safety in forestry, as well as
fatigue and worker monitoring in general.

3.1. NZ forestry safety

NZ forestry work-sites are generally remote, requiring the working
day be lengthened to incorporate travel time (occasionally up to several
hours). These long working days combined with a physically de-
manding workload can contribute to fatigue in workers. This may in
turn adversely impact safe working practices and be a contributor to the
high numbers of incidents within the industry (Spurgeon et al., 1997).

Lilley et al. (2002) undertook an investigation into the role that rest
and recovery play in accidents and injury of workers. This study relied
on self-reporting and involved 367 workers responding to a self-ad-
ministered questionnaire. 78% of participants reported experiencing
fatigue at work at least some of the time and the study concluded that
the combination of slim margin for error and impairment due to fatigue
constituted a significant risk factor within the industry.

In an attempt to gain more detailed data, Parker (2010) conducted a
study using wearable video cameras to capture forestry worker beha-
viours. This work was limited by the small number of participants (due
to equipment costs) and the time and expertise required to analyse the
footage to understand what was being observed.

As a result of the forestry sector's poor safety statistics, FICA con-
ducted the aforementioned independent review and interim results
were published in Adams et al. (2014). The focus of the review was on
identifying and analysing the factors that impact on health and safety
within the forestry industry and to produce guidelines designed to
minimise the amount of incidents. The interim report identified a
number of factors which may be contributing to the high accident rate,
for example, worker fatigue, lack of training, poor health and safety
cultures in the workplace. The report also included a number of re-
commendations which were primarily based around the creation of new
processes, action groups and codes of practice to support and increase
participation in training and certification for workers and contractors.
However the report did not consider how the potential underlying
causes might be identified or monitored.
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3.2. Fatigue and reaction time

Levels of activity, both physical and mental, have been shown to
increase the level of fatigue experienced by an individual during the
course of their day (Pichot et al., 2002; Murata et al., 2005b). In a
workplace context, especially where employees are working in remote
locations such as those found within the forestry industry, detrimental
effects from mental fatigue can invariably lead to situations where in-
dividuals can come to harm. From the situations identified by Norman
and Shallice (1986) (described in Section 2.2) we consider Points 1, 3
and 4 as being particularly pertinent for forestry workers.

Increasing levels of mental fatigue have also been shown to ad-
versely affect task motivation and mood. A study by van der Linden
et al. (2003) using the Wisconsin Card Sorting Test, and the Tower of
London Test designed to induce mental fatigue, found that the will-
ingness to apply oneself to a task and do one's best was “significantly
lower” for fatigued participants. As such, a higher level of mental fa-
tigue can result in lower productivity levels. This conclusion is re-
inforced by Murata et al. (2005a), who observe that “fatigue is usually
related to a loss of efficiency and disinclination to work.”

Williamson et al. (2011) conducted a survey of research into dif-
ferent categories of fatigue and their effect on safety. They concluded
that there was strong evidence to link task-related fatigue and perfor-
mance to safety outcomes. They also noted that there was only limited
data available and concluded that more research was needed to un-
derstand which roles and activities in the workplace may be more af-
fected by fatigue. We seek to address this by considering different roles
within the forestry environment to see if there are differences in the
fatigue measures and effects we measure.

Sabzi (2012) investigated the effect of exercise-induced fatigue on
choice reaction time. Using a mix of exercise types (aerobic, anaerobic,
mixed, prolonged-intermittent and super-maximal-intermittent), they
measured the choice reaction time of 15 participants both before and
after exercise periods. An increased reaction time was identified across
all exercise types with anaerobic, mixed and super maximal inter-
mittent producing the largest differences. They concluded that “ex-
ercise-induced fatigue could reduce choice reaction time”.

The related work discussed here, as well as many similar studies,
(Saito, 1999; Williamson et al., 2001; Lin et al., 2008) all suggest a
relationship between work-induced fatigue (either physical or mental)
and reaction times. This relationship informs our understanding of the
forestry accident rate and its causes.

3.3. Observing challenging workplaces

There are many challenges inherent in collecting observational data
in workplace environments. The HumanWork Interaction Workshop
(2015) specifically focused on design for challenging work environ-
ments. Discussions around data gathering in such environments iden-
tified common themes from a variety of different work domains studied,
such as safe access to industrial sites, ethical considerations of mon-
itoring employees (including use of, and access to, data) and finding
suitable and unobtrusive study methods.

As an example, although there is a reasonable amount of evidence to
suggest that activities outside of work (particularly sleep quality and
quantity) have an effect on workers, collecting such data raises many
ethical issues (as it involves tracking workers during their personal
time) and may also lead to resistance on the part of workers to take part
in such studies. We discuss this further in Section 7.

4. Methodology

We conducted two studies with forestry workers in their working
environment, one in the winter and one in the summer (for details see
Table 1). We describe next the methodology of both the winter study,
which we refer to as Study 1 (see Section 5) and the summer study (see

Section 6), which is Study 2. The aim of both studies was to investigate:

(A) if we could identify a measurable correlation between levels of
physical activity and cognitive response times, using lightweight
and unobtrusive measurement equipment, and

(B) if there were measurable differences between roles with a high
physical load (the manual workers) and those with a high cognitive
load (machine operators).

This would then enable us to further consider the most suitable
measurements and corresponding equipment for an in-situ solution
designed to detect fatigue in forestry workers.

4.1. Participants, location and timing

Participants were sourced from three separate forestry industry sub-
contractors, all performing harvesting operations (for details on in-
dividual roles see Section 4.2). All participants were male. The studies
were performed with forestry workers at their place of work in the
forest during their normal working hours. Study 1 was conducted with
three crews (see upper part of Table 1), one at each of one of three
operational sites which were all located in the North Island of New
Zealand. The participants ranged in ages from 17 to 62 years; partici-
pant demographics are presented in Table 2. Study 1 took place in July
and August 2015 (during the NZ winter) and was conducted over 3, 4
and 5 day visits (as operational conditions allowed). Table 1 provides a
summary of days for each visit per crew in each study. Monitoring
commenced at the start of the working day, generally 06.45 am, and
concluded at the end of the working day, generally around 3.45 pm.

Study 2 was conducted during the NZ summer months (see lower
part of Table 1). It largely replicated the methodology of the winter
study. This study was intended to re-investigate (A) and (B) above to
see if results were consistent and reproducible, and also provide a
comparison of reaction times between different ambient temperatures.
Anecdotally we had heard from the workers during the first study that
they felt more impaired when working in the heat of the summer
months than in the cold temperatures over winter. The participants of

Table 1
Days per crew per Visit for Studies 1 (winter) and 2 (summer).

Study Crew 1 Jul-20 Jul-21 Jul-22 Jul-23 4 days
Aug-24 Aug-25 Aug-25 Aug-27 Aug-28 5 days

TOTAL 9 days
Crew 2 Jul-27 Jul-28 Jul-29 3 days
Crew 3 Aug-10 Aug-11 Aug-12 3 days

Study 2 Crew 3 Feb-22 Feb-23 Feb-24 Feb-25 Feb-26 5 days

Table 2
Participant demographic for Studies 1 (winter) and 2 (summer).

Crew Participant Role Age group Winter Summer

1 1A Loader driver 40–50 ×
1 1B Loader driver 50–60 ×
1 1C Quality control < 20 ×
1 1D Manual feller > 60 ×
1 1E Process operator 20–30 ×

2 2A Loader driver 40–50 ×
2 2B Quality control 20–30 ×
2 2C Quality control 20–30 ×
2 2D Manual feller 30–40 ×
2 2E Process operator 20–30 ×

3 3A Quality control 50–60 × ×
3 3B Quality control 20–30 × ×
3 3C Manual feller 30–40 × ×
3 3D Loader driver 30–40 × ×
3 3E Loader driver 40–50 × ×
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this second study were sourced from one of the crews participating in
the winter study (Crew 3), see Table 2 last column. The study took place
in February 2016. The workload and activities for the different roles of
workers in our study is typically the same irrespective of the season.
Some roles (not included in our studies) are more seasonal (for ex-
ample, planting) but this is not a factor in our studies. The only var-
iation seen was for one of the workers who adopted a more multi-
functional role during the summer due to nature of the work required
on the site, we discuss this further in Section 6.

The number of days per visit, as well as access times to workers to

conduct reaction time measurements were out of the control of the
research team. One of the challenges of collecting data from hazardous
workplaces is site access, and restrictions in place on different sites. In
addition, the needs of the workers with respect to work performance
targets and mandatory break times meant that we could not structure
the studies around our preferred requirements, but rather to fit in with
the crews. One of the consequences of this was that we were restricted
as to when we could interact with the workers to perform reaction time
testing. Ideally this would occur at the start of day, before the lunch
break (to measure after a prolonged work period), after the lunch break
(to measure after rest has occurred) and at the end of day. However, the
limited time the workers have for their break and their need to have
lunch and rest meant that we could only perform these tests three times
a day (morning, after the lunch break and at the end of day). We discuss
this further in Section 7.

4.2. Participant roles

Participants performed a variety of tasks on site ranging from
manual roles through to mechanised operations. There are two main
types of machinery used in forestry: those which remain in a single
location while tasks are performed (typically referred to as mechanised

Fig. 2. Examples of role and terrain types.

Fig. 3. Temperature during study days (Crew 1).

Fig. 4. Step count by participant and role (Crew 1); step aggregation in
blue (left axis) and average steps in red (right axis). (For interpretation of
the references to colour in this figure legend, the reader is referred to the
web version of this article.)
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plant), for example the machines used by loader drivers to lift logs onto
trucks; and those which are driven around the site during operations
(machines and trucks) such as diggers, log trucks, transport vehicles,
etc. Forestry roles are generally dictated by the operational conditions.
In smaller work areas (determined by the terrain and planted areas),
less machinery may be used due to limitations with getting larger
machines into these sites. The size and terrain of the work areas often
dictates the production methodology. We have included an overview of
the roles monitored during this study and include images to further
demonstrate harvesting methods.

Loader driver. Using machinery these operators are responsible for
skid site maintenance; stacking of logs for transport, laying out logs for
quality control and loading processed logs for transport. Generally,
loader drivers commence site operations earlier than other crew
members to facilitate early transport of processed logs and prepare the
operational area for the day's production. Fig. 2A provides an example
of product loading for removal from the worksite.

Quality control. Quality control operations consist of log grading
(sizing by diameter) and removal of any remaining branch stems prior
to shipping. Quality controllers generally work in close proximity to
machinery requiring high levels of spatial awareness. In operations
where log making is performed manually the quality control operations
include length cutting. Fig. 2B illustrates manual quality control;
Fig. 2C illustrates mechanised quality control methods. Quality control
roles can be the most varied in terms of the physical activity levels. The
amount of walking required is highly dependent on the site, and the
role of quality control is often combined with other roles (such as safety
observer) as required which also effects the physical nature of the role.

Manual felling. Manual felling generally occurs in remote locations
where environmental conditions prevent the use of mechanised felling
(steep slopes, inaccessible areas). These locations are generally remote
from other site operations and as such the feller typically works alone.
On completion of felling operations trees are transported to the skid site
for processing using mechanised methods. Fig. 2D illustrates the terrain
type requiring manual felling operations be undertaken.

Process operator. The process operators are machinery operators who
de-branch and trim the harvested trees. In areas where machinery
cannot operate the trees are hauled to a central location for this pro-
cessing.

4.3. Measurements

We captured three types of data: (1) physiological data as a measure
for the level of activity, (2) reaction times as a measure for fatigue, and
(3) ambient temperature at the workplace as a measure of environmental
factors.

As discussed earlier, in Section 1, we had decided not to include
automatic monitoring of sleep by way of wrist-worn sleep trackers.
However, given the relevance of sleep data we initially tried to include
self-reporting of this by the participants. A questionnaire was created
which asked the participants to provide information about what time
they went to bed, how long they felt it took them to get to sleep, what
time they woke up, and how they rated the quality of their sleep (ex-
cellent, very good, average, below average, poor). The questionnaire
was available online and on paper so that the participants could choose
how to complete it and the onsite researcher could fill it in for them if
they wanted to just provide the data directly to him. However, the
response-rate for the questionnaire was very poor (less than 20%);
therefore, we did not include it as part of Study 2 and do not include the
results here.

Activity: physiological data measurement. The level of activity of the
participants was measured using two types of physiological data:
number of steps taken and heart rate. The measuring was executed
using FitBit Charge HR activity trackers (Fitbit Inc., San Francisco, CA,
USA). This is a wrist worn device utilising a triaxial accelerometer,
vibration monitor, and altimeter to determine activity. Heart rate is
collected at the wrist using ‘Pure Pulse’, a proprietary technology based
on photoplethysmography. LED lights are used to illuminate the skin,
and an electro-optical cell monitors the change in intensity of reflected
light which, in turn, is interpreted as pulse.

These devices are capable of monitoring steps, heart rate, distance
travelled, calories expended and sleep. Furthermore, the manufacturers
allow third party access to stored data via an API, allowing developers
to access stored data for incorporation into other applications.

Each participant was assigned an alpha-numeric identifier (also
shown in column ‘participant’ in Table 2) in order to protect their
identities and an account was created for them on the Fitbit.com web
application. Accounts were created using the same alpha-numeric
identifier which provided the link between the reaction time compo-
nent of the study and the physiological component.

A Fitbit Charge HR was given to participants at the start of each
work day and they were instructed to wear it on the wrist of their non-
dominant hand. Throughout the day, the Fitbit Charge HR collected

Fig. 5. Heart rate (Crew 1). (For interpretation of the references to colour in the text, the
reader is referred to the web version of this article.)
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physiological data from the participant. At the end of each working day,
the Fitbit Charge HR devices were collected for synchronizing with the
Fitbit.com web application and for re-charging.

Fatigue: reaction time measurement. Reaction times were measured
using the Deary-Liewald Reaction time test application4 that was de-
veloped by the Centre for Cognitive Ageing and Cognitive

Epidemiology based at the University of Edinburgh (Deary et al., 2011).
For the SRT, the software shows a white square against a blue backdrop;
the stimulus is the appearance of a diagonal cross in the square to which
the participants respond with pressing any key quickly. For the CRT,
four white squares are shown next to each other, each corresponding to
one of four keys. The stimulus is the appearance of a cross in one of the
squares, to which the participant has to respond by pressing the ap-
propriate key.

The software records response times, the inter-stimulus interval for
each trial, the keys that were pressed and if the response was correct.

We used an HP Laptop with Windows 10 for the testing using the
Deary-Liewald Reaction time software. Simple and choice reaction time
measurements for each participant were undertaken three times a day:
prior to the commencement of the employees’ work period, on com-
pletion of their break, and at the end of their work day. Donders (1969),
proposed a simple subtraction method for determining decision making
times. Splitting the decision-making process into four stages, detection,
discrimination, response and motor, Donders used the difference in
timings between tests where no choice is required (simple reaction
time) and tests where a choice is required (choice reaction time) to infer
the speed of mental processing, or decision making time. Using this
method in conjunction with our testing data we may gain an insight
into the speed of mental processing or, how long it takes an individual
to make a decision. We include this calculation as part of our ag-
gregated reaction time results.

Environment: ambient temperature measurements. Temperature read-
ings were undertaken using a McGregors digital thermometer at the
same time as the reaction time measurements (described above). We

Fig. 6. Simple reaction times (Crew 1).

Fig. 7. Choice reaction times (Crew 1).

Fig. 8. Temperature during study days (Crew 2).

4 The software is freely available at http://www.ccace.ed.ac.uk/research/software-
resources/software.
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aimed to capture the range of temperatures that the employees were
exposed to throughout the course of a work period.

5. Study 1 (winter): results

This study was performed with three crews over varying periods of
time (see Table 1). We first present the results for each of the crews, and
then discuss the aggregated data.

5.1. Results for Crew 1

Crew 1 is primarily a mechanised crew, i.e., the majority of tasks
were performed using machinery (participants 1A, 1B, 1E) with the
exception of manual felling (1D) and quality control (1C), see Table 2.

Monitoring took place over two separate sessions; 20th July to 23rd
July 2015 and 24th to 28th August 2015. Both studies commenced at
06.45 and finished at 15.45 each day. Where participants were absent
from work no data was recorded.

Two of the participants were loader drivers (1A and 1B) who started
work on site at 4.00 am to load the trucks for early departure. The other
participants from this crew commenced work at 6.45 am. For practical
reasons, the first data collection for all participants of this crew was
performed at 6:45 am. As such the data collected and reported as start of
the day for these two participants does not represent the actual starting
time, but rather are the start of daily data collection.

Travel time to get to their place of work for a 6:45 am start was not
considered for any participants.

Ambient temperature. The temperatures across the study period
varied between 0 °C and 17.1 °C with the weather being mainly mild
with no rain during the monitoring periods. Fig. 3 shows the tem-
peratures in the morning, during break time and at the end of the shift,
measured at the time the participants took the reaction time tests re-
ported below.

Physiological data. Fig. 4 shows both the cumulative steps (in blue)
and average steps per day (in red) for each participant across the study
duration. Note that not all participants were present each day; for ex-
ample, participant 1D shows a similar average step number to 1C al-
though their cumulative steps for five days are lower than those for 1C's
eight days. Overall, we observed a large variation in the number of
steps taken due to the respective tasks performed by the participants.
For Crew 1, the member with the Quality Control role (crew member
1C) generated the largest number of steps across both study periods
with a weekly mean of 77,072 (equivalent to approximately 58 km).
The crew member with a Tree Feller role (1D) also presents a high step
rate, 52,020 (equivalent to approximately 40 km). These roles are

predominantly ground-based, with operational layout and terrain type
dictating the required levels of manual work.

Fig. 5 shows the mean heart rates recorded during the study. The
intensity of activity can be modelled using heart rate (Robergs and
Landwehr, 2002), with periods of high and low activity throughout the
workday represented by higher and lower heart rates. A maximal heart
rate of 220 beats per minute minus the participant's age was used to
determine intensity of activity. These were colour-coded in the figure in
the following way: a pale green background indicates areas of low in-
tensity, pale yellow indicates medium and red is high intensity. We
observe that the heart rates of participants 1A, 1C and 1E indicate low
intensity throughout the day, while 1B had peaks of medium and high
activity, and participant 1D showed predominantly medium and high
activity. While both participants 1C and 1D (QC and feller) walked on
average 3–4 times as many steps as their three colleagues, the work
intensity of 1D, the feller, is much higher than that of 1C. This is an
example of where context is important, but missing, from individual
measures. Although both the quality controller and feller walk similar
distances, the other activity levels within their roles have very different
intensities. The QC role is mainly walking and visually checking,
whereas the feller is operating a chainsaw, cutting branches, moving
logs, etc. This more physically demanding role can be indicated by the
heart rate profile but not the step count.

Participants 1A and 1B perform the same role, however, 1B has a
higher average step count and his heart rate profile indicates higher
levels of exertion. It may be that the location of his loading tasks re-
quires more frequent movements in and out of his vehicle, or that he is
in an area where higher levels of concentration are required (more
people and machines around), but there is no way to determine this
from the data alone. All of the participants show some increase in heart
rate during the afternoon, although 1E (processor) tails off towards the
end of day, perhaps suggesting a reduction in workload as the day
comes to an end, or self-pacing towards the end of day.

It should also be noted that there are some gaps in the heart rate
data. Participant 1B has no data for day 1, and also has some smaller
gaps across other days which appear to be where the monitoring device
was removed for short periods of time (although we have no con-
firmation of this). We are missing data for 4 days for 1D, and again
there are gaps in some of the days where we do have data. In previous
studies we had already noticed that there was a propensity for un-
explained gaps in data as well as equipment being lost temporarily
which affected continuity of data, we discuss this further in Section 7.

Reaction time. Both simple reaction time (SRT) and choice reaction
time (CRT) were measured at three periods throughout the working day
(at the start of the shift, at the end of break time and end of the shift).

Fig. 9. Step count by participant (Crew 2): aggregated (blue)
and average (red). (For interpretation of the references to
colour in this figure legend, the reader is referred to the web
version of this article.)
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SRT was measured at each instance 15 times; CRT was measured 20
times. For CRT, only those instances with the correct choice selection
were considered. For both SRT and CRT, outliers were removed. We
considered as outliers those data points below the first quartile minus
1.5 times the inner quartile range and those data points above the third
quartile plus 1.5 times the inner quartile range. For the final CRT or SRT
measurement, the mean across the remaining test instances was taken.
Figs. 6 and 7 show those values for SRT and CRT, respectively, for Crew
1. Note that the values for participant 1B for SRT on day 1 (break and
evening) are omitted here as they are much higher (763 and 1048) and
out of the range shown. Higher values represent longer response times,
i.e., slower reactions.

Considering the SRT and CRT performance of each participant
across the duration of the study we can better identify variation across
work periods. All our performance measurements indicated variation
across the workday, although some participants had flatter graph

profiles indicating less variation than others.
Individual results for SRT show that there are no defined patterns

across each working day for any of the workers. For example, although
participant 1A has the slowest reaction times across all days compared
with the other participants, on some days he gets faster over the course
of the day (day 1), whilst on others he gets slower (day 5). Similarly, we
cannot see any direct correlation between heart rate and reaction times.
On day 5, participant 1D has a high heart rate consistently in the high
intensity zone all afternoon, but his SRT at the end of the day is one of
his fastest sets of results. Two of the participants who are the least
physically active (by way of step count) are 1A and 1B and these par-
ticipants also have the slowest SRT results in general, 1B also has the
slowest CRT results. Their heart rate intensities reflect their low activity
levels (although 1B does spike almost into intense activity at day 4), but
they are performing tasks that may be more mentally tiring as it re-
quires them to be alert and aware of their surroundings at all times.
However, 1E who has a similar role to the loader 1B (being mostly a
machine operator) has the second lowest step count does not exhibit
similarly slow SRT and has one of the fastest and most consistent set of
results for CRT.

5.2. Results for Crew 2

Monitoring took place over a three day period; 27th July to 29th
July 2015 commencing at 06.45 and finishing at 15.45 each day. Crew
2 has a higher level of manual operation than Crew 1 (see Table 2).
Participant 2E was absent on the 29th July (day 3).

Participant 2A was a loader driver starting at 4.00 am. As such, data
collected and reported as start of the day does not represent the actual
starting time for the same reasons as for Crew 1. Remaining participants
commence their duties at 6.45 am and therefore data collected en-
compasses the full working day. Participant 2E has a multi-functional
role, mostly operating machinery, but occasionally providing assistance
to the feller.

Ambient temperature. Temperature across the course of this study
varied between 6 °C and 18 °C with the weather being mainly mild apart
from occasional showers on the 28th July (see Fig. 8). Ambient tem-
peratures were warmer during monitoring than those encountered with
Crew 1, as such comparisons between the two crews at lower ambient
temperatures could not be performed.

Physiological data. Fig. 9 shows the cumulative recorded steps for
participants in Crew 2 over the study period. Similar patterns to the
roles of participants in Crew 1 (Fig. 4) can be observed with higher step
rates in roles such as felling and quality control.

Heart rate monitoring results are presented in Fig. 10; as in Crew 1
activity intensity is indicated using colour bands. Heart rate intensity
for all participants in Crew 2 was generally lower than those of Crew 1.
In particular the participant with the most physically demanding role,
the feller (2D), did not exceed a low level of heart rate intensity apart
from a couple of occasions. It may be that he was somehow ‘pacing’
himself so as to not exert too much physical effort, or it could be that he
has a high-level of physical fitness which can affect heart rate intensity.
Once again the lack of contextual information means that we cannot
determine which, if either, is the case.

Reaction time. Fig. 11 presents the results of the mean reaction time
by period for participants in Crew 2 across the course of the work
period. Similar to the results for Crew 1 there is no discernible pattern
in the SRT results for any participant. In the CRT results, however,
participant 2C (feller) shows improvement in speed during the day for
each of the three days monitored. Also, the slowest participants were
again those with the least physically demanding roles (2A and 2E,
loader and processor). The feller (2D) has the second fastest set of SRT
and CRT results, both quality controllers (2B and 2C) have fast SRT and
CRT results, with 2C showing the fastest CRT response times (end of day
3) across all crews.

Fig. 10. Crew 2 – heart rate. (For interpretation of the references to colour in the text, the
reader is referred to the web version of this article.)
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5.3. Results for Crew 3

Monitoring took place over a three day period, 10th August to 12th
August 2015, commencing at 6.45 am and finishing at 3.45 pm each
day, secondary visits were made on the 29th August and 4th September
to expand on the data collected during the initial visit. Participant 3E
was the loader driver whose duties commenced at 2.00 am, data col-
lection for this participant did not begin until 6.45 am when the

remaining participants commenced their work duties.
Ambient temperature. Temperature across the course of the study

with Crew 3 varied between −4 °C and 11 °C with the weather being
mild throughout the monitoring period (Fig. 12). Days 1, 2 and 3
showed the lowest morning temperatures seen in the study, 0 °C, −4 °C
and −1 °C respectively. There is no evidence that this had any effect on
reaction time measurements for any of the participants.

Physiological data. Activity was measured in the same way as for
Crews 1 and 2 via step counts and heart rate monitoring. This crew
performs harvesting operations using a cable hauling system to deliver
felled trees to an elevated processing platform; as such the majority of
operations are performed using mechanised techniques.

Fig. 13 show the levels of activity (measured as steps) for the dif-
fering roles.

The feller role has the highest step rates (some 109,000 equivalent
to 83 km) due to the remote locations of stock for harvesting.

Heart rate data is presented in Fig. 14. As with the other crews
activity intensity is represented by colour. This crew showed similar
heart rate levels across roles to Crew 1. Participant 3E exhibits some
large data spikes around the middle of day 1, and also has missing data
for the afternoons of days 1–3 which suggests he may have removed the
monitor for some reason. This is more likely than an intermittent failure

Fig. 11. Reaction times: SRT – left and CRT – right, (Crew 2).

Fig. 12. Temperature during study days (Crew 3).

Fig. 13. Step count by participant (Crew 3).
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of the monitoring device at the same time on 3 occasions, although this
cannot be entirely ruled out. The feller, 3C, has greater variance be-
tween days than the fellers from the first two crews who exhibit a more
regular pattern across days. However, unlike the feller from Crew 1, he
barely hits the maximum exertion levels on most days.

Reaction time. There are no discernible patterns in the simple reac-
tion times for any of the crew members (Fig. 15). 3A and 3E were al-
ways slowest first thing in the morning but sometimes got slower again
at the end of the day and sometimes not, they also had slower simple
reaction times generally than the other participants. 3D had the fastest,
and most consistent simple reaction times, but again there was no fixed
pattern. The CRT graph, Fig. 16 is flatter, showing more consistent
scores for participants across each day. The biggest change is seen in 3A
who starts slow but improves gradually as the week progresses. Of in-
terest is the fact that both 3A and 3E were at their slowest on the
morning of day 2, which was the coldest morning seen across all

studies. However, there is no direct evidence that these are related as
we do not see the same effect with the other participants.

5.4. Aggregated analysis across Study 1 (winter)

Our analysis of results is comparative by nature. For example, do
high levels of activity result in a decrease in performance? (Indicated by
increasing reaction times). Or, does temperature impact an individual's
ability to perform? We further examine the differences in performance
by role.

Steps counted. When considering activity, our investigation shows
large differences for physical activity levels (measured as step counts),
see Fig. 17. Mechanised operations generate the lowest step rates (i.e.,
average step counts per day for all loaders is under the average step
count of 14,459 across the 15 participants) as operators perform tasks
from inside machines in seated positions preventing high levels of ac-
tivity. The average per day of all fellers is above the average step count
across all three crews.

Reaction times. Figs. 18 and 19 show the mean reaction times of each
participant.

Note that the aggregation is across 9 days for Crew 1, across 3 days
for Crew 2 and across 5 days for Crew 3. The colour schemes indicate
crews (blue – Crew 1, orange – Crew 2 and green – Crew 3). The marker
shapes indicate roles (square – loader, circle – quality control, triangle –
feller, and diamond – process operator).

For selected participants, overall patterns can be detected (e.g.,
participant 1B shows a slowing down of both simple reaction time and
choice reaction time in the evening while participant 3E drastically
improves over the course of the day). 1C and 2C have similar trends for
both SRT and CRT, but for 3B and 3D they are reversed. As the parti-
cipants are potentially affected by a number of factors (such as physical
exhaustion, cognitive load or even temperature), it is difficult to ob-
serve specific patterns by role or across crews.

Fig. 20 shows the decision making times calculated as difference in
reaction time. While this averaged data is interesting in identifying if
there are trends that can be more obviously detected, it does not ne-
cessarily help if the goal is ascribing meaning to data during real-time
collection. We discuss this further in Section 7.

Table 3 shows the difference between decision making time in the
evening and in the morning. We can see which participants have (on
average) faster decision making times at the end of the day (indicated in
green in column 1), as opposed to those who get slower (yellow, red).
This is not consistent across roles, but rather appears as a personalised
measurement. However, Table 4 which orders the decision-making time
just on speed in the evening, does show some correlation between role
types and decision-making time. We can see that the role-types are
clustered based on this ordering, apart from the fellers. Given that ac-
tual speed of mental processing is an individual measure (irrespective of
alterations over the course of a day due to fatigue, etc.) it is interesting
to note this clustering. It could be an artefact of the types of roles people
choose to do based on their perceived abilities. There has been some
interest from the forestry industry in whether or not specific traits re-
lated to both decision making and visual acuity may be useful in as-
signing workers to different roles, but there is no evidence that this is
possible or useful at this stage.

6. Study 2 (summer): results

The purpose of the summer study was comparative along two axes.
Firstly to see if we could identify similar trends and patterns in the data
to those seen in Study 1 (as a means of identifying if results were
generally reproducible). Secondly to see if we could discern differences
in the data that could be attributed to the differences in temperature,
i.e., to find out if extremes of heat or cold had any amplification effect.
The study was conducted with Crew 3 from the winter study so that
participants (and roles) were the same and could be directly compared.

Fig. 14. Crew 3 – heart rate. (For interpretation of the references to colour in the text, the
reader is referred to the web version of this article.)
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However, there were some differences in the working environment that
were outside of our control and which directly impact comparison of
results. The crew was working in a different location, as such the terrain
and distances between parts of the work site were different from the

first study. In addition, one of the quality controllers (3B) performed
other duties during the summer and acted in a more multi-functional
role (assisting the feller and log makers primarily on day 3) which af-
fected his physiological data. The location itself also had a direct impact

Fig. 15. Simple reaction times (Crew 3).

Fig. 16. Choice reaction times (Crew 3).
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on our reaction time monitoring as we were only able to gain access to
the participants at the start and end of day and not at the lunch break.
We first present the results for Crew 3 during the summer, then we
compare the results of the two studies in terms of patterns that can be
observed and the influence of different temperatures.

6.1. Results for Crew 3

Ambient temperature. Temperature across the course of this study

varied between 12 °C and 27 °C with the weather being dry and mostly
sunny throughout the monitoring period. Fig. 21 shows the temperature
at the start and end of each day for the 5 day study period.

Physiological data. Activity levels were determined using the same
techniques employed during the winter study with data being collected
on step and heart rates. The longer duration of this summer monitoring
period provides data for a full working week (40 h) providing a better
indication of weekly activity by role. Fig. 22 details the cumulative step
rates encountered by role. It should be noted that the unusually high
step rates performed by one of the quality control operators (3B)
(> 100,000) is likely to be a result of a more multi-functional role
during the study period.

As in our winter studies, we monitored heart rates throughout the
workday to assess if any significant difference was present between
summer and winter months. Fig. 23 presents the results of the heart rate
measurements across the duration of the study. Participant 3A (Quality
Control), who has the second highest step count, shows the highest
levels of heart rate exertion. Participant 3B (Quality Control) however,
with the highest step rate, has a more consistently low level of heart
rate exertion, although also high variability (which is also seen with
3C). The feller, 3C is also at higher exertion levels which is to be ex-
pected given the physical nature of his role. The two loader drivers, 3D
and 3E have heart rates that generally remain in the low exertion range,
although both are typically higher in the afternoon, and 3E in particular
has increased levels across two afternoons and several spikes during
Days 4 and 5.

Reaction time. Due to site access limitations reaction time mea-
surements were only taken at the start and end of the working day.

Fig. 17. Comparison mean steps per day.

Fig. 18. Average SRT per person. (For interpretation of the references to
colour in the text, the reader is referred to the web version of this article.)
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Figs. 24 and 25 present the results of the reaction time testing for the
summer study. Of interest are the results for Loader 3D. He has the
fastest SRT times for days 1, 4 and 5, but his corresponding CRT times
are the slowest. The other Loader, 3E has very erratic (and slow) SRT
times (on the morning of day 1 his speed is 804ms which is too slow to
show on the graph). However his CRT results are consistent (and among
the fastest). No data was recorded for the evening on day 5 for both 3D
and 3E. Given the early start the loader drivers have they are keen to
leave site at the end of the working day and it is not always possible to
persuade them to stay and undertake the reaction time tests.

6.2. Analysis of summer vs. winter

We now present a comparison of the winter and summer data to see
if there are similar patterns that can be identified, or obvious indica-
tions of an amplification effect due to temperature.

Steps. Fig. 26 shows a comparison of average steps taken by the
participants of Crew 3 in summer and winter. We found comparison of
step rates across studies can be problematic, especially for Quality
Control roles, the distance to the operational area can be significantly
different, requiring higher step rates between the safe zone and skid
where operations are performed. This is similar for the fellers who are
walking between operational areas which may differ greatly across
different sites. There was a decrease in mean daily steps for the feller of
7500 during the summer session. While this may indicate the feller was
self pacing (due to higher temperature and humidity levels encountered
in their operational area), it could equally be an artefact of the different

working location where perhaps the site area being covered was
smaller.

There is some evidence that heart rate patterns are consistent across
summer and winter, suggesting that the data capture methods are
providing reproducible results. Fig. 27 presents a comparison for each
participant's heart rate between the two studies. Participants 3B, 3C, 3D
and 3E show similar trends across the daily average, while 3A has a
larger variation between summer and winter averages. Winter heart
rates are on average slightly higher, and for four of the participants are
higher at the start of day in the coldest temperatures, which may sug-
gest that the colder temperatures do have an amplification effect on
heart rate exertion measures.

When we compare the results of simple and choice reaction times
between the two studies (see Fig. 28), we can see similar results for both
CRT and SRT, apart from 3E (Loader) who is noticeably slower in
winter, particularly at the start of day. 3A (Quality control) is also
slower (SRT) at the start of day in winter.

The heart rate and reaction time comparisons across winter and
summer suggest that the data is reproducible (similar patterns seen)
which gives some confidence in the measurements and collection
methods. However, there are no discernible differences between dif-
ferent ambient temperatures (or the extremes at either end) that show
this is having any effect generally. Table 5 provides a comparison of
decision making times at start and end of day in winter and summer.
The lighter colours indicate faster speeds so we can see individual
patterns for each worker in the two different seasons. 3A, 3D and 3E
exhibit the same patterns (fast-slow, slow-fast, fast-slow respectively) in

Fig. 19. Average CRT per person. (For interpretation of the references to
colour in the text, the reader is referred to the web version of this article.)
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both winter and summer, but 3B and 3C reverse their winter fast-slow
pattern to slow-fast in summer. We discuss this further in the next
section.

7. Discussion

We here discuss the results of our two studies in the light of related
work and the context of workplace monitoring ethics.

Steps taken. When examining the amount of steps taken across the
working day we find that manual roles result in high step rates that
exceed those found in other employment types. Porcari and Ekhwan
(2007) conducted a study for the American Council on Exercise into the
amount of steps taken by employees in 10 common occupations. They
found a wide variation in the step rates of these professions ranging

from 4300 steps for secretaries through to 15,251 for mail carriers. As
we can see, harvesting roles generate levels of activity (measured as
steps) that far outweigh those encountered in other professions. How-
ever, there is no clear indication that these high step counts equate to
higher levels of fatigue.

Heart rate. We consider whether the heart rate measurements enable
us to differentiate between roles encountered in our study. We find
mechanised roles do not produce overly high heart rates. We hy-
pothesise that high points seen around the start and end of the lunch
break only occur as a result of individuals climbing in and out of ma-
chinery cabs. We would need to confirm this with visual analysis at the
same times to be sure of this.

For the manual roles, the variation in heart rate across the workday
is more pronounced (e.g., 1D, 3C). In addition, the higher heart rates of

Fig. 20. Decision making time per person.

Table 3
Difference Decision Making Time (DMT): morning and evening.
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these workers enhance the step count information by indicating that
fellers (who are performing high levels of manual labour as well as
walking) typically work at a higher rate of physical exertion than
quality control roles with similar step counts. However, it is not the case
that the most physically active workers have significantly slower re-
action times at the middle or end of day so we cannot infer that they are
more fatigued or impaired than workers in other, less manual, roles.

Bates and Schneider (2008) used the observed differences in heart
rates to identify break periods throughout the course of a workday.
Used in this way it may help compliance with legislation by ensuring
workers take adequate breaks. Although some similar observations of
lower exertion can be found in our results for the lunch break period the
data is not sufficiently contextualised or significant to warrant its po-
tential use in questions of compliance. Also, heart rate in particular and
physically induced fatigue in general are highly personalised to an in-
dividual. Age, gender, fitness-level and overall health are all con-
tributors to these, and as such the data must be considered within this
context. Commercial solutions, such as the Readiband sleep tracker
from Fatigue Science5 typically develop an initial personalised baseline
for each individual and consider subsequent data in relation to this.

This, however, requires additional study time (to set the baseline), re-
quiring more time commitments from participants which is often pro-
blematic. We discuss this further shortly.

Reaction times. When we examine the available workplace accident
data (see Fig. 1 in Section 1) by time of day, we see two definite spikes
in time periods of incident occurrence: the first occurred between 10 am
and 11 am, the second between 2 pm and 3 pm.

Brisswalter et al. (1997) found that the effects of physical exercise
led to a decrease in cognitive performance (i.e., choice reaction time),
however simple reaction time alone showed no significant difference.
Our results show differences between SRT and CRT, with greater var-
iation in SRT results. However, neither SRT nor CRT shows a clear
correlation to physical activity. As such, while workplace fatigue,
manifested as slower reaction times, may be a contributor to the periods

Table 4
Decision Making Time (DMT): ordered by evening speed.

Fig. 21. Temperature during study days, only morning and evening available (Crew 3
summer).

Fig. 22. Step count by participant (summer).

Fig. 23. Crew 3 summer study.

5 https://www.fatiguescience.com.
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Fig. 24. Simple reaction times (summer).

Fig. 25. Choice reaction times (summer).
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of increased incident rates, we cannot currently identify a direct cor-
relation between reaction time trends and workplace incidences. Mea-
sures for CRT and SRT are known to be highly variable across different
timescales for individuals. Even with outliers removed (as discussed in
Section 5) the variability of the data means that it cannot be used in-
dividually as an indicator of either fatigue or work-induced stress.

Influence of temperature. Our investigations of the effect of tem-
perature on performance were driven by comments from work crews
during our winter studies. All of the crews indicated that they felt that
summer work had the greatest impact on their fatigue levels due to
higher temperatures. (Pilcher et al., 2002) concluded from a meta-study
that both hot (> 32°C) and cold temperatures (< 10°C) have negative
effects on performance. Similar temperature extremes are reached in
our studies during several mornings (e.g., in day 1,2,3, 8 and 9 for Crew
1, day 1 for Crew 2, and all five days for Crew 3). However, we found
that although they feel the work is harder in the summer months, their
performance is not significantly impacted detrimentally by higher
temperatures. If anything, our comparisons in Section 6.2 rather shows
a small decline at the lower temperatures during winter months but this
is not significant.

Sleep and fatigue. As we discussed in the introduction to this work,
we are aware of the importance of sleep and the role it can play in
workplace fatigue. The importance of sleep in relation to waking per-
formance has been investigated as a contributor to fatigue many times
(Williamson and Feyer, 2000; Åkerstedt et al., 2002; Belenky et al.,
2003) with conclusions that low duration or poor sleep quality ad-
versely affecting ones mood, physical performance and cognitive pro-
cessing abilities. Several studies have identified that increases in reac-
tion time occur with sleep deprivation (Van Dongen et al., 2003; Lim
and Dinges, 2008; Kim et al., 2011) suggesting that levels of sleep
achieved by an individual can influence performance. More importantly
it is further suggested that moderate sleep deprivation can impair
performance similar to those levels found in alcohol intoxication
(Williamson and Feyer, 2000).

Anecdotally, forestry management have expressed concerns about
sleep quantity and quality of their workers. At one of our initial
meetings, one individual stated that younger workers might “party all
weekend” and “turn up for work on Monday morning exhausted”.
However, there is no evidence for this. Our early attempts to include
sleep tracking as part of our studies led us to understand that there is a
high level of resistance for this from workers who feel it is an invasion
of their privacy. This is further supported by the forestry industry's own
experience of trying to conduct a study using the Fatigue Science
Readiband6 sleep tracking and fatigue monitoring solution, which is
seen as the ‘gold-standard’ method for collecting sleep data outside of a
dedicated sleep laboratory. At the time of writing, the health and safety
organisation trying to run the sleep study had been unable to recruit
enough volunteers among the forestry workers to conduct the study,
despite delaying it several times. This reluctance from the workers to be
monitored in this way is reflected in our own ethical concerns about the
collection and use of such data, leading to questions such as how will a
management team deal with a worker who is identified as being fati-
gued due to a period of poor sleep? Further discussions of data privacy
and ethical concerns in the context of monitoring forestry workers are
presented in Bowen et al. (2017).

Contextualising monitoring data. There are still many ‘myths’ in the
consideration of fatigue and accident rates and how these can be re-
duced by worker monitoring. We have found an increase in the desire
from management teams to find ways of monitoring workers (both from
those involved in our studies, and those seeking to utilise other options
such as the Readiband or other proprietary solutions) but this is not
necessarily coupled with evidence to support such monitoring. Our
studies so far suggest that data must be both contextualised and

Fig. 26. Average steps winter (blue) vs. summer (orange). (For interpretation of the re-
ferences to colour in this figure legend, the reader is referred to the web version of this
article.)

Fig. 27. Heart rate winter (blue) vs. summer (orange), from top: 3A, 3B, 3C, 3D, 3E. (For
interpretation of the references to colour in this figure legend, the reader is referred to the
web version of this article.)

6 https://www.fatiguescience.com/.
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individualised before it can be meaningfully used to indicate fatigue,
and even then it should be understood that indicators of fatigue do not
directly correlate to accidents or near misses.

When analysing the type of data we have presented here we must
take into account the lack of context. For example although we can see
the details of the physiological data throughout the day, if a particular
data point is directly affected by an event in the field (e.g., a worker's
heart rate spikes because of a near miss accident) we cannot determine
this. Even the SRT/CRT testing is prone to the effect of distraction, on at
least one occasion we were aware of a worker being distracted by
someone else entering the break room as the were doing the response-
time testing, and it is likely that more minor distractions were also
present that we were unaware of. In addition although we may be more
successful at identifying relationships across aggregated data, this is not
useful if we wish to capture real-time data and analyse it in the field to
provide instant feedback to (or about) individual workers.

Study limitations. The final consideration is the lack of control we
have over when and how to perform monitoring, and the limited access
we had to participants. Both workers and management are mindful of
work performance targets, so we cannot interrupt worker time to any
great extent. Conversely, as workers get limited break time they are
resistant to undergoing any testing that eats into that time. We would
have liked to have performed reaction time testing prior to their lunch
break as well as at the end, but this was not possible due to the workers’
need to take the break, have lunch, etc. before they would engage in our
activities. The accident data presented in Fig. 1 shows two peaks, one
immediately prior to the lunch break and the other mid-afternoon.
Ideally we would like to have gathered reaction time data at exactly
these points, but it proved impossible for us to collect more detailed
data at these times other than the automatically collected physiological
data.

Similarly, it would have been useful if we could have collected
additional information about participants prior to the study. However,
this was not possible as we only knew who the participants were when
we arrived for the first day of the study. There are a number of factors
that directly affect how much physical and mental exertion lead to fa-
tigue. These include things such as age (which we were able to de-
termine), fitness levels, general health and lifestyle factors such as good
nutrition and whether or not participants are smokers. Our experience
with the sleep questionnaire, which was abandoned due to lack of re-
sponses from the participants, meant that we did not pursue this as an
additional way to collect data. However, for future studies it would be
useful to gather as much of this data as possible from participants
during the initial on-site set up phase by way of the researcher directly
asking participants. We are also governed by our University Ethics
Committee, who grant permission for these studies. They have rules

which prevent us from paying, or otherwise inducing, participants, so
we cannot use this as a way of encouraging participants to take part in
out-of-work study activities.

8. Summary and conclusions

Our studies aimed to investigate the use of in-situ data collection in
the New Zealand forestry industry. Specifically, we wanted to identify
suitable measurements and measuring techniques from two perspec-
tives: (1) could we reliably capture data from forestry workers over the
course of their working day; and (2) could we find meaningful corre-
lations in the data to suggest that we could identify fatigue in workers
based on their reaction times and perceived workloads.

Reliable data capture. Results from our two studies show that we can
collect data using lightweight off-the-shelf equipment, although there
are some restrictions to this. For example, our studies have used wrist-
worn commercial activity trackers to collect heart rate data, whereas
heart rate variability is likely to provide more reliable data for con-
sidering fatigue. However, measurement of heart rate variability in an
accurate manner requires the use of chest-straps (wrist-worn light-
based heart monitors are not accurate enough in this domain) and these
can be uncomfortable to wear for long periods of time by workers en-
gaged in more physical roles. For our next series of studies (future
work) we are looking at incorporating such chest-strap monitors into
compression shirts so that they are more comfortable to wear.

Meaningful correlations. The data that we collect automatically (in-
cluding step counts and heart rate) can be compared to reaction time
tests which use simple and choice reaction time as an indicator of im-
pairments. However, we did not find significant correlations in our data
to show that we can determine fatigue-based impairments from our
measurements. Not only do personal factors have a large influence on
the physiological data, but there are contextual elements for both types
of data (e.g., distractions when a worker undertakes the reaction-time
tests, or the desire to finish quickly at the end of the day affecting
mindset) which also have an effect. While this may seem to be a dis-
appointing outcome it does provide valuable information for forestry
health and safety bodies who are keen to adopt such monitoring ap-
proaches. Although some commercial solutions do promise to be able to
accurately identify fatigue based on similar measures to our own, our
results suggest that they should be cautious in adopting them without
investing significant time to study their use in the forestry domain.

It is also important to note that our monitoring periods were short
and our participant numbers small. As such our studies can only pro-
vide a snap shot of physiological and reaction time data across a limited
time period. Extended data collection over longer time frames with
larger groups of workers may enable us to better identify any trends
that may be present as well as evaluate the reliability of the data col-
lection by way of repeated results. Our future work includes conducting
longer studies with larger groups of workers and extending the mea-
surements taken. In addition they will include comparisons with some
of the commercial solutions being considered by the industry to see if
these produce results that are different or can somehow be validated as
more accurate.

In the longer term we are also investigating how the data may be
used as part of a larger solution based around an Internet-of-Things

Fig. 28. Mean difference in reaction time winter vs. summer.

Table 5
Decision Making Time (DMT): winter vs. summer.
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solution which captures a wider variety of data (mixing automatic
measures with self-reporting and ambient sensors).
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Forestry is a dangerous work environment and collecting data on site to identify and warn about hazardous situations
is challenging. In this paper, we discuss our attempts at creating continuous data-collection methods that are ethical,
sustainable and effective. We explore the difficulties in collecting personal and environmental data from workers and
their work domain. We also draw attention to the specific challenges in designing for sensor-based, wearable rugged IoT
solutions. We present a case-study, comprising of a number of experiments, which exemplifies the work we have been
undertaking in this domain. The case study is based on our approach to developing a robust, trusted Internet of Things
(IoT) solution for dangerous work environments (specifically the forestry environment). We focus the results of this case-
study on both the technical successes and challenges as well as the personal and ethical challenges that have been elicited.

1. INTRODUCTION

New Zealand has around 1.8 million hectares of plantation
forests and the industry contributes roughly 4% of national
GDP to the economy. Forestry also has the highest fatality
and injury rate of any industrial sector in NZ (since 2008
there have been 32 fatalities) and has New Zealand’s
highest rate of workplace injuries with claims to the NZ
accident compensation scheme (ACC) in excess of two
million NZ dollars each year. An independent review
of all involved in the sector (using interviews and self-
reporting) identified potential contributors to the poor
safety record Adams et al. (2014). These included a lack of
training; worker fatigue; poor health and safety processes.
As a result a number of recommendations were made based
around initiatives such as increased codes of practice, wider
participation in training and certification for workers, the
creation of new safety action groups etc. However, there
was no deeper consideration of the wider underlying causes
nor practical proposals for how to identify and prevent
unsafe work practices.

While the specific NZ forestry setting is unique, other
outdoor-based and labour-intensive industries such as
mining, haulage, all-terrain farming and fishing encounter
similarly hazardous situations. Known pressure points
are again fatigue, de-hydration, distraction, isolated work,
remote locations, inexperienced and poorly paid staff, and
time pressures. Our initial interest in this domain was
motivated by finding ways to unobtrusively gather large
amounts of data from forestry workers in order to generate

an actual data set of work and environmental factors
(rather then self-reported data) from which to understand
the working environment and identify worker fatigue (a
known cause of accidents and contributor to risk). There
are well-known, and well-studied techniques for using
biometric data to indicate and measure fatigue (we discuss
these in more detail in section 2) but these are typically
laboratory-based and invasive and therefore not suitable
for in-situ workplace monitoring. We are interested in
finding suitable technological solutions to replicate such
measures in an unobtrusive fashion using technology that
can be easily deployed in an outdoor setting. Ultimately
we would like to use real-time data capture to monitor and
understand worker metrics with a view to being able to
identify hazardous situations as they arise, and intervene
as appropriate. The over-arching aim, therefore, is that of
reducing the high accident rate in NZ forestry.

There are many challenges inherent in collecting
observational data in workplace environments. Human
Work Interaction Workshop (HWID) (2015) specifically
focused on design for challenging work environments
and how to collect relevant data to inform such design.
Common themes emerged from a variety of different work
domains studied, such as safe access to industrial sites,
ethical considerations of monitoring employees (including
use of, and access to, data) and finding unobtrusive study
methods. Our own initial studies, which looked at the use
of lightweight and cheap data gathering tools (such as
activity trackers) encountered similar problems. Early on
in our work it became clear that the technical, ethical and

© The Authors. Published by BISL. 1
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sociological challenges of implementing worker tracking
(even on a small scale) required us to find alternative
approaches which better addressed these.

Over the course of subsequent experiments it became
clear that we needed to measure a variety of different
metrics (beyond those offered by basic activity trackers)
and develop a better way of understanding the personalised
implications of fatigue for workers. This has led to our
current approach, which we present in our case study. This
seeks to adopt a new style of IoT (the Rugged Internet of
Things or RIoT) as a possible solution. This in turn creates
additional challenges, which we also discuss.

This paper therefore addresses two problems. The first
is the difficulty in collecting personal and environmental
data from workers and their work domain. We address
this by proposing a specialised sensor-based IoT solution
for outdoor environments. The second is the technical
and ethical issues that arise from this proposed solution.
Our contributions are the insights we provide into the
problems associated with data gathering in hazardous work
environments and our proposal of how to move forward
using a new version of IoT (RIoT), which is not only
suitable for use in rugged and unconnected environments
but also considers new mechanisms for data security and
privacy. The IoT solution we are developing is not only
truly body/person-centric, but is also designed to support
people’s safety on a day-to-day basis.

2. BACKGROUND TO NZ FORESTRY

An investigation into the role that rest and recovery
play in accidents and injury of workers was undertaken
by Lilley et al. (2002). This relied on self-reporting and
involved 367 workers responding to a self-administered
questionnaire. The results showed that 78% of workers
reported experiencing fatigue at work at least some of the
time and the study concluded that the combination of slim
margin for error and impairment due to fatigue constituted
a significant risk factor within the industry. In an attempt to
gain more detailed data, Parker (2010) conducted a study
using wearable video cameras to capture forestry worker
behaviours. This work was limited by the small number
of participants (due to equipment costs) and the time and
expertise required to analyse the footage to understand
what was being observed. Adams et al. (2014) conducted
another study using self-reporting specifically focusing on
forestry, with the results outlined in our introduction.

In general, robotic solutions, which are applied elsewhere
in forestry, do not work well in the extreme New Zealand
terrain, although there is ongoing research in this area to try
to adapt equipment or develop new machinery to remove
humans from the work environment. Live observation
and in-situ monitoring are not suitable in many work
conditions and particularly do not work in hazardous work
environments. For example, Parker’s initial observational

studies elicited more about the practice of keeping on-site
visitors safe than it did about typical worker behaviours.
Some of the specific challenges of data gathering in NZ
forestry have been reported in (Bowen et al. 2015b), but
here we describe a case study we have carried out in
order to identify both the practical requirements as well as
the philosophical, ethical and social implications of such
work when we endeavour to introduce novel technological
solutions into industrial environments.

3. RELATED WORK

We focus on related work in three key areas: uses, effects
and ethics of monitoring workers; measuring fatigue,
activity, recovery and response times; using sensors and
IoT solutions in work domains.

3.1. Tracking of Workers

Employee monitoring and tracking is not a new idea.
Different approaches have been used to consider issues
such as productivity, health and safety and security
since the early days of the factory floor-walker (human
observation of worker productivity) and the punch-in time
clock used to ensure workers arrived on time and did
not leave early. As technology has advanced, so too have
the methods used for monitoring and tracking workers.
Any form of monitoring of employees can create tension
between employers and employees.

Botan (1996) reports on a survey of 465 employees
on their attitudes of workplace surveillance. He found
that irrespective of the motivations for the surveillance,
most workers felt untrusted by their employers and that
this was likely to be the first step in other management
interventions that would not be in the employee’s best
interests. Kortuem et al. (2007) discussed the use of worker
tracking specifically for Health and Safety purposes. This
considered the use of a vibration monitoring technique for
industrial workers aimed at reducing a condition called
“Vibration White Finger". They considered whether the use
of (ubiquitous computing in this instance) could play a
role in making industrial workplaces safer. They found that
even in an example where the monitoring was intended to
keep workers safer there was still a perception that such a
system could be used to exert control over employees, for
example by creating accurate logs of worker activities.
Such perceptions existed even when the reality of the
monitoring did not include such aims.

The proliferation of personal activity trackers in recent
years has given rise to a new type of worker tracking.
Firstly there are companies who seek to promote the health
of their workers by encouraging them to be active and
provide trackers for personal employee use to support
this. For example Target in the U.S have offered to give
FitBit trackers to all of their workers to increase awareness
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about healthier lifestyles1 In a similar manner, although
with more focus on rewarding adherence, oil company BP
track step counts of workers and offer lower health care
premiums to those who meet certain criteria2. According
to technology research company Gartner, in 2013 about
2,000 companies offered their employees fitness trackers.
In 2014 this rose to around 10,000, and companies such as
FitBit now have dedicated partnerships with organisations
to provide large numbers of trackers ad personalised data
provision. The collection of such personal data and its use
raises many ethical questions about how such data is used
and who has access to the information - for example what
happens to the employee who does not meet the fitness
criteria defined by their employer? We discuss this later in
the paper as it pertains to our case study and our opinions
as researchers collecting such data, as well as employee
reactions and ‘buy in’ to such initiatives.

3.2. Studies into Causes and Effects of Fatigue

The biometric measures we are proposing to capture, along
with their meanings and effects, have been well studied in
the field of psychology. Here we primarily focus on the
following topics: definitions and effects of fatigue; activity,
fatigue and recovery; fatigue and response times; heart-rate
variability as an indicator of stress and fatigue.

Fatigue is typically classified into two general types, mental
fatigue that affects an individual’s cognitive processes
and physical fatigue that affects an individual’s ability
to maintain physical actions. There is some contention
over this division though with some researchers believing
that fatigue is a single general state that is driven
by physiological responses to energy expenditure of
whichever category (Hockey and Ebrary 2013). Studies of
physical fatigue typically require participants to undertake
physically demanding tasks either for a pre-determined
period of time or until they are unable to continue. A
variety of measurements are compared pre- and post-
task to evaluate the effect of the activity and extent of
the fatigue. For example Kumar et al. (2004) measured
oxygen uptake, ventilation, heart rate, blood oxygenation,
blood volume and took electromyographic readings while
subjects performed a physically demanding exercise, and
reported a steady reduction in force exerted over the
duration of the task.

Mental fatigue has been shown to affect task motivation
(v. d. Linden et al. 2003) and high levels of mental fatigue
have been show to result in a loss of efficiency and lower
productivity of workers (Murata et al. 2005). Like physical
fatigue, mental fatigue may be the result of fatiguing
activities (cognitive processes) but it is also linked to
disturbed, or lack of, sleep (Äkerstedt et al. 2002). While
1http://www.cnbc.com/2015/09/16/
targets-fitbit-offer-to-workers-may-miss-its-mark.
html
2http://www.forbes.com/sites/parmyolson/2015/10/
20/fitbit-employers-barclays-godaddy-wellness/
#6170061b3baa

physical fatigue can be measured by way of ability to exert
force or perform activity (as above), measuring the effects
of mental fatigue is less straightforward. One important
(for our work) correlation that has been demonstrated is
the effect on reaction times of individuals who are fatigued.
Galton (1889) developed a simple reaction time (SRT)
test which recorded a participant’s response to a simple
stimulus. This early test still forms the basis for several
variations that have been developed to measure SRT and
it is also used as the basis for the choice reaction time
test (CRT) which records the time it takes a participant to
choose a correct response from a number of alternatives.
Of particular interest is the evidence showing that reaction
time is adversely affected by both physical and mental
fatigue (Brisswalter et al. 1997) suggesting we may see
slower reaction times in physically demanding jobs, such
as those found in forestry.

In addition to fatigue indicators such as SRT and CRT,
there are changes in the autonomic nervous system when
an individual is under stress (again both physical and
mental). One key indicator that can identify this is heart-
rate variability (HRV) which is the change in the inter-
beat interval of the heart. A higher variability indicates
higher levels of stress and corresponding fatigue and has
been shown to be caused by work-induced cognitive stress
(Chandola et al. 2008) as well as physical activity (Kaur
et al. 2014). The increase in wearable technology capable
of recording HRV has led to an increase in its use as a
stress and fatigue measurement tool for athletes as well as
ordinary individuals.

The majority of the studies described above, and many
similar or complementary studies, are conducted in
controlled environments (typically a laboratory setting)
with specialised equipment and involve large-numbers of
participants. This enables specific variables to be measured
and controlled for required circumstances. For example,
simulated driving laboratories can be used to investigate
not just the fatiguing effects of driving in general, but rather
the effects of particular driving conditions over specified
periods for large numbers of test subjects (see for example
Charlton and Baas (2006); Charlton and Starkey (2013)).
Our intention is not try to replicate such studies or re-
investigate known results from literature. Rather we want
to find out if we can replicate the results of such studies
using low-cost and light-weight measurement techniques
in real-world settings. If we can do so, then we can rely
on such technologies for in-situ monitoring of forestry
workers with the confidence that the implications we draw
from the measurements are based upon empirical studies
conducted in controlled environments.

3.3. Using Sensors and IOT for Personal Monitoring

The Internet of Things is predominantly discussed in terms
of a self-configuring network connecting objects in ‘smart’
homes and businesses, with a strong focus on the objects
and environments. Typical applications are smart buildings,
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smart homes, ambient intelligence, and mobile health-
care. These applications assume large-scale and reasonably-
stable computation and sensor constellations.

Even IoT applications that use rather fluid sensor
constellations typically make these assumptions. For
example, participatory sensing or crowd-sensing (Jaimes
et al. 2015) are activities that engage the public to place
sensors in regions of interest to gain large sample sizes.
However, while the sensors, e.g. in the urban surface
project (Kuznetsov and Paulos 2010), may be dynamically
placed by the public, the urban computing environment
itself is well-established and stable.

In contrast, our domain has a strong concern with the
human body. Communication may be established via
a Body Area Network (BAN) in collaboration with
a Personal Area Network (PAN). Some smart home
applications are treated as an extension of a body
area network, e.g., for health-care applications (Gubbi
et al. 2013). Again, most of these can rely on a stable
network environment with which sensors can securely
communicate. Body-centric systems use environmental,
wearable, and implanted sensors. There are already a
number of simple wearable technology applications,
such as a T-shirt that visualises air quality monitoring
results (Kim et al. 2010) or cycling helmets displaying
heart-rate data (Walmink et al. 2014). In these cases,
the sensing is instantly translated into the visualisation,
without recording capability nor any links to the wearer’s
personal activity context. Some projects use RFID
technology and IoT communication for personal health-
care applications (Amendola et al. 2014) and for gathering
information (temperature, humidity, and other gases)
about the user’s living environment. For example, Negi
et al. (2011) and Adams et al. (2009) combine sensors
with GPS to create a wearable personal air monitors.
Wearable systems designed for outdoor use often rely
on Bluetooth communication between GPS, sensors and
smartphones (Honicky et al. 2008), possibly transferring
data to central collection points via GPRS (Dutta et al.
2009). Inside buildings the use of GPS is limited and
other indoor positioning systems are employed for location-
based monitoring (Brown et al. 2016). Some of the
applications focus on real-time monitoring of workers
to protect them from environmental hazards, such as
overexposure to air pollution (Fathallah et al. 2016).

Many of these health-related applications use IoT
architectures that are akin to smart-city proposals, which
are used to support people with disabilities (e.g., Domingo
(2012)). Others use stand-alone body-focused systems,
such as the Xbox Kinect. For example, González-Ortega
et al. (2014) use 3D computer vision system for cognitive
assessment and rehabilitation. These systems assume
the support of powerful computing networks, often in a
localised setting. Rohokale et al. (2011) proposed using
a cooperative IoT network for rural health-care, which is

akin to ad-hoc wireless sensor networks in which each node
acts as both sensor and relay. This work predominantly
focuses on establishing communication with no concern
for security or wearability of the equipment.

Scant attention has been paid to the communication
and security of data when the IoT devices interact
autonomously Roman et al. (2013). Secure and trustworthy
computing typically focuses on resource-rich environments
or hard security measures (e.g., encryption, signatures
and certificates) that are typically energy hungry (e.g.,
Kumar and Madria (2015); Kothmayr et al. (2013)). Only
a few studies address the specific challenges of trust in IoT
(e.g., Bao and Chen (2012); Lacuesta et al. (2012)), and
none take into consideration the characteristics of rugged
environments, making their findings not applicable in such
environments. Trust in IoT data collection at user level
has recently received more public attention, with users
becoming aware of the potential for mis-use of information
collected (Brennan 2015). Limiting collection of data is
difficult when safety requires data collection and devices
record very personal data via sensors embedded in clothing
or even implanted.

Interaction design in the IoT space makes it tempting to
merely or overly focus on the objects – the ‘things’ in the
Internet of Things (Jenkins 2015). Our problem domain
has two interaction aspects: sensing of data and feedback
to workers. In this paper, we consider the challenges of
sensing, with a strong focus on the interplay between the
objects and the humans involved.

4. THE RUGGED INTERNET OF THINGS (RIOT)

We believe that the new generation of lightweight, wearable
technology and sensors of the Internet of Things (IoT)
can help in identifying hazardous situations in work
environments such as forestry, ultimately preventing
fatalities. There are, however, many challenges in doing
so. The use of IoT has already been embraced in some
hazardous work environments, such as mining (Pye
2015). However most of these projects focus on specific
environments where infrastructure is not an issue. Such
ideas are built on the assumption of the continuous
availability of computational power (in the form of cloud
computing), high bandwidth (in the form of WiFi and
cellular networks) and energy, since devices can be plugged
in.

Many of those assumptions do not hold in rural,
agricultural and forestry settings. Resources in these places
may only be available intermittently. Such environments
are characterised by lack of available bandwidth,
computation constraints, energy constraints, and very
importantly limited interaction between devices. Existing
IoT technologies, which rely on the aforementioned
assumptions, cannot cope in such rugged environments. For
IoT to work successfully and safely in rugged environments
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we must recognise that the standard assumptions do not
work and provide alternatives. Our current experimental
setup mixes fixed access points with temporary storage
solutions (mobile phones) to ensure sensor data is not lost
as workers move in and out of connectivity.

We therefore set out to explore the following three aspects:

Relevant data: What sort of data might be relevant
in order to determine worker fatigue and unsafe
situations?

Suitable Collection: Considering the data we might wish
to collect, what are appropriate and effective ways of
collecting such required data from forestry workers?

Analysis & use How can we analyse and use the obtained
data (online or off-line) such that it would be of use
in ensuring safety in dangerous work environments?

We present a summary of our analysis of relevant data to
be collected in the next section. We then present in detail a
case study that looks into suitable methods for collecting
data in the forestry environment. Explorations of online
use of the data have already begun and are also part of our
future work.

5. RELEVANT DATA: ANALYSIS

As discussed above, our RIoT targets the problem of a
‘smart landscape’ in which disconnectedness and harsh
operating conditions are the norm. Business and personal
data are highly sensitive and possible interference through
attempted data access or malicious data inserts have to be
prevented. In addition, as it is known that workers may be
suspicious about how any of the collected data is used,
even if they agree to participate they may not comply.
Therefore, spurious or suspicious data may be the result of
either malicious interference from external entities or due
to worker disruption.

Data we wish to collect can be categorised across several
different dimensions. First, we consider the privacy
considerations for the data and whether it should be
considered as:

• personal [P] – only the owner should have access
to the unconsolidated and unanonymised data,
identification should only be possible in specified
emergency scenarios

• business-sensitive [B] – needs to be concealed
from external entities as it may reveal properties
of the work environment that can be considered
commercially sensitive

Secondly we consider the requirement for when data
should be available for collection (frequency and
availability) which can also be divided into two groups:

• continuous [C] – where it is essential that data is
collected in an uninterrupted manner

• infrequent [I] – data may be provided at varying
intervals throughout the day

Table 1 gives an overview of the proposed data
to be collected and its categorisations. These data
categories were developed based on prior work with high-
performance athletes Tavares et al. (2016) and industry
engagement with forestry workers Bowen et al. (2015a,b);
Griffiths (2016), as well as analysis of relevant literature.

Data P B C I
Activity X X
Ambient temperature X
Breathing X X X
Calorific burn X X
Core body temperature X X X
Heart-rate variability X X X
Hill climbing X X
Location X
Reaction times X X X
Sleep data X X X
Vibration X X X

Table 1: Data Categories

6. SUITABLE COLLECTION: CASE STUDY

In order to explore suitable data collection methods
for worker-related fatigue data in the outdoor forestry
environment, we designed a case study that comprises
three phases (see Table 2). The table provides an overview
of collected data for each phase, participants and length
of the study. So far, we have conducted Phases I and II
of our case study, and are currently undertaking Phase III.
We here first describe the case study setup and report on
results of Phases I and II; it is too early to report results
on Phase III – it is shown here only for completeness. We
then discuss our observations, the challenges encountered
and lessons learnt from the case study.

We begin by summarising each of the phases wrt. their
goals, aims and participants. We then discuss the
challenges and problems that were identified by the studies
and how they relate to our initial problem statement. We
conclude this section with a discussion of the insights
obtained from our results and how they contribute to our
proposed solution.

6.1. Case Study Methodology

We started by looking at how we might predict hazards by
harnessing the power of a new generation of lightweight,
wearable technology (such as activity trackers). We
subsequently investigated different types of sensors (and
wearable sensors such as those found within the LifeBEAM
Smart Hat3 for example) within an IoT.

Phase 1. This phase started with a number of experiments
performed by the research team over varying periods of
time to investigate the properties of activity tracker usage.

3http://life-beam.com/shop/smart-hat/
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Phase Description Length #Participants
I Activity, steps and sleep patterns 16 + 5 weeks 4 + 2
II Activity, steps and response times 3 + 3.5 weeks 1 + 15
III Heart-rate variation, physical and mental fatigue activities ongoing

Table 2: Case Study Phases (data on external participants participants + forestry workers)

The aim of this initial research was to discover any usability
issues that might occur when using activity trackers for
long-term studies (so requiring them to be worn 24/7)
as well as investigating the effects of domain-specific
activities (such as operating a chain-saw, driving long
distances on bumpy roads, walking in forestry environment
etc.) Three researchers wore devices (sometimes more than
one at a time for comparison purposes) to track both daily
activity and sleep for periods of 6–14 weeks. In addition
one researcher kept a diary throughout the same period
to enable consideration of particular data points. We then
replicated this data collection with two forestry workers
over a five week period. The participants were asked to
wear an activity tracker (each had a different brand) 24
hours a day, initially for a period of two weeks, and then
subsequently for another two weeks, then for one final
week. The extensions were due to ongoing problems with
the participants use of the trackers (discussed shortly).

Phase 2. The second phase began by one of the researchers
undergoing a period of self-monitoring on activity and
fatigue levels. Activity was measured based on step-
counting, heart-rate and calorific burn (using a Fitbit
HR), sleep was measured in terms of quantity and quality
(again using the Fitbit HR) and the effects of fatigue were
measured based on reaction times. Reaction time testing
used two methods, simple-reaction time testing (SRT)
and choice-reaction time testing (CRT). For this study,
reaction time was measured using the ‘Reaction Time’
application4 designed to measure the time taken to respond
to visual stimulus (colour change) and screen touch
(response). These experiments ran for a three week period
and encompassed activities undertaken by a researcher,
covering a mixture of workplace and study activity.

Again we then moved our data collection to in-situ forestry
workers. This involved the collection of physiological
data by means of a Fitbit Charge HR wrist worn
monitoring device and testing of SRT and CRT. Simple
and choice reaction time measurements were undertaken
at commencement of the participants’ work period,
during their break time and on completion of the
participants’ work day. The Deary-Liewald Reaction Time
Task application developed by the Centre for Cognitive
Ageing and Cognitive Epidemology at the University of
Edinburgh Deary et al. (2011) was used for this purpose.
SRT testing was completed first with each participant
undertaking 15 individual tests. CRT testing was performed

4available from Google Play https://play.google.
com/store/apps/details?id=com.chingy1788.
reactiontime

secondly with participants undertaking 20 individual tests.
Participants were selected from three work crews based
at three separate locations (all members of a crew were
included where possible) who were each monitored for two
periods of 3–5 days. In total there were fifteen participants
who were all male, with ages between 17 and 62. Five
participants were loader operators, three worked in quality
control, three were manual tree fellers, two were process
operators and two were log makers.

Crew 1 was a fully mechanised crew with most operations
being carried out using plant and machinery. Crew 2
was a primarily manual crew with most operations being
performed by workers on the ground (using chainsaws etc.)
Crew 3 was a hauler crew who operate in steep terrain
using cabling techniques to drag felled trees to the skid
site for processing. The working day for all three crews
(apart from loader operators who typically started the day
2 hours earlier and then broke for the morning meeting)
starts with a meeting where tasks are assigned. Directly
after this meeting we issued each participant with a Fitbit
HR to wear for the day and performed the first of the
reaction time tests. Work then commences for around four
hours, at which point a 45 minute break occurs when we
performed the second reaction time test. Work then re-
commences until the end of the day when we performed the
final reaction time test and collected the activity trackers
for data synchronising and charging.

6.2. Summary of Results

We here summarise the case study results wrt. the data
quality and suitability of the data collection method.

Phase 1. While the full results from Phase I were reported
in Bowen et al. (2015a), here we discuss the key findings
from both phases and show how they relate to the aims of
the work described. Our experiences of Phase I showed
that context-free data can be misleading (high activity
levels may not be due to steps but other actions such
as driving or even drinking). There were large variances
in sleep-tracking accuracy (when compared with diary
reports as well as measured against state of the art devices
like the Readiband5) and devices can get in the way of
some activities (uncomfortable when typing on a keyboard
for long periods or irritating to the skin overnight). This
suggests that choice of technology needs to be based on a
number of factors and that data needs to be correlated with
other variables in order to obtain a clearer picture of its
meaning. While different types of tracker reported different

5www.fatiguescience.com/Readiband/sleep_tracker
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values for activity tracking the differences remained
consistent (so trends seemed accurate) which means that
factors such as comfort and utility in the environment can
be used as the dominant choice factor.

The most significant finding from the forestry worker
engagement in Phase I is the level of technical difficulties
that occurred—participants could not change the mode
of the devices to track sleep; devices were lost; mode
changes occurred frequently so that data collection was
compromised; participants never charged the devices;
connectors for uploading data were lost. Of course, it is
possible (and indeed likely) that not all of these problems
were actually technical but that there were also elements
of resistance from the participants to being monitored in
this fashion. As we have discussed earlier, in some sense
this is not surprising, the monitoring of workers during
their private time is potentially controversial. Even though
our participants were volunteers and keen to take part,
during the initial meeting to set up the study it was clear
that there were reservations about some aspects of the
monitoring (particularly the sleep monitoring) and what
could be identified from the data).

Workers were assured that only anonymous and aggregated
data would be available to their boss; however, the fact that
their boss might be able to see any data caused considerable
concern and might have been the reason for the subtle
disruptions and signs of non-compliance we observed. A
similar observation was made by Kortuem et al. Kortuem
et al. (2007), as they explored organisational issues of
industrial health and safety monitoring system. They had
also observed “both a perceived lack of trust and a lack of
effective two-way communication between management
and operatives".

Phase 2. As the first part of Phase II involved self-
monitoring, and because we had already learnt some of the
lessons relating to equipment choice from Phase I, there
were overall fewer issues. Our focus for Phase 2 was on
identifying correlations between activity and reaction times.
Specifically we wanted to see if the data we could collect
would correlate with known properties of activity and
fatigue (as discussed earlier). Speed of mental processing
(SMP) is a means to aggregate data from simple and choice
reaction time (SMP = CRT − SRT ). A summary of the
collected data for Crew 3 is shown in Figure 3. We found
that the effect of activity on reaction time varied between
participants. SRT showed no common pattern other than a
tendency towards being slightly slower at the end of the day
than at the start of the day but between those points there
was no consistent effect. CRT similarly had no common
pattern. The data is personalised but may also depend on
role types. For example, the loader drivers 3E and 3D both
show improved mental processing times as well as CRT
and SRT throughout the day. People were typically found to
be consistent within each day but very different from each

Table 3: Crew 3 Mean reaction times in msec

Period Participant Role CRT SRT SMP
Start 3A Quality Control 662 701 -39
Break 649 382 267
End 525 390 135
Start 3B Quality Control 624 445 179
Break 544 363 181
End 534 396 148
Start 3C Manual Feller 566 392 174
Break 566 386 180
End 569 357 212
Start 3D Loader Operator 520 311 209
Break 456 321 135
End 458 277 181
Start 3E Loader Operator 1067 1016 51
Break 820 569 251
End 742 424 318

other. We also observed that not only physical exhaustion
may contribute to fatigue but also mental activity.

Implications for data collection As a result of Phase I we
made a decision that we would not continue with sleep-
tracking of the workers; instead it was decided to focus
on measuring the effects that fatigue (based on activity)
might have. It may be that including some type of self-
reporting question regarding sleep quality at the start of the
electronic reaction time test may be useful, although we
should be mindful that the same ethical issues that could
lead to non-compliance with the sleep monitoring may
similarly affect the answers given. If workers believe they
may be penalised (e.g. sent home as unfit to work) if they
select an answer indicating they have slept poorly several
nights in a row then they may be reluctant to provide such
an answer.

The need for the researcher to be on site several times a day
to facilitate the testing also meant that they were able to
observe some aspects of the environment which proved to
be informative, despite not being part of the overall study
plan. The effect of temperature appears to have a bigger
impact on reaction time (both SRT and CRT) than activity
alone. The biggest effect was seen at temperatures less
than 4°C with the mean differential across all participants
between 2°C and 4°C on CRT being over 100 milliseconds
and on SRT being around 50 milliseconds. However, this
needs to be considered in conjunction with the activity
data as typically the coldest part of the day is when work
commences and as the temperature rises the amount of
activity having been performed also increases.

The remote working conditions for each of the forestry
crews and lack of facilities contributed to the effect of
ambient temperature as an important variable. Work sites
are at remote locations with the only welfare facilities
available to the crew being the vehicles they travel to work
in. There are no fresh water or toilet facilities at any of the
locations. Crew 1 had access to a metal shipping container
that is used as both the site office and lunch room. This
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container travels with the crew from production site to
production site as the crew moves around. This has an
effect on workers’ choice of hydration and food throughout
the day. In addition the lack of a comfortable, warm, area
to take breaks in, and no running water or power meant
that breaks were taken as required in a perfunctory manner,
rather than being used as an opportunity for workers to
relax, make tea/coffee, heat up food, socialise etc. as might
be seen in indoor working environments. Power is not
supplied to the container and as such no heating is available
and crews protect themselves from adverse temperatures
by use of clothing layers. Machine operators who spend
large parts of the day sitting in unheated machine cabs
are particularly affected by cold temperatures, whereas
the workers on the ground report finding the summer
months where they are unprotected from the heat more
physically challenging. Our results also indicated that
mental fatigue (again seen by machine operators) appears
to have a stronger effect than that of physical activity. It
is clear, therefore, that all of these need to be carefully
measured and considered in larger scale data-gathering
activities.

Finally the individual nature of the results seen (particularly
the differences in reaction time across workers) indicates
that there can be no overall general benchmark applied
to determine whether or not a worker is fatigued or has
reduced reaction time. Rather we need individual data
collected over time to act as a personal benchmark, so
deviation from an individual’s normal pattern of data is
what is important. Again this emphasises the need to build
personal data histories as a mechanism for predicting
future behaviours. The requirements for collecting, storing
and analysing this type of personal data, as well as
incorporating environmental and business data leads to
a number of further considerations that we discuss next.

7. DISCUSSION

The personal stories we uncovered and the insights
gathered while doing these studies suggest that the design
considerations are not those we traditionally prioritise.
Any system used for monitoring workers, even when their
safety is our primary concern, must be focussed on their
privacy as much as anything else. It may be that we will not
create the most effective IoT solution or will not include
the most optimal data inputs but rather we aim to find
the most ethical, robust and secure solution that can do
the required job. There are many philosophical, ethical
& social implications of collecting and using this data.
Workers already do hard jobs for minimum wage, if we
collect data that deems them not fit to work then what
happens? There are two distinct parts to our focus, the first
is that any data collected is shared (or hidden) appropriately.
The second is that workers are kept safe and well.

In Phase I, one of the workers was off sick for a day
and at the same time problems were encountered with

his monitoring device. This again suggests that there is a
fine line between what is acceptable and what is not when
it comes to such personal monitoring. It is also clear that
it may not always be obvious where a problem lies and if
a technology error really is that or if something else is at
play. As computer scientists it is tempting to focus on the
things we can do rather than the things we should do. If one
could market such monitoring solutions as being beneficial
to workers, or the elderly or the disabled (as we see with
many similar monitoring approach rationales) then we may
stray into dangerous areas. Risk assessment for poorly paid
workers in dangerous environments is clearly a good thing,
but if the data is used to send home, or lay off, workers who
do not meet the new risk criteria then we must consider
the responsibilities we have in this. This is especially true
when it is not as simple as saying “worker X is fatigued
and will cause a serious accident if he stays at work"; the
interplay of various factors is much more subtle than that.
While high-performance athletes seem to accept the “lab-
rat" lifestyle where all aspects of their performance may be
monitored both in and out of work this comes with benefits
for them which allow them to improve and attain higher
standards. However most research in this area focusses on
the different metrics or studies that can be used to fine-
tune athletic performance rather than consider the effect
this has on those being studied—particularly when under-
performance or lack of adherence to training and nutrition
schedules is suggested.

Similarly the choice of the components we include in our
RIoT solution must be carefully considered. Off-the-shelf
sensors and tracking equipment is appealing because of its
availability and low cost (easy to deploy quickly to large
numbers of people), but much of this is not designed to
be secure or private. We have been experimenting with a
hat that includes a built-in heart rate monitor which just
broadcasts its data via Bluetooth continually and which
can potentially be captured by anyone or anything in
close enough proximity. Developers of such artefacts for
personal use are not typically concerned with such data
leakage which may not seem concerning when geared
towards lifestyle and fitness. Even presuming we do collect
data in a secure and private manner (see Table 1), we
still need to ask the questions about who then has access
to this data (the workers themselves, their bosses, health
and safety bodies etc.) and how it is presented and used.
We must be clear about our proposed use of this data
and ensure that it cannot be accessed and used for other
purposes (performance management of employees for
example). This again requires us to treat the data in ways
that may not necessarily be the most optimal in terms of
the technological solution but which ensures the ethical
dimension is acknowledged.

8. SUMMARY AND FUTURE WORK

In this paper we have discussed our attempts at creating
continuous data-collection methods that are ethical,
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sustainable and effective. We explore the difficulties
in collecting personal and environmental data from
workers and their work domain and discuss both the
technical and ethical issues that arise. We have also
presented a case-study that explores data collection
methods as part of a robust, trusted Internet of Things (IoT)
solution for dangerous work environments. We described
considerations for relevant data and suitable collection
methods, while exploring the use of lightweight sensors
to monitor worker activity levels and response times as
fatigue indicators.

As we discussed earlier, the nature of the data we
wish to observe and gather includes highly sensitive
personal data as well as business-sensitive information.
This naturally requires safe methods for storage and
communication among trusted partners. However, the very
nature of the rugged environments we are working in
means that connected devices may be transient due to
power limitations, movement in and out of connectivity
etc. This means that security and trust must be dealt
with dynamically, and the IoT includes small lightweight
sensors that do not have the capacity for on-board security.
Not only does this add a layer of overhead that does not
exist in typical IoT in terms of management of connectivity,
it also means that trust cannot develop over time as in
established IoT networks. Another element of our research,
therefore, is in developing a trust model that can support
this type of dynamic connectivity and can react accordingly
if devices disappear or newly enter. The model should also
be able to differentiate between anomalous and maliciously
inserted false data. Reliance on redundancy to partially
solve this problem is not necessarily suitable in a rugged
environment where the infrastructure to support just the
minimum required connectivity is already challenging.

We propose to protect the data through the use of a
trust management system. Typically trust amongst IoT
components is either confirmed by third parties (which
are not available in our setting) or is developed over time
(which is not suitable in our dynamic outdoor environment).
We use data aggregation and composition to derive valuable
safety-related information from the collected sensor data.
Our trust model will analyse the data from neighbouring
nodes in the IoT and classify the data as acceptable or
malicious. We started with wearable technologies as a
proof-of-concept for our data collection but want to go
beyond just collecting data so propose to develop a sensor-
based IoT which also provides feedback to workers via
wearable technology such as a smart vest.

The next stage for our work is completing Phase III of
our case study in which we experiment with monitoring
heart-rate variability data and recognition of mental and
physical fatigue activities. This will be incorporated into
sensors that will be part of our RIoT network setup. This
will then be employed in field tests to see how well the
RIoT network performs and to identify potential areas of

weakness in the security aspects. We can then move on
to analysing the data itself and consider how we will use
them in-situ in useful ways to help reduce risk.
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