

Denis Zlobin

Audio Design in Mid-Core

Mobile Games

Master’s Thesis

Thesis Supervisor

Antti Ikonen

Sound in New Media

Media Lab Helsinki

School of Arts, Design and Architecture

Aalto University

2018

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Aaltodoc Publication Archive

https://core.ac.uk/display/160014053?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

Aalto University, P.O. BOX 11000, 00076 AALTO

www.aalto.fi

Master of Arts thesis abstract

2

Author Denis Zlobin

Title of thesis Audio Design in Mid-Core Mobile Games

Department Department of Media

Degree programme Master’s Degree programme in Sound in New Media

Year 2018 Number of pages 63 Language English

Abstract

This thesis explores practical aspects of audio design in mid-core games – a massive segment of the

modern mobile game market. Despite there is no shortage of professional literature about game

audio in general, most of it describes either purely technical or very general matters, taking video

games as undivided whole. Games, however, can be broken up into distinct categories, based on

genres, platforms, audiences and other criteria. This is the direction I take with my research,

focusing on a specific type of games, developed for mobile devices and targeted towards a well-

defined audience.

The goal of my thesis was to find out if mid-core mobile games require special approach to audio

design and what this approach would be. The first two chapters focus on critical aspects of mobile

game audio and audio design principles of mid-core games. Two latter chapters describe practical

matters of audio design for an actual video game, starting with design principles and ending with

project-specific challenges and creative choices.

The results show that audio design for mid-core mobile games has a few special aspects on top of

existing principles of mobile game audio. These aspects result from the design patterns shared by

majority of mid-core games developed for mobile platforms.

Keywords Audio design, sound design, game audio, interactive audio, mobile game, mobile game

audio

3

Acknowledgements

I want to thank:

My thesis advisor and supervisor Antti Ikonen not only for guiding me throughout the

process of creating this thesis, but also for supporting and inspiring me during my studies.

Laura Laakso, Teemu Leinonen, Vili Viitaniemi and Aaron J. Brodkowitz for their valuable

feedback on the thesis.

The Company and everyone involved in development of the Game for making this work

possible. Special thanks to my colleagues from the audio department for being such a

wonderful team.

All members of GRIA and FINGAP game audio communities for sharing their knowledge

and experience. Their advices prevented me from making hundreds of mistakes on my way

to becoming a game audio professional.

All Media Lab community for my time in Aalto University. Coming here turned out to be

one of the most important decisions of my life and I feel honored to spend those three

years surrounded with such friendly and talented people.

My parents for having faith in me and always supporting everything I do.

My beloved wife Julia for her love and patience.

4

Table of contents

ABSTRACT .. 2

ACKNOWLEDGEMENTS.. 3

TABLE OF CONTENTS ... 4

INTRODUCTION ... 5

DEFINITIONS .. 7

1. CHALLENGES OF MOBILE GAME AUDIO .. 9

1.1 Technical constraints.. 9

1.2. Design aspects ... 15

2. CHARACTERISTICS OF MID-CORE MOBILE GAMES AUDIO DESIGN ... 17

2.1 What is mid-core and how do people play it ... 17

2.2 Mid-core games from audio design perspective ... 21

3. DESIGN PRINCIPLES BEHIND THE GAME AUDIO.. 26

3.1 Project overview .. 26

3.2 Team structure ... 27

3.3. Aesthetic and design principles ... 29

3.4. Technical principles .. 31

4. PRACTICAL ASPECTS OF THE GAME AUDIO DESIGN ... 35

4.1. Core gameplay sounds ... 35

4.2. UI and menu sounds .. 41

4.3. Voice processing and implementation .. 46

4.4 Music implementation .. 49

4.5. Loudness and dynamic mixing ... 51

CONCLUSION ... 55

REFERENCES ... 58

5

Introduction

Modern mobile game market is dominated by mid-core games. According to the

website Deconstructor of Fun, 14 of the 15 highest revenue mobile games of 2017 belong to

the mid-core sector (Das-Gupta, Katkoff and Payton, 2018). Sometimes described as the

missing piece between long-established casual and hardcore segments, mid-core is often

called the new trend, and many game developers have shifted their focus towards this

sector of the market.

The goal of this work is to define special qualities of mid-core mobile games in

terms of audio design. Do these games require a special approach to the audio creation

process? And if so, how different will it be compared to somewhat established principles

of mobile game audio in general?

I approached these questions in practice while working on a massive mobile game

for Android and iOS as a full-time audio designer. The case study of this project became

the main focus for my thesis. Problems and challenges we faced while working on this

game are likely to be relevant to other audio designers and researchers, who are

interested in the booming segment of mid-core games. The thesis demonstrates a set of

technical and creative decisions taken during development of a big-scale mobile project

and describes the theory behind them.

Additionally, I research design principles behind modern mobile mid-core games

and speculate on their effect on audio design process. Game audio is rarely observed from

this perspective, since taxonomy of casual, hardcore and mid-core mostly relates to types

of the audience and games, crafted for the specific audience, but not to the game genres

themselves (Graft, 2013; Lien, 2013). However, this taxonomy is tightly connected to

6

different contexts and patterns of playing video games, and study of those might be able

to provide some insights for game audio designers.

Due to agreements with my employer I’m not allowed to mention any names of

people, businesses or products related to the project behind this thesis. Instead the game

will be referred to as the Game, the developer company – as the Company, the parenting

franchise as the Franchise and the party that owns the Franchise as the Third party.

The thesis consists of four main chapters, list of necessary definitions, introduction,

conclusion and a list of references. The first chapter is focused on mobile game audio and

describes the most common challenges and constraints for sound designers working on

these media. The second chapter explores the concept of mid-core in general and from an

audio design perspective. The third chapter describes general principles behind the Game

audio design, and the fourth focuses on problems and their solutions. The conclusion

provides a summary of the main ideas in this thesis and adds some closing notes about

the topic.

7

Definitions

2D sound – sound that is sent directly to the audio output. 2D sounds are not

tracked by the audio listener and not positioned in virtual space.

3D sound – sound, emitted by audio source in the game world and received by the

audio listener. 3D sounds are positioned in virtual space, so the player is able to locate

them.

Audio asset, sound asset – individual audio file, used in the game.

Audio budget, audio memory budget – (in this thesis) the maximum amount of

memory for audio content in a game.

Audio engine, audio middleware – software toolkits for handling audio in video

games and other interactive media. Audio middleware offers a variety of tools for real-

time audio generation and processing and reduces the need for code support for audio

designers.

Audio listener – an object or a component representing a microphone in the game

world. Audio listener is necessary for positioning of 3D sounds.

Core loop – key repetitive activities that define gameplay. For example, “hitting

enemies and avoiding being hit” or “collecting resources to develop an army”.

DSP – digital sound processing

LU, LUFS – loudness units, loudness units relative to full-scale. Loudness standard,

introduced in EBU R128. Loudness unit is equal to one decibel.

Nyquist rate – the lowest possible sample rate for sampling the signal without

aliasing.

PvE – Player versus environment. Mode of gameplay where players fight against

computer-controlled entities.

8

PvP – Player versus player. Mode of multiplayer gameplay where players are engaged

in a direct conflict with each other.

RTPC – real time parameter control in Wwise. A curve that defines relation between

a parameter or a variable in a game and a property in Wwise.

Sound event – a set of rules and commands for playing and processing specific audio

assets or controlling properties in Wwise. The simplest example of a sound event is a

command to play or stop a sound. The concept of sound event in other audio middleware

might be different.

Sound bank – a container with sound events and sound assets that is getting loaded

to the RAM.

Unity – popular cross-platform video game engine developed by Unity Technologies.

Voice – a single audio stream, a “unit” of polyphony.

Wwise – industry standard audio middleware, developed by Audiokinetic Inc.

Consists of sound engine and authoring tool.

9

1. Challenges of mobile game audio

Mobile game audio holds a special place in the domain of game audio design.

Limited processing power and storage capacity of mobile devices create a feeling of déjà

vu for audio professionals who worked on video games in late 90’s and early 2000’s.

Hardware limitations they had to overcome working on video games in those days are

back again, but on a different platform (Horowitz and Looney, 2014, p.196). On the other

hand, design principles of modern mobile games don’t have much in common with the

ones existing 20 years ago for PC and console game development (Luban, 2011; Clark,

2014, p.7).

Thus, modern mobile game development can benefit from a special approach to

audio design. This approach should be focused on two key areas. First, technical

limitations of current mobile platforms require developers to heavily optimize audio

content. Second, most of modern mobile games are service-based, so audio designers

should understand their game design principles. Thus, technical constraints and design

aspects can define mobile sound design in numerous ways. In this chapter I will describe

the most prominent challenges of mobile game audio and the most common ways of

dealing with them.

1.1 Technical constraints

Mobile game audio design is very dependent on hardware constraints. The first of

those is audio budget – the amount of memory that can be allocated to the sound assets.

Developers typically discuss audio memory at the initial stages of development. The size

10

of the memory budget can significantly vary from 1-5 megabytes in simple puzzle games

to over 100 megabytes in larger and more complicated projects which involve various

entities and complex dynamic sound systems. It can depend on the game genre, amount

of content, design principles and even marketing strategy. For example, many developers

are trying to keep the overall size of the build under 150 megabytes (developer.apple.com,

2017) because Apple’s AppStore and Google’s Play Market recommend users to download

larger applications through Wi-Fi connection. This usually means that overall audio

budget will not exceed 5-15 megabytes. At the same time, minimal amount of audio

content is defined by game design. Therefore, if a game requires a lot of audio, but has

small memory budget for it, sound assets will need to be heavily compressed with loss of

sound quality.

Another technical limitation comes via the maximum amount of RAM that can be

allocated for music and sound effects. Modern game engines operate with sound banks –

sets of sound events and assets, simultaneously loaded to the RAM. The overall size of

sound banks that can be loaded into operative memory of the device at the same time is

usually strictly limited. It is possible to partly overcome this limitation by streaming some

of the heavier assets like music from the drive, but this technique needs to be applied

carefully due to possible synchronization problems (Stevens and Raybould, 2011, pp.34-

42).

The third constraint comes from the processing power of the mobile device and

CPU that can be allocated for audio processing. It defines possibility to use real-time DSP

effects, such as filters, compressors and reverb. Other than that, it influences the amount

of sounds that can be played at the same time and data compression format, since CPU

needs to decode all audio in real time. (Jean, 2017)

11

The mount of simultaneously played sounds is additionally affected by physical

voice limitation. Different audio chips can play different amount of sounds at the same

time. Their capacity may vary from <20 on low-end Android devices to ~60 on the newest

generation iPhones and iPads (Jean, 2017). If at any given moment game engine tries to

play more sounds that device might handle, some content would be cut off due to voice

starvation or will be virtualized. To prevent this from happening we need to research

audio channel capacity of target devices and prioritize some groups of sounds over

others.

The final limitation comes from the hardware itself – the size of a mobile device

speaker. It is only able to correctly reproduce frequencies within a relatively narrow

working range, and likely to resonate on some of the frequencies even within it. The

range is device-specific, and manufacturers usually don’t disclose actual characteristics.

Some literature describes average range as 100 Hz – 4 kHz (Long 2012, p.12), however

multiple amateur tests on the Internet indicate that for modern devices it is closer to 300

Hz – 8 kHz (Pons, 2014; Imgur.com, 2016). Small speaker size also requires sound

designers to reduce dynamic range and increase the average volume of the audio to -16-18

LUFS (ASWG-R001, 2013, p.6), compared to -23 LUFS, used in console games and

broadcasting (R 128, 2014, p.4).

To summarize, I will briefly mention the main technical constraints and those

aspects of game audio design they affect in the table below.

12

Memory Amount and quality of content in the game

RAM Amount and quality of content in one scene

CPU
Real-time processing capabilities, compression algorithm,

amount of sounds playing at the same time

Physical voice

limit
Amount of sounds playing at the same time

Speaker size Frequency and dynamic range of the mix

The aspects mentioned above set very high requirements to the process of sound

system design, including sound assets, events and banks management. The first stage of

audio pre-production typically starts with an audio design document. This document

might contain:

− Description of typical in-game actions and entities that would require sound

effects;

− Description of categories of sound effects;

− Target amount of sound assets per certain kind of sound effect;

− List of sound banks and their description;

− Technical specifications of sound assets, including number of channels

(mono/stereo), sample rate and bit depth of the asset;

− Physical voices and mixing buses routing information;

− DSP effects settings and description;

13

− Project-specific information on sound system configuration and sound

design principles.

Insufficient planning or ignorance of technical limitations often leads to the

situation when some audio content and systems end up being dropped out or

oversimplified. Obviously, such decisions heavily affect aesthetic qualities of the game. In

practice, this kind of problems are often revealed at the end of production, when required

serious fixes might be not feasible due to time constraints.

But some problems can still be solved with proper content optimization. For

memory and RAM there is a widespread practice of looking for a compromise between

file size and audio quality. Sound designers can apply different sampling rates to

categories of assets, setting custom Nyquist rates for different types of audio. Most

important and distinct sounds can be sampled at 44.1 or 48 kHz, while 11 kHz might be

enough for distant ambience and room tones. Additionally, the size of audio files can be

optimized by cutting unnecessary tails and converting stereo files into mono (Stevens and

Raybould, 2011, pp.34-42).

Outside of that, the overall audio size can still be reduced with a more “granular”

approach, the power of randomness and real-time processing. For example, we can get rid

of long ambience loops by replacing them with shorter ones and adding some

randomized accent sounds on top of them to make the ambience sound unique and non-

repetitive. Instead of using a pre-recorded 2-minute loop of forest ambience with animal

and bird sounds, we can use a 15-second loop of clean forest ambience and randomly play

various bird and animal sounds on top of it. Instead of creating 20 variations of the same

sound effect, we can split it into several layers with a few randomized variations and

allow the system to generate different sounds on the fly. This approach not only helps to

14

reduce the overall size of sound banks, but also makes content less repetitive. The

downside of this method is that it takes at least twice more physical channels than a

simple audio loop.

CPU and physical channel optimization, on the other hand, is often based on

reducing layers and amount of real-time sound processing. Five layers of randomized

assets per sound effect can create lots of variations, but at the same time they will take at

least five physical channels per game object, and significantly more CPU power to decode.

CPU load can be also be reduced by switching to a less expensive conversion format, but

results would come at the expense of quality and/or file size. (Jean, 2017)

In general, memory and CPU optimization strategies tend to clash with each other

and require tough decisions and compromises. This creates additional pressure on sound

designers who need to oversee the entire project and understand all possible technical

challenges from the very beginning of development. Fortunately, audio middleware like

Wwise (Audiokinetc), FMOD Studio (Firelight Technologies), Fabric (Tazman-Audio)

and ADX2 (CRI Middleware) offer a diverse set of tools to deal with these challenges

through their authoring tools (Freeman, 2018).

Hardware speaker problems stand separately from those mentioned above and, in

many cases, can be resolved at the stage of mixing the game. At the same time, it still

makes sense to avoid using problematic frequencies and frequency ranges for important

sound effects when designing audio assets.

15

1.2. Design aspects

To understand the creative challenges of mobile game audio we need to take a

deeper look into their design principles. Most successful mobile games are designed

under service-based, free-to-play models and meant to be played with short <10-minute

sessions over months and years. (Clark, 2014, pp. 2-15) This means that players will

experience a repetitive core gameplay loop every time they play the game. The key role of

sound in this game design paradigm is to enhance and deepen the gameplay experience

without standing out too much and becoming annoying even after a significant amount

of play sessions.

One of the most important parts of any free-to-play game is the first launch

experience. Since the players haven’t invested any money to get a copy of the game, they

might be less motivated to play it for the long term (Roseboom, 2016). Thus, the role of

the first launch increases dramatically in comparison with premium games, where players

make a decision to play the game before buying it. The role of audio here is to support the

first launch sequence, emphasizing and fulfilling everything that happens on the screen.

Free-to-play game developers earn money through microtransactions – small

purchases players make to have a better gameplay experience. Thus, in-game purchases

should feel especially rewarding, in both visual and audio aspects. The tricky thing here,

again, is to maintain a balance between being rewarding and being irritating. Most

dedicated players will hear reward sounds hundreds of times, and even then, the

experience should remain pleasant for them.

In his 2013 Game Developers Conference presentation, Nicolas Thomas pointed out

that modern casual, social and mobile game design is basically “Fighting back against the

mute button” (Thomas, 2013). It is very common to hear that the majority of players turn

16

the sound of their mobile devices off while playing the game. This statement is still hard

to prove wrong due to lack of research (Lofgren, 2017), but it always helps to understand

basic circumstances when the game is going to be played. I.e. simple puzzle games

designed to kill some time in public transport will require very different approaches than

competitive multiplayer games that need a good internet connection, longer play

sessions, and lots of attention from the player. But even with the simplest “time killers”, it

should be important to maintain high quality standards in every aspect of production.

These principles were established mostly for casual games that used to dominate the

Western mobile game market for years. And while the casual market is still big and

strong, recent years indicate the rise of mid-core games, targeted to different audiences

and designed with a different approach. The next chapter explores unique characteristics

of mobile mid-core and investigates how they can possibly influence audio design.

17

2. Characteristics of mid-core mobile games audio

design

According to the website Deconstructor of Fun, 14 of the 15 highest revenue mobile

games of 2017 belong to the mid-core sector (Das-Gupta, Katkoff and Payton, 2018). Often

described as the missing piece between long-established casual and hardcore segments,

mid-core is often called the new trend, and many game developers are changing their

focus towards this segment of the market. This chapter tries to define what a mid-core

game is, what kind of people compose the mid-core demographic, and what is special

about mid-core games in terms of audio design.

2.1 What is mid-core and how do people play it

The term “mid-core” has two interconnected meanings. One of them stands for

audience of certain type of games and another – for games, crafted for this kind of

audience. In 2013, shortly after the term became popular, famous video game portal

Gamasutra posted an article “What the hell does 'mid-core' mean anyway?” where they

collected opinions from industry professionals as well as regular people who follow them

on Twitter. They got a diverse selection of opinions. Some people were implying that

mid-core is a purely marketing term to present casual games to hardcore audience.

Others were saying it is a name for hardcore games played on more “casual” devices like

smartphones and tablets. Majority, however, defined mid-core games as games, that offer

more complexity and challenge than casual games while staying easily accessible to a

broader audience. (Graft, 2013)

18

The same article cites Tony Goodman from PeopleFun (cited in Graft, 2013) who

divides games audience by lifestyle patterns:

Hardcore Arranges daily schedule around gaming

Mid-core Arranges gaming around daily schedule

Casual Entertains self with games when time presents itself

This division doesn’t precisely correlate with how games themselves are classified –

at least because there are people who play hardcore games, arranging play sessions

around their daily schedule, or when time presents itself. At the same time, it provides

some ideas about what kind of people play mid-core games and their level of

engagement. Mid-core players care about games, like this type of leisure, but don’t spend

too much time with them.

The author of Polygon, Tracey Lien, mentions three key factors for the rise of mid-

core in her article “Core gamers, mobile games and the origins of the mid-core audience”.

The first of them is demand from the side of the hardcore audience – people who grew up

playing games, and either don’t have time for multiple hour-sessions anymore or just

want something to play on their mobile devices. The second is maturation of casual

players who previously played a lot of simple mobile games and now look for more

challenging, engaging and sophisticated experiences. The third factor is technology

advancement that made mobile devices more powerful and capable of running more

complex games. If we think that hardcore games are mostly designed for consoles and PC,

19

while casuals dominate smartphones and browsers, then arguably the key target platform

for the mid-core segment is tablets (Lien, 2013).

The exact location of mid-core on the spectrum from casual to hardcore is still

debatable. However, Deconstructor of Fun places it closer to the hardcore edge, saying

“we position mid-core as a lighter, more accessible take on a hardcore theme or a genre”

(Das-Gupta, Katkoff and Payton, 2018). For the scope of this thesis I’ll stick with the

similar concept of mobile mid-core, defining it as deep, complex and immersive games,

designed for shorter sessions and meant to be played on (or fully adopted for) mobile

devices.

Mid-core mobile games exist within free-to-play games as a service paradigm,

following trends of mobile game market in general. At the same time, it is important to

understand, that mobile mid-core is not a game genre, but a variety of different genres

appealing to certain audience and fitting their playstyle. Borders between casual and mid-

core or between mid-core and hardcore games are vague and somewhat fluid (Warman

and Fowler, 2012). However, modern mobile mid-core games share some characteristics

or common grounds. Michail Katkoff mentions some of them in his series of posts “Mid-

Core Success” (2014):

1. Dual loop. Core loop of mid-core games consists of two loops. The shorter

one – i.e. collection of resources – may last for less than a minute, but still

contributes towards player’s progression. The second one contains “main”

part of the gameplay – i.e. battle – and takes some minutes to play. Players

are tempted to open the game and perform the shorter loop even when they

don’t have time to play through entire core loop – i.e. on the go.

20

2. Short sessions. Mid-core inherits short duration of sessions from casual

games, and this factor is crucial for accessibility: players should be able to

run the game in various contexts. Short sessions become possible when the

main gameplay loop (second part of the dual loop) lasts less than five

minutes. As mentioned above, long sessions are also not uncommon – they

consist of several short loops played one after another.

3. Metagame. Metagame is a part of the game outside of the core gameplay. It

is the area where players manage their resources, create strategies, interact

with each other and set goals for further progression (Clark, 2014, pp. 54-55,

95-98). Katkoff calls metagame the most distinctive element of mid-core

games. This element enables longer play sessions, adding gameplay depth

between repetitions of the core loop (Katkoff, 2014a).

Additionally, Katkoff points out that the majority of successful mid-core games have

some social or competitive component (Katkoff, 2014b). Despite that there is some room

for exceptions, it can be seen as another characteristic.

Finally, outside of a game components perspective, it is worth to point out that mid-

core games generally have much more in-game content in comparison to casual games.

This is a logical consequence of more complex mechanics and higher level of immersion

mid-core games offer to the players.

To summarize, mid-core mobile games follow free-to-play games as a service model

and tend to share three crucial features: dual loop, short core loop and extensive

metagame. In addition to that, absolute majority of mid-core games features social

and/or competitive component and tend to me more content-heavy and complex in

comparison with casual games. Some examples of successful games that have all of these

21

features are Marvel: Contest of Champions (2014), Clash of Clans (2012), Clash Royale

(2016), Star Wars: Galaxy of Heroes (2015) and Hearthstone: Heroes of Warcraft (2014).

Combination of short core loop and extensive metagame creates a wide variety of

situations mid-core games can be played. “Mobile Gaming Cross-Market Analysis” report

by InMobi specifies that people often play mobile games while commuting, at the office

or work, at home and specifically while watching TV (InMobi, 2014). The last context

might not work for mid-core games that tend to require more concentration to the

player, but three other modes perfectly fit the mid-core paradigm. At the same time 2013

demographic breakdown of Clash of Clans shows that the game is usually played during

commutes, at washroom brakes, in living room, in bed and with friends (Mason, 2013).

This data indicates how flexible mid-core games are in terms of gaming contexts and time

they are usually played.

2.2 Mid-core games from audio design perspective

Mid-core is a broad term that includes a variety of genres with different, sometimes

incompatible approaches to sound design. However, characteristics, mentioned in the

previous section, indicate existence of some common ground in their game design

principles. These characteristics, combined with understanding of how and when these

kinds of games are played, can help us define the key aspects of mid-core games audio

design. To do that I will look at the key points from the previous section from audio

designer’s point of view.

The structure of a dual loop implicates that the shorter part happens almost every

time the game is launched. During this loop player can collect resources, set strategic

22

goals or perform other quick actions. Users will repeat these actions every session, or

sometimes even multiple times per session, so their sonic feedback requires careful

treatment. For example, if the first loop is focused on resource collection, it makes sense

to design key sounds to feel rewarding, but not too impactful – to leave some room for

the contrast with bigger rewards.

Short sessions indicate significant amount of repetition in the core gameplay. It

means that the players are going to interact with the same entities over and over again,

getting the same kind of visual and sonic feedback from these interactions. It is important

to make sure that players don’t grow tired of this feedback. Common practices include

creating sufficient amount of variations for frequently repeating sounds, introducing

controlled randomization for pitch and volume and some elements of generative audio.

These practices might be tricky regarding technical limitations of mobile platforms, but

some practical solutions will be described in the last chapter of this thesis.

Additionally, sound designers need to get rid of other factors that might cause

irritation by ensuring that audio content always feels natural: it should be coherent,

properly mixed and always in sync with animations and visual effects. Again, this is not a

mid-core specific requirement, but a basic set of recommendations to improve any game

audio (Scolastici and Nolte, 2013, p. 103).

Extensive metagame is important for long-term player retention. Typically, players

will be engaged in the metagame through a varied set of user interface elements. They are

expected to spend a lot of time in different menus, operating in-game currency,

upgrading various entities, changing settings of the scene, etc. Touch screens of mobile

devices are unable to provide haptic feedback for this kind of interaction, so sound

becomes a tool for improving responsiveness and overall feeling from using the interface

23

(Noonan, 2013, pp.5, 6, 9; Daw, 2017). And since significant part of gameplay session

requires interaction with UI elements, they should feel natural, responsive and satisfying

to press while staying subtle and non-irritating. Failure to meet those criteria makes

interaction annoying to the player, who can get tired and press the mute button.

Obviously, not only mid-core games benefit from good and well-crafted UI sound design,

but for them special attention to user interface sounds becomes an actual requirement.

To go further we need to understand main functions of audio in video games.

Mobile game developers mostly see audio being complementary to the visuals (Collins,

2008, pp.78-79). In casual games sound is perceived as a purely aesthetic component that

enhances the immersion (Kassabian, 2015) and forms sonic identity as a part of a brand

(Thomas, 2013). Despite some examples of non-casual mobile games where sound is

essential for the gameplay (Papa Sangre, 2010; Lost in Harmony, 2016) they are considered

experimental or niche products, while many mobile game developers design their

products to be fully playable with no audio at all (Scolastici and Nolte, 2013, p. 61).

In console and PC games audio has some extra functions. In his Master thesis

“Informant diegesis in Videogames” Bjørn Jacobsen points at the difference between

sounds that support the narrative and emotion and sounds that provide players with

information they might use in the game (Jacobsen, 2016). The article “Informative Sound

Design in Video Games” by Patrick Ng and Keith Nesbitt (Ng and Nesbitt, 2013) adds

extra support for that statement, opposing immersive approach, where audio

complements visual information, to informative approach when audio itself provides

useful information to the player.

Mid-core games that feature deep, often competitive gameplay have all chances to

adopt informative approach from the bigger platforms. We know that some portion of the

24

mid-core audience grew up playing games. These people are familiar with game audio

aesthetics and perceive it as a natural part of gameplay experience. They don’t just expect

sound to be present, but also rely on its immersive and informative functions (Jørgensen,

2008). Strong competitive aspects in popular mid-core games create extra demand for

useful information from highly engaged players.

On the other hand, we don’t want to make the no-audio experience unplayable or

noticeably limited because it will affect accessibility. There are players who don’t want to

listen to any audio in a mobile game and there are situations when playing on a mobile

device with sound is unacceptable or impolite (Heubel, 2015). If players think that having

audio on is necessary for gameplay experience, they won’t run the game in these

situations. Since we don’t want to limit variety of gameplay contexts, it is generally better

not to provide valuable information exclusively with audio and limit situations when

audio information gives the player any advantage in competitive play. Some examples of

informative audio design in a mid-core mobile game will be given in the next chapter.

Finally, gameplay complexity and a bigger amount of in-game content should set

higher standards in terms of audio production values, use of audio middleware, dynamic

audio system design and audio design in general. This is, however, a vague generalization

based on plain logic and common sense. It doesn’t describe real situation in a very diverse

market of mobile games, influenced by plethora of factors.

Mid-core mobile games inherit many principles of casual mobile audio design and

mobile game audio design in general. Most of them come from hardware limitations,

described in the previous chapter. Others a tied to variety of contexts and situations to

play the game. However, there are some aspects of mid-core game design set their own

requirements towards audio. Apart from increased complexity and amount of content,

25

mid-core games need more detailed approach to UI and metagame-related sound design

and can benefit from informative audio. Use of the latter, though, should be somewhat

limited in a way it doesn’t affect ease of playing the game in different contexts.

26

3. Design principles behind the Game audio

The Game is a massive project with hundreds of sonic entities and thousands of

individual audio assets. It has a bigger scale than the majority of projects on the market

for the same platforms and this scale itself brings many different challenges. In addition

to that, the game is based on a Franchise with a strong sonic identity and aesthetic

principles that create extra constraints for audio design process. Outside of that there are

technical and design limitations of mobile platforms that were explained above. In this

chapter I will go through the key principles of the Game audio design and explain creative

choices we made and challenges we had to deal with.

3.1 Project overview

The Game is a card battle game developed for iOS and Android platforms. It

features both PvE (Player vs. Environment) and PvP (Player vs. Player) modes and

requires players to build their card decks and use their cards to play through pre-

designed levels or compete each other.

The Game features around 100 cards, each representing a unit, a group of units, a

structure or a magic spell on the battlefield. Player doesn’t directly control units, but

decides when and where to spawn them and when to activate unit’s special power if it is

available. Different cards cost different amount of energy, which is a resource that

restores with time during the battle. Cards can be upgraded outside of the battles with

special items and soft currency. Items and currency are earned as rewards for PvP

matches, completed PvE levels or from opening card packs.

27

PvE mode has 60 levels that can be replayed multiple times for new rewards. PvP

mode doesn’t limit the amount of possible matches, but caps the amount of rewards that

players can get in a certain timeframe. Outside of core gameplay modes there is meta-

game, where players can update their decks, upgrade cards, join teams and make

purchases in the ingame store.

The Game belongs to a bigger media franchise and follows its aesthetic guidelines –

both visually and sonically. The Game uses 2d-graphics with non-realistic, cartoonish

visual style, and requires the same, often schematic, approach to sound design. For

example, certain sound effects appear oversimplified, and most of the characters don’t

make any sounds when they walk.

The Game was developed with Unity engine and Audiokinetic Wwise was used to

handle game audio.

3.2 Team structure

The audio department of the Company consists of 3 people: lead sound designer,

who oversaw the project from both technological and creative perspectives, one senior

sound designer and myself as a junior sound designer. All three of us have worked on the

Game, but the other two team members were shared between different projects. I joined

the Company’s audio team when some part of audio work had already been done and

worked solely on the Game until its release. A few months before the release, when most

of the content was finished, I became the only audio designer actively working on the

Game, while the rest of the team switched to other projects. At the time of publication of

this thesis, I’m responsible for the Game post-launch audio support. While we didn’t have

28

a dedicated audio programmer for the project, one of the gameplay programmers was

assisting us with the tasks that required code support.

Our audio department oversaw most of the aspects of the Game audio design

process except of voice-over and music production. Those exceptions were made because

music and voices are a crucial part of sonic identity of the Franchise, so they were

provided by the third party. Music design, final voice over editing and implementation

were done on our side. In addition to that we had an opportunity to reuse sound assets

from previous media products developed under same franchise.

Working as a relatively small team, we had freedom to choose our own tools like

digital audio workstations and plugins for audio asset creation and processing. However,

we followed a specific naming convention for asset creation and implementation

guidelines. Most aspects of technical audio design were clearly documented and made

available for entire team working on a project.

The implementation process was organized in a way that audio design team was

working almost exclusively in Wwise without changing anything in code or Unity editor.

Naming convention helped us partly automate integration of the most standard audio

events. Some other audio events, which were mostly connected to in-game special effects

and superpowers, could be manually integrated via custom-made web-based tool.

Integration of the rest of audio events was handled by gameplay programmer.

29

3.3. Aesthetic and design principles

The Game is set in a fictional world where characters play some sort of live-action

role-playing games about imaginary worlds, inspired by popular culture. The game has

four settings or themes representing different kinds of fictional settings.

The Game characters have various roles, wear different costumes and use hand-

crafted props to role-play popular fictional characters belonging to four different settings.

Some elements of the game they play, however, are not physically represented in the

Game world and only happen inside characters’ imagination. Magical spells, curses and

blessings are the most common example of these elements.

We decided to represent this duality by taking two different creative approaches to

sound effects design. When designing real world sound effects, we tried to make them

simple, raw and realistic. Imaginary sound effects, on the other side, were designed very

magical, otherworldly and over-the-top. For example, a wooden stick that represents

some legendary magical sword of a mighty warrior should still sound like a wooden stick

when it hits an object. But a healing ray from a fictional magician, being an imaginary

object, should sound as fairy and magical as characters would imagine it. The same rule

applied to UI sounds: physical objects like buttons sound very realistic, while

extraordinary events with lots of visual effects have sparkling, saturated sound events.

This decision lead us to few straightforward design rules. “Real-world” sounds are

mostly done in mono, with very little or no reverb and other effects, and attached to

existing objects as 3d-sounds. “Magical” sounds on the other hand are often stereo, 2d

and have some extensive post-processing.

Music and voice-over assets were provided by the third-party, so we had little

control over their production. Those assets were coherent with aesthetic style of the

30

Franchise from the beginning, and we didn’t need to worry about them outside of the

implementation process. More information about handling of music and voice assets is

provided further in corresponding sections of this chapter.

From the design perspective, we wanted to make sound informative and useful to

the player, while being pleasant and immersive. Our main principles were:

1. Distinction. Every character or spell should be easily identifiable by sound.

We considered, that user can play the game in various situations, including

commutes and public places. We wanted to make sure that players can get

information about what happens on the battlefield even if they look away

from the screen to check surroundings.

2. Locatibility. Sound position should reflect location of the source in stereo

field. If the players from the previous example wear headphones, they should

be able to understand not just what happened, but also where it happened on

the battlefield.

3. Informativeness. In certain cases, audio can give player extra information

about what is going to happen in the scene before any visual indication. For

example, in PvE the player can sometimes hear that enemy unit is spawned

outside of visible area before that unit can be seen on the screen. At the same

time, we didn’t want to go too far in this aspect. Regarding the variety of

situations the game can be played, we didn’t want to provide players who

play with audio on with any information that would give them significant

advantage other the players who chose to play without sound.

4. Fun. We simply wanted to win our battle with the mute button by making

audio as pleasant and entertaining as possible.

31

Locatibility might need some extra explanation. We placed most of the sound

effects in stereo field as 3D sounds to make them locateable. At the same time, we

understood, that in many cases the Game audio would be played through mobile device

speaker, so we put extra effort to make the mix mono-compatible. We used a relatively

narrow stereo field of approximately 60 degrees to reflect how players would get visual

information, playing with a tablet or a smartphone. Our actual steps to achieve these

goals are described in chapter 4.

3.4. Technical principles

As I mentioned before, The Game is a massive project with thousands of individual

audio assets and overall audio budget of 100 Mb. Mobile devices can’t offer much

resources to handle audio, so sound design process for the game of that scale should start

with defining a proper way to manage assets.

Our approach was to spread audio assets into many small sound banks for

fundamental entities, such as units, special effects or menu scenes. With this idea in mind

we ended up having over 100 sound banks. Size-wise each of those was within the range

of 50 to 700 kilobytes. Thus, we were able to have a precise control over RAM, loading

necessary sound banks when they were needed. For example, at the start of PvE level we

know in advance what units players will use and what kind of enemies will be present, so

we can load corresponding sound banks together with other game assets.

Some units had similar abilities, so we wanted them to share certain sounds –

usually ones that correspond to different status effects. Those were included to a special

sound bank that is loaded at start of any level or PvP match. As a rule of thumb, we

32

decided that sound effect would be included into this sound bank when it is used by

more than 2 entities, including spells. The only sound bank that is loaded at every scene

(including menu scenes) contains basic UI sounds that are shared among most of the

scenes.

Big audio files like music and main ambience loop were streamed from the drive.

Streaming audio is a widespread practice in modern game development that helps

optimize usage of RAM. The downside of this method is that streaming introduces some

delay to audio playback, that might cause synchronization issues. Wwise has an option to

create a buffer – small fraction of audio file that is stored in RAM to compensate the

latency. We used this feature for streaming music to avoid synchronization problems.

Ambiences didn’t require zero-latency playback, and we decided to stream them entirely

from the drive.

For physical channel limitations we had to follow existing mobile audio guidelines

and keep a reasonable amount of simultaneously playing sound effects. Audiokinetic

recommends targeting below 40 channels for lower-end mobile devices (Jean, 2017) so we

decided to lock maximum sound instances level at 32. Despite the game not being meant

to be played on low-end mobile devices we found out that massive battles with over 10

units on the same screen turned out to sound chaotic and cacophonous. This kind of

limitation allowed us to clear the overall mix and save some CPU bandwidth for real-time

processing.

Following 32 physical channels rule, we decided to limit the amount of sound

instances per action or event. Audiokinetic Wwise offers sound designers a lot of freedom

with its blend and random containers workflow, allowing to produce many variations of

one sound effect by layering sounds from different randomized sets. There is, however,

33

always a compromise, because more layers take more physical channels and CPU

resources. After running some tests, we decided that none of the unit’s actions should

take more than 3 physical channels: one for voice-over and two for layers of a sound

effect. This measure alone brought us to the situation when the limit of 32 channels was

breached in less than 5% of cases.

However, with such a hard physical voice limit we still had to make sure that the

most important sounds, such as voice lines or music, will never get cut or virtualized. To

do that we specified priorities for different sound effects categories, having music, UI and

voice-overs as high-priority, attack- and status-related sounds as medium priority and

movement sounds and weapon swings as low-priorities. The low-prio category included

the quietest sounds that would not be audible in a heavy-loaded battle scene anyway.

In addition, we wanted to virtualize sounds that are too quiet to be audible, but still

exist in the scene and use CPU and physical channels. We achieved that by setting a rule

to virtualize every sound below -60 dBFS. This value might look too low for a mobile

game with a relatively small dynamic range, but we had to keep it that way for players

who play the game with headphones.

The big memory budget combined with the relatively simplistic style of the

Franchise helped us achieve most of our goals without making many compromises. One

of those was a limited number of layers per sound effect. Adding more layers would give

us even greater amount of variations, but we wanted to stay reasonable and make sure

that other aesthetic choices don’t affect the performance.

Another compromise is very common for game development in general and mobile

games in particular: we had to sacrifice certain portions of sound quality to reduce file

size. Not too much, however. Audiokinetic Wwise offers several conversion formats for

34

different platforms, but ADPCM and Vorbis remain the most common and practical,

especially for multiplatform release. ADPCM is a typical audio format for mobile

platforms (Audiokinetic.com, 2018a) that is very light on CPU and memory but loses in

sound quality to more CPU-intensive Vorbis. Wwise Vorbis implementation, however,

allows audio designers to specify conversion settings per group of assets using the Quality

Factor setting. This option provided us with enough flexibility to control quality of

individual assets, so we choose Vorbis as our conversion format despite its higher usage

of CPU.

35

4. Practical aspects of the Game audio design

The previous chapter provided an overview of general principles behind the Game

audio design. This part of my thesis describes how these principles were applied in

practice. Five sections of this chapter are focused on core gameplay audio design, UI and

menu sounds, voice-over design and implementation, music implementation and mixing

of the Game. Contents of this chapter shouldn’t be seen as a guideline for mid-core game

audio design. Creative decisions documented below are based on design principles of one

project and may not work for other games of similar genre.

4.1. Core gameplay sounds

The Game is focused on battles, so gameplay audio mostly consists heavily focused

on hits, stabs, punches, shots and supporting movement sounds. Battles are formed with

three basic groups of entities: player avatars, spells and units. Each group features a set of

actions or attributes that vary among different entities, but follow almost the same

structure within a group:

 Player avatars have sound events for following actions:

− Spawning a unit;

− Attacking an enemy unit;

− Attacking several enemy units at once;

− Getting damaged;

− Getting defeated.

36

The Game allows up to two player avatars to be present at the same time. In that

case they have identical sounds, that panned to the opposite sides of the stereo field,

according to avatars positions on the screen.

 Spells have following sonic attributes:

− Spell trigger;

− Spell effect.

The “Trigger” part is played on player’s avatar that casts the spell. “Effect” part is

played at the center of area of effect or as a 2d-sound if the spell is applied to entire

battlefield.

 Units are divided into 3 subgroups: melee, ranged and totems. Those subgroups

have slightly different structure. For example, melee units trigger sound events with

following actions:

− Spawning on the field

− Landing on the field

− Swinging a weapon while attacking

− Collision – hitting an enemy unit

− Using a superpower

− Getting damage

− Getting defeated

Ranged units use a similar system but have additional sound for shooting. Swinging

a weapon in that case is replaced with raising a weapon, and the collision sound event is

triggered when the projectile reaches an enemy unit. Totems don’t have a sound for

defeating the last visible enemy, and in many cases don’t have any attack-related sound

37

effects. Most units walk silently, but some of them have exceptional movement sounds

when necessary.

Since almost every action with a sound effect might fall under a certain category, we

developed a naming convention to automate the process of triggering audio events. Every

audio event related to units was named along the lines of

Play/Stop/Pause/Resume/Break*Unit name*Theme*Action. This allowed us to simplify

the development process by reducing amount of times we had to trigger implementation

from the programmer.

Our main creative goal for character sound design was to make sure that every unit

sounds unique and distinctive without breaking overall sonic aesthetics of the Game. At

the same time, we had to keep in mind sonic identity of the Franchise. And in addition to

that we needed to make enough variations for every sound effect to avoid the “machine

gun effect” – frequent repetition of the same sound that is considered very undesirable for

an action-packed game (Chang, 2016).

We analyzed other Franchise products from sound design perspective and decided

on a set of attributes to describe it. We came up with a set of descriptions that included

words like “hasty”, “rough”, “simple”, “clean” and “impactful”. So, in general we tried to

make our sound effects nice and pleasant, but also to add a feeling of roughness to give

an impression that they were created in a hurry, in bold strokes.

First, we came up with a set of generic sound effects like punches, “whooshes” or

body falls that perfectly fit desired style and can be used by different units. Those sounds

were designed as a unifying component which would be layered with other unit-specific

sound effects. Different units use those sounds with different pitch and volume settings

38

that depend on their visuals. For example, units that look slow and heavy would use lower

and possibly louder version of the sound.

Second layer was designed for every unit from scratch, to make it sound distinct

enough in the mix. This is the most prominent part of the sound effect, the part that

defines what action sounds like. Some actions didn’t use generic sound effects, so both

layers for them were done from scratch.

 Each of the layers is based on a random container with 3-5 sound variations and a

rule, preventing system to play same asset two times in a row. In practice it means that

every time sound event is triggered system will play random variation of sound 1 together

with random variation of sound 2, making a layered sound 3 out of them. Having 3-5

sounds under each container allows us to create 9-25 variations of sound 3. Originally, we

went even further, having up to 5 layers per sound effect, but we had to get rid of

additional layers by baking sounds together during optimization phase. However, we

added some more variation by slightly randomizing loudness, pitch and, in certain cases,

high-pass and low-pass filter settings for individual layers.

Big part of units’ individuality also comes from the voice-over lines recorded by the

same actors who work on other products under the same franchise. Having those assets

allowed us to focus on overall sound aesthetics so we didn’t have to design our sound

effects being too different from each other aesthetically to ensure their distinction.

As mentioned before, the game has four different settings, but creating different

ambience or set of ambiences for each of them would be too expensive for memory

budget we had. We chose a different approach having level ambience based on the same

loop for every setting with additional theme-specific elements randomly playing on top of

39

it. This technique allowed us keep ambiences small but diverse and avoid audible

repetition.

The main ambience loop was still too big to be loaded into the RAM, so we decided

to stream it from the drive. This technique allows to exclude most of the file from the

sound bank leaving there just a small portion of it from the beginning. Downside of this

technique is that it might introduce small delay before starting the playback, but it in this

case it was not considered important.

4.1.1. Core gameplay dynamic sound systems

Despite simplistic aesthetics of the game and technical constraints we still had to

implement dynamic audio systems for some entities. Fortunately, we were able to achieve

everything we need with standard Wwise Real-time parameter control (RTPC) tools.

The first one is additional attenuation system that decreases volume of entities

based on their position. Despite all of the character sounds are 3d and follow general

distance attenuation rule, we wanted to get a bit of extra control over individual unit

volume. It would potentially help us clean the mix from sounds that play too far away

from the visible area but keep ones that have informative value. Instead of modifying

distance attenuation curves for individual sound effects we applied volume RTPC to the

actor-mixer of every unit.

In most cases we used sine attenuation curve that would not affect units that are

present on the screen (values 50-100 on X axis on Figure 1) but heavily attenuate ones that

are located outside of visible space (values 0-500 on X axis on Figure 1). This setup

allowed us to safely virtualize all sounds from units that spawn too far away from visible

40

area. At the same time, we were able to decide how far away certain actions would be

audible on unit-specific basis.

Figure 1. Custom volume attenuation curve for the unit

Another system modifies pitch of every sound unit has based on its speed. Certain

spells and effects in the Game allow units to be sped up or slowed down via different buffs

and de-buffs. These effects increase or decrease animation speed, and we had to make

sure that audio reacts to these changes. Basic resampling that changes pitch of the sound

with its duration was a perfect fit for our needs, creating a nice cartoonish effect for both

sped-up and slowed-down characters. So, we decided to linearly automate basic Wwise

pitch parameter on actor-mixers of our units based on the speed. Speed that can take any

value between 50% and 200%, which corresponds to ±1 octave in pitch.

41

Figure 2. Pitch automation curve for the unit

During the testing phase we found out that sound of low-pitched (slowed-down)

units has too much low-frequency content and added another set of RTPC to control

high-pass filter to prevent it from happening. Additionally, we applied 0.7 seconds

interpolation time to the game sync to make pitch changes sound smoother.

To get a precise control over every single unit, we created a set of game syncs (for

distance and speed) and RTPCs (for volume, pitch and high-pass filter) for each of them.

Sync objects are automatically recognized by the game when their name follows the

naming convention.

4.2. UI and menu sounds

The Game features an extensive menu system where players can customize their

avatar, modify decks, upgrade cards, interact with teams, make various kinds of

purchases and perform other actions. As it was stated in Chapter 2, role of metagame in

mid-core games is hard to overestimate. Therefore, we paid special attention to UI-

related audio, trying to make it very responsive, satisfying to press and non-irritating.

42

Most of mobile games play UI sounds when user releases the finger from the screen.

Playing sounds when user places finger is way more responsive – especially with longer

presses – but potentially harmful for the user experience, since users sometimes press the

button, then change their mind, move the finger away and releasing finger outside of the

button area to prevent action from happening. In this scenario, playing sound events on

tap would give user a false message of triggering the button – unless the button is actually

triggered on press which increases the amount of accidental presses.

Our solution to this problem was to make UI sounds out of two parts. The subtler

one is triggered on button press and the second, more prominent one – on release. Since

the second part contains more information, we decided to make different sound effects

for release of different button types, but the same sound effect for all of the presses: the

only function of this sound is to tell users that something is about to be triggered. This

kind of system is applied to most buttons in the game, except of ones that don’t have

“press” animation. Another advantage of the two-part UI sound system is that it reduces

irritation from repetition of the same sound effects using natural variation of press

duration. Subtle element of generativity makes two sounds, playing with slightly different

amount of time in-between, cause less fatigue than one repetitive sound effect (Ihalainen,

2015, pp. 109-110).

We decided to make all button-related sounds 3d. It means they will be panned

according to the button position on the screen. This is uncommon way of implementing

UI sound effects: those are usually played as 2d sounds in the center or hard panned to

different sides of stereo field. We had two main reasons use 3d sound approach. First, we

wanted to increase responsiveness of in-game UI and make sure that every sound will be

43

played from the correct spot in the stereo field, even if this would be only perceived by

players who use headphones. Second, we wanted to optimize the development process.

The Game has various menus with a lot of buttons. Position of those buttons was

changing a lot during the development. Sometimes new elements were added to certain

places and old ones were getting moved to a different place on the screen. If we followed

conventional method with 2d UI sounds, we would have to follow every single change,

modifying panning of existing sounds or adding triggers for the new ones. 3d approach

allowed us to create prefabs for different sounds that would have proper triggers inside

them, so UI artists were able to copy buttons to any place within the scene and stereo

positioning always stayed correct.

However, 3d approach has its own downsides. First, it requires additional audio

listener that will only react to UI. This necessity comes because UI elements don’t usually

exist in the same place within the scene as the level itself. Instead they are projected with

a different camera, so main audio listener is unable to properly track their position.

Second, 3d sounds cost more CPU power than 2d (Audiokinetic.com, 2018c), because

audio listener needs to track their position in the scene.

 Menu sound effects include audio feedback from receiving currencies, opening

card packs, upgrading cards and units. All these moments relate to a feeling of

empowerment: player either improves character and card stats or gets resources for

future improvements. So, our creative goal was to make sound effects that will fully

reflect the visuals and feel as empowering and rewarding as possible. This lead us to

development of several dynamic systems.

44

4.2.1 Dynamic system for currency SFX

In the Game, the player can get different amount of currencies by achieving various

goals or making in-app purchases. The amount of currency players might get varies from

very few to tens of thousands and this difference was accented via amount and duration

of visual effects on the screen. We wanted to reflect those amounts sonically to make sure

that getting more currency sounds more rewarding. At the same time, we didn’t want to

remove all the excitement from getting smaller amounts. Our first idea was to define

different tiers, like 1-9, 10-99, 100-499, and make individual sound for each of them. But

this approach would require us to make lots of variations, neither of which would

precisely match duration of the visual effect or its position in stereo field. Another way

would be to fire a sound event from every particle of visual effect to achieve perfect

audio-visual sync, but in this case bigger amounts of currencies caused voice starvation.

So, we decided to build a dynamic system to handle currency sound effects.

The visuals were showing a flow of currency appearing where reward is claimed on

the screen and flying towards the top with some sparkles in the end. We split this process

to three stages, each triggering a sound event. The first event (Start) is fired when the first

particle of currency visuals appears on the screen. The second event (Collect) happens

when the first particle reaches the top of the screen where the currency counter is

located. The third event (End) is triggered with a final visual effect, when the last particle

reaches the top of the screen.

For every currency we created two sets of over 15 very short, granular sound effects:

one for emission and one for collection when particles hit the top of the screen. Each

grain in those sets is a one-shot sound of currency handling for emission and impact for

collection. Those grains would be triggered one after another (overlapping) with a

45

different rate, depending on the amount of currency we wanted to represent. In addition

to that, we added RTPCs that would slightly raise volume and pitch of the sound for

getting bigger amounts of currency. Thus, we could flexibly vary the intensity of two main

sound effects depending on amount of currency we wanted to represent.

Start event would start the emission loop with intensity received from a game sync.

Collect event would start collection loop on top of that, following the same game sync.

Then, End event would play a final sound effect and cut both loops. The system was

working fine until some bug broke a visual effect that triggered End event, causing the

system to play both loops infinitely until the sound bank is unloaded. This situation made

us create a fail-safe that would cut those loops even if the End event hadn’t been

triggered. To do that we added stop actions to Start and Collect events and calculated

necessary delays for minimal intensity of currency flow. Then we used intensity game

sync to automate delay time based on different intensities and durations of a visual effect.

4.2.2 Dynamic system for card pack opening

Card pack opening process is done in a very physical, skeuomorph way. Animation

of a card pack upper part tearing away follows player’s physical swipe across the screen

and magical glow appears and becomes more intense with the finger movement. This is a

moment of excitement for the players who are about to get new cards for their

collections. To support this moment, we built another dynamic sound system of several

loops that will blend together while player opens a card pack.

First it starts with a normal sound of plastic cover being torn. This loop becomes

louder and higher in pitch while the player moves the finger. Later magical glow loop

sound starts blending with the first loop to support the visual effect. If the player moves

46

the finger to the opposite direction, glow loop filters out, following the movement with

no plastic cover sound effects. When the pack is fully open, we trigger a different

sequence of sound effects and quickly fade both loops out.

4.2.3 Dynamic system for card reveal process

This is the least complicated system we created, but is still worth mentioning. The

Game features 4 types of cards of different rarity. When players open a card pack they see

back of the cards and needs to flip them manually. More rare cards have more complex

visual effects when players flip them, and we created a simple system to match the

visuals.

We created four switches in Wwise, one per card rarity. When player reveals a card,

we know which rarity it is and use a switch to play different sound from the switch

container. To keep those sounds consistent, we created an additive system of layers.

Revealing the most common card would trigger a single, generic sound effect. Second

level of rarity will add another sound effect on top of that. Third level will play another

sound effect on top of what we hear on second level and so on. In addition to that on

levels 2-4 we play a voice-over line by narrator, commenting on rarity of the card player

revealed.

4.3. Voice processing and implementation

As mentioned above, all voice assets for the Game were provided by the Third party.

Files we received were already processed in a right way, so in most cases we didn’t have to

care about it outside of basic high-pass filtering at ~100 Hz to make sure there is no

47

unnecessary low-frequency content. Outside of that we were focused on voice-over

structure design and implementation.

Some of the actions mentioned for units in section 3.3 are accompanied by a voice

asset. Roughly, we divided all our voice assets into two categories: grunts and quips.

Grunts are short vocalizations of getting hurt or making effort. Quips are catch phrases

characters say when performing certain actions. The table below shows average structure

of the character’s voice design.

Action Voice assets

Spawning on the field 1-3 quips

Swinging a weapon (melee units) 3-5 grunts

Shooting (ranged units) 3-5 grunts

Using a superpower 1-3 quips

Getting damage 3-5 grunts + 1 quip (optional)

Getting defeated 1-2 quips + 1-3 grunts (optional)

Victory 1-2 quips

Boss entry 1 quip

While most of the actions are self-explanatory, it is worth it to explicate on Victory

and Boss entry actions that weren’t mentioned before.

Victory is a short voice line one of player’s units might say after cleaning the

battlefield of enemy units. First game randomly chooses a unit to say that line and then

48

that unit will have 15% chance to fire the sound event. It means that players won’t hear

the same lines too often, – at least way less often than other lines, – and it feels

interesting and meaningful every time it is played.

The Boss entry is a special line that accompanies custom animation when player

meets boss-version of a unit. This animation happens only in pre-defined moments in

PvE mode, so we put this line to a separate sound bank together other boss-exclusive

audio content.

Overall, most of the characters had over 20 voice assets in different random

containers for 7 possible actions. With many units on the screen the Game could easily

start sounding too chaotic and cacophonous. We addressed this problem in two ways.

First, most of the repeating actions are only voiced with grunts – short sounds that

don’t overlap with each other that much. Grunts are mostly used for getting damaged,

swinging a weapon and shooting. While the first case is very important to communicate

that the player’s unit got hurt, the second and the third have more of aesthetic value,

regarding the fact that those actions also have sound effects. Thus, we decided that these

effort grunts will only play in 50-75% of cases depending on character. This allowed us to

decrease the amount of voice assets playing at the same time and thus have more space

for quips.

Quips have a longer duration than grunts, so they might lose some aesthetic and

informative value when they overlap with each other. Some overlapping, though, was

considered normal due to originally chaotic aesthetics of the Franchise. So, we decided to

cut quips in two cases: when units gets hurt and when unit gets defeated. It caused a

funny effect of a phrase being interrupted with a grunt and helped us clean the sound

space.

49

Other than core gameplay, we used some voice-overs in the menus. Those belong to

shopkeeper characters who can welcome the players and comment on their purchases

and narrator who comments on rare cards that players can get from the card packs.

4.4 Music implementation

Music for the Game was also supplied by the Third party. The larger part of it was

composed specifically for the Game, but some tracks were borrowed from previous

products under the Franchise. This was done both to match budget requirements and to

add some familiar tracks for the fans of the Franchise. The game uses mostly linear

crossfading score with some adaptive features.

Aesthetically speaking, the music follows the same style as other products under the

Franchise. The style varies from rather simplistic but catchy and well-produced hybrid

orchestral, inspired by film music of 90’s and 2000’s in core gameplay parts to pop and

jazz tunes in some metagame menus. The music generally relates to “imaginary” parts of

the design paradigm described in section 3.2. Orchestration and motifs reflect non-real

situations and settings, exaggerating on-screen action and creating funny contrast with

rough and mundane “real-world” sound effects. Overall music creates a fantasy mood,

supporting aesthetic duality even when none of the otherworldly elements are present on

screen. In addition to that, it creates a comical feeling by enhancing contrast between

imaginary and real-world domains.

Metagame scenes have around 10 looping music tracks assigned to different menus

and views. Every functional menu, like avatar customization screen, deck builder screen,

or the store has its own music that matches the mood and the atmosphere defined by the

50

visuals. Duration of loops varies depending on how much time player usually spends on

selected screens, from about 20 seconds to almost 4 minutes. The most important

screens, where player spends most of the time, have playlists of two tracks that crossfade

into each other. Music tracks, assigned to these scenes, can start from several preselected

moments to make the music sound less repetitive and predictable.

The only exception is an Options menu that can be displayed on top of every other

screen. It doesn’t have any dedicated music theme but applies low-pass and high-pass

filters to already playing music track when the menu is activated. This way we make

players understand that focus has shifted from the game scene to an external menu with

game settings, announcements and navigation shortcuts to quickly access different

sections of the game.

The main screen has 4 different versions of the main theme that can blend on the fly

depending on selected setting. Variations and composed with the same duration, tempo,

time signature, scale and harmonic structure, but feature different timbres and

arrangements. This allows us to quickly and seamlessly crossfade one into another when

player switches levels that belong to different settings on the main view.

Core gameplay has setting-specific music: each of four settings is represented with

its own music themes. There are two cues per setting: one for the level itself and one for

the boss battles. Level tracks are usually around two minutes long, following the duration

of average play session. Boss battle themes vary from one to three minutes because

certain settings feature harder and longer boss battles. The beginning of every boss battle

is also marked with a stinger – short music fragment that plays during the boss entrance

animation. Due to the budget limitations, stingers are not setting-specific, so we could

just choose one out of 16 we had to make the closest match for the animation.

51

PvP gameplay doesn’t belong to any specific setting and has its own playlist of music

tracks. The track is randomly picked from random container at start of the match. If the

match lasts over two minutes, the system increases music playback speed by 5% to build

up tension and inform the players that match is going to end soon. PvP music ends with

one out of three stingers for “win”, “lose” and “draw” conditions, depending on the battle

result.

All music tracks except of stingers are handled as streaming assets in the same way

as ingame ambiences to reduce usage of RAM.

4.5. Loudness and dynamic mixing

Final mixing was one of the most challenging parts of making the Game sound

coherent with other products under the Franchise. As many times stated above, mobile

games are a challenging medium for sound designers. For mixing, the main challenge

comes from the mobile device speaker. Inability to reproduce low frequencies, problems

with reproducing high dynamic range content, variety of devices with different speakers

on the market create a full set of constraints for our work.

Additionally, as was mentioned in chapter 1, loudness standards for mobile

applications are different from the ones that are used in console games, film and

broadcasting. While bigger platforms follow AES/EBU recommendations of -23 LUFS +-

0.5 LU (R 128, 2014, p.4), mobile developers follow Sony ASWG recommendations for

portable platforms of -18 LUFS +- 2 LU (ASWG-R001, 2013, p.6). Difference between those

requirements shouldn’t be seen as a constraint by itself. Conversely, it only benefits the

end user who can stick to the comfortable volume level without changing loudness while

switching between different applications.

52

But most media products under the Franchise were mixed to broadcasting

standards. Mixing to mobile standards while maintaining the core aesthetics and feel of

the Franchise seemed like a moderately challenging task. In the very beginning of

development we designed an extensive audio bus structure, grouping different sounds

into a complex setup of sub-buses:

Figure 3. Mixing bus structure

Combined with a set of target loudness values for different categories of sounds, this

structure allowed us to optimize mixing process, focusing on working with buses instead

of individual sound effects.

After the first mix was done, loudness meter showed us the following data:

Integrated loudness -18.4 LUFS, TP -1.5 dB, LRA -15.4 LU. Integrated loudness and true

53

peak level were just fine. LRA (loudness range average) was acceptable for listening

through headphones but too high for a portable device speaker. However, if we decided

to fully optimize our mixes for mobile device speakers, we would upset a sizeable portion

of players who play with headphones on. And regarding how much we cared about

correct audio representation in stereo field, we didn’t want to disappoint the only users

who play our game with a proper stereo setup. We addressed this problem by creating

separate mixes for two different listening modes. Mobile speaker mix would stay at the

same loudness level to match ASWG recommendations, but would have smaller average

loudness range, closer to 9 LU.

We asked the programmer to implement a system that would detect whether

headphones or some other kind of external speaker is connected to the device. Then we

set a trigger that would switch states in Wwise according to received data. We used our

existing “headphone” mix as a starting point because we were quite happy with the result.

For the mobile mix we wanted to reduce loudness range while keeping the same

integrated loudness level and not exceeding true peak level of -1 dB.

But first we had to find a straightforward way to monitor the result on a mobile

device while mixing. Wwise can connect to the build that runs on a mobile device and

give user full control over the mix, but we were unable use this function because of some

network-related some technical constraints. Additionally, it didn’t allow us to switch

devices on the go to quickly check our mixing decisions on different speakers. We didn’t

want one specific device’s acoustic characteristics to influence our mix, so we looked for a

solution that would allow us to quickly switch between multiple devices while streaming

audio from Unity editor on a PC

54

The solution was found in a free software called Stream What You Hear

(Streamwhatyouhear.com, 2018) that allows to stream audio via HTTP protocol in local

network. The best part of this method is that audio can be quickly accessed from any

device with a media player capable of playing stream from the web (i.e. internet-radio).

At the same time there are some downsides, like audio compression and almost 5 seconds

of delay introduced by the network. Compression artifacts were considered neglectable

regarding the quality of mobile device speaker playback. Delay made the work process

less comfortable, but was not critical for the mixing purpose.

To adapt our mix for the mobile device speaker we applied a high-pass filter that

cuts everything below 200 Hz on the master bus. Tiny speakers can’t reproduce such low

frequencies, but they still can affect audio playback when they are present (Kleiner, 2013,

p. 507) in the mix, so we did it to avoid possible distortion. Music sounded a bit too quiet

when played from the mobile device speaker, so we boosted corresponding music bus by

3 dB and compressed SFX submaster bus to compensate disbalance. After the

compression we’ve noticed audible resonance around 3 kHz on our target device and

attenuated this band by 3db using parametric EQ.

Resulting mix had integrated loudness -16.3 LUFS, TP -1 dB, LRA -13 LU. Integrated

loudness was still within the acceptable range, but LRA decrease was not enough. We

decided to take a next step in further iterations, following Audiokinetic’s guidelines for

decreasing loudness range, using compression on master bus. They suggest to apply low-

level compression with a threshold under -40 dbFS, compression ratio of 1:1.2 – 1:1.5 and

release time of over 1 second. (Audiokinetic.com, 2018b).

55

Conclusion

While working on this thesis I had to accept lots of exceptions and generalizations.

The biggest of those is my understanding of mobile mid-core itself that I had to narrow

down based on my observations of games, popular in 2017 and beginning of 2018. But the

actual concept goes far beyond that. For example, Warman and Fowler (2012) point out,

that Grand Theft Auto III (2001) is seen as a hardcore game when played on a console, but

turns to mid-core when played on a tablet. This example, though, is too far from the

existing market trend of service-based mobile games, so I consider it an irrelevant

exception.

No surprise, but mobile mid-core offers the same set of audio-design challenges as

mobile games in general. Hardware limitations and portability itself have such a dramatic

impact on audio design process, that other aspects fade in comparison. But my findings

and experience with the Game indicate these aspects still exist. In chapter 2 I was able to

find some common grounds between successful mobile mid-core games. From these

findings I derived a set of ideas about characteristics of mobile mid-core game audio

design. Some of those ideas were equally inspired by the project I’ve been working on,

others themselves helped to shape the Game and define or improve its audio design

principles. These two processes were somehow interconnected, and it is hard to say if

certain idea was inspired by existing problem within the Game or creative vision of the

Game was somehow altered by my research.

The first and the most obvious one is increased complexity, which is more of a

common case, but not an outcome of a game being designed for the mid-core segment.

Some part of it comes from the players’ expectation, other originates in the Games as a

56

Service model. Service-based games aim for long playtime, so require repetition control to

be less irritative to the player on long-term perspective.

The second is special attention towards UI sound design. Again, this is not a mid-

core specific requirement, but an outcome of extensive metagame most of modern mid-

core games offer to the players. The same approach would be equally relevant for any

hardcore or even casual game where players need to spend a lot of time interacting with

different menus.

The third idea focuses on informative component in mobile mid-core game audio.

While being limited by a requirement that games should be fully playable with sounds

off, this aspect somewhat expands role and function of audio in mobile games. For

example, we can say, that in casual games audio has purely aesthetic function and mid-

core adds informative layer to the role of audio design. Hardcore segment probably

extends that list with narrative and other functions, but this statement goes far beyond

the scope of my thesis, leaving space for future research.

Working on the Game was a great educational experience where rather strict rules

and guidelines were combined with a lot of creative freedom and space for experiments. I

feel proud of many audio features we've made, but here I would mention two of them

that I find unconventional for a mobile game. The first one is our approach to UI audio.

Combining dual-part interface sounds with 3d audio sources we made UI elements sound

natural and responsive. The second is a dynamic mixing system that adapts to the

player's listening mode. Despite the system itself would benefit from better execution in

terms of loudness range for mobile speaker mix, I still consider it an achievement. Since

the Game is launched now, we might be able to improve this system in future updates.

57

Both these features will take a good place in my personal arsenal of professional methods

and tricks.

On the other side, certain aspects of the Game could turn out better if the team had

more time for pre-production. For example, we didn't think about physical channel

limitation and CPU before we started working on sound effects and used too many layers

for some of them. As a result, we had to spend time optimizing our audio assets by baking

different layers together to reduce physical voice count. Still, it was a good learning

experience that I will carry over to future projects.

 Since the Game was released we haven't heard any negative feedback from the

community about its audio side. Thinking how critical and demanding fans of big media

franchises can be, we consider it a positive result. At the same time, we can't estimate

how positive it is since we don’t have any data on how many players mute the sound

entirely.

Overall, I hope this study provides a slightly different angle on how we view audio in

mobile games and video games in general. Other than that, I believe that my findings

would be useful to audio professionals working on similar games, or looking for

inspiration for their ongoing or upcoming projects.

58

References

ASWG-R001. (2013). 1st ed. [PDF] Sony Audio Standards Working Group. Available at:

http://gameaudiopodcast.com/ASWG-R001.pdf

Audiokinetic.com. (2018). Creating Audio Conversion ShareSets. [online] Available at:

https://www.audiokinetic.com/library/edge/?source=Help&id=creating_audio_conversio

n_settings_sharesets [Accessed 4 Feb. 2018].

Audiokinetic.com. (2018). More on Loudness Range (LRA). [online] Available at:

https://www.audiokinetic.com/en/library/2017.1.3_6377/?source=Help&id=more_on_loud

ness_range_lra [Accessed 2 Feb. 2018].

Audiokinetic.com. (2018). Working with 2D Objects. [online] Available at:

https://www.audiokinetic.com/library/2017.1.1_6340/?source=Help&id=working_with_2d_

sound_music_and_motion_fx_objects [Accessed 24 Feb. 2018].

Chang, A. (2016). Why People Turn Off Audio - Designing Audio that Accomodates

Rather Than Dominates. [Blog] A Day in the Life of a Sound Designer. Available at:

https://sparklystarburst.wordpress.com/tag/respectful-sound-design/.

Clark, O. (2014). Games as a service. Burlington: Focal Press.

Clash of Clans. (2012). Supercell. Video game.

Clash Royale. (2016). Supercell. Video game.

Collins, K. (2008). Game sound: An Introduction to the History, Theory, and Practice of

Video Game Music and Sound Design. Cambridge, MA: MIT Press.

59

Das-Gupta, A., Katkoff, M. and Payton, A. (2018). Prediction for 2018: Mid-Core Games.

[online] Deconstructor of Fun. Available at:

https://www.deconstructoroffun.com/blog/2018/1/31/prediction-for-2018-mid-core-

games.

Daw, H. (2017). Henry Daw on The Small Sounds That Make A Big Difference at TNW

Conference 2017. [video] Available at:

https://www.youtube.com/watch?v=XOMlQzyWk28

Developer.apple.com. (2017). Higher Limit for Over-the-Air Downloads – News – Apple

Developer. [online] Available at: https://developer.apple.com/news/?id=09192017b

[Accessed 25 Feb. 2018].

Freeman, W. (2018). Mobile tones: The audio tool and service providers pushing the

sound of smartphone gaming. [online] pocketgamer.biz. Available at:

http://www.pocketgamer.biz/comment-and-opinion/67504/state-of-play-mobile-audio/.

Graft, K. (2013). What the hell does 'mid-core' mean anyway?. [online] Gamasutra.com.

Available at: https://www.gamasutra.com/view/news/183697/What_the_hell_does_mid-

core_mean_anyway.php.

Grand Theft Auto III. (2001). Rockstar Games. Video game.

Hearthstone: Heroes of Warcraft. (2014). Blizzard Entertainment. Video game.

Heubel, B. (2015). Embracing the Mute Switch. [Blog] Immersion Corporation Blog.

Available at: https://www.immersion.com/embracing-the-mute-switch/.

Horowitz, S. and Looney, S. (2014). The essential guide to game audio. Focal Press.

60

Ihalainen, K. (2015). Generative sound design: Complexity, realness, and quality including

study cases of an interactive 3D environment sound research and a generative sound

installation. Master’s Thesis. Aalto University.

Imgur.com (2016). iPhone 7 Plus audio measurements. [online] Available at:

https://imgur.com/gallery/DRbu5 [Accessed 13 Mar. 2018].

InMobi. (2014). Mobile Gaming Cross-Market Analysis. First edition, 2014 Q1. [PDF]

InMobi, p.18. Available at: https://www.inmobi.com/ui/pdfs/Mobile_Gaming_Cross-

Market_Analysis_(First_Edition).pdf.

Jacobsen, B. (2016). Informant Diegesis in Videogames. Master’s Thesis. Aarhus

University.

Jean, M. (2017). How to get a hold on your voices - Optimizing for CPU (PART 1). [Blog]

Audiokinetic Blog. Available at: https://blog.audiokinetic.com/how-to-get-a-hold-on-

your-voices-optimizing-for-cpu-part-1/.

Jørgensen, K. (2008). Left in the dark: playing computer games with the sound turned off.

In: K. Collins, ed., From Pac-Man to Pop Music. Farnham: Ashgate, pp.163–176.

Kassabian, A. (2015). Sound and Immersion in Timekiller Games. Journal of Sonic Studies,

[online] (10). Available at: http://sonicstudies.org/jss10.

Katkoff, M. (2014). Mid-Core Success Part 1: Core Loops – GameAnalytics. [online]

GameAnalytics. Available at: https://gameanalytics.com/blog/mid-core-success-part-1-

core-loops.html.

61

Katkoff, M. (2014). Mid-Core Success Part 3: Social – GameAnalytics. [online]

GameAnalytics. Available at: https://gameanalytics.com/blog/mid-core-success-part-3-

social.html.

Kleiner, M. (2013). Electroacoustics. Boca Raton, FL: CRC Press.

Lien, T. (2013). Core gamers, mobile games and the origins of the mid-core audience.

[online] Polygon. Available at: https://www.polygon.com/2013/8/9/4604088/the-rise-of-

mid-core-gaming.

Lofgren, K. (2017). Finding the Beat: Who’s Listening to Mobile Gaming Soundtracks?.

[Blog] Big Fish Blog. Available at: https://www.bigfishgames.com/blog/finding-the-beat-

whos-listening-to-mobile-gaming-soundtracks/.

Long, B. (2012). The Insider’s Guide to Music and Sound for Mobile Games. [ebook]

Amazon Digital Services, Inc. Available at:

https://www.gameaudio101.com/Freshh/GameAudio.pdf.

Lost in Harmony. (2016). Digixart Entertainment. Video game.

Luban, P. (2011). The Design of Free-To-Play Games: Part 1. [online] Gamasutra.com.

Available at:

https://www.gamasutra.com/view/feature/134920/the_design_of_freetoplay_games_.php.

Marvel: Contest of Champions. (2014). Kabam. Video game.

Mason, M. (2013). Demographic Breakdown of Mobile Gamers | Magmic. [online]

Magmic. Available at: http://developers.magmic.com/demographic-breakdown-casual-

mid-core-hard-core-mobile-gamers/.

62

Ng, P. and Nesbitt, K. (2013). Informative sound design in video games. Proceedings of

The 9th Australasian Conference on Interactive Entertainment Matters of Life and Death

– IE '13.

Noonan, P. (2013). SEVEN REASONS AUDIO WILL SAVE MOBILE USER INTERFACE

DESIGN. [PDF] Akendi. Available at: https://www.akendi.ca/downloads/whitepapers/7-

Reasons-Audio-Will-Save-Mobile-UX-&-User-Interface-Design.pdf.

Papa Sangre. (2010). Somethin' Else. Video game.

Pons, M. (2014). iPhone and iPad Speakers Frequency Response. [online] The Sound

Design Process. Available at: https://thesounddesignprocess.com/2014/01/08/iphone-and-

ipad-speakers-frequency-response.

R 128. (2014). 1st ed. [PDF] Geneva: EBU. Available at: https://tech.ebu.ch/docs/r/r128.pdf.

Stevens, R. and Raybould, D. (2011). The game audio tutorial. Burlington, MA: Focal Press.

Roseboom, I. (2016). How first session length impacts game performance - deltadna.com.

[online] deltadna.com. Available at: https://deltadna.com/blog/first-session-length-

impacts-game-performance/.

Star Wars: Galaxy of Heroes. (2015). Capital Games. Video game.

Streamwhatyouhear.com. (2018). [online] Available at:

http://www.streamwhatyouhear.com.

Thomas, N. (2013). Casual, Social, Mobile, and the Audio That Makes Them Successful.

[video] Available at: https://www.gdcvault.com/play/1017705/Casual-Social-Mobile-and-

the.

63

Scolastici, C. and Nolte, D. (2013). Mobile Game Design Essentials. Birmingham: Packt

Publishing.

Warman, P. and Fowler, S. (2012). Publisher 2.0 — The Emergence Of Mid-Core. [online]

AListDaily. Available at: http://www.alistdaily.com/media/publisher-2-0-the-emergence-

of-mid-core/.

