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ABSTRACT 

KAGIS (Karst Aquifer GIS-based) model is developed and applied to Mela aquifer, a small 

karst aquifer located in a Mediterranean region (SE Spain). This model considers different 

variables, such as precipitation, land use, surface slope and lithology, and their geographical 

heterogeneity to calculate both, the runoff coefficients and the fraction of precipitation which 

contributes to fill the soil water reservoir existing above the aquifer. Evapotranspiration 

uptakes deplete water, exclusively, from this soil water reservoir and aquifer recharge occurs 

when water in the soil reservoir exceeds the soil field capacity. The proposed model also 

obtains variations of the effective porosity in a vertical profile, an intrinsic consequence of 

the karstification processes. A new proposal from the Nash-Sutcliffe Efficiency Index, 

adapted to arid environments, is presented and employed to evaluate the model’s ability to 

predict the water table oscillations. The uncertainty in the model parameters is determined by 

the Generalized Likelihood Uncertainty Estimation method. Afterwards, when KAGIS is 

calibrated, wavelet analysis is applied to the resulting data in order to evaluate the variability 

in the aquifer behaviour. Wavelet analysis reveals that the rapid hydrogeological response, 
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typical of a wide variety of karst systems, is the prevailing feature of Mela aquifer. This study 

proves that KAGIS is a useful tool to quantify recharge and discharge rates of karst aquifers, 

and can be effectively applied to develop a proper management of water resources in 

Mediterranean areas. 
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1. INTRODUCTION 

Water management in the Mediterranean region is a trending topic in the research 

community as evidenced by the number of publications in peer-reviewed journals during last 

lustrum (SCOPUS reports a more-than-200-publications per year ratio that deal with 

“Mediterranean water resources”: Moutahir et al., 2017; Sachse et al., 2017; Kourgialas et al., 

2018; Marcos et al., 2018; among others). Underlying this interest is the fact that scarce water 

resources are a limiting factor for economic development (Molina and Melgarejo, 2016) in 

conjunction with numerous predictions and evidences of drastic climate change that will 

affect the sustainability, quantity and quality of water resources in Mediterranean areas 

(García-Ruiz et al., 2011). According to most climate model forecasts, an increase in 

temperature and a decrease in precipitation is expected at the end of the 21st century (Rey et 

al., 2011; Soto-García et al., 2013; IPCC, 2014). Therefore, governments and water 

regulators will have to deal with increasing tensions among water users. In regions where 

groundwater is the most important resource, water management would be more effective by 

using models that are capable of predicting fluctuations in water table levels and groundwater 

volumes (Emamgholizadeh et al., 2014).  

In Alicante province (SE Spain, ~2 million inhabitants), as in other semiarid regions in 

the world, roughly 52 % of urban water demand is supplied from aquifers (Andreu et al., 

2011). In that context, understanding the hydrodynamic behaviour of aquifers and being able 

to predict their behaviour through numerical groundwater modelling is essential for 

sustainable water resources management and for anticipating the respond to changes in 

extractions or climate (Scanlon et al., 2003). The appropriate management strategy would 

allow to quantify the recharge and discharge rates obtaining an accurate hydrogeological 

characterization, independently of the applied model (Gaukroger and Werner, 2011; Sedki 

and Ouazar, 2011; Sreekanth and Datta, 2011; Chattopadhyay et al., 2014). 
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However, estimation of recharge rates and water table dynamics is not an easy task due 

to the interaction of several factors in the process (geology, vegetation cover, topography, 

etc.) and, additionally, it becomes more difficult in arid and semiarid environments (Jiménez-

Martínez et al., 2009). Related to arid-semiarid climates, most studies have focused on the 

development of techniques to provide reliable recharge estimates which consider factors such 

as precipitation, evapotranspiration, aquifer characteristics, geomorphological features or 

vegetation cover, among others (Scanlon et al., 2006). Quantifying the aquifer recharge is a 

challenged task that must be faced with the election of a proper methodology (Scanlon et al., 

2002), and these methods also need to be adapted to local and regional geological and 

climatic conditions. Among the different alternatives, models with a high demand of input 

information may be considered more reliable. However, the uncertainty associated with both 

the required information to characterize the system and the input data may lead to uncertain 

results (Andreo et al., 2008; Hartmann et al., 2014; Kirn et al., 2017). Karst aquifers, 

particularly complex systems, constitute relevant water reserves worldwide (El Janyani et al., 

2014) and specifically in the SE Spain. They present high heterogeneity of their carbonate 

system and exemplify the reliability problem associated with the input information related to 

aquifer characterization.  

In the characterization of karst hydrogeological systems two main approaches can be 

considered: a distributed and a lumped approach. Distributive models allow the quantitative 

spatial simulation of groundwater flow (Kovács and Sauter, 2007), discretize the karst system 

in two- or three-dimensional grids that require the assignment of characteristic hydraulic 

parameters and system states (Hartmannn et al., 2014) and thus require extensive field data, 

both for model setup and calibration (Butscher and Huggenberger, 2008), which is not an 

easy task. Besides, difficulties in karst aquifers modelling exist associated to the dominance 

of secondary (fractures) or tertiary porosity (conduits); the hierarchical structure of 
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permeability; and the presence of turbulent flow (invalidating Darcy’s law application) cause 

that this numerical model application is more problematic (Scanlon et al., 2003). 

Alternatively to distributed models, global models (lumped parameter models) consider 

the karst aquifers as ‘black or grey boxes’ or systems that transform input signals into output 

signals (Kovacs and Sauter, 2007), based on linear or nonlinear relationships. Karst aquifers 

are often simulated using these lumped models (Fleury et al., 2007; Padilla and Pulido-Bosch, 

2008; Martínez-Santos and Andreu, 2010) which normally reduce the required input 

information drastically. These models conceptualize the physical processes at the scale of the 

whole karst system without modelling spatial variability explicitly (Hartmann et al., 2014). 

The greatest advantage of lumped models application is that results obtained with them have, 

in many cases, the same quality than results obtained from more complex models (Martínez-

Santos and Andreu, 2010). 

In addition, many other analysis techniques can complement the karstic behaviour 

determined by models. For instance, the fact that karst systems are governed by non-

stationary fluctuations assures the efficiency of wavelet analysis to quantitatively describe the 

influence of the different existing hydrogeological processes (Jukić and Denić-Jukić, 2011). 

The usefulness of wavelet analysis application to improve the understanding of karst systems 

has been previously demonstrated (Labat et al., 2000; Andreo et al., 2006; Tremblay et al., 

2011; among others). The wavelet transform consistently defines the temporal structure of an 

input hydrogeological factor and its related hydrogeological consequence within a karst 

system. 

Previous studies (Pla et al., 2016a) showed the ability of a black-box GIS-based model 

to predict the hydrodynamic behaviour of a karst aquifer and estimate water levels in several 

piezometers along the Solana aquifer in SE Spain. This previous model used different 

variables (land use, surface slope, lithology, precipitation, etc.) heterogeneously distributed in 
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the aquifer surface. The model was also characterized for calculating variable aquifer storage 

coefficients along the aquifer profile. The model applied in the Solana aquifer, is now named 

the KAGIS model (Karst Aquifer GIS-based model) after some modifications and is applied 

in the present study to Mela aquifer, a small non-overexploited karst aquifer located in a 

Mediterranean region. 

The present study will be focused in determining the variations of groundwater in Mela 

aquifer and in the discharge flow rate of Mela spring, validating the use of KAGIS for karst 

aquifer simulations through the application of the model in a new and completely different 

conditioned carbonate aquifer. For this, KAGIS model is calibrated using a 10-year long 

series of piezometric levels and discharge rate data. In addition, the uncertainty in the model 

parameters is assessed with an equifinality study. Afterwards, a wavelet analysis is applied to 

establish relationships between the hydrogeological features of Mela aquifer and climatic 

variables to understand the response of the aquifer to the precipitation events. This topic is a 

key aspect to water managers in cases such as the presented, since Mela spring supplies water 

requirements to the nearest located village. 

 

2. MATERIAL AND METHODS 

2.1. Study area  

Mela aquifer (38°42'11.7"N, 0°16'03.6"W) is located near to Confrides town (Alicante, SE 

Spain). The aquifer has small dimensions (0.78 km
2
) and the entire extension constitutes the 

recharge area (Figure 1). Due to its relatively small size and the absence of pumping, the 

aquifer is a suitable natural laboratory for the study of the climatic and hydrogeological 

relationships under non-disturbed conditions. The aquifer is composed by Lower Cretaceous 

limestone with a thickness of 400 m. This material forms an anticline, which emerges and 

constitutes the core of the aquifer, covering the total aquifer surface. The impervious level of 
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Mela aquifer is defined by different levels of marls. The boundaries of the aquifer are a fault 

in the North and in the Southwest and an outcropping marls level in the Southeast. Most of 

the study area presents a strong steepness, with a slope greater than 25 %. Mediterranean 

scrubs (Rosmarinus officinalis, Pistacia lentiscus, Myrtus communis, Cistus albidus, Genista 

Scorpius, Quercus coccifera, etc.) constitute the predominant land cover in the study area. 

Well-developed Mediterranean forest covers approximately 19 % of the study area, and 

rainfed agriculture (mainly olive trees) present a few important 6.61 % of area (Figure 2). 

The soil is classified as loam – silty loam with little profile development ranging from 70 cm 

to 1 m. The aquifer recharge is accomplished entirely by the precipitation since neither 

irrigation returns nor lateral inlets exist in the area. Water transfer between Mela aquifer and 

the adjacent groundwater bodies has not been observed (DPA, 2010). Mela aquifer has a 

unique spring in the eastern part where the impervious marls outcrop; the spring constitutes 

the natural exit of the aquifer resources. From October 2005 to January 2016, Mela spring 

presented an average flow of 8.20 l/s. This averaged annual value varied from a minimum of 

1.34 l/s to more than 16.00 l/s. The area is characterized by a Mediterranean temperate 

climate with dry hot summers and mild winters (Csa climate type, Köppen-Geiger 

Classification slightly modified (AEMET, 2011). For the studied period, mean annual 

temperature accounts for 14.4C, total annual precipitation for 736 mm, and reference 

evapotranspiration, ET0, according to FAO Penman-Monteith (Allen et al., 1998), accounts 

for 1075 mm. 

 

2.2. Groundwater modelling 

2.2.1. Data acquisition 

The calibration of KAGIS requires reliable real data which was obtained from various official 

sources. Climatic data (precipitation and temperature daily records) were provided by 
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AEMET (Meteorological National Agency of Spain) and were measured in the nearest 

existing meteorological station (38°40'24.7"N 0°12'48.7"W), around 5 km from the aquifer 

with no relieves between them. Daily data of piezometric level were provided by the 

Provincial Government of Alicante (Diputación Provincial de Alicante, DPA). The water 

table level in the aquifer is controlled by a probe installed in the unique existing well. Finally, 

DPA also performs regular measurements of flow rates in Mela spring gauging station, 

located in an open-channel. Flow rate measurements were performed with a quarterly 

frequency, on average, during the study period. The study period comprises 10 years 

(October 2005 – January 2016). 

2.2.2. Modelling Process 

KAGIS model was successfully applied in a previous study (Pla et al., 2016a) in an 

overexploited aquifer. The original code was adapted to the new setup and applied to Mela 

aquifer, whose hydrodynamic behaviour has been modelled following a structure comprised 

by different GIS-based information layers for land use, slope and geology properties. GIS 

information was obtained from the Valencian Cartographic Institute (ICV), depending on the 

autonomic government. Land use information defines six different classes within the aquifer 

boundaries. Soil slope is classified with values of: <3 %, 3–10 %, 10–15 %, 15–25 % and 

>25 %. The complete aquifer surface is defined by limestones (DPA, 2007) so this property is 

constant for the whole surface. As a result of the GIS analysis, the aquifer surface becomes 

divided into different polygons representing units with different hydrodynamic behaviour. 

The input water in the soil-aquifer system is calculated for each individual polygon 

following the Spanish normative 5.2-IC (Fomento, 2016), equivalent for the SCS runoff 

curve numbers (Mockus, 1956). The main objective of this step is to discriminate between the 

fraction of precipitation that produces superficial runoff and the complementary fraction 

which contributes to fill the soil water reservoir.  
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The features of soil-epikarst placed above the aquifer directly affect the infiltration 

process, i.e., the transit of water from surface into the karst system responsible for the water 

recharge (Pardo-Igúzquiza et al., 2012). Soil properties will determine the infiltration of 

precipitated water to the deepest parts of the profile. The proposed model does not consider a 

specific component to quantify the downward flow through the karst matrix of the system, 

neither a transient period of water through the epikarst. However, KAGIS considers that soil 

water remaining after surface runoff is converted into infiltrated water going inside the soil 

reservoir (Figure 3); water will exit this reservoir as evapotranspiration or aquifer recharge 

depending on climatic conditions. KAGIS considers a depth of 1 m for the soil reservoir 

because this value represents the average depth of the soil profile in the study area. Thus, the 

infiltration mechanism is comprised through the runoff coefficient. 

The runoff coefficients, Ci,j, are computed for each polygon of the aquifer area i and 

each day of the studied period j (Equation 1). 
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where Ci,j, [-] is the fraction of the superficial component of the precipitation; P0i [mm] is the 

runoff initial threshold value, a constant parameter for each polygon i determined in 

dependence on the use, slope, hydrological characteristics and texture of soil as established in 

5.2-IC; Pi,j [mm] is the input precipitation at polygon i and day j; and KA [-] is a correcting 

factor dependent on the size surface, that, for this study case, is considered 1.  

The runoff coefficients are affected by a model parameter, f1, which multiplies all 

polygons of the aquifer area. In order to avoid illogical values of the final runoff coefficients 

(higher than 1 or lower than 0), the adaptation shown in Equation 2 is required. 
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The input water in soil, IWnet [mm], is calculated for each polygon i and day j 

following Equation 2:  

  j,ij,ij,ij,ij,ij,i C·C·f·CC·PIWnet  11     (eq. 2) 

where all parameters have been defined previously. With the definition shown in Equation 2, 

the model is able to modify the runoff coefficients given by the normative up to 25 % of its 

original value. Additionally, the capacity to modify the runoff coefficients is lower when the 

initial runoff coefficients are close to 0 or close to 1. Thus, soils that are initially very 

impermeable/permeable will remain in similar values. 

Water not producing surface runoff enters into the soil reservoir (Figure 3). The idea of 

considering the soil as a water reservoir as an intermediate step before the aquifer recharge 

was used by Fleury et al. (2007). The soil reservoir capacity varies for each polygon of the 

study area since it is dependent of the field capacity, fci. This field capacity was adopted from 

Twarakavi et al. (2009), ranging from 0.02 to 0.35, and assigned to each polygon according 

to their land use. 

Evapotranspiration uptake, ET0, depletes water from this soil water reservoir 

exclusively. Evapotranspiration is produced at its potential rate when there is enough water in 

the soil reservoir, and eventually becomes zero when the soil reservoir is completely empty. 

In the present study, the FAO Penman-Monteith method (Allen et al., 1998) is employed to 

calculate ET0 for each polygon (i) and with a daily periodicity. KAGIS calculates the water in 

the soil reservoir state for each polygon and day following Equation 3 and 4. Similar 

approaches to KAGIS models can be found in Martos-Rosillo et al. (2013; 2015); Allocca et 

al. (2015) or Kirn et al. (2017).  

j,ij,ij,ij,i ETIWnetSRSR 01        (eq. 3) 
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where SRi,j [mm] is the value of the water in the soil reservoir volume at polygon i and day j, 

and SRi,j-1 [mm] is the water in the soil reservoir volume at the same polygon i the previous 

day j-1.  

Aquifer recharge takes place exclusively when SRi,j is above the maximum value of 

the soil water reservoir (i.e. higher than field capacity). Description of all possible situations 

related with aquifer recharge and the soil water reservoir is collected in Equation 4. 
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where Rei,j [mm] is the recharge rate of the aquifer system at polygon   and day  ; and fci 

[m
3
 m

-3
] is the field capacity at polygon  . 

This structure implies that recharge will take place mainly through soils with low field 

capacity (mainly limestones in the study area) since the small size of the soil reservoir allows 

a faster filling with low precipitation rates. Additionally, ET losses will be mainly produced 

in those polygons with high values of their field capacity. 

The individual recharge calculated for all the different polygons is then totalized for the 

whole surface of the aquifer in the form of recharge volume (Re) by the consideration of the 

polygon areas. Total balance of water is calculated daily, and finally piezometric level 

variation (Δz) is calculated following Equation 5. 

aqf
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j
S)·z(p

SD·fRe
z

5
        (eq. 5) 

where Δzj is the water table fluctuation [m] predicted at day  ; Rej [m
3
] is the recharge rate of 

the aquifer system at day j; SDj is water volume daily discharged by the natural Mela spring 

[m
3
] at day j; p(z) is the porosity value at z level above the sea level; and Saqf [m

2
] is the total 

aquifer surface. In the present case, neither well extractions, irrigations returns nor lateral 

inlets were considered and then no information about those parameters has been included in 
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the equations of this study; nevertheless, the model structure in such more complex study 

cases would be the same as it was previously shown in Pla et al. (2016a). fi are weighting 

factors [-] adjusted by the Simplex search method of Lagarias et al. (1999) which minimizes 

the objective function value and obtains the best calibration factor values. Spring discharge 

was related to piezometric level by the hydraulic head (i.e. difference between the water table 

and the spring level) to the power of 1.5, following general expressions of hydraulic weirs.  

In the present study, the objective function was defined as the sum of the differences 

between the observed and modelled data to the power of 4. This definition was an attempt to 

adapt the optimization engine to the climatic characteristics of the region. In the region, the 

hydrological behaviour features a high quantity of data close to minimum values and eventual 

short extraordinary events. With such dynamics, sum of square errors would lead to models 

able to predict average values but unable to predict the extraordinary events.  

Calibration is made in two steps: first, all the factors, including an initial effective 

porosity average value, are obtained; second, effective porosity is obtained independently for 

each depth (discretization of 20 cm), setting the average value of porosity obtained in the first 

step as the initial value for the second step. Therefore, the proposed model obtains an 

effective porosity profile and is able to detect the presence of high porosity levels, 

corresponding to depths where karstification processes have been more intense, if any. The 

latter aspect stablishes a distinctive characteristic of the presented model since in karst 

aquifers the existence of conduits, cavities and caverns implies that groundwater accumulates 

in these preferential locations instead of in the primary rock porosity. All calculations of this 

stage were carried out using MATLAB R2015.a ® software.  
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2.3. Goodness-of-fit assessment 

The NRMSE (normalised root mean square error) and the ANSE (Nash-Sutcliffe 

Efficiency index adapted for arid environments) were the statistical indicators selected to 

determine the ability of the model to simulate the observed values.  
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where xi,o is the observed value at time i; xi,s is the simulated value at time i; xo  is the mean 

observed value; xo,max is the maximum observed value; and xo,min is the minimum observed 

value. For NRMSE, the optimal value is zero, indicative of a perfect fit between estimated and 

observed values, while threshold values of 0.2-0.3 are considered acceptable (Wallis et al., 

2011). Normalization of the RMSE is a required process to facilitate the comparison between 

datasets or models with different scales. The NSE index is a widely used statistic to assess the 

predictive power of hydrological models (Nash and Sutcliffe, 1970). In the Nash-Sutcliffe 

Efficiency Index, NSE equals to 1 for a perfect fit; NSE is equal to 0, when predicted values 

are as accurate as the mean of the observations; and NSE below 0 indicates that model 

predictions are worse than the mean of observations. In the present study, an adaptation of the 

NSE for arid environments, the ANSE, is presented. With such hydrodynamic behaviour, the 

standard NSE index overweighs average values so a new proposal was used. The unique 

modification is the value of the differences exponent, from 2 in the standard definition to 4, 

so more importance is given to extreme values. Other values of the exponent as 6 or 8 were 

also checked but results using these exponents did not change significantly to the use of 4, so 

the new definition was kept as close as possible to the original NSE. As in the standard NSE 
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index, the ANSE ranges from [1,-∞[, corresponding 1 to the perfect fit and zero to the model 

whose performance is as good as the average observed value. 

 

2.4. Uncertainty assessment  

The GLUE (Generalized Likelihood Uncertainty Estimation) method (Beven and 

Binley, 1992) was employed to assess the uncertainty in the model parameters, its uniqueness 

and the uncertainty in water table predicted values. The GLUE method is based in Monte 

Carlo simulations which flexibly define the likelihood function and its boundary value 

employed to distinguish between behavioural and non-behavioural solutions. The uncertainty 

analysis is a required step when dealing with high-parameter models because the solution 

existence domain increases exponentially with the number of parameters. The first step 

consisted in defining randomly chosen sets of all parameters involved in the study; uniform 

distribution function between logical boundaries was adopted as the engine to obtain the 

random values. Then a number of runs were carried out with those parameter sets, and the 

likelihood function was obtained for all runs. In this study we used the EF index, defined 

above, as the likelihood function following previous studies as the Beven and Binley (1992) 

or Mannina et al. (2010) with a threshold value of 0.15. The non-behavioural runs were 

rejected, and the weights of the rest were re-scaled. With the re-scaled sets, probability 

distribution functions were obtained for each parameter with the predictive uncertainty 

predictions associated with the 5 % and the 95 %. 

 

2.5. Wavelet analysis  

The discharged water volume in Mela spring and the precipitation follow a 

nonstationary behaviour, a particular feature of the hydrological signals. In this study, the 

relationship between the hydrogeological and climatic features in Mela aquifer is unveiled 
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using the wavelet analysis. With this analysis, the nonstationary signals are located both in 

time and frequency domain, and thus the detection of changes in the evaluated signals is 

easily accomplished with the aim of establishing the frequency domain where precipitation 

mostly influences the karst system behaviour. Wavelet analyses a signal at different time-

frequency resolutions through scaled and translated versions of a mother wavelet. For this 

study case, based in previous studies with satisfactory results (Pla et al., 2016b) Daubechies 

is the selected mother wavelet. The wavelet analysis and filtering of Mela signals is 

developed with the Environmental Wavelet Tool (Galiana-Merino et al., 2014), a MATLAB-

based code designed to examine environmental time series. Although some briefly 

descriptions about wavelet theory are provided below, extended aspects of wavelet analysis 

may be consulted (e.g.: Daubechies, 1992; Kaiser, 1994; Wickerhauser, 1994; Strang and 

Nguyen, 1996). 

In the continuous wavelet transform (CWT), the wavelet function works as a band-pass 

filter well located in frequency and time. Consequently, the CWT results correspond to the 

analysis (or filtering) of the signal at some specific selected time-period ranges (scales). Mela 

behaviour is evaluated by implementing cross wavelet transform (XWT) and wavelet 

transform coherence (WTC) between two CWTs, so as to determine relationships between 

two signals in the time domain and to recognize common behaviours between calculated 

discharged flow and precipitation records. 

While XWT provides interrelations between two time-domain signals, WTC analyses 

the coherence and phase lag between two time series as a function of both, time and 

frequency. XWT checks the wavelet power with a significance test at every point in the 

time/scale plane. As a consequence, the analysis between pairs of signals results in the 

identification of areas with high common power in XWT and WTC. In this study, a 
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MATLAB software package developed by Grinsted et al. (2004) is employed to implement 

XWT and WTC. 

Discrete wavelet transform (DWT) performs a multiresolution analysis of signals 

following a sub-band coding scheme (Mallat, 1989) supported on two quadrature filters 

(based on the respective mother wavelet) that work as high-pass and low-pass filters plus 

downsampling by a factor of 2. These filters are successively applied for each scale or level 

of the wavelet decomposition providing two new signals (the detail and approximation 

coefficients, each one associated with a theoretical period band). 

Multiresolution cross-analysis (Labat et al., 2002; Charlier et al., 2015) quantifies 

relationship between two signals across scales. The cross-correlation function gives a 

measure of the similarity of variations over time between two time series (Proakis and 

Manolakis, 1988). In practice, the normalized cross-correlation function provides a value 

between -1 and 1; the higher the similarity of variations over time, the higher the correlation 

coefficient. 

 

3. RESULTS AND DISCUSSION 

3.1. Modelled results 

Results from GIS analysis divide the aquifer surface into 22 polygons with different 

characteristics. GIS analysis confirmed that nearly 90 % of the aquifer surface presents a 

slope greater than 25 % covered mostly by Mediterranean scrubs and forests.  

The 100 % of the surface is dominated by material with medium permeability as 

defined by the qualitative permeability classification established by (DPA, 2003; DPA, 

2010). This classification, and according to the different existing land uses, relates to a 

moderate infiltration capacity in agreement to the 5.2-IC normative. As a result, the 
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calculated runoff initial threshold values, P0i, vary from 21 to 47 mm depending on the 

different polygons. 

Observed and simulated values of water table levels are depicted in Figure 4a and 

observed and simulated water discharges in Mela spring are depicted in Figure 4b. 

Precipitation events are also represented, showing the main characteristics of Mediterranean 

climate with long periods of unimportant precipitation events and eventual very important 

precipitation forced by atmospheric convective processes. The minimum piezometric level 

detected during the monitored period was 731.33 masl (i.e. meters above sea level), 

coincident with Mela spring level. Aquifer response to precipitation events are observed 

shortly after the events, highlighting the small impact that the soil water reservoir (see section 

2.2.2) has in the study area, which is in agreement with the significant area occupied by 

limestone outcrops. After the important increment in piezometric levels, water table stabilizes 

slower to its base level where it normally remains until the new precipitation event. It is 

worthy to notice that different stabilization levels were observed along the monitored period; 

this fact is completely unexpected since the stabilization level should be the same and could 

be explained by human errors during the installation of the probe used to monitored the 

piezometric level. Those differences in the stabilization level were below 30 cm in the study 

period. Mela spring acted in a similar way to the piezometric level, with very small flowrates 

during the vast majority of time (tens of litres/second), even dry during some periods and 

eventual very important events as a response of the aquifer discharge process. 

Piezometric levels obtained by KAGIS reported good agreement between the observed 

and simulated values. Similar trustworthy results were also obtained in the simulation of the 

karst groundwater levels in previous studies (e.g., Adinehvand et al., 2017; Brenner et al., 

2018). In the present study, main differences between the observed and simulated values 
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were identified between September 2009 and September 2011, probably related to the 

abovementioned problems in the measurement of the experimental values. 

These results were obtained with a value of 0.08 for the f1 weighting factor, affecting 

the runoff coefficient and a value of 0.8 for the f5 weighting factor, which affects the spring 

discharge values. Those values highlight that the runoff coefficient was reduced an 8 % by 

KAGIS and that the registered values in the Mela spring have required to be reduced a 20 % 

according to KAGIS. 

With regard to porosity and its variation along the aquifer profile, results reported an 

average value of 1.8 % with very small variations along the complete profile. KAGIS 

detected only small increments of porosity around 731 masl and so it can be considered that 

variation in this parameter in Mela aquifer is not important and there are no depths with 

different hydrodynamic behaviours. These values match with the characteristic value of pore 

volume in karst aquifers as it has been shown in other studies (Bauer et al., 2016; Różkowski 

and Różkowski, 2016). 

Parameters affecting irrigation returns, lateral inlets or well extractions were setup to 

zero during the modelling process. However, as the model pretends to be applicable in a wide 

range of different karst aquifers, these factors may appear in the general equation if they were 

required. Results of the fitting: ANSE equals to 0.89 and NRMSE equals to 0.06 indicate that 

the model responds satisfactorily and performs a reliable simulation of the temporal evolution 

of water table depths and water volume discharge of the aquifer. 

A last analysis, developed with the GLUE methodology established the uncertainty in 

the obtained solution. More than three thousand rounds were required to get two thousand 

behavioural combinations of parameters. Considered boundaries to obtain uniform random 

combinations were [-1, 1] for the f1 weighting factor affecting the runoff coefficient; [0, 5] for 

the f5 factor affecting the spring discharge and [0, 0.1] for the average value of porosity. 
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Scatter plots in Figure 5 refer to the performance of each trial, which was assessed by the use 

of the ANSE index. Figure 5 only collects results from the behavioural combinations, as 

stated previously. With regard to weighting parameters f5 and average porosity (codified as f6 

in Figure 5), the most significant set of parameters corresponded to values in agreement with 

the parameters obtained with the calibration process. In case of the weighting parameter f1 

there was not a clear trend. An almost horizontal pattern in the significance level highlighted 

the small impact of parameter f1 to the objective index (i.e. ANSE). Therefore, the Simplex 

search method employed in this study was able to get a solution close to the global minimum 

of the problem. 

 

3.2. Variability of the aquifer behaviour: wavelet analysis applied to KAGIS results. 

 KAGIS simulation allowed to obtain the variations of piezometric levels in Mela 

aquifer and the water discharge in Mela spring for the study period. When using these results 

with a deeper complementary evaluation (accomplished by the wavelet analysis) it is possible 

to determine and understand the aquifer response to climatic occurrences. 

Usually, there is a rise in the peak flow in Mela spring in response to heavy rainfall. As 

an example, the highest daily rainfall is registered in October 2007 (183 mm) and, 

consequently, a day after also occurs the highest instantaneous flow (556 l/s) in response to a 

substantial increase in the water table depth (Figure 4). The promptly response of Mela spring 

to precipitated water confirms the high transmissivity of the infiltration zone of the system.  

KAGIS does not consider temporal variability in the karst system. Temporal variability 

in karst aquifers, both in flow dynamics (Li et al., 2014; Pacheco Castro et al., 2018) and/or 

in water quality (Hartmann et al., 2012; Ravbar, 2013; Delbart et al., 2014), occurs in 

response to different hydrologic and climatic conditions, which may result in changes in flow 

directions and velocities and may have an impact on karst springs. In the present study case, 
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KAGIS simulated fairly well the aquifer dynamics. Small temporal variations in aquifer 

conditions, as a consequence of the inherent characteristic of Mediterranean climate in the 

region, with very long dry periods and very short rainfall events, may explain the small 

temporal variations in aquifer conditions. Temporal variations have been observed more 

frequently in climates with higher rainfall rates and clearer seasonal patterns. 

The seasonal behaviour of the aquifer establishes two annual periods of maximum 

activity in Mela spring. The maximum flows usually occur in spring and autumn, although 

variations in the discharge rates are totally related to rainfall amount (Figure 4b). In winter 

and summer seasons, Mela karst system presents a lower hydrodynamic response with low 

groundwater variations due to the scarce precipitations. Thus, changes in the climatic features 

(mostly in the precipitation regime) directly affect to the increase of Mela water table depth 

and, consequently, to the discharge of Mela spring. 

Humid and dry periods and changes in the spring discharge are identified with the 

studied time series (precipitation, piezometric level and discharged water) expressed as 

deviation from the mean (Figure 6). Maximum annual precipitation is identified in 2007. A 

constant decreasing trend in rainfall through years establishes that 2014 is the driest year with 

a total annual amount of 334 mm. In response to this, water table variations and Mela 

discharges also decrease from the beginning to the end of the registered data. The lowest 

volume of discharged water is registered, consecutively, in 2014 and 2015 with an average 

instantaneous discharge of 1.3 and 3.0 l/s respectively. Calculated annual volume discharges 

varied from 0.51 hm
3
 in 2007 to 0.04 hm

3 
in 2014. In 2015, in response to rainfall, Mela 

aquifer discharges 0.09 hm
3
.  

 The multiresolution cross-correlation performed with precipitation (as input signal) 

and discharged volume (as output signal) helps to confirm the frequency domain where 

precipitation mostly influences the karst system behaviour. The cross-correlation function is 
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developed between the overall input precipitation (non-decomposed time series) and an 

isolated output signal of discharged water at different multiresolution levels (Charlier et al., 

2015), after filtering the original signal using Daubechies as mother wavelet. The different 

multiresolution levels vary from 1 to 1024 days (Figure 7). The highest correlation (0.41) 

occurs for level 1, corresponding to 1-day resolution period. Correlation of 0.19 defines level 

2, corresponding to 4-8 days resolution. This correlation confirms that the studied times 

series (precipitation and Mela spring discharge) mainly co-vary in the high frequency domain 

(i.e. daily variations), which supports the nearly instantaneous response of Mela spring to 

heavy rainfall. In addition, correlation also peaks in level 6 (0.18), related to the discharge 

occurred at scale with lower frequency (64-128 days) as consequence of the seasonal 

distribution of rainfalls. Cumulative rainfall distributed in several days (autumn precipitation 

occurred in 2007, 2008, 2009 and 2012) generates continuous water floods from the soil 

reservoir to the aquifer that imprint Mela discharge at seasonal scale. 

To identify relationships between precipitation and Mela discharge in the multi-annual 

frequency domain, XWT (Figure 8a) and WTC (Figure 8b) are calculated between two 

CWTs. The WTC stablishes local correlation between the time series in all the evaluated time 

frequency space. Despite this high coherence, just the unveiled areas with high common 

power in XWT are confirmed by the areas of locally phase locked behaviour in WTC 

(Grinsted et al., 2004). Connection between the two time series is confirmed by the phase-

arrows pointing right in both, XWT and WTC. 

The XWT analysis (Figure 8a) exhibits large common spectral power regions in the 

time-frequency domain within the annual (365-day) band, with phase-related signals. This 

band only exists from 2006 to 2013. The variation in the large-scale rainfall distribution is 

consequence of changes in the precipitation regime. In the driest periods (2014 and 2015 

present the minimum total annual precipitation), the 365-day band of high power disappears 
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as Mela spring reduces the activity. Thus, annual periodicity in discharge rate is detected just 

in the humid years. A 10 to 8-year component is also observed from 2008 to 2013 coincident 

with those years with the lowest mean deviations, with annual total precipitation close to 750 

mm. The seasonal response (also detected in Figure 7) is highlighted by the frequency band 

of 64-128 days, existent in 2008-2010 and 2013.  

For all the study period (2005 to 2015), regions with large common spectral power in 

XWT analysis prevail in the high-frequency band (1-32 days), pointing to the rapid response 

of Mela spring to precipitations. The daily periodicity is always existent, also confirmed by 

the highest correlation detected in Figure 7. Rainfall and discharge are mostly correlated in 

the high frequency domain, related to the rapid hydrogeological reaction of Mela aquifer to 

rainfall events.  

Hydrogeological response to climatic variations presents three principal kinds of 

components: a constant daily component, typical of highly karstified aquifers, a seasonal 

component, existent in the periods with strongly marked seasonality (abundant rainfalls in 

spring and autumn) and an annual component, visible in the most humid years. The later 

component is not detected in the last period of the studied time series as consequence of the 

decreasing trend presented by precipitation regime in the study area.  

These statements demonstrate that aquifer recharge, the main water resource in the 

studied region and mostly concentrated in several days, is directly affected by the reduction 

in the number of very wet days. Particularly, in the eastern Mediterranean coast of the Iberian 

Peninsula it has been recently demonstrated (Valdes-Abellan et al., 2017) that average of 

total annual precipitation decreased by up to 15 % in the last three decades with a decrease in 

the number of wet days above 1 mm and in the frequency of heavy precipitation events. 

Future occurrences, with general tendency for annual-mean conditions to be warmer and drier 
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at the aquifer surface location, will lead to a very concerning scenario that water managers 

must consider to accomplish with all the water needs. 

 

4. CONCLUSIONS 

In many Mediterranean areas the water scarcity inhibits, in part, the economic growth. 

Consequently, the estimation and quantification of the recharge rates in the aquifers is 

essential to ensure the global development of these regions. With this study, we demonstrate 

the usefulness of employing black-box models, and particularly, the KAGIS model tool to 

evaluate the hydrodynamic behaviour of karst aquifers. These aquifers are very complex and 

heterogeneous mediums for which the application of simple models, as the one presented in 

this study, is an effective alternative to the standard models that have higher requirements of 

input information.  

KAGIS has proved to obtain good results with heterogeneous karst systems through the 

use of weighting factors that modify the most prominent sources of unreliability, such as, the 

infiltration or runoff coefficient, the porosity of the aquifer and, if required, the spring 

discharge. KAGIS is able to deal with more complex schemes including well extractions, 

lateral inlets or irrigation returns to the aquifer. 

The case study in the present work offered the possibility to validate the KAGIS model 

in Mela aquifer. The relation between the discharge rates and the piezometric levels was 

solved through the general expression of hydraulic weirs. Wavelet analysis applied to the data 

resulting from KAGIS confirmed the existing high correlation between rainfall and 

discharged water volume in Mela spring, pointing to the rapid hydrogeological response of 

the karst system.  
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This study also presents a new proposal for a statistical index: the Nash-Sutcliffe 

Efficiency index adapted for arid environments (ANSE), which provides an innovative 

contribution to the study of Hydrology in arid/semiarid environments. 

In order to improve and better demonstrate the KAGIS model robustness, next step 

should be to apply it to different aquifers with different size, hydrogeological characteristics 

and heterogeneity. Even though, the application of the proposed method, combining KAGIS 

results with wavelet analysis, has been proved to be an efficient method to understand the 

behaviour of karst aquifers. KAGIS could be a solution to deal with lack of information in 

observed data, which would no longer suppose a problem to water managers. In addition, 

wavelet analysis permits detection of changes in nonstationary signals and thus, this analysis 

allows quantifying the most significant frequency domains where climatic variables influence 

the hydrological variables. Future work will be focused in developing prediction tools to 

determine the effect of climate change in underground water table depths in Mediterranean 

karst aquifers, an interesting topic of great importance in the present.  
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Figure 1. Geographical location and geological scheme of the study area.  
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Figure 2. Land use map. 
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Figure 3. Soil reservoir and Mela recharge model scheme. 
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Figure 4. Observed (black dots) and simulated (red line) piezometric levels (part a), 

spring water discharge (part b), and precipitation (blue bars) for the observed period. 
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Figure 5. Significant scatter plots of the weighting parameters according to ANSE  
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Figure 6. Annual precipitation (mm), average water level (masl) and accumulated 

annual discharged volume (hm
3
) and deviated values from the mean. 
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Figure 7. Cross-correlation function between overall precipitation (input signal) and 

discharged water at different multiresolution levels (output signal). 
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Figure 8. XWT (a) and WTC (b) between precipitation and Mela discharge in the multi-

annual frequency domain. Spectral strength and coherence range from dark (weak) to light 

(strong) colours. Arrows indicate the relative phase relationship (in-phase pointing right, anti-

phase pointing left, one signal leading the other by 90º pointing up/down). Curved lines 

indicate the cone of influence where edge effects become important. 

 


