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1. Abstract 

Purpose/Aim: To evaluate the impact of ocular parameters on the visual performance 

achieved with the multifocal intraocular lens (IOL) Bi-Flex M 677MY. 

Materials and Methods: 26 subjects were included in the current study. Several 

physiological variables were retrieved from the 3-month follow-up visit, including pupil 

diameter and distance from pupil center to the vertex normal of the anterior cornea (µ). These 

variables were also obtained in the preoperative visit. Binocular and monocular visual acuity 

defocus curves were measured at 1 and 3 months after surgery, respectively. The area under 

the monocular defocus curve was computed along the total curve (TAUC, +1.00 to -4.00 D) 

and for the ranges of far (FAUC, +0.50 to -0.50 D), intermediate (IAUC, - 1.00 to -1.50 D) 

mailto:manuelrodriguezid@qvision.es
https://crossmark.crossref.org/dialog/?doi=10.1080/02713683.2018.1478981&domain=pdf&date_stamp=2018-05-19
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and near vision (NAUC, -2.00 to -4.00 D). Correlations between these areas and the 

postoperative physiological variables were assessed. 

Results:  The mean µ was reduced from 0.21 mm to 0.10 mm after surgery, as well as pupil 

diameters, either photopic (-7.4%) and mesopic (-8.1%) (p<0.05). The mean AUCs were 2.08 

± 0.74 for TAUC, 0.57 ± 0.17 for FAUC, 0.16 ± 0.09 for IAUC and 0.81 ± 0.29 for NAUC. 

Significant correlations were found between NAUC and Km (r = -0.39, p = 0.05) as well as 

between IAUC and temporal decentration of the lens from vertex normal ( = -0.41, p = 

0.04).  

Conclusions:  The performance at near with the IOL evaluated improved in eyes with less 

corneal power. On the other hand, a slight temporal IOL decentration from vertex normal also 

improved intermediate visual acuity. The binocular defocus curve was similar to other 

trifocal IOLs. 

Key Words: multifocal intraocular lens, visual acuity defocus curves, corneal power, lens 

centration, effective addition. 

2. Main text introduction 

Standards for reporting results achieved with multifocal intraocular lens (MIOLs) have been 

defined in order to compare results among different MIOLs.
1
 These standards include the 

methodology of plotting and summarizing results about safety, efficacy, and predictability. 

However, despite these standards are quite useful for comparing results among IOLs, they 

fail in terms of including information about how eye parameters can affect the performance 

achieved with a particular IOL. It has been previously reported that variations in eye 

characteristics can affect the performance achieved with a specific MIOL. Some of these 

parameters include angle kappa and MIOL (related to the presence of dysphotopsia),
2,3
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corneal spherical aberration,
4,5

 regular corneal astigmatism,
6,7

 corneal irregular 

astigmatism,
8,9

 and effective lens addition.
10–12

 The literature is full of studies reporting 

results with several MIOLs according to the standards,
13–24

 but it is still not clear the 

influence of biometric factors on the performance of each particular IOL according to the 

characteristics of the patient. The main aim of this study was to evaluate the performance of a 

high addition MIOL by means of computing the area under the visual acuity defocus curve
25

 

and correlate it with several biometric parameters.  

Materials and methods  

Subjects  

This study was approved by the Ethics Committee of Research, Almería Center, 

Torrecardenas Hospital Complex, and performed in adherence to the tenets of the Declaration 

of Helsinki. Written informed consent was obtained from each patient before the surgical 

procedure. Data of 26 eyes from 26 subjects implanted with a high addition MIOL at Qvision 

(Department of Ophthalmology, Virgen del Mar Hospital, Almería, Spain) were 

retrospectively retrieved from our historical database. Only one eye randomly selected per 

subject was included in the monocular data analysis. Eyes that presented corneal epithelial 

erosions during surgery were excluded from the monocular and binocular analysis of the 

Visual Acuity Defocus Curve (VADC), whereas eyes that presented small anterior capsule 

tears were included in the analysis.  

Surgery procedure and intraocular lens description 

All the eyes retrospectively retrieved were operated on by the same surgeon (JF) by means of 

femtosecond laser-assisted cataract surgery (Victus, Bausch & Lomb Inc, Dornach, 

Germany) through a temporal clear corneal incision (CCI) of 2.5 mm. The IOL included in 
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the analysis was the diffractive trifocal IOL Bi-Flex M 677MY (Medicontur Medical 

Engineering Ltd. Inc., Zsámbék, Hungary), which has a 6 mm biconvex aspheric optic and a 

central diffractive Elevated Phase Shift (EPS technology) for the constructive generation of 

the intermediate foci. The labelled addition power at the IOL plane is +3.50 D for the near 

vision and +1.75 D for intermediate vision. The platform consist of a double-loop haptic 

without angulation. The haptic locations during the implantation were oriented in the 

temporal nasal direction. 

Measured variables 

Biometrical parameters retrieved from the preoperative visit included chord mu (µ)
26

 and 

pupil diameter measured with Pentacam HR (Oculus, Wetzlar, Germany), as well as photopic 

(PP) and mesopic pupil (MP) diameters measured with the Keratograph 5M system (Oculus, 

Wetzlar, Germany). The binocular VADC measured with the Multifocal Lens Analyzer
27

 was 

retrieved from the 1-month follow-up visit whereas the monocular VADC was retrieved from 

the 3-month visit. Several eye parameters were measured in the 3-month visit and included in 

the data analysis: mean corneal power (Km) and axial length (AXL) measured with the IOL 

Master 500 system (Carl Zeiss Meditec Inc., Dublin, CA, USA), and the corneal parameters 

included in the “Cataract Pre-Op” modulus of Pentacam HR that included total regular 

astigmatism (RA), irregular astigmatism for a 4-mm corneal diameter (IA), and spherical 

aberration for a 6-mm corneal diameter (SA). Likewise, the PP and MP measured with the 

Keratograph 5M, the total spherical aberration recomputed for the MP size (SAM) with the 

“Zernike Analysis” modulus of Pentacam HR, as well as the actual lens position from 

anterior corneal surface to anterior MIOL surface (ALP), µ and pupil diameter measured with 

the Pentacam HR were also considered in the data analysis. The addition at the corneal plane 

was computed considering the dioptric power of the implanted MIOL, approximating ALP to 
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ELP,
28

 and the Km according to the Holladay’s refractive vergence formula.
12

 Then, the 

effective addition (EA) at the spectacle plane was computed considering a vertex distance of 

12 mm.  

A slit lamp picture was taken in each case and an ordinal scale was used to evaluate 

subjectively the degree of MIOL centration. The geometric center of the IOL diffractive rings 

were compared to the position of the pupil center, considering a negative displacement for 

temporal or inferior directions and a positive displacement for superior or nasal directions. 

The centration was established horizontally and vertically (H, V), with the following ordinal 

scale: 0, the first ring was centered on the pupil; 1, the first ring was 25% decentered; 2, the 

first ring was 50% decentered and the pupil center was coincident with the edge of the first 

ring; 3, the pupil center was coincident with the second ring; 4, the pupil center went beyond 

the second ring. We assumed that the diameter of the first ring was approximately 1.2 mm at 

the corneal plane, the level 1 would correspond to an approximated decentration of 0.3 mm 

and the level 2 to a decentration of 0.6 mm. Thus, the MIOL centration with respect to the 

vertex normal was computed considering dx = H*0.3 - µx and dy = V*0.3 - µy, where d is the 

distance from the vertex normal to the center of the ring, H and V were the subjectively 

ordinal scale results, µ is the distance from pupil center to the vertex normal measured with 

Pentacam HR, and 0.3 mm is a 25% of displacement assuming a diameter of the first ring of 

1.2 mm at the corneal plane. Figure 1 describes the use of this scale of centration analysis in a 

case from the sample for a better understanding of the method: (A) The subjective centration 

can be qualified as H: -1 and V: -1 according to the slit-lamp picture; (B) pupil diameter 

measured with Pentacam HR was 2.54 mm, µx = 0.07 mm and µy = 0.28 mm; (C) considering 

that the first ring size was 1.2 mm, the pupil diameter in the slit-lamp picture was calculated 

with the imageJ
29

 software by matching the value of 2.54 mm obtained from Pentacam HR 

and overlapping slit-lamp and Pentacam HR pictures, obtaining a d value with imageJ of 0.74 
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mm. With our method based on subjective grading, we obtained a value of 0.69 mm using the 

equation 1, with only a bias of 0.05 mm compared to the imageJ method. 

𝑑 = √d𝑥
2 + d𝑦

2  =  √(H ∗ 0.3 mm −  µ𝑥)2 + (V ∗ 0.3 mm − µ𝑦 )2   (1) 

𝑑 =  √(−1 ∗ 0.3 − 0.07)2 + (−1 ∗ 0.3 − 0.28)2  = 0.69 mm             

Figure 1 

Statistical analysis 

As the µ measured with Pentacam included right and left eyes randomly selected, a 

conversion of the center of coordinates was applied before the analysis in such a way positive 

values indicate a nasal location of the vertex normal to the pupil and negative values indicate 

temporal location of the vertex normal to the pupil with independence of the included eye, 

either right or left. Furthermore, the sign for vertical position of µ was inverted from that 

obtained directly from Pentacam in such a way that positive indicates vertex normal above 

pupil center and negative the opposite, either for right or left eyes. This conversion was 

applied with some functions detailed in the Refractive Analysis (1.0.0) toolbox for Matlab.
30

 

A MATLAB function (The Mathworks Inc., Natick, MA, USA) was developed in order to 

compute the area under the curve (AUC) for the total measured range from +1.00 to -4.00 D 

(TAUC), for the far range (FAUC: +0.50 to -0.50 D), the intermediate range (IAUC: - 1.00 to 

-1.50 D) and the near range (NAUC: - 2.00  to -4.00 D). For this purpose, the trapz function 

included in MATLAB was used for computing the AUC (logMAR*m
-
1) above 0.3 logMAR 

in the previous detailed ranges.
25

 This function performs numerical integration via the 

trapezoidal method. The method approximates the integration over an interval by breaking 

the area down into trapezoids with more easily computable areas.
31
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The normality of data distributions of the variables included in the study was tested with the 

Shapiro-Wilk test. Mean differences between preoperative and postoperative variables were 

assessed with the Student paired t-test. Furthermore, correlations were also evaluated with the 

Pearson or the Spearman’s correlations coefficients depending if the correlated variables 

followed or not a normal distribution, respectively. The statistical analyses were performed 

using the IBM SPSS 20.0 software for Windows (SPSS, Chicago, IL). Mean ± standard 

deviation is used in the results section for reporting central tendency and data dispersion. 

3. Results 

The sample included eyes from 5 men and 21 women with mean age of 67.6 ± 7.9 years, 

ranging from 48 to 83 years old. Two subjects presented epithelial corneal erosions in one 

eye during surgery, and therefore contralateral eye was selected. In these specific cases, the 

selection of one eye was not done randomly as only one eye was available, and these subjects 

were excluded from the binocular analysis. Two eyes presented small anterior capsule tears 

during the surgery, but these eyes were included either in the monocular and binocular 

analysis. No other adverse events occurred during surgery. Table 1 shows the descriptive 

statistics for the biometric parameters measured at 3-month follow-up visit. 

Table 1 

µx was significantly reduced after surgery, with a mean difference of -0.08 ± 0.18 mm 

(t=2.36, p=0.03). The difference was similar, but not statistically significant for µy, -0.08 ± 

0.23 mm (t=1.78, p=0.09). Figure 2A shows a reduction of mean µ from 0.21 mm @32º 

(SDx: 0.2 mm, SDy: 0.26 mm) preoperatively to 0.10 mm @18º (SDx: 0.12 mm, SDy: 0.15 

mm) postoperatively. Pupil diameter was also reduced significantly after surgery, either for 

PP (mean: -0.26 ± 0.45 mm, -9.09%, t = 2.93, p=0.007), MP (-0.47 ± 0.75 mm, -10.31%, t = 
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3.16, p=0.004) or pupil measured with Pentacam HR (mean: -0.26 ± 0.49 mm, -9.42%, t = 

2.66, p=0.014). The magnitude difference from preoperative and postoperative µ was 

correlated with the Pentacam HR difference in pupil diameter (=0.43, p=0.03). 

In 9 eyes, the MIOL was not decentered horizontally (H=0), 14 showed H=-1 (25% first ring 

temporal to pupil) and 3 showed H=1 (25% first ring nasal to pupil). With regard to vertical 

centration, it was V=0 for 12 eyes, V=-1 (25% first ring below pupil) for 10 eyes and V=1 

(25% first ring above pupil) for 4 eyes. Then, all the MIOLs resulted in a decentration from 

pupil center of equal or less than 25% the size of the first ring. Figure 2B shows the mean 

IOL center from the vertex normal (mean: 0.25 mm @204º, SDx: 0.23 mm, SDy: 0.24 mm).  

Figure 2 

The mean AUCs were 2.08 ± 0.74 for TAUC, 0.57 ± 0.17 for FAUC, 0.16 ± 0.09 for IAUC 

and 0.81 ± 0.29 for NAUC. Figure 3A shows a mean monocular visual acuity of -0.03 ± 0.10 

logMAR at far (0 D, infinite), 0.2 ± 0.16 logMAR at intermediate (-1.5 D, 67 cm) and 0.05 ± 

0.09 at near (-3.0 D, 33 cm). Mean binocular visual acuity obtained from the defocus curve 

was -0.05 ± 0.11 logMAR at far, 0.15 ± 0.15 logMAR at intermediate and 0.01 ± 0.11 

logMAR at near (Figure 3A).  

Figure 3 

Mean EA was 2.25 ± 0.06 D, which differs from the mean value of 3.0 D obtained from the 

point of best vision at the defocus curve (Figure 3A). We conducted an analysis of the 

location of the best vision peak at near for each eye. Three eyes had the peak at -2.0 D, 10 at -

2.5 D, 8 at -3.0 D, 4 at -3.5 D and 1 at -4 D. This means that even though the mean was 

located at -3.0 D, a high number of eyes achieved the best vision for a defocus level of -2.5 D 

(40 cm). Furthermore, the addition obtained from the defocus curve was significantly 
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correlated with the EA ( = 0.38, p = 0.05). Figure 3B shows the mean defocus curve for 

each subset of eyes that presented the peak of best near vision for different levels of defocus.  

No significant correlations of defocus curve areas with any of the biometric parameters 

measured were found, except for the Km that was negatively correlated with NAUC (r = -

0.39, p = 0.05) and dx that was negatively correlated with IAUC ( = -0.41, p = 0.04) (Table 

2).   

Table 2 

4. Discussion 

In the present study, we analyzed the influence of several biometric factors on the area under 

the visual acuity defocus curve of a high addition multifocal lens. Some of these biometric 

factors such as µ-chord or the pupil diameter were compared before and after surgery. 

Interestingly, the µ-chord was significantly reduced after surgery (from 0.21 to 0.10 mm, 

50%) which means that the distance between pupil center and vertex normal was reduced. 

Furthermore, the pupil diameter was reduced either for PP (-9.09%), MP (-10.31%) and 

Pentacam HR (-9.42%). Our results corroborate the findings obtained by Kanellopoulos et 

al,
32

 showing a reduction of the µ-chord from 0.12 to 0.05 mm (50%) and a photopic and 

mesopic pupil diameter reduction of -9.8% and -9.1%, respectively, after cataract surgery. 

The correlation between pupil change of Pentacam and difference in µ-chord after surgery 

suggest that the variation in µ-chord is mainly due to the variation of pupil center position 

with pupil diameter change as it has been previously reported.
32

 

The µ-chord, which is correlated with kappa angle,
26,33

 has been hypothesized to be related 

with the visual performance achieved with MIOLs.
34

 However, to this date, there is only one 

clinical study that correlates the kappa angle with the visual performance. Prakash et al
3
 



Acc
ep

ted
 M

an
us

cri
pt

 

10 
 

conducted a regression analysis in order to report that haloes depended on angle kappa and 

distance UCVA, whereas glare only depended on kappa. However, the statistical analysis of 

their study is highly questionable because they used a regression analysis in a sample that 

hardly accomplished the required assumptions for accepting the consistency of the model, 

according to the data distributions shown in the figures reported. Furthermore, they used the 

Orbscan system
4
 (Bausch & Lomb, Rochester, New York, USA), which defines the Kappa 

angle as the angle difference between the axis of fixation and the optical axis perpendicular to 

the lens.
5
 This definition considerably differs from the difference between the first Purkinje 

image and the pupillary axis commonly measured by other corneal topographers.
6 

Karhanová 

et al
35

 reported that temporal decentration of a MIOL was related with a higher risk of 

postoperative photic phenomena, and later they conducted a theoretical study in which they 

concluded that shallow anterior chamber depth in connection with a higher angle kappa is an 

important risk factor for pronounced photic phenomena.
2
 Dysphotopsia was not part of our 

study, but we evaluated the influence of the µ in the visual performance, obtaining no 

significant correlations between µ postoperatively and AUCs. On the other hand, we found a 

significant negative correlation between IAUC and dx, which means that eyes with temporal 

decentration of the lenses from the vertex normal (≤ 0.55 mm) tend to experience an increase 

in the performance at intermediate distance with the MIOL evaluated. Interestingly, the same 

tendency but not reaching statistically significant was found for the other ranges of vision, 

which means that this slight temporal decentration from vertex normal might also increase 

the visual performance at other distances. This increase of intermediate vision with 

decentration is not in agreement with optical bench measures with other trifocal IOLs,
36

 

therefore it might be not explained by the decentration between optical structures. The 

location of the common optical axis in reference to the fovea and neural processing should be 

considered. Future studies should include a detailed analysis of dysphotopsia in order to 

https://www.google.es/search?safe=active&q=Dysphotopsia&spell=1&sa=X&ved=0ahUKEwjEpvbY8uHXAhVDOBQKHR2rBr4QBQgjKAA
https://www.google.es/search?safe=active&q=Dysphotopsia&spell=1&sa=X&ved=0ahUKEwjEpvbY8uHXAhVDOBQKHR2rBr4QBQgjKAA
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confirm if this range of temporal decentration increases or not the risk of the symptoms as has 

been hypothesized.
35

 We aware that our methodology for evaluating IOL centration has some 

important limitations in order to precisely measure the centration. The centration was based 

on a subjective ordinal scale interpretation and the size of the first ring at the corneal plane 

was assumed to be 1.2 mm. This size depends on real size of the first ring, corneal power and 

distance from lens to the cornea.
37

 Therefore, a variation between eyes is expected and an 

assumption is required.  

Despite these approximations can lead to a systematic error, they would not affect to the 

conclusions obtained in the study because the systematic error is applied in all the eyes and 

therefore the correlations observed will be maintained. On the other hand, an important 

advantage of our methodology is that can be easily adapted by clinicians in order to 

implement it in their practice because not expensive devices and software are required. 

Subjective ordinal scales are very useful in clinical practice when advanced systems are not 

available, such as the Lens Opacities Classification System III versus densitometry or ocular 

scatter index.
38

 This is the first time that a subjective scale is proposed for measuring IOL 

centration with slit-lamp and the agreement with more precise technologies as OCT
39

 or the 

inter-experimenter reproducibility of the grading should be assessed in future studies. 

We compared the binocular defocus curve of the MIOL from the current study versus that 

reported by other authors for the trifocal IOL FineVision, as it has the same labeled near 

addition (+3.5 D). Despite the follow-up can vary between studies, defocus curves are 

measured with best distance spectacle refraction and at this condition no significant 

differences have been reported between 1 and 12 month follow-up.
18

 Our binocular visual 

acuity defocus curve results were similar (0.15 logMAR) at intermediate vision and superior 

at far (< 0 logMAR) and near (< 0.1 logMAR) distances than those reported by Cochener et 

al 
13

 and Marques et al
19

. On the other hand, Jonker et al.
13

 reported similar results at near and 
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far distances, better at intermediate, but less depth of field at near vision. Bilbao-Calabuig et 

al
20

 and Ruiz-Mesa et al
23 

also reported better results at intermediate vision, but poorer at near 

and distance. Although there are differences between studies probably due to the testing 

methodology, the comparison suggests that the lens of the present study behaves as a trifocal 

IOL. It is also important to note that our study has a limitation in the intermediate vision 

assessment. We conducted a sample size estimation with the formula for the minimum 

sample size for confidence intervals (95%, z = 1.96) at all the defocus lenses.
40

 Sample was 

enough for the standard deviation of 0.15 logMAR and a desired margin error of 0.05 

logMAR for far and near vision and 0.1 logMAR for intermediate vision.  

The EA was computed and compared with the dioptric difference between far and near peaks 

of highest visual acuity. The mean effective addition was 2.25 D (near focal point equal to 44 

cm), considering that mean Km was 43.65 D and mean ALP was 4.44 mm. We can conclude 

that our results are close to those theoretical reported by McKee et al
12

 (39 cm, Km=43.5, 

ELP= 4.25 mm) or Savini et al
10

 (42 cm, Km = 43.81 D, AXL = 23.65 mm) for a trifocal 

intraocular lens of 3.5 D at the IOL plane. However, for the mean VADC, the peak of best 

near vision was at -3.0 D (33 cm) of defocus which means that EA underestimates the 

defocus curves. In reference to this, we obtained defocus curves with the best near vision at 

different levels of defocus, mainly at -2.5 D and -3.0 D. Interestingly, the visual acuity at far 

distance (0 D) remained constant as can be seen in Figure 1B and was not decreased until the 

highest near peak was at -3.5 D. These results show that the addition varies between eyes and 

the positive correlation of the peak of best near visual acuity at the defocus curve with the EA 

suggests that the parameters involved in the calculation of EA might be the reason of this 

variation in the near peak location. In fact, Km was negatively correlated with the NAUC, 

which means that eyes with higher power have lower NAUC. According to our findings, Km 

is the most important factor in order to predict clinically the visual performance of the patient 
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at near, even more important that the real measure of the ALP. Further studies with other 

MIOLs and higher samples are required to confirm our findings since although the 

correlation is not significant, TAUC also showed a tendency of decreasing with the increment 

of Km. Therefore, some confounding factors affecting TAUC might have some influence on 

the NAUC besides EA.  

It is important to note that the approximation of ALP to ELP of a thin lens is a limitation that 

can lead to an error. Holladay et al.
41

 reported a particular case for which the ELP was 0.6 

mm larger than the ALP and this value can vary depending on corneal power, IOL power, 

IOL design, etc. However, we computed the possible error in our study associated to the 

assumption of an ELP 0.6 mm systematically shorter and resulted in an overestimation of the 

EA of less than 0.2 D. Therefore, differences between addition computed from defocus 

curves and EA would have been higher if a more precise consideration of the ELP had been 

computed. 

Studies reporting defocus curves average results obtained from patients reaching different 

near additions. As can be seen in Figure 3, this can lead to an underestimation of the visual 

acuity at the near peak of vision, 0 logMAR in Figure 3B and 0.05 logMAR in Figure 3A, 

and an overestimation of the near depth of field when the performance of the lens is 

interpreted from the average. Considering this fact, the standard deviation represented in the 

defocus curve could offer interesting information about the dispersion of the data, especially 

at intermediate and near. Furthermore, it is important to note that we used a fixed range for 

computing areas under the curve instead of centering each area symmetrically around the 

near focus detected because our aim was to assess how biometric parameters affect to the 

ranges of vision (FAUC: Infinite to 2 m), the intermediate range (IAUC: 1 m to 67 cm) and 

the near range (NAUC: 50 cm to 25 cm) measured with defocus lenses. However, computing 

areas symmetrically around the detected near focus might improve the correlation with EA. It 
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is also important to note that in the calculation of IAUC, the defocus lenses of -0.5 D and -2 

D were not considered because this would include a wider range of distance from 2 m to 50 

cm. Only considering -1.00 D and -1.5 D for the calculation, a more reliable representation of 

the definition of intermediate vision is obtained, from 1 m to 67 cm. 

In conclusion, we evaluated the performance of a multifocal lens in terms of the AUC 

obtaining that NAUC was correlated with corneal power and IAUC with IOL centration. 

Eyes with less corneal power obtained higher NAUC and therefore better visual acuities at 

near. On the other hand, we found that intermediate vision in terms of IAUC increases with a 

temporal decentration versus the vertex normal of less than 0.55 mm (25% of the size of the 

central ring from pupil center). Despite we found significant correlations between EA and the 

peak of best vision at near, defocus curves overestimated the EA, and therefore reading 

distance should be included in studies that evaluate the variation of addition with biometric 

variables. Finally, the intraocular lens performance in terms of binocular visual acuity 

defocus curve was similar to that reported for lenses commercially classified as trifocal. 
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8. Figure captions 

Figure 1. Description of the subjective grading for the evaluation of the multifocal intraocular 

lens. A) IOL was decentered ~25% temporal and down which corresponds to a grading (H: -

1, V: -1); B) Corneal topography obtained from Pentacam HR which shows the -chord from 

vertex normal to pupil (changed sign) and pupil diameter; C) Overlapping and centration 

measured with ImageJ software considering a first ring size of 1.2 mm which results in a bias 

of 0.05 mm in comparison to the calculation from the ordinal scale. 
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Figure 2. A) Location of the vertex normal from to the pupil center for preoperative and 

postoperative measures. Black triangles describe the mean and the ellipse around the triangles 

the standard deviation. B) Location of the intraocular lens (IOL) center to the vertex normal. 

Black circle describes the mean and the ellipse around the circle the standard deviation. Each 

ring on the plot describes a 0.2 mm step. Locations are nasal for 0º, superior for 90º, temporal 

for 180º and inferior for 270º.  
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Figure 3. (A) Mean and standard deviation of monocular and binocular visual acuity defocus 

curves. (B) Mean and standard deviation of monocular subset visual acuity defocus curves 

presenting different locations of the peak of best near visual acuity. 
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Table 1. Postoperative variables measured at 3-month follow-up visit. 

 

 

 

  

Variable mean ± SD; median (IQR) 

Mean corneal power (D) 43.65 ± 1.26; 43.63 (1.53) 

Axial length (mm) 23.37 ± 1.13; 23.45 (1.44) 

Actual lens position (mm) 4.44 ± 0.38; 4.42 (0.42) 

Intraocular lens power (D) 21.76 ± 3.11; 21.75 (3.63)   

Effective addition (D) 2.25 ± 0.06; 2.24 (0.08) 

Regular astigmatism (D) 0.63 ± 0.34; -0.6 (0.5) 

 Irregular astigmatism (µm) 0.17 ± 0.06; 0.17 (0.08) 

Spherical aberration (µm) 0.31 ± 0.10; 0.31 (0.11) 

Horizontal chord mu (mm) 0.10 ± 0.12; 0.10 (0.15) 

Vertical chord mu (mm) 0.03 ± 0.15; 0.04 (0.19) 

Horizontal IOL center to vertex normal (mm) -0.22 ± 0.23; -0.24 (0.33) 

Vertical IOL center to vertex normal  (mm) -0.10 ± 0.24; 0.11 (0.34) 

Photopic pupil diameter (mm) 2.60 ± 0.49; 2.55 (0.70) 

Mesopic pupil diameter (mm) 3.99 ± 0.68; 3.90 (0.90) 

Spherical aberration for mesopic pupil (µm) 0.07 ± 0.06; 0.06 (0.09) 
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Table 2. Visual acuity defocus curve versus biometric parameters 

 Area under the curve (logMAR*mm
-1

) 

Correlation coefficient (p-value) 

Variable Total Far Intermediate Near 

Age -0.27 (0.18) -0.33 (0.1) 0.13 (0.51)
a
 -0.31 (0.12) 

Km (D) -0.28 (0.17) -0.19 (0.35) -0.12 (0.57)
a
 -0.39 (0.05)* 

AXL (mm) 0.25 (0.22) 0.31 (0.12) 0.02 (0.91)
a
 0.33 (0.09) 

ALP (mm) 0.21 (0.31) 0.29 (0.16) -0.19 (0.34)
a
 0.31 (0.12) 

EA (D) -0.07 (0.74) -0.13 (0.51) 0.25 (0.22)
a
 -0.16 (0.45) 

RA (D) 0.12 (0.57) 0.32 (0.11) -0.19 (0.37)
a
 0.15 (0.48) 

IA (µm) -0.15 (0.48) -0.16 (0.44) 0.21 (0.30)
a
 -0.26 (0.20) 

SA (µm) -0.12 (0.56) -0.08 (0.71) -0.09 (0.67)
a
 -0.21 (0.31) 

µ (mm) 0.02 (0.91) -0.14 (0.49) 0.20 (0.32)
a
 0.02 (0.92) 

µx (mm) 0.24 (0.24) 0.12 (0.55) 0.28 (0.16)
a
 0.16 (0.43) 

µy (mm) 0.03 (0.87) 0.07 (0.75) 0.22 (0.28)
a
 0.02 (0.92) 

d (mm) 0.10 (0.64) 0.11 (0.59) 0.17 (0.42)
a
 0.08 (0.71) 

dx (mm) -0.24 (0.24) -0.20 (0.34) -0.41 (0.04)
a*

 -0.18 (0.37) 

dy (mm) -0.05 (0.80) 0.03 (0.87) -0.1 (0.64)
a
 -0.09 (0.67) 

PP (mm) 0.03 (0.85) 0.19 (0.35) -0.22 (0.28)
a
 0.06 (0.77) 

MP (mm) 0.11 (0.59) 0.24 (0.24) -0.21 (0.30)
a
 0.10 (0.64) 

SAM (µm) -0.24 (0.25) -0.14 (0.50) -0.32 (0.11)
a
 -0.25 (0.23) 

Km: Mean corneal power; AXL:  axial length; ALP: Actual lens position; EA: 

Effective addition; RA: Regular astigmatism; IA: Irregular astigmatism; SA: Spherical 

aberration at 6 mm; µ:  distance from pupil center to vertex normal; µx:  µ in 

horizontal cartesian coordinates; µy:  µ in vertical cartesian coordinates; d: Intraocular 

lens centration from vertex normal; dx:  d in horizontal cartesian coordinates; dy:  d in 

vertical cartesian coordinates; PP: Photopic pupil diameter; MP: Mesopic pupil 

diameter; SAM: Spherical aberration computed for mesopic pupil. 
a
Spearman rho instead of Pearson r. 

*p≤0.05 

 

 




