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Abstract: This paper presents a system that combines computer vision and surface electromyography 

techniques to perform grasping tasks with a robotic hand. In order to achieve a reliable grasping action, 

the vision-driven system is used to compute pre-grasping poses of the robotic system based on the 

analysis of tridimensional object features. Then, the human operator can correct the pre-grasping pose 

of the robot using surface electromyographic signals from the forearm during wrist flexion and 

extension. Weak wrist flexions and extensions allow a fine adjustment of the robotic system to grasp 

the object and finally, when the operator considers that the grasping position is optimal, a strong 

flexion is performed to initiate the grasping of the object. The system has been tested with several 

subjects to check its performance showing a grasping accuracy of around 95% of the attempted 

grasps which increases in more than a 13% the grasping accuracy of previous experiments in which 

electromyographic control was not implemented. 
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1. Introduction 

Nowadays, robots can perform a variety of tasks to help human operators in their work [1]. The 

use of robots to collaborate with people with disabilities in industrial environments is a growing 

sector. For instance, several studies analyse the execution of manufacturing tasks by disabled people 

[2,3]. In this line, robotic assistive technologies have been successfully introduced following two 

different approaches. They are used to assist humans who have motor disabilities to perform daily 

activities. Typical examples are prosthetics devices and exoskeletons for motor substitution, or smart 

homes where household tasks are performed and controlled by automatic systems. These 

technologies also provide novel rehabilitation therapies to recover motor function and reduce further 

complications. Essentially, assistive technologies seek to improve the well-being of humans with 

disabilities [4]. 

The inclusion of assistive robotics in industrial applications contributes to the improvement of 

occupational health of human operators. Tele-operation systems increase the degree of assistance in 

dangerous manipulation tasks. Their goal is to make a system capable of mimicking and scaling the 

movements of a human operator in the control of a manipulator avoiding the risks of handling 

dangerous products or carrying out dangerous actions. Before including assistive technologies in 

industrial tasks, several teleoperation aspects must be considered. One of them is the feedback to the 

user, therefore the use of haptic interfaces [5] is critical to obtain a more natural feeling of the robot 

operation. Another important aspect is the additional assistance given to the user in the performance 
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of the assigned task; focused, for instance, on the possibility of providing an amputee with the 

capability of performing bimanual tasks [6]. The need of interacting with the environment requires 

of vision systems to recognise the working place and provide a proper manipulation of the products [7]. 

A good option to achieve a proper tele-operated robotic manipulation is to implement solutions 

based on techniques that provide reliable control signals from the human operator. Surface 

electromyography (sEMG) allows a system to record the electrical activity of muscle contractions in 

a non-invasive way [8]. The use of this information to control external devices is called myocontrol. 

Myocontrol techniques have been usually developed to obtain a reliable actuation of assistive devices 

in the field of prosthetics. This actuation ranges from simple binary control commands to complex 

multidimensional control [9,10]. 

Complex techniques have been applied to multi-finger prosthetic devices and robotic hands. 

However, myocontrol is generally limited to a few hand grips and still unreliable in realistic 

environments [11]. To avoid these limitations, several approaches have been recently proposed. One 

option is to provide a proper sensory feedback to the subject to close the control loop [12,13]. 

However, this option is still limited to the low accuracy in the classification of complex biomechanical 

tasks. Another alternative is the introduction of multimodal control of the robotic actuation which 

may provide a good solution to the unreliability of multidimensional control. In this case, another 

control method, such as gaze-tracking or electrooculography, is combined with myocontrol to 

increase reliability and speed [14,15]. Its main disadvantage is the increased workload on the user as 

both interaction methods must be controlled simultaneously. 

To solve the problems arisen from the previously described solutions, we propose the use of a 

shared control of the end effector of the robot arm. To achieve this, complex positioning and grasping 

tasks are performed by an alternative system and sEMG processing provides high-level commands. 

In this case, myocontrol will be combined with a vision-based grasping system. 

Grasping is one of the most significant tasks which is performed by humans in everyday 

manipulation processes. In recent works, robots have been provided with the ability to grasp objects 

[16,17]. It is often possible to see robots autonomously grasping objects in many industrial 

applications in which the environment is not dynamic and where both geometry and pose of objects 

are known. Therefore, the proper pose of the robotic hand or gripper to grasp the object is computed 

only once. This process is repeated whenever it is needed. More recently, robots are beginning to be 

self-sufficient and they are reaching a great level of autonomy to work without human intervention 

in unstructured scenarios or with dynamics in which the kind of objects or their poses are unknown, 

for example in industrial applications as in [18] and in storage and logistic applications [19]. 

Many grasp methods have been made possible by the advances in visual perception techniques 

of the environment, both 2D [20] and 3D [21]. In general, both techniques combine computer vision 

algorithms and traditional machine learning, the first for the extraction of object features of the scene 

and the second for the recognition of the objects by comparison and classification of extracted features 

with features from a dataset of known objects. Thereby, visual perception has allowed robots to have 

the ability of grasping in a similar way to humans, though under certain conditions, making use of 

object recognition algorithms [22–24] and pose estimation algorithms [25,26]. Recently, a significant 

number of new approaches have been proposed to localize robotic grasp configurations directly from 

sensor data without estimating object pose using training databases of real objects [27] or synthetic 

objects (CAD models) as in [28]. 

However, currently it is still not possible to compare the ability of robots and humans to grasp 

objects in a generic way, for each and every situation. The main drawback of applying visual 

perception techniques to accomplish a completely autonomous grasping is the great variability of the 

kind of objects (geometric shape, pose and visual appearance such as color or texture) that can be 

present in an environment. This demands a large datasets of training data to implement a robust 

algorithm to avoid ambiguity in both recognition and location processes of the objects in the scene. 

The proposed system may solve both the more relevant issues of grasping and the complexity of 

multidimensional myoelectric control, by combining the visual-driven system with simple 

electromyographic analysis, based on ON/OFF sEMG commands. 
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2. System Architecture 

2.1. Vision-Guided Robotic Grasping System 

The system architecture is composed of a PA-10 industrial robot arm (Mitsubishi, Tokyo, Japan). 

This robot has seven degrees of freedom (DoF). The robot arm is controlled as a slave in a client-

server software architecture managed from a Robot Operating System (ROS) framework. The PA-10 

is connected to a server module installed on a computer acting as the PA-10 controller, and both 

elements are communicated via the Attached Resource Computer NETwork (ARCNET) protocol. 

The robot is always waiting for commands generated from the orders given by the computer vision 

algorithm running in the slave module. This module is also responsible for the planning and 

simulation of trajectories computed from the information obtained from the vision algorithm and 

from the data supplied by the sEMG system. In addition, the robot arm has an Allegro hand (Wonik 

Robotics, Seoul, Korea) attached to its end effector with a payload of 5 kg. It is a low cost and highly 

adaptive multi-finger robotic hand composed of 4 fingers and 16 independent torque-controlled 

joints, 4 for each finger. The Allegro hand is connected to the slave module via the Controller Area 

Network (CAN) protocol. The implementation of the system, with its different components, can be 

seen in Figure 1. 

Additionally, the architecture of the system includes a RealSense Camera SR300 (Intel, Santa 

Clara, CA, USA). It is a depth-sensing camera that uses coded-light methodology for close-range 

depth perception. With this sensor, the system can acquire 30 colour frames per second with 1080 p 

resolution. SR300 is able to capture depth in a scenario from a distance between 0.2 m and 1.5 m. It is 

ideal to obtain shapes of real-world objects using point clouds. 

  
(a) (b) 

Figure 1. Pre-grasping pose of the robotic system computed by the vision algorithm. (a) Real robotic 

system in which the grasps are executed. (b) Simulation system where the movement is planned and 

the robotic hand pose is evaluated. 

2.2. Electromyography -Based Movement Control System for Robotic Grasping 

After positioning the robot hand in front of the object, subjects perform a fine control of the 

grasping action by reorienting the end effector left or right and then provide the control output for 

the final approach to the object and subsequent robot hand closing. To obtain these control outputs 

surface electromyography has been recorded from the forearm during the performance of wrist 

flexion and extension. 

To record surface electromyography (sEMG) signals a Mini DTS 4-channel EMG wireless system 

(Noraxon, Scottsdale, Arizona, USA) has been used (Figure 2). Two sEMG bipolar channels have been 

located over the flexor digitorum superficialis (FDS) and the extensor carpi radialis longus (ECR) of the 
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forearm. Signals have been acquired with a sample frequency of 1500 Hz, then low-pass filtered 

below 500 Hz, full-wave rectified and, finally, smoothed with a mean filter of 50 ms (Figure 3). 

Three different states have been classified from the filtered sEMG signal corresponding to a 

weak wrist flexion, a weak wrist extension and a strong wrist flexion. To classify these states, two 

thresholds have been defined to identify weak contractions (flexion on the FDS and extension on the 

ECR). Additionally, a higher threshold has been defined for strong contractions of the FDS (Figure 

3). A ROS message is sent with the decoded output commands to the robotic system. This 

classification is performed every 0.5 s. 

Weak flexion and extension is used to adjust the end effector in the z-axis (direction of the hand) 

with an initial step of 5 cm. These corrections can be performed through several control commands. 

When the robot end effector changes direction, the initial step is reduced to a 50%, which allows a 

fine adjustment of the position of the robot end effector avoiding a loop between end locations. 

Finally, when the operator thinks that the robot hand is properly positioned a strong flexion is used 

to perform the final approach to the object and the subsequent grip action. 

 

Figure 2. Surface electromyography (sEMG) system acquiring data from a subject. 

 

Figure 3. EMG raw signal for several flexion/extension wrist movements (left). Processed EMG signal 

and estimative thresholds (right). 

3. Proposed Method for Grasping 

The proposed method consists of two phases. First, the vision algorithm detects the presence of 

unknown objects on the scene, segments the scenes to obtain clusters of each object (each cluster is a 

point cloud) and then, it computes grasping points on the surface of each of the objects (Figure 4). The 
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method is flexible to obtain grasping points of objects even changing the scenario providing that objects 

are located on a table or flat surface. Once the vision algorithm provides the robot with the optimal 

grasping points of the object, the robot plans the trajectory in order to position the robot hand to grasp 

the object. Occasionally, the grasping of the object is not optimal. For this reason, the method adds a 

second phase which is used to plan fine hand robot-object interactions. In this step, EMG-based 

teleoperation of the robot hand-arm is performed to accomplish a successful and stable grasp without 

slipping and avoiding damage to the object. 

3.1. Grasping Points and Pose Estimation 

The algorithm calculates pairs of contact points for unknown objects given a single point cloud 

captured from a RGBD sensor with eye-to-hand configuration. Firstly, the point cloud is segmented 

in order to detect the objects present in the scene. Then, for each detected object, the algorithm 

evaluates pairs of contact points that fulfil a set of geometric conditions. Basically, it approximates 

the main axis of the object using the major vector obtained by running a Principal Component 

Analysis (PCA) extraction. Then, it calculates the centroid in the point cloud. With this information, 

it is possible to find a cutting plane perpendicular to the main axis of the object through its centroid. 

The candidate contact areas are at the opposite edges of the surface of the object that are close to the 

cutting plane. A standard grasping configuration consists of one point from each of these two areas. 

Figure 4 shows all these steps graphically. 

These candidate areas, in which the robot hand can be positioned, contain multiple potential 

points so the vision algorithm evaluates a great variety of grasping configurations for the robot hand, 

using a custom metric that ranks their feasibility. Thereby, the best-ranked pair of contact points is 

selected, since it is likely to be the most stable grasp, given the view conditions and the used robotic 

hand. The algorithm takes into account four aspects: the distance of the contact points to the cutting 

plane, the geometric curvature at the contact points, the antipodal configurations and the 

perpendicularity to the contact points. 

 

Figure 4. Steps of the method for calculating a pair of contact points. Scene Segmentation: clouds of 

the detected objects. Grasping Points Calculus, executed for each detected object: (1) grasping areas 

with potential contact points, (2) curvature values and a pair of evaluated contact points, (3) best 

ranked pair of contact points. 
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The first one, distance of the contact points to the cutting plane, is important because it is 

assumed that the grasping of the object is more stable as the robotic hand grasps closer to the centroid 

of the object, which is an approximation of its centre of mass. This way, the inertial movements caused 

throughout the manipulation process of the object are more controllable. The second aspect, the 

curvature, is considered to avoid the grasps of unstable parts on the object surface. The goal is to 

place the fingertips on planar surfaces instead of highly curved areas that are prone to be more 

unstable. Grasping objects on non-planar areas can cause a slip and fall of a grasped object when it is 

being manipulated, for example, if the robot arm executes a lifting movement. Regarding to the third 

aspect, contact points should be located on places where the robotic fingers can apply opposite and 

collinear forces (antipodal configuration). Finally, it is desirable to have contact points that are 

connected by a line perpendicular to the main axis of the object. That is, the contact points are equally 

distanced from the cutting plane. 

The aforementioned aspects are used to define a quality metric to evaluate the candidate contact 

point and to propose the best grasp points to carry out a successful grasp of the object on the scene. 

Accordingly, this quality metric ranks with greater values the grasping configurations that place the 

robotic hand with its palm point towards the object, its fingertips perpendicular to the axis of the 

object, parallel to the cutting plane and close to the centroid of the object. Notice that this operation 

is performed for every detected object. Consequently, the final pose of the robot hand is calculated 

using the best ranked grasping configuration and the approximated main axis of the object. 

Our vision algorithm only computes pairs of contact points. This is assumed to avoid the method 

being dependent on the type of robotic hand mounted at the end of the robotic arm. Two points are 

the minimum required for a simple robotic gripper but also, any multi-finger robotic hand can adapt 

its grasping configuration to two points on the object surface. In the experiments, we use an Allegro 

hand with four fingers, one of which acts as the thumb. In practice, it is assumed that the grasps will 

be done with three fingers. This number has been limited to three because the Allegro hand size is 

often bigger than the object size which will be grasped. 

In order to perform three-finger grasps, the algorithm takes into account the following criterion: 

one of the contact points corresponds to the place the thumb must reach during a grasp, while the other 

contact point remains between the first two fingers (index and middle). This means that the first and 

second finger wrap around the second contact point. In this way, the grasp adapts its configuration to 

only two contact points even though the hand uses three fingers. In addition, the robotic hand is 

oriented perpendicular to the axis of the object, meaning that it adapts to the pose of the object. 

When the human operator has selected the desired object that will be grasped, the robotic system 

guided by the vision algorithm performs the following steps to reach it: 

1 First, the robotic hand is moved to a point 10 cm away from the object. This is a pre-grasping 

position which is used to facilitate the planning of the following steps. The pre-grasping position 

is computed, from location (position and orientation) of contact points on the object surface, by 

the vision algorithm previously described. 

2 Second, the robotic hand is moved forward facing the object with its palm and the fingers 

opened. In this step the hand reaches the point in which, after closing, it would place the 

fingertips on the calculated contact points. 

The correctness of this position depends on the calibration of the camera position with regards to 

the world’s origin as well as lighting conditions and reflectance properties of the objects in the scene. 

Owing to this, the proposed method performs the correction of the robot hand using the sEMG signals. 

But also, sEMG can be used to accomplish a proper grasp of objects in a complex manipulation. 

3.2. Collaborative System with Both Visual and Electromyography Data 

The proposed solution has been implemented using the ROS in order to develop nodes in charge 

of different responsibilities but keeping a communication framework among them. One node has been 

created, called pointcloud_listener, where point clouds are read and processed to perform the calculus of 
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the grasp contacts. This node publishes a custom ROS message called GraspConfiguration where the 

point clouds of the objects and the calculated grasp contacts are stored. 

Another node, called allegro_control_grasp, subscribes to this topic and reads the published 

contact points to generate a grasp pose for the robotic gripper. Then, it proceeds to plan a trajectory 

following the steps listed in the previous section. MoveIt! [29] has been used to perform this trajectory 

planning. Once it reaches the grasping position, the EMG control starts. To do so, it subscribes to a 

topic called/emgsensor/move where the correcting movements are published. 

These corrections are published by a third node called emg_reader, which processes the sEMG 

signals in order to provide messages of type geometry_msgs/Quaternion. This type of ROS message 

allows us to describe the direction of movement for the arm that the operator wants to perform in 

order to correct the position of the robotic gripper. Thus, using one of the axis of the Quaternion, we 

can specify in which axis we want to move the gripper. The w term is set to 1 when we detect the 

grasping pattern in the EMG signal so the allegro_control_grasp node closes the gripper and continues 

to lift and carry the object. 

It is important to note that this message is constantly published by the emg_reader node but the 

allegro_control_grasp only reads them after performing a correction. This means that messages 

published during the physical movement of the robot are ignored and, as soon as it stops, the control 

returns to wait for a new message in the topic. Figure 5 shows a scheme of the nodes and their 

interactions through ROS. 

 

Figure 5. Scheme of the proposed method implemented in Robot Operating System (ROS) showing 

communication modules among different steps. 

4. Experiments and Discussion 

4.1. Test Design 

Six subjects (age 24.5 ± 6.2 years old, four male and two female) without previous experience on 

myoelectric control participated in the experimental tests. First, subjects were asked to perform 

several wrist flexion and extensions at different force levels and thresholds were visually chosen from 

the processed sEMG signals of the FDS and ECR. After selecting the proper thresholds, subjects were 

asked to freely perform wrist contractions and the classification output was shown to them until they 

felt comfortable with the myoelectric setup. 

The experimental tests were divided into three sets of grasping activities, each one for a different 

positioning of the object. The object, a cylindrical plastic can (23 cm height, 8 cm diameter), was placed 

vertically (position 1), horizontally (position 2) and in a diagonal orientation (position 3). Each 

grasping activity was performed five times for each position and subject. Subject 5 did not perform 

the last set (position 3) of grasping tasks due to fatigue and technical problems. 
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During the grasping activity, the visual-driven robot arm positioned the robotic hand facing the 

side of the object and then, subjects were asked to readjust the z-axis (weak wrist extension or flexion) 

and then grasp the object voluntarily with a strong wrist flexion. The accuracy of classifying sEMG 

signals was measured by counting correct sEMG commands (classification success), no detections (if 

muscle contraction was present but the control command was not generated) and errors in the 

classification output. No detections were manually counted from the visualization of correct 

contractions that did not reach the selected thresholds. Errors were counted as wrong generated 

commands. Grasping accuracy was measured by counting correct graspings of the object, i.e., if the 

object did not flip or fall from the robotic hand. 

4.2. Results and Evaluation 

Tables 1–3 show the results obtained on sEMG performance (classification success, no detection, 

classification error) and grasping performance in terms of accuracy (ACC), i.e., percentage of correct 

grasps. sEMG accuracy was obtained by dividing successful classifications by performed 

contractions. 

Table 1. sEMG performance and grasping accuracy for object position 1. 

Subject Success Error No Detection sEMG ACC Grasping ACC 

A01 10 0 0 100% 100% 

A02 10 0 1 91% 100% 

A03 10 1 2 77% 100% 

A04 8 1 0 89% 100% 

A05 10 0 0 100% 80% 

A06 6 2 1 67% 80% 

Average 9.00 0.67 0.67 87.23% 93.33% 

Standard deviation 1.67 0.82 0.82 13.20% 10.33% 

Table 2. sEMG performance and grasping accuracy for object position 2. 

Subject Success Error No Detection sEMG ACC Grasping ACC 

A01 8 1 0 89% 100% 

A02 10 1 1 83% 100% 

A03 10 0 1 91% 100% 

A04 8 1 0 89% 100% 

A05 10 1 3 71% 100% 

A06 10 0 2 83% 100% 

Average 9.33 0.67 1.17 84.46% 100.00% 

Standard deviation 1.03 0.52 1.17 7.12% 0.00% 

Table 3. sEMG performance and grasping accuracy for object position 3. 

Subject Success Error No Detection sEMG ACC Grasping ACC 

A01 10 0 1 91% 80% 

A02 10 0 0 100% 100% 

A03 10 1 0 91% 100% 

A04 10 0 1 91% 100% 

A06 8 1 0 89% 80% 

Average  9.60 0.40 0.40 92.32% 92.00% 

Standard deviation  0.89 0.55 0.55 4.38% 10.95% 

From the results, it can be concluded that both sEMG and grasping accuracy is high. sEMG errors 

or no detections do not always affect grasping accuracy as the robot hand is quite well positioned 

with the visual-driven system alone. It is interesting to notice that for object position 2 the grasping 

is always successful. This is possibly due to the fact that the object is placed horizontally to the ground 

and, as it is cylindrical, it sometimes rolls until touching the thumb of the hand when the hand is 
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repositioned. Nevertheless, grasping for the remaining object positions is also very accurate (93.33% 

± 10.33% for position 1 and 92.00% ± 10.95% for position 3). Regarding sEMG classifications, errors 

are fewer than no detections. A possible solution to reduce these errors is a longer training of the 

subjects (in these tests, subjects were naïve to myoelectric control systems). Another option could be 

the use of a more conservative threshold selection. This will prevent the appearance of errors but 

would probably increase the no detections increasing the time taken to perform the grasping. 

The results of a previous experiment, in which only the visual-driven system was used, are 

compared, in Table 4, to the results of the proposed sEMG-based system. Visual-driven tests are 

automatic, so there is no direct implication of a human operator in the positioning of the robot and 

the following grasping. The error for experiments without EMG represents two kind of errors. One 

of them is due to the slipping of the object during the grasping tasks. Other errors occurred because 

the hand position is not properly fit with vision techniques. Both cases are mostly solved when sEMG 

control is added to the grasping system. This way, sEMG can be used to correct the hand pose and 

its grasps, showing an increase in grasping accuracy close to a 9% using the same cylindrical object. 

Besides, the accuracy increases up to a 15% if it is compared with other grasping experiments using 

other cylindrical objects Consequently, the average increase in accuracy is around 13.8% considering 

the 81 trials without sEMG. 

Table 4. Comparison of the grasping accuracy for the proposed (visual data + sEMG) compared to 

the previous method (only visual data). 

Subject Trials  Success Error Grasping ACC 

with sEMG 85 81 4 95.29% 

without sEMG (same object) 15 13 2 86.66% 

without sEMG (other cylindrical objects) 66 53 13 80.30% 

5. Conclusions 

In this paper, we propose a method based on combining both computer vision and sEMG 

techniques to allow a human operator to carry out grasping tasks of objects. The proposed method 

has been demonstrated and validated by several human operators with different ages and sex. To do 

this, our method uses a vision algorithm to estimate grasping points on the surface of the detected 

object and moves the robotic hand-arm system from any pose to a pre-grasping pose according to the 

object. Then, sEMG signals from arm muscles of human operators are measured, processed and 

transformed into movements of the robotic hand-arm system. Thereby, the human operator can 

readjust the robotic hand to properly grasp the object. The results show an increase of around a 9% 

in grasping accuracy compared to the use of the visual-driven system alone with the same object and 

around a 15% with similar cylindrical objects. 

The proposed method evaluates a simple ON/OFF myocontrol classification algorithm based on 

a threshold selection with a very high reliability and that could be easily translated into an industrial 

environment with the introduction of low-cost sEMG devices such as the MYO Thalmic bracelet or 

Arduino-based acquisition systems. Additionally, specific expertise is not needed to instrument the 

sEMG system, as the location of electrodes on flexor and extensor muscles is straight-forward. This 

is a first approach towards bridging the gap between human operators with and without disabilities 

in industrial works in which grasping and manipulation tasks are required. In the future, we hope to 

integrate more signals to control additional degrees of freedom during the movement to generate 

better grasps and more complex manipulation tasks. 
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