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Abstract  
 
This research addresses the future of A/B testing in social network advertising. A/B test is a well-

studied comparison problem with two different samples with the goal of testing the treatment effect 

of old and new variations. In recent years, through the rise of the internet, A/B testing in social 

networks has gained sharpened focus and is commonly used in social network advertising. Due to 

the market-driven strategy the companies should today aim for, the development of A/B testing in 

social network advertising can help in gathering useful insights of consumer preferences and 

attitudes. A/B testing has been perceived as cheap, simple and reliable way of optimizing 

advertisement and mining data from site users. However, as currently performed A/B testing has 

criticized as manual and time-consuming activity that requires complex set of statistical and 

engineering skills. This study focuses on overcoming these problems through automation and 

machine learning algorithms. Besides, the importance of shifting organizational focus on optimal 

usage of data-driven decision making through A/B testing, and user attitudes towards social 

network advertising and their ad-clicking behaviour are addressed.  

 
Keywords    A/B testing, social network site, social network advertising, market-driven strategy, 
data-driven decision making, consumer attitudes, ad-clicking behaviour, automation, machine 
learning algorithms 
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1   Introduction  

A/B testing, also known as splitting testing, bucket testing or controlled experiment, has 

been widely used for evaluating new feature in the data-driven decision-making 

processes of online websites, especially those in social networks sites (SNS). The goal of 

A/B testing is to estimate the difference between the treatment effects of different 

variations. It is a well-studied comparison problem with two samples. In the simplest 

form of A/B testing, the aim is to evaluate the effect of a new feature within the site users 

compared to the old version of it. The new feature is exposed to a small randomly selected 

fraction of the user population and its effect is then measured. Most of the A/B tests 

concentrate on the aspects that are visible to the user, front-end of the application, 

including layouts, fonts, colours, etc. (Backstrom & Kleinberg, 2011; Cubero et al. 2016; 
Geng et al. 2016). 

The roots of A/B testing lie in the 1700s. Back then a British ship’s captain realized sailors 

staying healthier and avoiding scurvy when sailing to Mediterranean countries where 

fruit was easily accessible. Based on this notation he then gave half of his crew limes 

(treatment group) and the rest of the crew continued with their regular diet (control 

group). Experiment was successful and the captain figured that the British sailors should 

consume citrus fruits regularly. This example can be seen as an early state of A/B testing. 

The treatment group eating limes is the option A and the control group is the option B in 

the comparison problem. Many years later, in the 2000s, the first A/B tests were run on 
the web. (Henne et al. 2008). 

Since the rise of the internet, A/B tests have expanded everywhere (Adegeest et al. 2017). 

In recent years, A/B testing in social networks has gained sharpened focus and is 

commonly used in social network advertising (SNA) in companies such as Facebook, 

LinkedIn and Twitter (Geng et al. 2016). For network A/B test, in particular, Glass et al. 

(2016) have widened the theory of traditional A/B testing by suggesting that the 

responses of users in an A/B test are affected by each other’s choices when acting in the 

same network with each other. Hence, they introduce the concept of network effect which 
results from the correlation of a user’s and her neighbours’ behaviour.  

It is argued that the method of A/B testing is simple, cheap and reliable way to test the 

consumer needs, attitudes, navigation profiles, and preferences (Adegeest et al. 2017). 

A/B testing not only offers a test pattern for optimizing website advertisement but also 
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mines large amounts of data about the behaviour of consumers and users (Henne et al. 

2008). Hence, through A/B testing, companies are able to gather thorough insights 

about consumer interests and the factors influencing the outcome of those. As one aspect 

to the benefits of A/B testing stands its support for the company maintaining and 

developing an experimentation culture. It has been argued that an experimentation 

culture is a certain way to get to the bottom of a decision without relying on anyone’s 

opinion as more of ideas will be driven further when presented in the form of tests and 

workers will be more highly motivated because they get to see ideas live in the real world 

(Jenkins, 2014). This is the managerial approach to the benefits of utilization of A/B 
testing in a company working on any field.  

 

1.1   Latest  development  in  the  field  and  the  key  concepts  

Adegeest et al. (2017) criticize traditional A/B testing due to its tendency to presume that 

the companies conducting tests only have enough resources and capacity to keep one of 

the two test variants at once. If more capacity for the A/B tests is available in forms of 

more advanced data science techniques, it is possible to gain more profit for the company 

from the results. To answer this limitation, Adegeest et al. developed the concept of A&B 

testing in which the effect of users preferring the “loser-option” is not ignored and thus 

valuable conversions are not left out in the decision-making process. This occurs through 

the automation of website personalization based on the findings of Exceptional Model 

Mining (EMM), an advanced data science technique that identifies subgroups behaving 
differently from the overall population.  

Scott W. H. Young (2014), in turn, argues that when employed in isolation from other 

related functions, A/B testing can lead into incomplete conclusions. Thus, it is necessary 

integrate A/B testing into the entire market research program of the company. Moreover, 

recent study from Cubero et al. (2016) has shown that the way A/B testing is used only 

for testing usability aspects such as creating variations of the graphical user interface 

(different layouts, fonts, colours, etc.) is limiting. They introduce a tool for testing the 

aspects related to many different business processes so that A/B testing could be 

exploited to support and improve a larger set of systems with continuous verification and 
validation infrastructure that allows to experiment with the involvement of end users.  
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As the most recent development and discussion in the field of A/B testing shows, the 

rapid increase of advanced data science techniques, the synchronization of different 

processes within and between the business activities, and the concrete need of the 

iterative involvement of end user in the corporate decision making processes offer both 

opportunities and challenges for traditional A/B testing. However, in its current manner, 

traditional A/B testing has been seen as a time consuming, error prone and costly manual 

activity when performed in a large scale. Even when successfully executed in the whole 

industry, A/B testing is considered by the majority as a complex, manual and costly 

activity rather than a sophisticated software engineering process, according to Margara 

and Tamburelli (2014). They demonstrate the practical feasibility of automated A/B 

testing through a set of synthetic experiments. However, it is still not clear, whether the 

companies are moving towards the given automatic A/B testing models in their daily 
practices or not.  

From different terms to describe the method of evaluating new feature in the data-driven 

decision-making processes of online websites, I choose to use ‘A/B testing’ as it is the one 

that is easily associated with the variation testing in the advertising field and is used 

widely in current discussion about the subject. Moreover, I abbreviate the terms ‘social 

network site’ and ‘social network advertising’ as SNS and SNA, respectively. 

 

1.2   Motivation  for  work  

The importance of studying the topic of A/B testing in SNA context in the near future lies 

in the market-driven strategy companies should today aim for. A market-driven strategy 

supports the company’s understanding of its own market and customer-base, and the 

planning of all business processes based on these insights. Customer satisfaction and 

customer value are increased which again affects positively company’s return on 

investment (ROI) and profitability. (Leventhal, 2017). 

Furthermore, the growing possibilities in the field of advertising due to the trends of 

SNSs and big data underline another aspect for studying the method of A/B testing 

further. When a (potential) customer connects with the brand through an SNA it is 

possible to make the advertising decisions based on the data collected through these 

connections and when these touch points occur via internet, social media, and mobile 

devices, data can be saved over time for huge amounts of users (Li & Malthouse, 2017). 
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As the volume of this data grows rapidly, focus needs to be shifted into how to treat the 

A/B test data and make decisions based on it. As third aspect, monetizing big data has 

been discussed a lot recently. All of the points covered underline the importance of 

continuing the research of A/B testing in the context of SNA. The increasing focus on 

marketing and advertising optimization and the need for collecting data about consumer 

needs and preferences offer the market pull, and the new technological development 

offers the technology push for the innovations regarding A/B testing.  

Based on the recent development, the concept of A/B testing as a test model and its 

improvements regarding practical factors such as choosing what to test, defining 

different audiences effectively, choosing the correct framework and interpreting the 

results have been widely discussed. Besides, researchers such as Deng et al. (2014) have 

introduced a wide set of “rule of thumbs” for online network A/B testing. However, the 

question about the effectiveness of A/B testing is no more only about whether the 

company understands the importance of A/B testing as a whole or is able to design and 

implement it but the more accurate dimensions lie in the new aspects that the most 

recent technological development enables. The limitations of previous study lie in the 

companies’ ability to analyse and utilize the A/B test data, consumers’ attitudes and ad-

clicking behaviour addressing A/B tests, and the concepts of automation of manual work 

and machine learning algorithms. These factors have little to do with how the test is 

conducted in practice but with new managerial and technological possibilities for 

improving A/B testing in the future. Thus, in this paper the focus is shifted from the A/B 

testing itself to the newest technological turning points, managerial approaches towards 

the data and consumer preferences, and how those will transform how companies 
perform their advertising optimization and the data mining related to it in the future. 

 

1.3   Research  objectives  and  research  questions    

The objective of this research is to study the possible future scenarios for A/B testing in 

the field of SNA. The aim is to examine the method of A/B testing with respect to the 

directions of the technological development according to the literature and how those 

will most likely affect the advertising optimization and data mining in SNSs in the near 
future.  

Specific research questions: 
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RQ1: How will A/B testing in the context of social network advertising most likely 
develop in the near future? 

RQ2: What are the implications in the recent technological development that affect firms’ 
advertising optimization and related data mining methods the most? 

 

1.4   Scope  of  the  research  

In this research, I will focus on A/B testing in the context of social network advertising. 

This excludes all the insights and implications of A/B testing in any other fields of 

business. The concept of social network in this research includes different online SNSs, 

such as Facebook, Instagram, Twitter and LinkedIn. By using the term social media, I 

exclude all the online marketing functions that don’t occur in the shared social 

engagement platforms, social network sites. Thus, for example, company websites and 

optimization of those is left out. The focus is shifted to the elements that are relevant in 

the network advertising context, including visual creativity aspect (i.e. the ad picture), ad 

text and the links related to the ad. Also, no marketing activities that occur offline will be 

covered. Furthermore, all the other marketing functions besides advertising are excluded 

in this research. Thus, the focus can be targeted to the modern advertisement 

optimization and data mining through SNA. In fact, these two benefits that can be gained 
by using the method of A/B testing are both focused on in the study. 

 The research objective is to study how A/B testing will most likely develop in the future 

and how current technology transformation will answer today’s issues regarding 

advertising optimization and data mining in online social networks through A/B testing. 

Thus, I will go through different technology and business trends in a large scope, 

including factors such as automation. Roles of both company employees working with 
the tests and SNS users will be taken into consideration in practical and attitude levels. 

 

1.5   Structure  of  the  research  

The rest of the thesis is structured as follows. Chapter two presents the methodological 

approach for this study. I will explain the data used in this research and the method of 

searching it. I will specify the different databases and sources, explain how I searched 
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the data in practice and introduce my article inclusion criteria. Besides, I will cover the 
ethical standards concerned in my thesis. 

In chapter three I will present the results of my work. The suggestions based on the 

previous literature are described. The chapter has five second-level subsections in each 

of which I approach SNS A/B testing and the development of it from different viewpoints 

that I found most important during my research. This also includes the insights collected 
from the case company I conducted a question patter to. 

Finally, chapter four covers the discussion and final conclusions of my work. I will 

summarize and conclude the key findings. I will also focus on what the results indicate 

in both research and practice when considering companies and other actors operating in 

the field and topic area, and make recommendations based on my findings. Lastly, I will 

end this paper with the limitations of this study and by giving implications for future 

research in the field. 
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2   Methodology  

The method of my thesis is a literature review. Thus, my data is the previous literature in 

the field. Besides, I used insights from a case example company. The order and structure 

to how my research has been undertaken is explained in this section. In general, I 

collected published articles related to the topic of A/B testing in social network 

advertising and analysed what can be learned through considering those collectively. I 

cite Denney’s and Tewksbury’s research (2003) ‘A Systems Approach to Conduct an 

Effective Literature Review in Support of Information Systems Research’ throughout the 
chapter. 

I first explain where I searched for the articles that are included in my work. Second, I 

answer how I searched my data in practice. Third, I go through the article inclusion 

criteria that were used when selecting the articles that are included in my work and the 

ethical issues that assign the collection of the data. Finally, I consider the data addressing 

the case example company I used in my work in order to gain more practical insights 
about the topic. 

 

2.1   Databases  used  in  my  work  

The main place to search for the articles I used in my work were all the Aalto Learning 

Centre’s resources in the Aalto-Finna portal. Denney and Tewksbury argue the online 

databases at universities’ library websites being the main way of finding sources for a 

literature review. Besides the Aalto-Finna portal, the Scopus and Google Scholar 

databases offered relevant data for my work in some of the cases. From these collections 

I included mainly academic journal articles, as those are the most appropriate source of 

information (Denney and Tewksbury, 2003). Besides, I used for example newspaper 

articles, magazine articles and government publications. Denney and Tewksbury argue 
these also being appropriate sources.  
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2.2   Keyword  search  and  backward  search  

When searching for the articles I used keyword search. According to Denney and 

Tewksbury, this is the first step of the literature search process, however, it should not 

be the main part. I defined a set of search words I used collectively throughout the 

process. When searching previous literature about A/B testing itself as a methodology, I 

used the search word ‘A/B testing’ at most. Besides, I used its synonyms, such as 

‘controlled experiment’, ‘splitting testing’ and ‘bucket testing’, as the usage of the term 

might have changed over time. Also, by changing the typology of the word ‘A/B testing’ 

(i.e. ab testing) in some cases lead to relevant results. Besides the articles concerning 

precisely A/B testing, I tried out many search words that are or might be related to the 

field and combinations of those, for example ‘online advertising’ and ‘big data’, 

‘advertising optimization’ and ‘ctr’ or ‘click-through rates’, ‘artificial intelligence’ and 
‘advertising’, etc.  

As Denney and Tewksbury suggest, it is sometimes useful to get deeper into the citations, 

keywords, and authors of the previous sources to find new useful sources and insights 

through them. This approach is called backward search and is used in my thesis as well. 

In practice, as any specific key words, for instance ‘ctr’, drew my attention while reading 

any of the articles found during the keyword search, I would use it as the next search 
word. Same occurred with any highlighting authors or citations.  

 

2.3   Criteria  for  the  source  inclusion  

Denney and Tewksbury highlight the volume of the available literature being dependent 

on the topic. As the field of my study regards the modern world advertising optimization 

and data mining, I included the articles I used in my thesis mainly based on the criteria 

of their newness. In the means of collecting insights for the possible future development 

of A/B testing, very rare older articles can provide value in my thesis. In most cases I 

limited my search so that it offered only articles from the past three years or less (2015-

2017). This criterion addresses especially the searches regarding the technological 

development – when trying to find implications of the future scenarios. However, when 

studying the A/B testing in general and other settled theories, I accepted also older 

articles. Denney and Tewksbury support this by arguing that it is important to include 

both classic and recent studies into the literature review. Nonetheless, the oldest article 
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used is from the year 2003 and thus it can be said that all the data used is in the scope of 
past 15 years.  

Both qualitative and quantitative research articles could be included and there were no 

geographical limitations. Also, the articles didn’t necessarily have to be directly related 

to the topic of A/B testing as my research requires insights and views of the general 

technological and business development that might affect A/B testing somehow in the 
near future.  

Ethical standards were also concerned in the thesis. The ethical issues regarding my 

literature review include factors such as information having to be obtained lawfully and 

reported accurately. I treat the work of existing researchers accurately and fairly which 
includes for example accurate citations and references. 

 

2.4   Case  company  insights  

In my thesis I compare the insights arising from the previous literature in the field to the 

practical side in forms of a case example company. The company is a middle sized 

Finnish listed company that operates globally and in the field of e-commerce. They use 
A/B testing as a relevant part of their marketing and advertising strategy.  

I conducted a detailed question patter to the company’s CDO. The questions were open, 

qualitative, questions including general aspects regarding the SNA channels, software 

used in for the process, variation objects (i.e. fonts, textual details or visual details), and 

the automation of the process. Besides, I included questions on how the tests are 

conducted in more detail including the sample size, amount of different test variants, the 

tracking of the results etc.  
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3   Results  

In this chapter, the results of my research, the suggestions based on the previous 

literature, are described. I approach SNA A/B testing and the development of it from 

several different viewpoints, including both managerial and practical approaches. My 

findings are explained and structured as follows. First, I compare the insights of 

organizational capabilities on data and business insights, according to the existing 

literature, to the method of A/B testing. I conclude these problems in the level of 

employees’, such as developers’, designers’ and analysts’ regular daily work. Second, I 

move to the results that arise from the research on user attitudes towards SNA and their 

ad-clicking behaviour. Third, I continue with the challenges and possibilities regarding 

A/B testing in developing a personalized user experience and customized advertising. 

Fourth, I report my findings regarding the transformation of A/B testing methods in the 

future due to the most recent technological development. These include the possibilities 

and challenges regarding automation of manual work and machine learning algorithms. 

Finally, I will consider the result I gained from the case company and this way include 
and example from the real life practical side into the work. 

 

3.1   Problems  arising  from  practical  daily  work  and  
organizational  perceptions  of  data  

When studying the future of A/B testing in SNA context, it is relevant to consider it as a 

method that a company of any size and any field could include in their advertising 

strategy and implement in practice. Here, the experimentation culture and attitudes 

towards measurement in general within the organization become accurate. In the history 

of social science, it is emphasized that simply practicing measurement as an absolute 

process does not necessarily provide useful and relevant insights the organization can 

use to improve its processes and performance (Lawler et al., 1985; Mohrman et al., 2011). 

Increased measurement does not guarantee insights that can be developed into practice. 

Modern software systems deal with continuously growing and changing user population 

that may add up to millions requests daily (Margara et al., 2014). It is easier than ever to 

experiment with expanded volume of both potential and accurate data available to 

organizations when conducting A/B tests. Thus, the careful definition of which parts of 
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this data to include in the company decision-making processes and which to leave out 

underlines an important but also difficult part of the testing process. For instance, in the 

book ‘A/B testing: The Most Powerful Way to Turn Click into Customers’, Koomen and 

Siroker (2013) argue that improved conversions from A/B tested elements that are not 

considered carefully enough, might cost the company something more valuable, such as 

their brand. For instance, consider a company conducting A/B test in order to change 

the colouring of their recent ad campaign but it results in the user base preferring an 

option that is not recognizable as a part of the company’s branding and marketing 

strategy. Even if the “winner-option” would gain a larger click-through-rate, its revenue 

is taken from the company’s previous and current branding effort. Thus, too blind-eyed 

focus on A/B test data can lead to results that are not in line with the overall advertising 

and marketing strategy. Indeed, Fink and Levenson (2017) argue that it is much more 

important to challenge the data sources, their methods of measurement and quality, 

instead of focusing only on the general business importance of what is being tested. Also, 

the ways of this data being interpreted and defined correctly cannot be underestimated. 

Besides the organizational perceptions of data, interpreting it, and making decisions 

based on it, there are difficulties regarding the more practical side of A/B testing work. 

Magara and Tamburelli (2014) illustrate the most critical of these tasks faced by the 
developers of A/B tests as follows: 

1.   Development, deployment and modification of multiple variants continuously 

and real time for the successful implementation and evaluation of these variants. 

2.   Defining a variant means the consideration of how many variants and which ones 

of them to change when creating a new variant. 

3.   In traditional A/B testing, there are two variants at once. However, it is possible 

to simultaneously deploy more than two variants which, in fact, constitutes the 

A&B test by Adegeest et al. (2017). Challenges occur when having to choose the 

amount of different variants and to modify it over time. 

4.   A/B testing works iteratively. Selecting the most potential variants in the 

beginning of each iteration round and prioritizing some variants over another 

might not be an easy task, as programs can be large and complicated. 

5.   Evaluation of variants requires mathematical and statistical skills that the 

workers developing the code itself might not have.  

6.   Knowing when to stop the tests and understanding when optimal solution has at 

least nearly been reached is crucial for using time and effort only for relevant 
changes in certain specific aspects. 
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These tasks demonstrate the complexity and challenges regarding the manual activity of 

A/B testing and the diversity of skills required from the employees to perform the tests 

effectively. I continue the results regarding the solutions to these problems in the section 

3.4. that addresses the technical development of A/B testing such as the possibility to 
automate these manual tasks. 

What it comes to the process of analysing and criticizing the data, Fink and Levenson see 

it as a function of the senior management. However, the previous literature of A/B testing 

offers an opposite insight. The concept of Highest Paid Person’s Opinion (HiPPO) is 

widely considered in the research field of A/B testing and describes the strong managers 

with strong opinions but with the lack of data. No substantial learning and and return on 

investment (ROI) occur before the company employees and management listen to their 

customers, not to anyone’s intuition or opinions (Henne et al. 2008). Thus, before the 

method of A/B testing and the decision-making processes based on it can be seen optimal 

for any sort of companies, the careful implementation of experimentation culture within 

the organization has to be executed. Recent EY surveys support this idea by arguing that 

81% of executives say they believe that “data should be at the heart of all decision-

making”. On the other hand, Golsby-Smith and Martin (2017) argue that only having 

data is not any kind of proof that outcomes couldn’t be different from the insights of this 

data. Moreover, that data is no more than an evidence and it’s not always obvious what 

it is an evidence of. In fact, Golsby-Smith and Martin propose that the belief that all 

business decisions should be reached through scientific analysis decreases strategic 

options and innovation in the company. They argue that scientific methods are designed 

to understand natural phenomena that cannot be changed and thus, is not an effective 

way to evaluate things that do not yet exist. This, as well, is a perspective the CDO’s and 

CMO’s of the companies should take into account when conducting A/B testing in its 

current manner. In fact, in the case of SNA A/B testing, this perspective relates strongly 

to the effectiveness of prototyping, the creation of the variety of advertisement 

alternatives that set the starting point for the whole testing process. The following 

chapter introduces guidance to the problem of choosing the most potential advertising 

prototypes from early on according to previous literature on user attitudes and their ad-
clicking behaviour.  

 



	  

	   13 

3.2   Beliefs  and  concerns  on  user  attitudes  towards  online  
social  network  advertising  and  their  ad-clicking  behaviour    

There are recommendations arising from previous literature on SNA that can be applied 

in the creation of A/B testing prototypes and the whole process in general. When trying 

to figure out what kind of advertisement prototypes to include in the A/B testing 

processes, several factors regarding the user attitudes and reactions in general should be 

taken into consideration. Baek’s and Morimoto’s (2012) research highlights two 

important factors. First, “consumer concerns of advertising as intrusive and irritating 

affect their attitudes toward online advertising”. Second, “User attitudes toward online 

advertising affect their ad-clicking behavior”. Moreover, Lewin et al. (2011) argue that 

“For advertisers and the sites themselves, it is crucial that users accept advertising as a 

component of the SNS”. If users’ attitudes shift onto preferring to not viewing or seeing 

SNA at all, optimization of the ads through A/B testing will lose its purpose. On the other 

hand, through A/B testing the problems arising from these factors might be possible to 

reduce. This requires companies to consider the “loser options” of the running tests not 

only as unsuccessful prototypes but also as ads that are only targeted to the audiences 

avoiding SNA. In this way the existing understanding of A/B testing in SNA as a method 
of learning customer preferences efficiently can be deepened.  

The current stage of the research implicates that user’s attitudes and ad-clicking 

behaviour are not threatening SNA in the near future. Mir (2015) found that site users 

see SNA as beneficial for the economy which increases their positive attitudes toward it. 

On the other hand, the same study indicates that SNS users perceive advertising in such 

sites as misleading, supporting materialism and corrupting social values. However, these 

beliefs don’t seem to have negative effects on SNS users’ attitudes towards the 

advertising. Nevertheless, consumers vary from individual to individual in terms of 

factors that are not easy to observe, including their ad clicking behaviours which could 

be affected by their inherent purchase intention, exposure to marketing communication, 

or preference for one advertising format over another (Duan et al. 2014). Thus, it is 

important to include consumers’ individual heterogeneity into the testing model. This, 

indeed, is the part where A/B testing makes relevant contribution in the creation of the 
valuable SNA prototypes. 
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3.3   The  role  of  A/B  testing  when  generating  and  improving  
personalized  visitor  experience  and  customized  
advertising  

The interactions with the website can be instrumented in many different ways. Deng et 

al. (2014) suggest page views or clicks for this purpose. Also, there are several options for 

computing the key metrics. The most recommended ones include ad-clicking or click 

through-rates, sessions per user or revenue per user. Ad-clicking and click through rates 

indicate the direct response to the specific SNS advertisement for obtaining 

comprehensive product information (Cho, 2003). Also, the computations of these 

actions underlie an important recommendation process that creates a browsing path for 

the SNS users (Besbes et al. 2014). This particular research addresses the browsing path 

of online newspaper articles. It suggests that the website administration holds a database 

of feasible articles which includes information on for instance the topic classification, the 

publish date, or the click history. The available information is processed by several 

competing and complementary algorithms that analyse different aspects of it: the 

contextual connection between the host article and the candidates for recommendation; 

the reading behaviour and patterns associated with articles and readers; and additional 

information such as general track trends in the content network. These inputs are 

combined to generate a customized content recommendation. In the advertising 

optimization context, the same methodology is possible to apply. Similar information 

from advertisement in SNSs can be collected, processed and analysed, as the role of an 

article is replaced by an ad. Thus, recommendations of advertisements could be made to 

create a similar kind of path. By constructing recommendations for a future path, the 
waste of advertisements with low click through-rates could be reduced.  

Due to Duan et al. 2014, there are sophisticated models that can analyse the conversion 

effects of website visits and advertisement. Through these models it is possible evaluate 

quite precisely the conversion effects and forecast the probability for purchases. This is 

due to the models accounting the entire clickstream history of individual users as a result 

of the accumulative effects of all previous click. This leads to scenarios where companies 

with careful data analysis are capable of identifying individual users and their ad-clicking 

paths which is the key to the creation of personalized visitor experience on SNSs and 

targeting advertisement individual by individual. However, this power of corporates 

leads to questions regarding SNS users’ privacy and their concerns regarding their 

spreading data. Yet, the research on A/B testing has not concerned privacy issues that 
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can arise from this specific area. Questions remain whether A/B testing in SNA can even 

collect such personal data that could cause privacy concerns in the future. The topic has 

to do with the level of preciseness of the data and the conclusions than can be made after 
large enough data sets are collected and analysed. 

In the Wired Magazine, Brian Christian (2012) emphasizes an important insight: “Today, 

A/B is ubiquitous, and one of the strange consequences of that ubiquity is that the way 

we think about the web has become increasingly outdated. We talk about the Google 

homepage or the Amazon checkout screen, but it’s now more accurate to say that you 

visited a Google homepage, an Amazon checkout screen.”  Just as the websites of these 

large companies can be personalized for each user separately, so could be made for the 

SNA. As the previous research indicates, A&B testing and Exceptional Model Mining 

(EMM) set the basis for this kind of unique personalization becoming possible. The A/B 

test data is no longer for choosing one specific option from several alternatives but 

utilizing an own “winner-option” for each user separately and deploying them one-by-
one. 

 

3.4   The  possibilities  of  recent  technological  development  

In this subchapter I go through the possible future implications of A/B testing from the 

perspective of recent technological development. I include automation of manual work 

and machine learning algorithms in this section as those arose as the most crucial ones 

when studying the limitations of A/B testing in its current manner and the possible 
future implications. 

  

3.4.1  Automation  of  manual  work  in  A/B  testing  

Despite A/B testing becoming ubiquitous, the technological side of it has not yet become 

straightforward. It requires complicated technological skills to gather insights of user 

actions and then rearrange the advertisement on the go based on these insights. 

Interpreting the results of A/B tests requires deep knowledge of statistics. Even the tools 

provided by third parties for this purpose, might require developers to code large sets for 

both A and B variants. This often results in nonprogrammers, such as marketing, 

editorial or design employees not being able run the tests without first outsourcing their 
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tasks to engineers who then have to use their time for writing code for the several testing 

prototypes and variants. This, again, results in huge delays in seeing results as companies 

wait for this outsourced tasks to be finished and then for the ready products to go live. 

(Christian, 2012). Section 3.1. defined problems regarding the difficulties and issues in 

the usage of traditional A/B testing. These are emerging in a large part from a limited 

degree of automation in A/B testing which is the limitation this subchapter aims to 

answer. Moreover, I will cover the problem of manually calculating the statistical 

significance of A/B test and the options that automation offers for solving that part of the 
process. 

To answer the problem of non-automated A/B testing, previous literature indicates that 

by formulating A/B testing as an optimization problem it is possible to implement 

automated search algorithms that work in real SNSs. This occurs through specifying 

advertisement features with a design-time declarative facility and a real-time framework 

that automatically and iteratively searches for possible concrete programs by generating, 

executing, and evaluating variants. In the step of specifying features, the developers write 

parametric program so that it covers all the relevant feature options and variants. This 

has to be done only once and then the model will automatically set them up on the site 

at the right time. Thus, huge amounts of work arising from developing and deploying 

potential variants is reduced. Through the step of selecting and evaluating variants, on 

the other hand, the model then tracks the actions on the site and makes decisions itself 

through continuous search. This decreases the amount of manual work in guiding and 

controlling the ongoing A/B tests. This method has been proved to work in practice, 

although not on real users. The model is able to shift towards an optimal solution and it 

always got closer to this solution with a small enough number of trials when tested in 
practice. (Magara and Tamburelli, 2014). 

What it comes to the human work of calculating statistical significance of A/B testing, 

employees are not allowed to continuously track the results of ongoing tests and make 

decisions real time. This limitation has been seen as a step backwards in a world where 

technology should be able to conduct data analytics real time. Most A/B tests are 

conducted using the statistical theory of Null Hypothesis Statistical Testing (NHST), t-

test or z-test. The results are interpreted by describing a specific significance level in the 

beginning of the test, and rejecting the null hypothesis if the p-value is smaller than the 

desired significance level. Checking test outcome while the test is running might change 
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the outcome of the test itself as the calculated p-value fluctuates during the data is 
collected. (Deng et al. 2016). 

This issue is called an optional stopping problem. However, recently automating A/B 

testing through Bayesian Hypothesis Testing has gained increasing interest as it is more 

suitable for real time decision making than NHST and overcomes the optional stopping 

problem. The main idea is that if the decision to stop depends on the outcome, whether 

a difference exists, or how large the difference is, the test result will be affected by 

checking. However, if the decision to stop depends on how precisely the difference is 

known, we no longer change the outcome by stopping while the test is still running. 
(Kovanen, 2017).  

 

3.4.2  An  alternative  for  traditional  A/B  testing  through  machine  
learning  algorithms:  multi-armed  bandits  

Automating manual work of A/B testing step by step as explained in the previous 

subchapter might offer great solutions for companies who still run their A/B tests in a 

traditional way. However, if we make space for alternative method for reaching the same 

goals, machine learning algorithms offer a solution. The multi-armed bandits (MAB) –

problem is explained in previous research as follows. “In its simplest form, there are N 

arms, each providing stochastic rewards that are independent and identically distributed 

over time, with unknown means. A policy is desired to pick one arm at each time 

sequentially to maximize the reward. MAB problems capture a fundamental trade-off 

between exploration and exploitation: On the one hand, various arms should be explored 

in order to learn their parameters, and on the other hand, the prior observations should 

be exploited to gain the best possible immediate rewards” (Gai et al. 2012). As MAB-

problems have been used widely in internet advertising optimization and network 

optimization (Agarwal et al. 2007), they can be seen as an alternative method for A/B 

testing, especially in SNSs. The possibilities that MAB enables for SNA optimization has 

not gained much focus in the research field even though the role of MAB as an alternative 

method for A/B testing has been discussed widely in the 2010s. Not having to go back 

continuously to check the effects of the tests and picking the options, and then iterating 

the tests again would save la lot of time. Letting the machine learning algorithm to 
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constantly reveal the best alternative would release the companies from a lot of manual 
work regarding traditional A/B testing. 

 

3.5   Practical  insights  from  the  case  company  

In the case company I conducted my question patter to, A/B testing is used in several 

activities: their digital display advertising channels, improving the usability of company’s 

website, and optimization of sales. The display advertising channels where A/B testing is 

used include Facebook, real-time bidding, e-mail advertising and the company website. 

From these activities the channel that is most relevant and in the scope of my thesis is 
especially Facebook.  

What it comes to the software that is used for analysing the result of the conducted tests, 

the company uses a specific program that is developed for A/B testing exactly that runs 

the tests, analyses the results and their statistical significance. This program, however, is 

used for the company website A/B testing. What it comes to the SNA context, the 

company collects and analyses data with Google Analytics and Excel. The company 

argues they use A/B testing for all kinds of objectives. For instance, in advertising, 

different combinations and pairings of text and picture alternatives are tested and also 

different landing pages. However, it is emphasized that in the company website 

everything from the site content (i.e. pictures and texts) to the functionality is tested 

through A/B. The case company has not used automation of A/B testing so far. However, 

they believe the automation will be the future direction as the need for user-specific 
optimization of the content increases. 

I also found out more practical and manual aspects of the case company’s A/B testing 

process including factors such as the sample size, amount of different variants, running 

time and tracking of the results. The tests are run with the maximum sample size – the 

entire reach of available users. The amount of variants, in turn, depends of the time when 

the test is conducted. The bottleneck is the amount of gained visits. If there are many 

variations, the views per variant –ratio can end up as a small number and thus the results 

may end up not statistically significant. In advertising A/B testing there are usually 2-5 

variants and in the webpage usually two or sometimes more, according to the company’s 

actions. The tests are run as long as the results are statistically significant, usually for a 

week. Sometimes, however, if the tested object is one that doesn’t gain too many views, 

the test might be run for many weeks. In advertising the relevant result might be gained 
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from many hours to a day. The results of the tests are tracked continuously so that the 

better version can be published as soon as the statistical significance is reached as the 
the final version.  
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4   Discussion  

In this chapter I will summarize and conclude my key findings, describe the theoretical 

and practical implications of my work and analyse its limitations for future research. In 

my thesis I aimed to find answers to the limitations of traditional and current ways of 

conducting A/B testing in social network advertising and this way to find insights of the 

future development of it. As Magara and Tamburelli (2014) argue, the method of A/B 

testing as currently performed has been seen as a time consuming and error prone 

manual activity. Also, it has been characterized as a costly testing method. According to 

Thomke (2003) experimentation in general has been perceived demanding both time- 

and employee-wise. Of course, how A/B testing is considered and seen in the company 

depends a lot of its size, field, and marketing/ digital budget but according to my research 

there are ways to improve the A/B testing practice in SNA in most companies that are 
not widely adopted yet. 

 

4.1   Key  findings  

The underlying problems regarding SNA A/B testing address employees’ practical daily 

work and the definition and role of data in the organization (Magara & Tamburelli, 2014). 

Measurement in general as a problem solver should not be taken for granted in the 

process (Fink & Levenson, 2017). The useful or correct insights are not guaranteed even 

if measurement and experimentation are included in the processes and decision-making 

(Koomen & Siroker 2013). The employees working with the data collected through the 

A/B tests need to understand that this data includes not only accurate but also potential, 

irrelevant, and even flawed information. The rapidly increasing amount of data doesn’t 

make this process easy for the employees and thus the data sources and their quality need 

to be challenged, as Fink and Levenson (2017) suggest. Careful definition of which parts 

of the A/B test results to include in the company decision-making and which to leave out 

is an important but sometimes underestimated or even ignored part of the process. For 

instance, the case company denotes they use A/B testing for all kinds of objectives. In 

this kind of cases it becomes increasingly critical to analyse the data carefully before 

making final conclusions from it. Furthermore, through the phenomenon of trusting the 

highest paid person opinion (HiPPO), the power of data can be underestimated in the 

organization (Henne et al. 2008). The aim of A/B testing in SNA is to gain insights from 
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the customer preferences for the company’s advertising optimization processes and 

hence improve profitability and return on investment (ROI). This occurs through the 

collection of information on the consumer needs and attitudes, data-driven decision 

making, and the careful consideration of such information, not blind-eyed focus on either 

data or anyone’s personal opinions or views. Moreover, A/B testing includes practical 

work that easily results in flawed information gathering, increased time used for the tests 

and ineffectiveness in the usage of resources (Magara & Tamburelli, 2014). The 

automation of such manual tasks can be seen as a solution for these problems and results 

regarding technology used for the process automation is described later in this 
subchapter. 

The other side of the SNA A/B testing besides the organization itself are the site users to 

whom the ads are targeted. User attitudes towards online advertising and their ad-

clicking behaviour constitute another critical base for successful A/B testing. If user 

attitudes shift towards not preferring SNA at all, the entire process of SNA A/B testing 

will lose its purpose. On the other hand, SNA A/B testing can be seen as a method to 

influence the user preferences on whether viewing the ads or not. This relates strongly to 

the phase before the actual tests are run. The case company that contributed my work 

emphasizes the role of careful background work. This includes previous user experiences, 

indeed. Besides, previous tests and brainstorming different design variation prototypes 

add more to the background work. According to previous research by Baek and 

Morimoto (2012), and Lewin et al. (2011), the attitudes towards SNA are not affecting 

negatively the future of social network advertising. However, customers vary from 

individual to individual which leads to company having to interpret carefully the reasons 

for the lower click-through rates and reasons for the reasons for the one option losing 

the test. The relevance of these individual, heterogeneous aspects are crucial part of the 

future of SNA A/B testing as described next. Also, the case company insights support my 

findings from previous literature as the need for optimized content that varies from 
individual to individual is increasing. 

Through the increasing focus on individual click-through rates, the possibilities of 

personalized visitor experiences and customized advertising are becoming more and 

more relevant. With the combination of both tracking the individual browsing paths and 

conducting careful A/B testing, each customer can be supplied with personalized ads, 

based on his or her individual preferences and the factors affecting their own ad-clicking 

only (Besbes et al. 2014). Besides, collecting information on for instance advertisement 

category, the timing, or the click history can lead to finding connections between the ad 
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and the alternatives for the following recommendation, the ad-clicking behaviour, and 

the habits associated with the ads and the users clicking the ad. Thus, the companies can 

create paths to guide users from advertisement to another. It is no longer relevant to 

discuss one and specific website experience, as the same domain can show different users 

different personalized alternatives (Christian, 2012). However, the case company aspects 

indicate practical problems arising from the collection of this sort of detailed data 

required and utilization of it. They see automation as a solution for creation of such 

personalized visitor experience and customized advertising. Furthermore, the previous 

research doesn’t indicate whether this kind of information on individuals could lead to 

privacy issues in the future or not. The questions on how personal consumers see their 

own individual ad-clicking paths, and how they feel about seeing different content than 
other users remain open. 

As the A/B testing process requires a lot of both manual work in the forms of creating 

code and designing prototypes, and sophisticated skills such as statistical knowledge, 

automating the process and using machine learning algorithms should certainly be the 

direction of future development in the field (Magara & Tamburelli, 2014; Deng et al, 

2016). Previous research has developed a few models for this purpose including the 

formulation of A/B testing as an optimization problem and hence implementing 

automated search algorithms (Magara & Tamburelli, 2016), automating A/B testing 

through Bayesian Hypothesis (Kovanen, 2017) and using multi-armed bandits in 
network optimization problems (Agarwal et al. 2007).  

Considering the optional stopping problem (Kovanen, 2017), employees should not make 

real time data-analysis while the A/B test is running. The case company insights used in 

my data collection, however, indicate the company does check the results continuously. 

They tell they publish the “winner-option” immediately after the statistical significance 

is reached. If the optional stopping problem is not taken into consideration here, the 

results might end up flawed. This is an example of a situation where automation through 

Bayesian Hypothesis (Kovanen, 2017) would make relevant contribution to A/B testing. 

Besides, automation in general would increase the value of A/B test process in forms of 

being able to use more variants than they currently do. The company uses large sample 

size, in fact maximum, and a simple experimental design that are seen very important 

factors in the literature. Deng et al. (2014) suggest using, indeed, largest possible sample 

size to reach the optimal significance level and avoiding complex designs as those can 
hide errors. 
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The previous case is only one example of how all the companies using SNA A/B testing 

are not implementing automation or machine learning algorithms in their such processes 

even though it would release huge amounts of time, decrease the need for complex skills 

and reduce errors. This might be due to the lack of knowledge on the possibilities or 

ignorance of the importance of the topic. Moreover, the organizational capabilities might 

set the limits for modern technologies; having to educate employees to work with such 

technologies and practising change management. Besides, updating tools and software 

to support the methods might not be an easy task in every organization. This is what 

Donnelly and Durney (2012) describe as the inability of the regular management actions 

to work for rapid and complex technological change. They argue this sort of inability 

being due to the uncertainties that most leaders in such changing environments are not 

familiar with. However, according to the case company insights, the automated 

optimization will be in a bigger role. They already use some sort of advanced data tools 

for precisely A/B testing in their website optimization which could indicate that they have 

the interest and capacity to implement more sophisticated software also for their SNA. 

Besides, the case company emphasized the role of careful background work for the tests. 

If the process itself would be automated, more time for this kind of creative work would 
be available. 

 

4.2   Implications  to  research  

In this sub-chapter I assess my findings regarding their implications to previous research 

in more detail. My results mostly corroborate existing literature in the field. However, 

my results indicate that even though the A/B testing in social network advertising is 

widely known and well studied topic, it has not reached its full potential yet. According 

to the previous research, the knowledge and methods of developing the SNA A/B testing 

further do already exist but they are not as widely adopted as one might think. Especially 

the factors addressing the manual side of A/B testing that could more or less easily be 

overcome through automation, education and shift in the working habits, has not 
reached its full focus yet.  

Besides, my work addresses the topic very broadly, taking large amount of perspectives 

into consideration collectively. Considering SNS A/B testing with the insights of the 

organizational capabilities on data and experimentation, user attitudes on SNA and their 

ad-clicking behaviour, personalized visitor experience, and automation of manual work 
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and utilization of machine learning algorithms has not been summarized in the same 

paper. This might lead to new research directions that could open up new possibilities 
and transformation of current trends.  

 

4.3   Implications  to  practice  

Here I explain what the previously summarized results and key findings implicate in 

practice. I consider companies and other actors operating in the field and topic area of 
SNS A/B testing and give recommendations based on my findings.  

What it comes to the organization’s perceptions of the A/B test data, some general factors 

should be adopted within the employees. The workers in the advertising optimization 

should first understand the relevance of the data- and market-driven strategy in general. 

The careful implementation of experimentation culture should be implemented in the 

company to support this sort of mind set (Jenkins, 2014). Besides, the insights arising 

from the A/B test data should be challenged, analysed and criticized. Educating workers 

towards the data- and market-driven decision making and thinking can increase the 

value of the A/B testing process in the company which would result in successful 

advertising optimization and knowledge of the customer base and again in increased 
profitability and return on investment (ROI) (Leventhal, 2017). 

The other critical side of A/B testing, the site users with varying attitudes and 

preferences, needs increased focus from the companies working on the tests. Due to the 

modern technology, it is possible to gather insights of individual users separately (Besbes 

et al. 2014). As the users vary from individual to individual in terms of their ad-clicking 

behaviours, it is recommended that this heterogeneity is included in the testing model 

(Duan et al. 2014). Moreover, the user attitudes and their ad-clicking behaviours should 

shift the direction of prototyping and other sort of background work, as the underlying 

attitude factors can already beforehand give insights on what kind of prototypes to create 

for the tests, even before they are started. Both viewpoints, organizational perceptions of 

data-driven business and user attitudes and their ad-clicking behaviour, increase the 

effectiveness of the A/B tests. These can be seen as factors that don’t require rapid 
technological development but yet education and change in the organizational habits. 

What it comes to the business benefits of creating individual ad-clicking paths and 

personalized visitor experience in terms of SNA, the companies should concentrate on 
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collecting and analysing data on not only the ad-clicking behaviour, but also the 

contextual connections between ads and the visitors, patterns associated with the ads 

and the users clicking the ad, timely actions, etc. The creation of personalized visitor 

experience, in addition, might require utilization of A&B testing and Exceptional Model 

Mining (EMM) (Adegeest et al. 2017), as the traditional A/B testing most probably is not 
efficient enough for collecting data with the required volume. 

The need for automation of manual work arises from the difficulties faced in the A/B test 

process. These processes include for instance creating, choosing and evaluating variants. 

The automation process requires not only resources and capacity for the big investment. 

Updating company’s software and tools to support the new methods might cost a lot of 

money but also updating the skills of the employees working with the tests requires 

attention. Donnelly and Durney (2012) suggest managers to focus on things such as 

clearly articulating the risks of the project, defining each individual’s roles, conducting 

flexible management style, and finally, encouraging culture that supports innovation. 

This kind of change management for technological transformations, for instance, reduce 

change resistance in the organization. Besides practical education on how the work 

image changes from manually conducting the tests to guiding the automated process 

depends on the level of automation.  

 

4.4   Limitations  and  future  research  

The limitations of this study lie in its methodology and data in general. First, literature 

review is a limited way of conducting research on future development of A/B testing as 

the technology might not yet exist and my research doesn’t indicate how well the 

suggestions work in practice. Second, as the practical insights are collected from one 

specific case company, they cannot be generalized across countries, industries, user 

groups or time periods. Third, as I scoped my research to address only A/B testing in 

business processes, in fact only marketing and again only advertising context, the results 
cannot be straight forwarded to any other fields of science.  

Propositions to future research include empirical research on how companies on a large 

scale actually perform A/B testing in SNA. Empirical data for example on what are the 

key metrics, how sensitively they react on changes on key metrics, which factors affect 

the creation and chose of advertising prototypes, how long they run the tests, and how 
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quickly their developers realize performance would be interesting to collect and analyse. 

Suggestions for such questions have been already been made by Deng et al. (2014) but 

there’s no indication if companies actually perform their A/B tests with these research 

guidelines in mind. These factors could then be compared to the existing theories, and 

more specific, concrete and credible future suggestions could be made. Besides, it would 

be interesting to research how large percentage of companies actually perform 

automated A/B testing and at which level the automation occurs (Magara & Tamburelli, 

2014). Lastly, I found no previous research on the privacy issues arising from collection 

of individual user data through A/B testing and making conclusions based on those. I 

believe that as the processes of A/B testing in SNA will become more and more 

multidimensional, the roles of personal and privacy issues will increase. Moreover, the 

results from the case company indicate they use a sophisticated software program that is 

available in the market for collecting and analysing data of company website A/B testing. 

Otherwise they use Google Analytics and Excel. This in mind, it would be very interesting 

to research what kind of software programs are used in the SNA A/B testing process in 

different sort of companies and which A/B test activities they prioritize over SNA A/B 
test programs budget-wise.  
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5   Conclusions  

My thesis focuses on the future of A/B testing in social network advertising. I have 

covered the subject from the perspectives of organizational capabilities and knowledge 

on utilizing data, user attitudes and their ad-clicking behaviour, personalized visitor 

experience, and automation through machine learning algorithms. According to this 

literature review, the focus should be shifted to careful consideration of both the A/B 

testing data and the user attitudes towards the social network advertising, the errors and 

bad utilization of resources arising from crafted work image of conducting A/B tests, and 

potential investments on more sophisticated software programs that help in automating 

the process or parts of it. These occur through understanding the full potential of SNA 

A/B testing, encouraging employees towards experimentation, and data- and market-

driven decision-making, careful management of technological change and 

implementation. If these factors are overcome, the future of A/B testing is going to shift 

towards the more and more comprehensive automation of the processes that yet are very 

manual and practical. This way, more time-efficient, error-free, and multidimensional 

results can be gained through the SNS A/B testing. Moreover, organizational HR 

capacities can be released as the workers could reduce their time used for precise tasks 

and instead focus on innovation and creation of A/B test prototypes and other 

background work, and utilization of the entire process. Moreover, the creation of ad-

clicking paths and personalized visitor experience will most likely, with the process 

automation and increasing technological investments, lead the way as the future 
direction of SNA A/B testing. 
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