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Abstract

Micropollutants are a diverse group of compounds that are detected at trace concentrations

and may have a negative effect on the environment and/or human health.  Most of them are

unregulated  contaminants,  although  they  have  raised  a  concern  in  the  scientific  and  global

community and future regulation might be written in the near future. Several approaches have

been tested to remove micropollutants from wastewater streams. In this manuscript, a focus is

placed in reactor biological treatments that use white-rot fungi. A critical review of white-rot

fungal-based  technologies  for  micropollutant  removal  from wastewater  has  been  conducted,

several  capabilities  and  limitations  of  such approaches  have  been  identified  and  a  range  of
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solutions to overcome most of the limitations have been reviewed and/or proposed. Overall, this

review  argues  that  white-rot  fungal  reactors  could  be  an  efficient  technology  to  remove

micropollutants from specific wastewater streams.
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Micropollutants can be defined as substances that may be bioaccumulative, persistent and toxic

and  may  have  a  negative  effect  on  the  environment  and/or  human  health,  even  at  trace

concentrations.  This  diverse  group contains,  but  is  not  restricted  to:  pharmaceutically  active

compounds  (PhACs),  personal  care  products,  endocrine  disruptors,  pesticides  and  industrial

chemicals.  Several  authors  have referred  to  them also as  emerging contaminants,  preferably

termed  contaminants  of  emerging concern  (Sauvé  and Desrosiers,  2014).  Most  of  them are

unregulated  pollutants,  although  future  regulation  might  be  written  depending  on  research

(Verlicchi et al., 2010). These contaminants remain biologically active even at concentrations of

few ng·L-1, may be accumulated through the food chain and can have negative effects on the

environment,  fauna and human health.  The  World Health Organization (2016),  for example,

raised concern on the development of antibiotic resistance on target bacteria due to exposure to

non-lethal concentrations of antibiotics.

The origin of these pollutants is  diverse: from industrial  waste streams to human-excreted

metabolized  and  non-metabolized  medicaments.  Typically  such  compounds  enter  the

environment through municipal or industrial effluent, but they are not completely removed in

wastewater treatment plants (WWTPs), which are mainly designed for removing macropollutants

such as organic matter, nutrients and suspended solids  (Evgenidou et al.,  2015; Frédéric and

Yves,  2014;  Kaiser et  al.,  2014).  In fact,  micropollutants have been found in surface water,

groundwater, drinking water and sewage (Dai et al., 2015).

Answering to these concerns, the scientific community has devoted extensive research into

mechanisms to degrade, transform and /or remove micropollutants from wastewater. Among the

possible treatments, white-rot fungi (WRF) are regarded as an effective possibility due to their
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capacity to transform most of the compounds studied so far thanks to their versatile enzymatic

machinery.

This manuscript reviews the bioremediation capabilities of WRF and the success examples of

application with different types of micropollutants, primarily focusing on continuous treatments.

Some  drawbacks  of  the  technology,  largely  related  to  the  non-sterility  of  wastewater,  are

analyzed and solutions discussed.

2. Bioremediation capabilities of white-rot fungi

2.1. White-rot fungi and their enzymatic machinery

The term white-rot fungi is not a taxonomical grouping but rather a collection of fungal species

that are able to degrade lignin (Dashtban et al., 2010). WRF are mainly basidiomycetes and some

relevant  species  include  Pleurotus  ostreatus,  Phanerochaete  chrysosporium,  Trametes

versicolor, Ganoderma lucidum and Irpex lacteus.

In the environment, WRF efficiently break down lignin to release the more easily metabolized

carbohydrates  hemicellulose  and  cellulose  –oxidation  of  lignin  yields  no  net  energy  gain

(Leonowicz et  al.,  1999).  To do so,  they rely on a combination of  extracellular  ligninolytic

enzymes,  organic acids,  mediators and accessory enzymes.  A bold feature of this  enzymatic

machinery is its non-specificity, due to its action via the generation of radicals. This property

makes  the  extracellular  white-rot  fungal  enzymes  capable  of  transforming  a  wide  range  of

organic molecules, including micropollutants.

White-rot fungi secrete lignin modifying enzymes (LMEs) and other compounds for lignin

degradation. LMEs include laccase, lignin peroxidase (LiP), manganese peroxidase (MnP) and

versatile  peroxidase (VP).  The main difference between laccases  and peroxidases  is  that  the
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former  uses  molecular  oxygen  whilst  the  others  use  hydrogen  peroxide  (H2O2)  as  electron

acceptor.

Enzyme  characteristics  and  their  action  mechanisms  are  widely  described  previously

(Camarero et al., 1999; Harvey et al., 1992; Hofrichter, 2002; Jones and Solomon, 2015; Reddy,

1995;  Ruiz-Duenas  et  al.,  1999),  as  well  as,  their  biotechnological  applications  (Bogan and

Lamar, 1996; Rodríguez Couto et al., 2006; Van Driessel and Christov, 2001).

The   composition  of  the  growth  medium  and  culture  conditions  highly  condition  the

production of ligninolytic enzymes  (Nerud and Misurcova, 1996). In addition to LMEs, WRF

can also produce and secrete redox mediators that act as vehicles for electron transfer and further

expand the range of substrate for the ligninolytic enzymes (Cañas and Camarero, 2010; Marco-

Urrea  et  al.,  2010b;  Morozova  et  al.,  2007;  Pointing,  2001).  In  spite  of  the  extraordinary

extracellular  enzymatic  system of  WRF,  it  is  not  the  only  responsible  of  microcontaminant

degradation.  Cytochrome  P450  constitutes  a  superfamily  of  intracellular  heme-containing

monooxygenases  ubiquitous  in  all  biological  kingdoms.  In  fungi,  they  play  a  role  in

housekeeping  biochemical  reactions,  detoxification  of  xenobiotics  and  adaptation  to  hostile

ecological niches (Durairaj et al., 2016). The involvement of cytochrome P450 in degradation of

several  micropollutants  has  been  largely  described:  trinitrotoluene  (Spiker  et  al.,  1992),

polycyclic aromatic hydrocarbons (Yadav and Reddy, 1993),  the dye malachite green  (Cha et

al.,  2001),  the  organochlorine  compounds  polychlorinated  dibenzodioxins  and  dichloro-

diphenyl-trichloroethane  (Kamei  and  Kondo,  2005;  Xiao  et  al.,  2011),  carbamazepine  and

clofibric acid (Marco-Urrea et al., 2009), ketoprofen (Marco-Urrea et al., 2010b), the UV filter 4-
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methylbenzylidene camphor (4-MBC)  (Badia-Fabregat et al., 2012) and several agrochemicals

(Mir-Tutusaus et al., 2014).

Fungal cytochrome P450, shares some similarities with its mammalian and human counterparts

(Stojan  et  al.,  2014).  These  similarities  include  the  capacity  of  forming  glucuronides  and

conjugates in general (Bezalel et al., 1996). In humans, conjugation increases water solubility of

xenobiotics so they can be excreted via urine  (Dalgaard and Larsen, 1999; Lynn et al., 1978).

WRF, however, have been consistently reported to reverse such modifications and deconjugate

human conjugates (Badia-Fabregat et al., 2015a; Mir-Tutusaus et al., 2017).

2.2. Advantages  and  disadvantages  of  WRF  systems  vs.  bacterial

treatment

The fungal enzymatic systems are an important capability that supports WRF’s suitability for

bioremediation of micropollutants from wastewater, but it is not the only one –and they come

with some disadvantages too.

Micropollutants are typically found in wastewater streams at trace concentrations. This fact

poses a difficulty for bacterial degradation as bacteria typically use the contaminants as growth

substrates.  If  the  pollutant  is  present  at  a  low  concentration,  the  bacterial  species  that  is

supposedly  able  to  degrade it  will  not  be  able  to  colonize  the  matrix  (Harms et  al.,  2011).

Degradation of organic pollutants in white-rot fungi, on the other hand, is part of the secondary

metabolism. In other words, fungi need a carbon source other than the contaminant to grow,

meaning that WRF transform micropollutants co-metabolically (Wen et al., 2011). This does not

mean that WRF cannot metabolize the micropollutant: T. versicolor could metabolize, mineralize

and integrate  some micropollutants  such as  diclofenac and benzophenone-3 into the  fungus’
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amino acids  (Badia-Fabregat  et  al.,  2014;  Marco-Urrea  et  al.,  2010b,  2010c).  However,  the

concentration  of  micropollutants  is  insufficient  to  maintain  fungal  growth  and  a  secondary

carbon  source  is  therefore  needed.  On  one  hand,  this  feature  enables  WRF  to  attack  the

micropollutants present in the wastewater even at low concentrations. On the other hand, the

need for an additional carbon source constitutes a drawback over bacterial treatment.

Municipal and municipal-like wastewater commonly contains a mixture of a wide range of

trace organic pollutants: from caffeine and insect repellents such as N,N-diethyl-meta-toluamide

(DEET) to sunscreens, preservatives, antibiotics, hormones and other pharmaceutically active

compounds (Wang et al., 2014; Yang et al., 2017). It is noteworthy that although they are found

at trace concentrations, they retain high biological activities. Bacteria are usually less versatile

when treating combinations of pollutants: a specific bacterial species can be a good degrader of a

single  or  a  small  subset  of  similar  micropollutants  and  this  constitutes  an  advantage  when

treating a waste stream contaminated with a single micropollutant. But bacteria in general have

difficulties  when  removing  mixtures  of  contaminants.  Conventional  activated  sludge,  for

instance,  does  no degrade most  of  pharmaceuticals  and personal  care  products  in  municipal

wastewater  (Verlicchi et  al.,  2015, 2012).  Recently an interesting review has been published

about  the  organic  micropollutants  removal  in  conventional  biological  wastewater  treatment

where  the  requirement  of  hybrid  treatment  is  pointed  out,  including  the  use  of  WRF

(Grandclément  et  al.,  2017).  Authors  suggest  the  need  of  studying  the  influence  of  the

operational conditions,  which is one of the objectives of this  review. White-rot fungi’s non-

specific enzymatic machinery, on the other hand, is especially well suited for coping with this

scenario,  as  their  ability  to  degrade  mixtures  of  several  contaminants  has  been  widely
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demonstrated (Mir-Tutusaus et al., 2014; Shreve et al., 2016; Valentín et al., 2007). However, the

pH of municipal and municipal-like wastewater is commonly around 7, while an effective fungal

treatment usually requires pH 4.5. This drawback could be easily solved at expense of increasing

the process cost.

In regards to the interaction between fungal and bacterial species, studies about the evolution

of the microbial communities are scarce. However it has been found that bacteria and fungi can

show a positive synergistic effect. This was hypothesized between fungal and bacterial enzymes

that  led  to  an  increase  removal  percentage  of  several  pollutants  in  non-sterile  wastewater

treatment in contrast to sterile treatment (Gros et al., 2014). This is regarded as a key aspect that

requires further research in the future.

Additionally,  although  fungal  systems  have  been  regarded  as  a  cost-effective  solution  for

micropollutant  removal,  it  is  important to  note that the application cost strongly depends on

several factors: cost for inoculum and biomass production, requirement for operating conditions

adjustment (e.g., pH adjustment), need for adding unit processes and hydraulic retention time

among others.

Finally,  some  waste  effluents  cannot  be  treated  with  fungi:  WRF  systems  are  not  good

candidates for anoxic groundwater bioremediation, for example, where oxygen is scarce. WRF

indeed need aerobic conditions for survival and activity whilst some bacterial species thrive in

such  environments  and  some  can  effectively  degrade  pollutants  –e.g.,  dichloromethane

fermentation  in  anaerobic  conditions  (Trueba-Santiso  et  al.,  2017).  However,  aerobic  waste

effluents  with concentrated pollutants  pose a  problem for  conventional  wastewater  treatment

processes: pulp and paper bleach industry effluent contains chlorinated and phenolic compounds;
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olive oil mill effluent is acidic and contains toxic phenols; textile and dyestuff industry effluents

contain structurally distinct dyes; pharmaceutical industry effluent might contain residues of the

active compound produced (Harms et al., 2011). White-rot fungal processes, on the other hand,

have been reported to survive these conditions and degrade the pollutants in such waste streams

(Nogueira et  al.,  2015; Ntougias et  al.,  2015; Van Driessel and Christov,  2001; Zhuo et al.,

2011). Therefore, white-rot fungal based treatments can be regarded as a good option for on-site

treatment of these wastewaters.

3. White-rot  fungi and continuous wastewater treatment for micropollutants removal

In  this  section  several  continuous  fungal  operations  treating  a  variety  of  micropollutants,

summarized in Tables 1-3, are reviewed. Special interest is invested in works carried out using

whole-cell cultures in non-sterile conditions because they portrait a more realistic picture of the

technology.

3.1. Pharmaceutically active compounds

Pharmaceutically active compounds, or PhACs, are molecules that enter the environment and

remain  active,  either  as  unmetabolized  parent  compounds  or  as  pharmaceutically  active

metabolites (also referred as transformation products, or TPs). Drugs are administered to humans

or  animals  and  reach  the  environment  via  excretory  systems  in  an  unmodified,  partially

metabolized or completely metabolized state (Ebele et al., 2017). These molecules can promote

drug tolerance or resistance to the original target organisms (e.g. antibiotic resistance in bacteria,

or analgesic tolerance in humans) and unwanted effects in non-target organisms (e.g. alteration

of  sex  ratio  and  decreased  fertility)   (Annamalai  and  Namasivayam,  2015;  Jorgensen  and

Halling-Sorensen,  2000) even  at  a  very  low concentration.  The  intended  biological  activity
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allowed  scientists  to  categorize  several  compounds  into  families:  analgesics  and  anti-

inflammatories,  antibiotics,  psychiatric  drugs,  beta-blockers  or  lipid  regulators,  among many

others.  In  this  section  continuous  PhAC removal  is  reviewed (and summarized  in  Table  1),

opening with sterile and defined matrices and moving on to non-sterile and complex matrices

such as wastewater. 

Although several fungal species have been found to have PhAC degradation capabilities and

showed  promising  results  (Castellet-Rovira  et  al.,  2018),  continuous  bioreactor  treatments

focused mainly on  Trametes versicolor and  Phanerochaete chrysosporium.  P. chrysosporium

was  investigated  in  several  operation  modes  and  reactor  configurations  for  the  continuous

removal of analgesics and anti-inflammatories diclofenac (DCF), ibuprofen (IBU) and naproxen

(NPX),  and  psychiatric  drugs  carbamazepine  (CBZ)  and  diazepam in  sterile  defined  media.

Nearly  complete  removal  of  DCF,  IBU  and  NPX  was  achieved  when  biomass  was  auto-

immobilized in the form of pellets and stirred tanks were used with a hydraulic retention time

(HRT) of 1 d (Rodarte-morales et al., 2012; Rodarte-Morales et al., 2011). The fungus was not

able to remove diazepam and an unstable CBZ removal of 0-63% was achieved when spiking at

0.5 mg·L-1. Similar results were achieved when operating a fixed bed reactor, even in a 100-day

long operation: complete removal of analgesics and anti-inflammatories and limited and unstable

removal of diazepam (0-30%) and CBZ (0-40%) (Rodarte-Morales et al., 2012). These series of

studies  exemplified  a  general  trend  in  fungal  PhAC  degradation:  analgesics  and  anti-

inflammatories are usually well removed whilst the psychiatric drugs family is more recalcitrant.

The possibility  of  CBZ and the  sulfonamide antibiotics  sulfamethazine  (SMT),  sulfathiazole

(STZ) and sulfapyridine (SPY) removal by  T. versicolor pellets was investigated in a sterile
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fluidized bed bioreactor treating defined media. Jelic et al. (2012) and Rodríguez-rodríguez et al.

(2012) obtained a 54% removal of CBZ when spiking with 200 µg·L-1 and >94% removal of the

sulfonamides spiked at 5 mg·L-1.

Some  studies  used  non-sterile  defined  media,  sometimes  referred  as  non-sterile  synthetic

wastewater, as an approach to real application. Nguyen et al. (2013) and Yang et al. (2013a) used

this  approach  to  study  the  behavior  of  a  membrane  bioreactor  (MBR)  inoculated  with  T.

versicolor lumps with an HRT of 2 d. Again, analgesics and anti-inflammatories were highly

removed (salicylic acid, ketoprofen, ibuprofen, naproxen), with the exception of diclofenac, with

an unstable removal of 0-60%. CBZ and the antibiotic metronidazole were poorly removed at 21

and 38% removal, respectively. Psychiatric drugs amitriptyline and primidone were also well

removed. Long-term operations of 165 d and 160 d were achieved by  Li et al. (2016, 2015b)

using  immobilized  P.  chrysosporium in  a  countercurrent  seepage  bioreactor  and  a  rotating

suspension cartridge  reactor  treating  naproxen and carbamazepine  spiked non-sterile  defined

media. The operations removed up to 70-90% of carbamazepine, value not achieved in any other

study reviewed. A similar non-sterile media was compared with the use of non-sterile spiked

municipal wastewater in a plate bioreactor described in Zhang and Geißen (2012). Immobilized

P. chrysosporium removed in that operation an 80 and 60% of CBZ in the defined media and

wastewater, respectively. 

In order to shed light on the effect of sterility,  Gros et al.  (2014) operated the same 10 L

fluidized  bed reactor  with sterile  and non-sterile  hospital  wastewater  (two wastewaters  were

collected on different days) inoculated with  T. versicolor. The X-ray contrast agent iopromide

and the antibiotic ofloxacin were removed up to 87 and 98.5%, respectively, in the sterile reactor
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and  65.4  and  99%,  respectively,  in  the  non-sterile  reactor.  Further  approaching  real-life

application, several studies were carried out using real wastewater. Badia-Fabregat et al. (2015b)

operated  a  fluidized  bed  reactor  with  T.  versicolor pellets  treating  non-spiked,  non-sterile

veterinary hospital wastewater. Some compounds in the analgesics and anti-inflammatory family

were  well  removed,  but  some  exhibited  an  increase  in  their  concentration  (ketoprofen,

piroxicam, diclofenac, indomethacine). An impressive 83% removal was obtained for diazepam

and complete removal of ranitidine, clopidrogel and the antibiotic ciprofloxacin were achieved,

but other pharmaceuticals were poorly removed. In a hospital wastewater spiked with ketoprofen

and ibuprofen, 80 and 100% removal values were achieved using a similar fungal system (Mir-

Tutusaus et al., 2016). Comparing both studies, it is interesting to note that ketoprofen was well

removed in the spiked matrix, but its concentration rose when the matrix was not spiked. This

was related to conjugation/deconjugation processes, which are briefly discussed in sections 2.1

and  5.  A  similar  non-spiked  study  used  non-sterile  hospital  wastewater  pretreated  with  a

coagulation-flocculation treatment to feed a similar fluidized bed bioreactor inoculated with T.

versicolor pellets  (Mir-Tutusaus  et  al.,  2017).  The reactor  was operated for 56 d and nearly

complete  removal  was  achieved  for  the  analgesics  and  anti-inflammatories  family  with  the

exception of ketoprofen, whose concentration rose, which was in accordance to Badia-Fabregat

et  al.  (2015b).  Around  60%  of  antibiotics  were  removed  and  psychiatric  drugs  were  well

removed overall.

3.2. Endocrine disruptors

Previous studies have confirmed significant removal of various trace organic contaminants by

white-rot  fungal  cultures  under  sterile  batch  test  conditions.  However,  little  is  known about
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endocrine disruptor compounds’ removal in fungal reactors operating in continuous mode; such

studies  are summarized in  Table 2.  Trametes versicolor was the most  investigated white-rot

fungus for the removal of these contaminants. Among the various types of pollutants, endocrine

disruptors are receiving increasing attention as they are widespread and can pose serious risks to

the environment and public health, even at low concentrations (Auriol et al., 2006). Indeed, these

chemicals interfere with the hormone systems and produce adverse developmental, reproductive,

neurological, and immunological effects in mammals. These compounds can be found in many

products  including  plastic  bottles,  metal  food  cans,  detergents,  flame  retardants,  food,  toys,

cosmetics, and pesticides (Yang et al., 2017). 

Estrogen compounds including natural ones, estrone (E1), 17 -estradiol (E2), estriol (E3), andβ

synthetic 17 -ethinylestradiol (EE2) are commonly detected in sewage effluentsα  and considered

to be significant contributors to the estrogenic activity of wastewaters due to their high endocrine

disruptor activity even at extremely low concentrations (Cabana et al., 2007; Shreve et al., 2016).

Removal of these compounds in continuous mode using white-rot-fungi has been reported by

some authors.  Blánquez and Guieysse (2008) explored the potential  of  the white-rot  fungus

Trametes versicolor to biodegrade E2 and EE2 in a fluidized bed bioreactor operated during 26

days at a hydraulic retention time of 120 h. The results showed that E2 and EE2 were completely

removed at volumetric removal rates of 0.16 and 0.09 mg l−1 h−1, respectively, when fed at 18.8

and 7.3 mg l−1, respectively.  Shreve et al. (2016) explored the potential of the same fungus  T.

versicolor using the strain NRRL 66313 to continuously remove E1, E2 and EE2 from a mixture

of nine trace organic contaminants with 350 µg·L-1 concentration each and during 8 days. The

results showed that T. versicolor  was able to decrease the estrogenic activity of the mixture and
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especially of the target contaminants (more than 71%) with the following trend E2 > E1 > EE2.

Nguyen et al. (2013) studied the continuous removal of 30 trace organic contaminants, E1, E2

EE2,  E3  and  17-b-estradiol-17-acetate  among  them,  in  a  fungus-augmented  bioreactor.  The

reactor contained the white-rot fungus T. versicolor and activated sludge and was operated for

110 d. It was fed continuously with synthetic wastewater spiked with the selected contaminants

each with a concentration of approximately 5 µg·L-1. Data from this study highlighted the high

removal of these compounds (> 90%) by the fungus-augmented bioreactor. The degradation of

the same endocrine disrupting compounds, except 17-b-estradiol-17-acetate, was also recently

investigated by  Křesinová et al. (2017) using  Pleurotus ostreatus  HK 35. The strain was first,

tested in a laboratory-scale continuous-flow reactor and then in a pilot bioreactor under non-

sterile  conditions.  Results  revealed  that  the  EDC  degradation  in  the  trickle-bed  bioreactor

containing the mixed culture of  the fungus and wastewater-autochthonous bacteria  was very

efficient in both cases. In the same work, the authors investigated also the bioreactor inoculated

with the same strain as a tertiary treatment step to remove EDC, including E1 and EE2, from

effluent of secondary treatment.  Results  also showed the potential  of  P. ostreatus  HK 35 to

remove these compounds and that 100 and 71% of E1 and EE2 were removed, respectively,

within 24 hours.

Phenolic compounds, mainly bisphenol A (2,2-bis (4-hydroxyphenol) propane), nonylphenol

(4-nonylphenol),  and  triclosan  (5-chloro-2(2,4-dichloro-phenoxy)phenol)  are  xenobiotic

compounds frequently detected in receiving waters downstream of areas of intense urbanization

(Boyd et al., 2003; Kolpin et al., 2002). These chemicals are classified as endocrine disruptors

since they can mimic or interfere with the hormonal system of different organisms (Cabana et al.,
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2009; Naylor, 1995).  Although they have many orders of magnitude lower estrogenic activity,

their elevated concentrations in wastewater drew attention to these EDC. Bisphenol A is used as

raw  material  for  the  production  of  polycarbonates  and  epoxy  resins;  nonylphenol  mainly

originates  from  the  degradation  of  nonylphenol  polyethoxylates,  a  widely  used  industrial

surfactant and triclosan is widely used in soaps, mouthwashes, toothpastes and other products in

household  personal  care  and  hospital  applications.  The  application  of  white-rot  fungi  in

continuous mode for the treatment of these phenolic compounds has been scarcely described.

Continuous removal of Bisphenol A was studied by Yang et al. (2013) in a membrane bioreactor

(MBR) inoculated with  T. versicolor and operated in non-sterile conditions for three months.

Results  showed  that  the  performance  of  the  fungal  MBR  was  dependent  on  trace  organic

contaminants loading. Indeed, 80 to 90% were removed at an HRT of two days and bisphenol A

loading of 475 mg·L-1d-1. Continuous removal of Bisphenol A was also reported in other studies

and reached 75% in a fungus-augmented bioreactor operated during 110 d (Nguyen et al., 2013)

and 61.9 % in the conditions of the study described previously by Shreve et al. (2016). 

Regarding the antibacterial agent triclosan, it has been reported to be well removed (>95%) in

continuous mode using T. versicolor at an initial concentration of 5 µg·L-1  in synthetic medium

(Nguyen et al., 2013). However, low (34%) or no removal was observed using the strains  T.

versicolor NRRL 66313 and P. ostreatus  HK 35 at initial concentrations of 25 ng·L-1 and 350

µg·L-1 respectively, in an effluent from secondary treatment (Kresinová et al., 2017; Shreve et al.,

2016).  Nguyen  et  al.  (2013) also  reported  the  removal  of  benzophenone,  octocrylene  and

oxybenzone (three UV filters) with values of 68, 90 and 96%, respectively. However, Shreve et

al. (2016) observed no removal of oxybenzone.

15

313

314

315

316

317

318

319

320

321

322

323

324

325

326

327

328

329

330

331

332

333

334

335

14



3.3. Pesticides

Few studies have investigated pesticide removal in continuous mode using different white-rot

fungi and conditions, and they are summarized in Table 3. The potential of the white-rot fungus

Bjerkandera adusta for the degradation of the insecticide hexachlorocyclohexane (HCH) in a

spiked soil in a slurry system was investigated by Quintero et al. (2007). Bioremediation studies

in the reactor were performed for 30 d and the operational conditions tested were the solid load

(10% and 30%) and concentration of the pollutants in the soil (25 and 100 mg·kg -1). The results

showed that higher degradation percentages were obtained for a solid concentration of 10% and a

concentration for each isomer of 25 mg·kg-1 and were of 94.5%, 94.5%, 78.5% and 66.1%, for

-, -, - and -HCH isomers, respectively. α γ δ β

The  performance  of  a  continuous  packed  bed  bioreactor  degrading  the  organophosphorus

insecticide chlorpyrifos by the fungus Aspergillus sp. was studied at varying insecticide loading

rates by Yadav et al. (2015). Aspergillus sp. is not a white-rot fungus but it was found to be quite

efficient in the biodegradation of chlorpyrifos and its removal efficiency varied from 68 to 89%

with the flow rate ranging from 10 to 40 mL·h-1  and the HRT from 24 to 100 h. Results also

showed that the continuous packed bed bioreactor was able to regains its performance quickly

after the perturbation in the flow rate. The potential of the same fungus  Aspergillus niger to

degrade continuously  an  herbicide,  atrazine,  in  wastewater  was evaluated  by  Marinho et  al.

(2017).

T.  versicolor showed  potential  in  the  biodegradation  of  clofibric  acid  in  a  fluidized  bed

bioreactor. The study operated for 24 d a continuous reactor with an HRT of 4 days and achieved

a 80% removal  (Cruz-Morató et al., 2013b). Interestingly, the identification of transformation
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products and a toxicity assessment showed that the treated effluent was more toxic than the

initial feed, probably due to the presence of hydroxyl-clofibric acid.  Continuous removal of six

pesticides, namely, atrazine, propoxur, fenoprop, ametryn, clofibric acid and pentachlorophenol,

was investigated by  Nguyen et al.  (2013) with the same fungus in a MBR treating synthetic

medium. The main results  showed that  fungus-augmented reactor  achieved good removal  of

fenoprop (57%), clofibric acid (65%) and pentachlorophenol (92%) compared to conventional

MBR. Toxicity assays were not performed in this case. The effect of a continuous dosing of a

mediator (1-hydroxy benzotriazole, HBT) to the fungus-augmented MBR was also investigated

during the last 30 days of operation. The results showed no significant difference in removal of

atrazine and ametryn by the MBR, even after doubling the mediator dose to 10 µM. Shreve et al.

(2016) observed no removal of atrazine and N,N-diethyl-3-methylbenzamide (DEET) within a

mixture of nine contaminants spiked on sterile WWTP effluent.

3.4. Industrial chemicals

Continuous treatment of industrial chemicals has been also examined only by few researchers

and the studies are summarized in Table 3. Palli et al. (2016) investigated the biodegradation of

2-naphthalensulfonic  acid  polymers  (NSAP)  in  a  wastewater  in  a  continuous  packed  bed

bioreactor  working  for  three  months  under  non-sterile  conditions.  The  bioreactors  were

inoculated by  B. adusta and  P. ostreatus immobilized on straw. The results  showed that the

fungus  B. adusta exhibited a limited enzymatic activity and was not able to remove the tested
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contaminant.  However, the reactor inoculated with P. ostreatus showed a stable laccase activity

during the whole experiment and noticeable NSAP biodegradation was achieved after two weeks

of work and remained until  the end of the experiment (30 to 60 %). In another study, high

removal (> 95%) of two industrial chemicals, namely 4-tert-Butylphenol and 4-tert-Octylphenol,

among thirty contaminants, was observed in an augmented fungal MBR (Nguyen et al., 2013).

4. Limitations of fungal based systems and how to overcome them

Despite all the potentialities of WRF, and the high amount of interesting studies about fungi

being used for micropollutant removal, fungal systems for wastewater treatment are not being

commonly applied at  industrial  scale.  In  this  section,  we review the main drawbacks of  the

technology and how can they be overcome.

4.1. Need for nutrient addition

As discussed in section 2.2, although organic micropollutants contain carbon, some WRF need

an additional assimilable carbon source for growth and survival. Wastewater usually contains

organic carbon and nitrogen  (Verlicchi  et  al.,  2010),  both needed for  microbial  growth,  and

bacteria are perfectly capable of assimilating both. In the case of WRF, most experiments used

glucose-based or malt extract-based spiked media (a.k.a. synthetic wastewater) and few studies

can be found using real wastewater. The need for nutrient addition in real wastewater treatments

by WRF was identified only after using real wastewater.  Cruz-Morató et al. (2013) and Badia-

Fabregat  et  al.  (2015a) highlighted  the need of  glucose and ammonium tartrate  addition for

maintaining pelleted T. versicolor biological activity and enzymatic production in a fluidized bed

bioreactor treating wastewater. Zhang and Geißen (2012) also found that glucose and ammonium

tartrate addition were required for carbamazepine removal in a plate bioreactor inoculated with
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polyether  foam-immobilized  P.  chrysosporium treating  WWTP effluent.  Other  studies  using

fluidized bed bioreactors and treating flocculated hospital wastewater obtained similar results

when  adding  ammonium chloride  instead  of  ammonium tartrate  (Mir-Tutusaus  et  al.,  2017,

2016). In the reviewed literature, common nutrient addition rates ranged between 343 – 1453

mg·g dry cell  weight  (DCW)-1·d-1 of  glucose and 0.77 -  1.98 mg·g DCW-1·d-1 of  ammonium

tartrate.  However,  some  WRF  were  able  to  assimilate  organic  components  (measured  as

chemical oxygen demand, COD) from wastewater:  Palli et al. (2017) operated a fluidized bed

reactor with Pleurotus ostreatus and observed significant growth of the fungus and reduction in

the COD concentration. In those cases where a fungal species able to assimilate wastewater COD

is used, there is no need for nutrient addition. This in turn could reduce bacterial growth, but

overgrown  fungal  biomass  should  then  be  purged  regularly.  Nevertheless,  it  can  be  fairly

accepted  that  nutrient  addition  can  be  needed  to  operate  a  white-rot  fungal  reactor  for  the

treatment of wastewater. This poses a problem to full scale application, as the cost of glucose and

nitrogen addition would be high, especially taking into account the large volumes of wastewater

treated in WWTPs, and potentially increase the COD and nitrogen load.

This limitation could be partially overcome (i) by optimizing the nutrient addition, because

when  nutrients  are  added  at  consumption  rate  lower  quantities  are  needed  and  nutrients’

concentration in the effluent remains very low, therefore not increasing COD or nitrogen load.

This in turn prevents overgrowth of fungal biomass; (ii) by replacing the glucose and ammonium

tartrate/chloride by cheaper products; or (iii) by reimagining the use of the technology: white-rot

fungal systems could be viable, even taking into account the costs of nutrient addition, when

smaller volumes of micropollutant-contaminated wastewater are treated.  This is the case,  for
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example,  of  hospital  wastewater,  veterinary  hospital  wastewater  and  several  industrial

wastewaters (Verlicchi et al., 2010). A fourth answer to this limitation is (iv) the immobilization

of fungal biomass onto lignocellulosic materials. These substrates act also as carbon and nitrogen

sources for WRF, thus avoiding the need of nutrient addition (Ehlers and Rose, 2005; Lu et al.,

2009; Torán et al., 2017). It is worth noting that the use of a lignocellulosic material may lead to

the release of recalcitrant compounds, e.g. tannins or phenolic compounds (Ramos et al., 2013).

However,  an  advantage  is  that  lignocellulosic  materials  are  very  abundant  and  are  usually

byproducts of other industries, reducing their  price  (Dashtban et al.,  2010; Leonowicz et al.,

1999). 

4.2. Immobilization of fungal biomass

Fungal dispersed mycelium usually causes bioreactor operation difficulties such as growth on

the reactor walls and agitators, foaming and increased need of mixing and oxygen supply. The

immobilization of fungal biomass overcomes most of these difficulties –or reduces them.

The immobilization can be accomplished by the growth of the fungus in form of pellets (auto-

immobilization).  Fungal  pellets  are  spherical  aggregates  of  interweaved  hyphae  with  a  size

usually in the range of several hundred micrometers to several millimeters (Espinosa-Ortiz et al.,

2015). This immobilization is usually accomplished by growing the fungus in Erlenmeyers with

liquid media under shaking conditions. Quite a few studies have dealt with the pelletization of

different fungal species, the optimal pellet diameter and the study of mass and oxygen transfer

into the pelleted biomass (Borràs et al., 2008; Casas López et al., 2005; Feng et al., 2004; Leštan

and Lamar, 1999; Sharma and Padwal-Desai, 1985; Sitanggang et al., 2010; Wittier et al., 1986).

Some studies have reported successful pellet production in a fluidized bed reactor, even in a
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pilot-scale bioreactor, thus enabling the upscaling of the technology  (Borràs et al., 2008; Mir-

Tutusaus  et  al.,  2017).  Additionally,  Espinosa-Ortiz  et  al.  (2015) reviewed  several  fungal

pelleted reactor configurations with the perspective of treating wastewater. 

The immobilization can also be carried out by growing the fungus onto a carrier. Some studies

have done so using inert carriers such as polyurethane foam cubes (Li et al., 2016; Yadav et al.,

2015).  Gao et al.  (2008) listed amongst the advantages of immobilizing  P. chrysosporium  in

polyurethane foam the improved survival and increased enzymatic activity of the fungus in non-

sterile  cultures.  But  taking  into  account  WRF’s  ability  of  degrading  lignin,  cellulose  and

hemicellulose, several other authors have looked into the immobilization onto non-inert carriers

such  as  wood  chips,  serving  both  as  support  and  carbon  source  (Li  et  al.,  2015;  Pedroza-

Rodríguez and Rodríguez-Vázquez,  2013; Rodarte-Morales et  al.,  2012;  Sirtori  et  al.,  2009).

Interestingly, when Ehlers and Rose (2005) immobilized several WRF in pine chips, fungi were

shown to penetrate the wood, possibly using the cellulose and hemicelluloses as carbon source.

In this case, WRF not only benefited from the immobilization, but bacteria were not able to use

the  carbon  source,  hence  avoiding  substrate  competition.  Recent  studies  have  also  reported

improved  micropollutant  degradation  and  fungal  survival  with  T.  versicolor immobilized  in

wood chips, even when treating real wastewater (Torán et al., 2017).

In general, immobilization and auto-immobilization leaded to more robust operations in non-

sterile conditions (Hai et al., 2013; Leidig et al., 1999; Nilsson et al., 2006; Tang et al., 2011).

Experiments with immobilized biomass tend to use fixed-bed column reactors (their low shear

stress helps the adhesion of the biomass on the support) rather than the stirred-tank or fluidized

bed reactors usually used with pelleted biomass.

21

446

447

448

449

450

451

452

453

454

455

456

457

458

459

460

461

462

463

464

465

466

467

20



4.3. Competition with autochthonous microorganisms

The decline in micropollutant removal observed in several studies has been largely attributed

to bacterial contamination and it has been identified as the main bottleneck of the technology

(Espinosa-Ortiz et al., 2015; Gao et al., 2008; Hai et al., 2013, 2008; Libra et al., 2003). Indeed,

bacteria has been shown to exert competitive pressure for the substrate, thus leading to the loss

of fungal biomass, and to destabilize fungal enzymes (Hai et al., 2008; Libra et al., 2003). For

that reason, researchers have since proposed a wide range of alternatives for dealing with this

limitation. 

4.3.1. Favoring fungal growth

Favoring fungal growth usually involves supplying the conditions that distinctively favor WRF

over bacteria. These strategies include operation at optimal fungal pH, immobilization of fungal

biomass, periodical biomass renewal and optimizing the carbon-to-nitrogen ratio (C/N ratio) of

the nutrients supplied.

- Operation  at  optimal  fungal  pH.  Most  white-rot  fungi’s  optimal  pH  is  acidic;  not

surprisingly,  lignin  modifying  enzymes’  optimal  pH  is  also  acidic  (Pazarlioglu  et  al.,

2005). Although a specific bacterial species might find it difficult to grow at acidic pH,

bacteria is a diverse domain and acidic pH does not suppress bacterial growth. However,

pH too acidic ceased enzyme production of  T. versicolor  and led to the loss of pelleted

morphology in a fluidized-bed reactor (Borràs et al., 2008; Libra et al., 2003). Therefore,

acidic pH does not distinctively favor fungi over bacteria, but it does improve the viability

and activity of WRF.
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- Partial biomass renovation.  When growth-limiting culture conditions are implemented

the  biomass  concentration is  nearly  constant  because the  low nutrient  addition  is  used

mainly for biomass maintenance. In this case the biomass retained in the bioreactor ages

over time. In this  scenario,  partial  biomass renovation was developed as a strategy for

stabilizing the age of fungal biomass in a sterile treatment, thus extending the operational

time  (Blánquez et al., 2006). They purged 1/3 of the fungal biomass in the reactor and

added the same amount of fresh biomass every week, obtaining a solids/cells retention time

of  21  d.  The  work  concluded  that  partial  biomass  renovation  helped in  maintaining  a

biomass age distribution constant as well as their activity. So a pseudo steady state was

obtained for the fungus in the bioreactor.  The strategy was continued in several sterile

operations (Blánquez and Guieysse, 2008) and in a non-sterile treatment of wastewater by

Badia-Fabregat  et  al.  (2015b) in  an  attempt  to  improve  the  enzymatic  production  and

integrity of pellets. It was also successfully applied in a non-sterile operation of wastewater

pretreated with a coagulation-flocculation process, allowing for a 56-day treatment  (Mir-

Tutusaus et al., 2017). In summary, the substitution of old biomass by fresh one allowed

for a more stable fungal population in the reactors, in turn maintaining enzymatic activity

for a longer period of time and favoring white-rot fungal colonization.

- Carbon-to-nitrogen  ratio.  In  systems  where  nutrient  addition  is  needed  –i.e.  where

biomass is not immobilized in lignocellulosic substrates and/or the fungus is not able to

assimilate nutrients present in the wastewater–, the ratio between carbon and nitrogen may

play a role in favoring fungal over bacterial populations. On the one hand, high C/N ratios

mimic ligninolytic conditions (wood has a high C/N ratio),  increasing white-rot fungal
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production of lignin modifying enzymes (Eggert et al., 1996); and not contrarily, limiting

conditions  of  carbon or  nitrogen have also  been reported  to  enhance LME production

(Viswanath et al., 2014). On the other hand, lower carbon-to-nitrogen ratios favor fungal

growth  over  bacterial  growth  (Demoling  et  al.,  2007;  Rousk  and  Bååth,  2007).  It  is

important to notice that lower ratios do not favor white-rot fungi exclusively, but rather the

growth of  fungal  species  in  general.  Therefore,  a  compromise must  be found between

favoring fungal growth over bacteria and favoring LME production. However, one should

take  into  account  that  LME  production  has  rarely  been  linked  to  an  increase  of

micropollutant  removal.  For  example,  in  a  recent  publication  treating  flocculated

wastewater in a fluidized bed bioreactor, a rather low C/N ratio of 7.5 was chosen in terms

of PhAC degradation and biomass integrity (Mir-Tutusaus et al., in press).

- Immobilization. In addition to the advantages of immobilization discussed in section 4.2,

auto-immobilization of WRF in the form of pellets allows a high concentration of fungus

inside the reactor, thus hindering bacterial colonization. If the immobilization is carried out

on lignocellulosic carriers the fungal concentration tends to be lower, but most bacterial

species find it difficult to grow on lignocellulosic substrates.

4.3.2. Washing out bacteria

Another strategy for overcoming the competition with native microorganisms is by means of

decoupling the hydraulic retention time (HRT) and solids retention time (SRT), sometimes also

referred as cellular retention time (CRT). The purpose of these strategies is to keep the fungal

biomass  in  the  reactor  while  washing  out  the  bacteria  and  other  microorganisms,  therefore
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increasing  the  retention  time  of  WRF  while  keeping  an  HRT  able  to  wash  out  the  other

microorganisms.

In order to achieve this decoupling, some authors auto-immobilized the WRF, typically in the

form of pellets while others immobilized the fungi on inert carriers or lignocellulosic substrates,

as discussed in section 4.2. A third option for decoupling HRT and fungal retention time is by

the use of membrane technology. Membranes are widely used and can be found at industrial

scale in several WWTPs (Joss et al., 2006; Rubirola et al., 2014). They allow for higher SRT and

have been successfully applied with fungal biomass for the removal of organic micropollutants at

laboratory scale  (Hai et al., 2009; Nguyen et al., 2013; Yang et al., 2013).Van Leeuwen et al.

(2003) described a technology using 100  µm microscreens that allowed for production of the

fungus  Rhizopus  (not  a  white-rot  fungus)  under  non-aseptic  conditions  thanks  to  the

manipulation of HRT and SRT.

These four approaches allow for the retention of fungal biomass inside the reactor, therefore

permitting  the  decrease  of  the  HRT without  affecting  the  SRT.  A lower  HRT leads  to  the

washout of non-attached microorganisms, and bacterial concentration has been linked with the

loss of degradation capacity, enzymatic production and viability of WRF (Blánquez et al., 2008;

Hai et al., 2013, 2009; Mir-Tutusaus et al., 2016). Therefore, lower HRT favor white-rot fungal

viability by washing out non-attached microorganisms. However, it is noteworthy that bacteria

can attach to virtually everything, including pellets, immobilized fungal biomass, inert carriers

and reactor  surface  (Fletcher,  1994).  While fungal survival  might  be improved,  lower HRTs

often meant lower degradation of several contaminants by WRF: for example,  Blánquez et al.

(2007) reported reduced decolorization of a textile dye when lower HRTs were applied, similarly
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to Asses et al. (2009). Moreover, washing out of bacteria comes inevitably with the washout of

extracellular  enzymes  and  mediators  produced  by  the  fungus  (Badia-Fabregat  et  al.,  2017;

Nguyen et al., 2013). However, as reviewed in sections 2 and 3, not only extracellular enzymes

play a role in microcontaminant degradation. In fact, several authors reported concentration of

LMEs not being crucial to maintain good removal percentages (Anastasi et al., 2010; Blánquez et

al., 2004; Yang et al., 2013). In spite of that, maintaining a sufficient concentration of LMEs in

the reactor is desirable for compounds whose biotransformation is LME-dependent.

In summary, both HRT and SRT must be optimized in order to achieve a compromise between

bacteria-and-enzyme washout, micropollutant removal and fungal survival.

4.3.3. Suppressing bacteria

Another strategy for assisting fungi in the competition with autochthonous microorganisms is

the direct suppression of bacteria. This could obviously be achieved by sterilization, but it is not

feasible in the wastewater treatment industry. Regardless, two approaches have been studied in

order to reduce the bacterial count.

Sankaran et al. (2008) suggested the use of ozone (O3) as a selective disinfectant in order to

decrease  bacterial  contamination  in  a  non-sterile  continuous  fungal  cultivation  on  corn-

processing wastewater. The aim of the work was the production of fungal biomass, rather than

COD or micropollutant removal; that is why the researchers used very high dosages of ozone (57

mg·L-1), while ozone doses in full scale WWTPs range between 5 and 15 mg·L-1  (Ternes et  al.,  2003;

Verlicchi et al.,  2010). Ozonation behaves similarly to acidic pH in the sense that it favors most fungal

species over bacteria. In fact,  Sankaran et al. (2008) inoculated the reactor with R. oligosporus

but the fungal population was replaced by a wastewater-native fungus. Cheng et al. (2013) used
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ozone  as  a  bactericide  in  a  white-rot  fungal  dye-decolorization  continuous  operation,  thus

maintaining the bacterial concentration at around 105 CFU·mL-1. The study reported a 99.4%

inhibition of contaminating bacteria and the involvement of ozone in the degradation of the Acid

Blue 45 dye. Indeed, ozone has been reported to improve biodegradability of refractory organic

matter  and  to  degrade  several  micropollutants  (Contreras  et  al.,  2003;  Fujioka  et  al.,  2014;

Gomes  et  al.,  2017;  Kusvuran and  Yildirim,  2013;  Ternes  et  al.,  2003;  Yang et  al.,  2016).

Therefore,  care  must  be  taken when using  ozonation  as  a  disinfectant  in  assigning removal

efficiency to the WRF and to the ozonation itself.

The addition of  pretreatments  can potentially  reduce the inlet  concentration of  bacteria.  A

recent study successfully extended the operation of a T. versicolor fluidized bed reactor treating

hospital wastewater from 10 to 28 days (Mir-Tutusaus et al., 2016). Specifically, a coagulation-

flocculation pretreatment reduced the bacterial count of the influent wastewater from 107-108 to

103-105 CFU·mL-1, allowing for a longer-term operation. Coagulation and flocculation processes

have been largely applied in WWTPs and are regarded as cost-effective (Liu et al., 2012; López-

Maldonado et  al.,  2014).  Therefore,  the addition of  this  and other  pretreatments  might  be a

noteworthy strategy that enables WRF to operate with urban-like wastewaters.

4.3.4. A final note on non-sterility

Some studies  in  non-sterile  conditions  have  been  reviewed  in  this  section.  However,  two

groups can be distinguished: studies operating in non-sterile conditions with defined medium or

tap water and studies using wastewater. The studies using defined medium or tap water usually

rely on contamination by air-borne microorganisms and microorganisms present in non-sterile

surfaces. Such contamination could be regarded as mild and operations tend to be longer. The
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other group, using wastewater, deals with the contamination due to growth of native wastewater

microorganisms. Bacterial count in those cases tends to be very high, the contamination could be

regarded as heavy and the reactor operations tend to be shorter. The latter studies should be

encouraged, because in addition to be a more reliable representation of real conditions, consortia

formed  in  those  operations  could  play  a  role  in  degradation  of  micropollutants  and  fungal

metabolism intermediate products.

4.4. Fungal treatments require high HRTs

As discussed in section 4.3.2, low hydraulic retention times produced lower degradation for

some micropollutants and higher loss of extracellular enzymes. Fungal treatments usually require

a HRT of around 1-3 days for the removal of microcontaminants (Blánquez et al., 2008, 2007,

Hai et al., 2009, 2008). In fact, micropollutant removal is usually improved by increasing HRT

(when toxic compounds are not accumulated). Generally, WRF require higher HRTs to remove

micropollutants than bacteria to remove organic matter. This adds a difficulty on combining a

fungal treatment step on a conventional WWTP, reinforcing the idea of using white-rot fungal

operations as on-site treatments in specific contaminated streams (enumerated in section 2.2 and

4.1).  In  those  streams,  the  fungal  process  would  be  a  treatment  to  decrease  micropollutant

concentration prior to discharge to the WWTP. If a fungal treatment were to be included in a

conventional WWTP, some options could be considered: first, the increase of SRT or fungal

concentration in the reactor could be optimized  in order to allow higher removal efficiencies,

thus enabling the coupling; second, low hydraulic retention times, between 6 to 12 h, are enough

to remove several families of compounds such as analgesics, anti-inflammatories (Marco-Urrea

et  al.,  2010a,  2009) and  endocrine  disruptors  (Kresinová  et  al.,  2017;  Shreve  et  al.,  2016),
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although enzyme washout should be taken into consideration. Therefore, wastewaters containing

mainly these families of pollutants could be treated with fungal systems at low HRTs.

5. Conclusions and future outlook

The fungal treatment of effluents containing organic micro-pollutants is a feasible alternative.

However, the best strategy will depend on the wastewater to be treated,  the final use of the

treated wastewater and consequently the cost of the treatment.  

In  order  to  advance  the  technology  towards  industrial  scale,  sterility  must  be  discarded.

Wastewater sterilization is not feasible from an economic and environmental point of view, so

fungal research in applied science should focus on non-sterile conditions. The difficulty of non-

sterile fungal operations has been discussed, and it greatly shifts the focus on the research field:

from establishing WRF’s biodegradation capabilities to guaranteeing the fungus’ survival and

activity  during  the  fungal  operation.  The  biomass  in  the  reactors  are  usually  retained  or

immobilized.  Therefore  the  biomass  concentration  in  a  continuous  treatment,  three  different

operation  mode  can  be  distinguished:  (a)  growth  conditions  due  to  high  concentration  of

nutrients  (either  present  in  the  wastewater  or  artificially  supplied),  where  periodic  purge  is

required to maintain the biomass level and good performance of the reactor; (b) growth limiting

conditions with low nutrient supply, where biomass level remains constant but periodic partial

biomass renovation is required to maintain the distribution of biomass age in the reactor and

consequently  maintaining  the  degradation  capacity;  and  finally  (c)  biomass  pre-grown on  a

ligninolytic material with no other nutrient addition, where the biomass concentration is lower

than in the previous operation modes. 
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Besides favoring fungal survival over other microorganisms, some studies have focused in the

microbiological  community  evolution  during  fungal  treatments.  Such  studies  should  be

encouraged,  as  bacterial  and  fungal  interspecies  interactions  and  its  consequences  in

micropollutant removal are not fully understood.

Similarly,  the  journey  towards  full  scale  operation  requires  the  use  of  real,  non-spiked

matrices. This should be no surprise, as the complexity of a real matrix –microbial diversity,

chemical composition, trace contaminants, etc. – is impossible to replicate in a defined medium.

In  addition,  the  bacterial  contamination  problems  when using  real  wastewater  will  be  more

difficult  to deal with,  but they will  be more similar to a real operation.  Lastly,  because real

matrices are a source of variability, successful fungal operations using real wastewater greatly

increase the systems’ robustness.

The use of non-spiked real matrices, however, poses a big pressure on analytical techniques.

Not only are micropollutants found at a very low concentration, but they are also commonly

found in the form of glucuronides and other conjugated forms. Conjugated microcontaminants

are not usually detected by the current analytical techniques, thus undervaluing the concentration

of the pollutant studied. This in turn underestimates the removal capacity of WRF, as they have

been consistently described to deconjugate such compounds. Therefore, an effort should be made

to analyze all compounds in any form.

Reported experiences in pilot plant are still too scarce and consequently, the results obtained in

bench-scale reactors need to be validated at pilot plants before a full-scale application can be

considered.
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Finally, the drawbacks of fungal wastewater treatment for the removal of recalcitrant organic

micropollutants can be technologically overcome and the strategy will be established depending

on  the  effluent  quality  required.  WRF  can  be  an  alternative  for  the  removal  of  organic

micropollutants from real wastewater but further studies are necessary at pilot plant to full adapt

the process to the real application.

Acknowledgements

This work has been funded by the Spanish Ministry of Economy and Competitiveness (project

CTM2016-75587-C2-1-R ) and partly supported by the Generalitat de Catalunya (Consolidated

Research Group 2014-SGR-0476). The Department of Chemical, Biological and Environmental

Engineering  of  Universitat  Autònoma  de  Barcelona  (UAB)  is  member  of  the  Xarxa  de

Referència en Biotecnologia de la Generalitat de Catalunya. J.A. Mir-Tutusaus acknowledges the

predoctoral grant from UAB.

References

Anastasi, A., Spina, F., Prigione, V., Tigini, V., Giansanti, P., Varese, G.C., 2010. Scale-up of a
bioprocess for textile wastewater treatment using Bjerkandera adusta. Bioresour. Technol.
101, 3067–3075. doi:10.1016/j.biortech.2009.12.067

Annamalai, J., Namasivayam, V., 2015. Endocrine disrupting chemicals in the atmosphere: Their
effects on humans and wildlife. Environ. Int. 76, 78–97. doi:10.1016/j.envint.2014.12.006

Asses,  N.,  Ayed, L.,  Bouallagui,  H.,  Ben Rejeb,  I.,  Gargouri,  M.,  Hamdi,  M.,  2009. Use of
Geotrichum candidum for olive mill wastewater treatment in submerged and static culture.
Bioresour. Technol. 100, 2182–2188. doi:10.1016/j.biortech.2008.10.048

Auriol, M., Filali-Meknassi, Y., Tyagi, R.D., Adams, C.D., Surampalli, R.Y., 2006. Endocrine
disrupting compounds removal from wastewater, a new challenge. Process Biochem. 41,
525–539. doi:10.1016/j.procbio.2005.09.017

Badia-Fabregat,  M.,  Lucas,  D.,  Gros,  M.,  Rodríguez-Mozaz,  S.,  Barceló,  D.,  Caminal,  G.,
Vicent, T., 2015a. Identification of some factors affecting pharmaceutical active compounds

31

662

663

664

665

666

667

668

669

670

671

672

673

674

675

676
677
678

679
680

681
682
683

684
685
686

687
688

30



(PhACs) removal in real wastewater. Case study of fungal treatment of reverse osmosis
concentrate. J. Hazard. Mater. 283, 663–71. doi:10.1016/j.jhazmat.2014.10.007

Badia-Fabregat, M., Lucas, D., Pereira, M.A., Alves, M., Pennanen, T., Fritze, H., Rodríguez-
Mozaz, S., Barceló, D., Vicent, T., Caminal, G., 2015b. Continuous fungal treatment of
non-sterile veterinary hospital effluent: pharmaceuticals removal and microbial community
assessment. Appl. Microbiol. Biotechnol. 100, 2401–2415. doi:10.1007/s00253-015-7105-0

Badia-Fabregat, M., Lucas, D., Tuomivirta, T., Fritze, H., Pennanen, T., Rodríguez-Mozaz, S.,
Barceló, D., Caminal, G., Vicent, T., 2017. Study of the effect of the bacterial and fungal
communities present in real wastewater effluents on the performance of fungal treatments.
Sci. Total Environ. 579, 366–377. doi:10.1016/j.scitotenv.2016.11.088

Badia-Fabregat, M., Rodríguez-Rodríguez, C.E., Gago-Ferrero, P., Olivares, A., Piña, B., Díaz-
Cruz, M.S., Vicent, T., Barceló, D., Caminal, G., 2012. Degradation of UV filters in sewage
sludge and 4-MBC in liquid medium by the ligninolytic  fungus Trametes versicolor.  J.
Environ. Manage. 104, 114–120. doi:10.1016/j.jenvman.2012.03.039

Badia-Fabregat, M., Rosell, M., Caminal, G., Vicent, T., Marco-Urrea, E., 2014. Use of stable
isotope probing to assess the fate of emerging contaminants degraded by white-rot fungus.
Chemosphere 103, 336–342. doi:10.1016/j.chemosphere.2013.12.029

Bezalel,  L.E.A.,  Hadar,  Y.,  Fu,  P.P.,  Freeman,  J.P.,  Cerniglia,  C.E.,  1996.  Metabolism  of
Phenanthrene by the White Rot Fungus Pleurotus ostreatus. Appl. Environ. Microbiol. 62,
2547–2553.

Blánquez, P., Caminal, G., Sarrà, M., Vicent, T., 2007. The effect of HRT on the decolourisation
of the Grey Lanaset G textile dye by Trametes versicolor. Chem. Eng. J. 126, 163–169.
doi:10.1016/j.cej.2006.09.007

Blánquez,  P.,  Casas,  N.,  Font,  X.,  Gabarrell,  X.,  Sarrà,  M.,  Caminal,  G.,  Vicent,  T.,  2004.
Mechanism of textile metal dye biotransformation by Trametes versicolor. Water Res. 38,
2166–72. doi:10.1016/j.watres.2004.01.019

Blánquez,  P.,  Guieysse,  B.,  2008.  Continuous  biodegradation  of  17 -estradiol  and  17 -β α
ethynylestradiol  by  Trametes  versicolor.  J.  Hazard.  Mater.  150,  459–462.
doi:10.1016/j.jhazmat.2007.09.085

Blánquez, P., Sarrà, M., Vicent, M.T., 2006. Study of the cellular retention time and the partial
biomass renovation in a fungal decolourisation continuous process. Water Res. 40, 1650–6.
doi:10.1016/j.watres.2006.02.010

Blánquez, P., Sarrà, M., Vicent, T., 2008. Development of a continuous process to adapt the
textile wastewater treatment by fungi to industrial conditions. Process Biochem. 43, 1–7.
doi:10.1016/j.procbio.2007.10.002

Bogan,  B.W.,  Lamar,  R.T.,  1996.  Polycyclic  aromatic  hydrocarbon-degrading capabilities  of
Phanerochaete laevis HHB-1625 and its extracellular ligninolytic enzymes. Appl. Environ.

32

689
690

691
692
693
694

695
696
697
698

699
700
701
702

703
704
705

706
707
708

709
710
711

712
713
714

715
716
717

718
719
720

721
722
723

724
725

31



Microbiol. 62, 1597–1603. doi:199662515971603

Borràs, E., Blánquez, P., Sarrà, M., Caminal, G., Vicent, T., 2008. Trametes versicolor pellets
production:  Low-cost  medium  and  scale-up.  Biochem.  Eng.  J.  42,  61–66.
doi:10.1016/j.bej.2008.05.014

Boyd, G.R., Reemtsma, H., Grimm, D.A., Mitra, S., 2003. Pharmaceuticals and personal care
products (PPCPs) in surface and treated waters of Louisiana, USA and Ontario, Canada.
Sci. Total Environ. 311, 135–149. doi:10.1016/S0048-9697(03)00138-4

Cabana, H., Jiwan, J.-L.H., Rozenberg, R., Elisashvili, V., Penninckx, M., Agathos, S.N., Jones,
J.P., 2007. Elimination of endocrine disrupting chemicals nonylphenol and bisphenol A and
personal  care  product  ingredient  triclosan  using  enzyme preparation  from the  white  rot
fungus  Coriolopsis  polyzona.  Chemosphere  67,  770–778.
doi:10.1016/j.chemosphere.2006.10.037

Cabana, H., Jones, J.P., Agathos, S.N., 2009. Utilization of cross-linked laccase aggregates in a
perfusion basket reactor for the continuous elimination of endocrine-disrupting chemicals.
Biotechnol. Bioeng. 102, 1582–1592. doi:10.1002/bit.22198

Camarero, S., Sarkar, S., Ruiz-Dueñas, F.J., Martínez, M.J., Martínez, Á.T., 1999. Description of
a versatile peroxidase involved in the natural degradation of lignin that has both manganese
peroxidase and lignin peroxidase substrate interaction sites. J.  Biol.  Chem. 274, 10324–
10330. doi:10.1074/jbc.274.15.10324

Cañas, A.I., Camarero, S., 2010. Laccases and their natural mediators: Biotechnological tools for
sustainable  eco-friendly  processes.  Biotechnol.  Adv.  28,  694–705.
doi:10.1016/j.biotechadv.2010.05.002

Casas López, J.L., Sánchez Pérez, J.A., Fernández Sevilla, J.M., Rodríguez Porcel, E.M., Chisti,
Y.,  2005.  Pellet  morphology,  culture  rheology  and  lovastatin  production  in  cultures  of
Aspergillus terreus. J. Biotechnol. 116, 61–77. doi:10.1016/j.jbiotec.2004.10.005

Castellet-Rovira,  F.,  Lucas, D., Villagrasa,  M.,  Rodríguez-Mozaz,  S.,  Barceló,  D.,  Sarrà,  M.,
2018. Stropharia rugosoannulata and Gymnopilus luteofolius?: Promising fungal species for
pharmaceutical biodegradation in contaminated water. J. Environ. Manage. 207, 396–404.
doi:10.1016/j.jenvman.2017.07.052

Cha, C.-J., Doerge, D.R., Cerniglia, C.E., 2001. Biotransformation of Malachite Green by the
Fungus  Cunninghamella  elegans.  Appl.  Environ.  Microbiol.  67,  4358–4360.
doi:10.1128/AEM.67.9.4358-4360.2001

Cheng, Z., Xiang-hua, W., Ping, N., 2013. Continuous Acid Blue 45 decolorization by using a
novel open fungal reactor system with ozone as the bactericide. Biochem. Eng. J. 79, 246–
252. doi:10.1016/j.bej.2013.08.010

Contreras, S., Rodríguez, M., al Momani, F., Sans, C., Esplugas, S., 2003. Contribution of the
ozonation pre-treatment to the biodegradation of aqueous solutions of 2,4-dichlorophenol.

33

726

727
728
729

730
731
732

733
734
735
736
737

738
739
740

741
742
743
744

745
746
747

748
749
750

751
752
753
754

755
756
757

758
759
760

761
762

32



Water Res. 37, 3164–71.

Cruz-Morató,  C.,  Ferrando-Climent,  L.,  Rodriguez-Mozaz,  S.,  Barceló,  D.,  Marco-Urrea,  E.,
Vicent,  T.,  Sarrà,  M.,  2013a.  Degradation  of  pharmaceuticals  in  non-sterile  urban
wastewater by Trametes versicolor in a fluidized bed bioreactor. Water Res. 47, 5200–10.
doi:10.1016/j.watres.2013.06.007

Cruz-Morató,  C.,  Jelić,  A.,  Perez,  S.,  Petrović,  M.,  Barceló,  D.,  Marco-Urrea,  E.,  Sarrà,  M.,
Vicent,  T.,  2013b.  Continuous  treatment  of  clofibric  acid  by  Trametes  versicolor  in  a
fluidized bed bioreactor: Identification of transformation products and toxicity assessment.
Biochem. Eng. J. 75, 79–85. doi:10.1016/j.bej.2013.03.020

Dai,  G.,  Wang,  B.,  Huang,  J.,  Dong,  R.,  Deng,  S.,  Yu,  G.,  2015.  Occurrence  and  source
apportionment  of  pharmaceuticals  and  personal  care  products  in  the  Beiyun  River  of
Beijing, China. Chemosphere 119, 1033–1039. doi:10.1016/j.chemosphere.2014.08.056

Dalgaard, L., Larsen, C., 1999. Metabolism and excretion of citalopram in man: identification of
O-acyl- and N-glucuronides. Xenobiotica 29, 1033–1041. doi:10.1080/004982599238092

Dashtban, M.,  Schraft,  H.,  Syed, T.A.,  Qin,  W.,  2010. Fungal biodegradation and enzymatic
modification of lignin. Int. J. Biochem. Mol. Biol. 1, 36–50.

Demoling, F., Figueroa, D., Bååth, E., 2007. Comparison of factors limiting bacterial growth in
different soils. Soil Biol. Biochem. 39, 2485–2495. doi:10.1016/j.soilbio.2007.05.002

Durairaj,  P.,  Hur,  J.-S.S.,  Yun,  H.,  2016.  Versatile  biocatalysis  of  fungal  cytochrome P450
monooxygenases. Microb. Cell Fact. 15, 1–16. doi:10.1186/s12934-016-0523-6

Ebele, A.J.,  Abou-Elwafa Abdallah, M., Harrad, S., 2017. Pharmaceuticals and personal care
products  (PPCPs)  in  the  freshwater  aquatic  environment.  Emerg.  Contam.  3,  1–16.
doi:10.1016/j.emcon.2016.12.004

Eggert,  C.,  Temp, U., Eriksson, K.E.,  1996. The ligninolytic system of the white rot fungus
Pycnoporus cinnabarinus: purification and characterization of the laccase. Appl. Environ.
Microbiol. 62, 1151–8.

Ehlers,  G.A.,  Rose,  P.D.,  2005.  Immobilized  white-rot  fungal  biodegradation  of  phenol  and
chlorinated  phenol  in  trickling  packed-bed  reactors  by  employing  sequencing  batch
operation. Bioresour. Technol. 96, 1264–1275. doi:10.1016/j.biortech.2004.10.015

Espinosa-Ortiz,  E.J.,  Rene,  E.R.,  Pakshirajan,  K.,  van Hullebusch,  E.D.,  Lens,  P.N.L.,  2015.
Fungal pelleted reactors in wastewater treatment: applications and perspectives. Chem. Eng.
J. 283, 553–571. doi:10.1016/j.cej.2015.07.068

Evgenidou, E.N., Konstantinou, I.K., Lambropoulou, D.A., 2015. Occurrence and removal of
transformation products of PPCPs and illicit  drugs in wastewaters: A review. Sci. Total
Environ. 505, 905–926. doi:10.1016/j.scitotenv.2014.10.021

34

763

764
765
766
767

768
769
770
771

772
773
774

775
776

777
778

779
780

781
782

783
784
785

786
787
788

789
790
791

792
793
794

795
796
797

33



Feng, K.-C., Rou, T.-M., Liu, B.-L., Tzeng, Y.-M., Chang, Y.-N., 2004. Effect of fungal pellet
size  on  the  high  yield  production  of  destruxin  B  by  Metarhizium  anisopliae.  Enzyme
Microb. Technol. 34, 22–25. doi:10.1016/j.enzmictec.2003.07.006

Fletcher, M., 1994. Bacterial biofilms and biofouling. Curr. Opin. Biotechnol. 5, 302–6.

Frédéric,  O.,  Yves,  P.,  2014.  Pharmaceuticals  in  hospital  wastewater:  their  ecotoxicity  and
contribution  to  the  environmental  hazard  of  the  effluent.  Chemosphere  115,  31–9.
doi:10.1016/j.chemosphere.2014.01.016

Fujioka, T., Khan, S.J., McDonald, J.A., Nghiem, L.D., 2014. Ozonation of N-Nitrosamines in
the Reverse Osmosis Concentrate from Water Recycling Applications. Ozone Sci. Eng. 36,
174–180. doi:10.1080/01919512.2013.866885

Gao, D., Zeng, Y., Wen, X., Qian, Y., 2008. Competition strategies for the incubation of white
rot  fungi  under  non-sterile  conditions.  Process  Biochem.  43,  937–944.
doi:10.1016/j.procbio.2008.04.026

Gomes, J., Costa, R., Quinta-Ferreira, R.M., Martins, R.C., 2017. Application of ozonation for
pharmaceuticals and personal care products removal from water. Sci. Total Environ. 586,
265–283. doi:10.1016/j.scitotenv.2017.01.216

Grandclément,  C.,  Seyssiecq,  I.,  Piram,  A.,  Wong-Wah-Chung,  P.,  Vanot,  G.,  Tiliacos,  N.,
Roche, N., Doumenq, P., 2017. From the conventional biological wastewater treatment to
hybrid processes, the evaluation of organic micropollutant removal: A review. Water Res.
111, 297–317. doi:10.1016/j.watres.2017.01.005

Gros, M., Cruz-Morato, C., Marco-Urrea, E., Longrée, P., Singer, H., Sarrà, M., Hollender, J.,
Vicent, T., Rodriguez-Mozaz, S., Barceló, D., 2014. Biodegradation of the X-ray contrast
agent  iopromide  and  the  fluoroquinolone  antibiotic  ofloxacin  by  the  white  rot  fungus
Trametes  versicolor  in  hospital  wastewaters  and  identification  of  degradation  products.
Water Res. 60, 228–241. doi:10.1016/j.watres.2014.04.042

Hai, F.I., Yamamoto, K., Nakajima, F., Fukushi, K., 2009. Factors governing performance of
continuous fungal reactor during non-sterile operation - The case of a membrane bioreactor
treating  textile  wastewater.  Chemosphere  74,  810–817.
doi:10.1016/j.chemosphere.2008.10.025

Hai, F.I., Yamamoto, K., Nakajima, F., Fukushi, K., 2008. Removal of structurally different dyes
in submerged membrane fungi reactor - Biosorption/PAC-adsorption, membrane retention
and biodegradation. J. Memb. Sci. 325, 395–403. doi:10.1016/j.memsci.2008.08.006

Hai, F.I., Yamamoto, K., Nakajima, F., Fukushi, K., Nghiem, L.D., Price, W.E., Jin, B., 2013.
Degradation of azo dye acid orange 7 in a membrane bioreactor by pellets and attached
growth  of  Coriolus  versicolour.  Bioresour.  Technol.  141,  29–34.
doi:10.1016/j.biortech.2013.02.020

Harms,  H.,  Schlosser,  D.,  Wick,  L.Y.,  2011.  Untapped  potential:  exploiting  fungi  in

35

798
799
800

801

802
803
804

805
806
807

808
809
810

811
812
813

814
815
816
817

818
819
820
821
822

823
824
825
826

827
828
829

830
831
832
833

834

34



bioremediation  of  hazardous  chemicals.  Nat.  Rev.  Microbiol.  9,  177–92.
doi:10.1038/nrmicro2519

Harvey, P.J., Floris, R., Lundell, T., Palmer, J.M., Schoemaker, H.E., Wever, R., 1992. Catalytic
mechanisms  and  regulation  of  lignin  peroxidase.  Biochem.  Soc.  Trans.  20,  345–349.
doi:10.1042/bst0200345

Hofrichter,  M.,  2002.  Review:  Lignin  conversion  by manganese  peroxidase  (MnP).  Enzyme
Microb. Technol. 30, 454–466. doi:10.1016/S0141-0229(01)00528-2

Jelic,  A.,  Cruz-Morató,  C.,  Marco-Urrea,  E.,  Sarrà,  M.,  Perez,  S.,  Vicent,  T.,  Petrović,  M.,
Barcelo, D., 2012. Degradation of carbamazepine by Trametes versicolor in an air pulsed
fluidized  bed  bioreactor  and  identification  of  intermediates.  Water  Res.  46,  1–10.
doi:10.1016/j.watres.2011.11.063

Jones, S.M., Solomon, E.I., 2015. Electron transfer and reaction mechanism of laccases. Cell.
Mol. Life Sci. 72, 869–883. doi:10.1007/s00018-014-1826-6

Jorgensen, S.E., Halling-Sorensen, B., 2000. Drugs in the environment. Chemosphere 40, 691–
699. doi:10.1016/S0045-6535(99)00438-5

Joss, A., Zabczynski, S., Göbel, A., Hoffmann, B., Löffler, D., McArdell, C.S., Ternes, T.A.,
Thomsen, A., Siegrist, H., 2006. Biological degradation of pharmaceuticals in municipal
wastewater  treatment:  Proposing  a  classification  scheme.  Water  Res.  40,  1686–1696.
doi:10.1016/j.watres.2006.02.014

Kaiser,  E.,  Prasse,  C.,  Wagner,  M.,  Bröder,  K.,  Ternes,  T.A.,  2014.  Transformation  of
oxcarbazepine and human metabolites of carbamazepine and oxcarbazepine in wastewater
treatment and sand filters. Environ. Sci. Technol. 48, 10208–16. doi:10.1021/es5024493

Kamei, I., Kondo, R., 2005. Biotransformation of dichloro-, trichloro-, and tetrachlorodibenzo-p-
dioxin by the white-rot fungus Phlebia lindtneri. Appl. Microbiol. Biotechnol. 68, 560–566.
doi:10.1007/s00253-005-1947-9

Kolpin, D.W., Furlong, E.T., Meyer, M.T., Thurman, E.M., Zaugg, S.D., Barber, L.B., Buxton,
H.T., 2002. Pharmaceuticals, Hormones, and Other Organic Wastewater Contaminants in
U.S. Streams, 1999-2000: A National Reconnaissance. Environ. Sci. Technol. 36, 1202–
1211. doi:10.1021/es011055j

Kresinová,  Z.,  Linhartová,  L.,  Filipová,  A.,  Ezechiáš,  M.,  Mašín,  P.,  Cajthaml,  T.,  2017.
Biodegradation  of  endocrine  disruptors  in  urban  wastewater  using  Pleurotus  ostreatus
bioreactor. N. Biotechnol. doi:10.1016/j.nbt.2017.05.004

Kusvuran, E., Yildirim, D., 2013. Degradation of bisphenol A by ozonation and determination of
degradation  intermediates  by  gas  chromatography-mass  spectrometry  and  liquid
chromatography-mass  spectrometry.  Chem.  Eng.  J.  220,  6–14.
doi:10.1016/j.cej.2013.01.064

36

835
836

837
838
839

840
841

842
843
844
845

846
847

848
849

850
851
852
853

854
855
856

857
858
859

860
861
862
863

864
865
866

867
868
869
870

35



Leidig,  E.,  Prüsse,  U.,  Vorlop,  K.-D.,  Winter,  J.,  1999. Biotransformation of Poly R-478 by
continuous  cultures  of  PVAL-encapsulated  Trametes  versicolor  under  non-sterile
conditions. Bioprocess Eng. 21, 5–12. doi:10.1007/PL00009064

Leonowicz, A., Matuszewska, A., Luterek, J., Ziegenhagen, D., Wojtaś-Wasilewska, M., Cho,
N.-S., Hofrichter, M., Rogalski, J., 1999. Biodegradation of Lignin by White Rot Fungi.
Fungal Genet. Biol. 27, 175–185. doi:10.1006/fgbi.1999.1150

Leštan, D., Lamar, R.T., 1999. Influence of humidity on production of pelleted fungal inoculum.
World J. Microbiol. Biotechnol. 15, 349–357. doi:10.1023/A:1008983521015

Li,  X.,  Xu,  J.,  de  Toledo,  R.A.,  Shim,  H.,  2016.  Enhanced  carbamazepine  removal  by
immobilized Phanerochaete chrysosporium in a novel rotating suspension cartridge reactor
under  non-sterile  condition.  Int.  Biodeterior.  Biodegradation  115,  102–109.
doi:10.1016/j.ibiod.2016.08.003

Li, X., Xu, J., de Toledo, R.A., Shim, H., Toledo, R.A. De, Shim, H., 2015. Enhanced removal of
naproxen  and  carbamazepine  from  wastewater  using  a  novel  countercurrent  seepage
bioreactor  immobilized  with  Phanerochaete  chrysosporium under  non-sterile  conditions.
Bioresour. Technol. 197, 465–474. doi:10.1016/j.biortech.2015.08.118

Libra,  J.A.,  Borchert,  M.,  Banit,  S.,  2003. Competition strategies for the decolorization of a
textile-reactive  dye  with  the  white-rot  fungi  Trametes  versicolor  under  non-sterile
conditions. Biotechnol. Bioeng. 82, 736–744. doi:10.1002/bit.10623

Liu, X., Li, X.-M., Yang, Q., Yue, X., Shen, T.-T., Zheng, W., Luo, K., Sun, Y.-H., Zeng, G.-M.,
2012. Landfill leachate pretreatment by coagulation-flocculation process using iron-based
coagulants: Optimization by response surface methodology. Chem. Eng. J. 200–202, 39–51.
doi:10.1016/j.cej.2012.06.012

López-Maldonado, E.A., Oropeza-Guzman, M.T., Jurado-Baizaval, J.L., Ochoa-Terán, A., 2014.
Coagulation-flocculation mechanisms in wastewater treatment plants through zeta potential
measurements. J. Hazard. Mater. 279, 1–10. doi:10.1016/j.jhazmat.2014.06.025

Lu,  Y.,  Yan,  L.,  Wang,  Y.,  Zhou,  S.,  Fu,  J.,  Zhang,  J.,  2009.  Biodegradation  of  phenolic
compounds  from  coking  wastewater  by  immobilized  white  rot  fungus  Phanerochaete
chrysosporium. J. Hazard. Mater. 165, 1091–1097. doi:10.1016/j.jhazmat.2008.10.091

Lynn,  R.K.,  Smith,  R.G.,  Thompson,  R.M.,  Deinzer,  M.L.,  Griffin,  D.,  Gerber,  N.,  1978.
Characterization  of  glucuronide  metabolites  of  carbamazepine  in  human  urine  by  gas
chromatography and mass spectrometry. Drug Metab. Dispos. 6, 494–501.

Marco-Urrea,  E.,  Pérez-Trujillo,  M.,  Blánquez,  P.,  Vicent,  T.,  Caminal,  G.,  2010a.
Biodegradation  of  the  analgesic  naproxen  by  Trametes  versicolor  and  identification  of
intermediates  using  HPLC-DAD-MS  and  NMR.  Bioresour.  Technol.  101,  2159–2166.
doi:10.1016/j.biortech.2009.11.019

Marco-Urrea, E., Pérez-Trujillo, M., Cruz-Morató, C., Caminal, G., Vicent, T., 2010b. White-rot

37

871
872
873

874
875
876

877
878

879
880
881
882

883
884
885
886

887
888
889

890
891
892
893

894
895
896

897
898
899

900
901
902

903
904
905
906

907

36



fungus-mediated degradation of the analgesic ketoprofen and identification of intermediates
by  HPLC-DAD-MS  and  NMR.  Chemosphere  78,  474–81.
doi:10.1016/j.chemosphere.2009.10.009

Marco-Urrea,  E.,  Pérez-Trujillo,  M.,  Cruz-Morató,  C.,  Caminal,  G.,  Vicent,  T.,  2010c.
Degradation of the drug sodium diclofenac by Trametes versicolor pellets and identification
of  some  intermediates  by  NMR.  J.  Hazard.  Mater.  176,  836–842.
doi:10.1016/j.jhazmat.2009.11.112

Marco-Urrea, E., Pérez-Trujillo, M., Vicent, T., Caminal, G., 2009. Ability of white-rot fungi to
remove selected pharmaceuticals and identification of degradation products of ibuprofen by
Trametes versicolor. Chemosphere 74, 765–772. doi:10.1016/j.chemosphere.2008.10.040

Marinho, G., Barbosa, B.C.A., Rodrigues, K., Aquino, M., Pereira, L., 2017. Potential of the
filamentous fungus Aspergillus niger AN 400 to degrade Atrazine in wastewaters. Biocatal.
Agric. Biotechnol. 9, 162–167. doi:10.1016/j.bcab.2016.12.013

Mir-Tutusaus,  J.A.,  Caminal,  G.,  Sarrà,  M.,  in  press.  Influence  of  process  variables  in  a
continuous treatment of non-sterile hospital wastewater by Trametes versicolor and novel
method for inoculum production. J. Environ. Manage. doi:10.1016/j.jenvman.2018.02.018

Mir-Tutusaus, J.A., Massís-Mora, M., Corcellas, C., Eljarrat, E., Barceló, D., Sarrà, M., Caminal,
G., Vicent, T., Rodríguez-Rodríguez, C.E., 2014. Degradation of selected agrochemicals by
the  white  rot  fungus  Trametes  versicolor.  Sci.  Total  Environ.  500–501,  235–242.
doi:10.1016/j.scitotenv.2014.08.116

Mir-Tutusaus, J.A., Parladé, E., Llorca, M., Villagrasa, M., Barceló, D., Rodriguez-Mozaz, S.,
Martinez-Alonso, M., Gaju, N., Caminal, G., Sarrà, M., 2017. Pharmaceuticals removal and
microbial  community  assessment  in  a  continuous  fungal  treatment  of  non-sterile  real
hospital wastewater after a coagulation-flocculation pretreatment. Water Res. 116, 65–75.
doi:10.1016/j.watres.2017.03.005

Mir-Tutusaus, J.A., Sarrà, M., Caminal, G., 2016. Continuous treatment of non-sterile hospital
wastewater  by  Trametes  versicolor?:  How  to  increase  fungal  viability  by  means  of
operational  strategies  and  pretreatments.  J.  Hazard.  Mater.  318,  561–570.
doi:10.1016/j.jhazmat.2016.07.036

Morozova, O. V., Shumakovich, G.P., Shleev, S. V., Yaropolov, Y.I., 2007. Laccase-mediator
systems  and  their  applications:  A  review.  Appl.  Biochem.  Microbiol.  43,  523–535.
doi:10.1134/S0003683807050055

Naylor, C.G., 1995. Environmental fate and safety of nonylphenol ethoxylates. Surfactants and
Wastewater 27, 29–33.

Nerud, F.,  Misurcova, Z., 1996. Distribution of Ligninolytic Enzymes in Selected White-Rot
Fungi. Folia Microbiol. 41, 1988–1990. doi:10.1007/BF02814628

Nguyen, L.N., Hai, F.I., Yang, S., Kang, J., Leusch, F.D.L., Roddick, F., Price, W.E., Nghiem,

38

908
909
910

911
912
913
914

915
916
917

918
919
920

921
922
923

924
925
926
927

928
929
930
931
932

933
934
935
936

937
938
939

940
941

942
943

944

37



L.D., 2013. Removal of trace organic contaminants by an MBR comprising a mixed culture
of  bacteria  and  white-rot  fungi.  Bioresour.  Technol.  148,  234–241.
doi:10.1016/j.biortech.2013.08.142

Nilsson,  I.,  Möller,  A.,  Mattiasson,  B.,  Rubindamayugi,  M.S.T.,  Welander,  U.,  2006.
Decolorization  of  synthetic  and  real  textile  wastewater  by  the  use  of  white-rot  fungi.
Enzyme Microb. Technol. 38, 94–100. doi:10.1016/j.enzmictec.2005.04.020

Nogueira,  V.,  Lopes,  I.,  Freitas,  A.C.,  Rocha-Santos,  T.A.P.,  Gonçalves,  F.,  Duarte,  A.C.,
Pereira, R., 2015. Biological treatment with fungi of olive mill wastewater pre-treated by
photocatalytic  oxidation  with  nanomaterials.  Ecotoxicol.  Environ.  Saf.  115,  234–242.
doi:10.1016/j.ecoenv.2015.02.028

Ntougias, S., Baldrian, P., Ehaliotis, C., Nerud, F., Merhautová, V., Zervakis, G.I., 2015. Olive
mill  wastewater  biodegradation potential  of  white-rot  fungi  -  Mode of  action of  fungal
culture  extracts  and effects  of  ligninolytic  enzymes.  Bioresour.  Technol.  189,  121–130.
doi:10.1016/j.biortech.2015.03.149

Palli,  L.,  Castellet-Rovira,  F.,  Pérez-Trujillo,  M.,  Caniani,  D.,  Sarrà-Adroguer,  M.,  Gori,  R.,
2017.  Preliminary  evaluation  of  Pleurotus  ostreatus  for  the  removal  of  selected
pharmaceuticals from hospital wastewater. Biotechnol. Prog. doi:10.1002/btpr.2520

Palli, L., Gullotto, A., Tilli, S., Caniani, D., Gori, R., Scozzafava, A., 2016. Biodegradation of 2-
naphthalensulfonic acid polymers by white-rot fungi: Scale-up into non-sterile packed bed
bioreactors. Chemosphere 164, 120–127. doi:10.1016/j.chemosphere.2016.08.071

Pazarlioglu, N.K., Sariisik, M., Telefoncu, A., 2005. Laccase: Production by Trametes versicolor
and  application  to  denim  washing.  Process  Biochem.  40,  1673–1678.
doi:10.1016/j.procbio.2004.06.052

Pedroza-Rodríguez,  A.M.,  Rodríguez-Vázquez,  R.,  2013.  Optimization  of  C/N  Ratio  and
Inducers for Wastewater Paper Industry Treatment Using Trametes versicolor Immobilized
in Bubble Column Reactor. J. Mycol. 2013, 1–11. doi:10.1155/2013/536721

Pointing,  S.B.,  2001.  Feasibility  of  bioremediation  by  white-rot  fungi.  Appl.  Microbiol.
Biotechnol. 57, 20–33. doi:10.1007/s002530100745

Quintero, J.C., Lú-Chau, T.A., Moreira, M.T., Feijoo, G., Lema, J.M., 2007. Bioremediation of
HCH present in soil by the white-rot fungus Bjerkandera adusta in a slurry batch bioreactor.
Int. Biodeterior. Biodegrad. 60, 319–326. doi:10.1016/j.ibiod.2007.05.005

Ramos, V., Bocalandro, C., Riquelme, S., Sanhueza, V., Aspé, E., Roeckel, M., Fernández, K.,
2013. Effect of the bench scale extraction conditions on Pinus radiata bark extract yield,
antioxidant  properties  and  composition.  Maderas.  Cienc.  y  Tecnol.  15,  0–0.
doi:10.4067/S0718-221X2013005000003

Reddy, C.A., 1995. The potential for white-rot fungi in the treatment of pollutants. Curr. Opin.
Biotechnol. 6, 320–328. doi:10.1016/0958-1669(95)80054-9

39

945
946
947

948
949
950

951
952
953
954

955
956
957
958

959
960
961

962
963
964

965
966
967

968
969
970

971
972

973
974
975

976
977
978
979

980
981

38



Rodarte-Morales, A.I.,  Feijoo,  G., Moreira,  M.T.,  Lema, J.M., 2011. Degradation of selected
pharmaceutical and personal care products (PPCPs) by white-rot fungi. World J. Microbiol.
Biotechnol. 27, 1839–1846. doi:10.1007/s11274-010-0642-x

Rodarte-morales, A.I., Feijoo, G., Moreira, M.T., Lema, J.M., Lema, M., 2012. Evaluation of
Two Operational Regimes: Fed-Batch and Continuous for the Removal of Pharmaceuticals
in  a  Fungal  Stirred  Tank  Reactor.  Chem.  Eng.  Trans.  27,  151–156.
doi:10.3303/CET1227026

Rodarte-Morales, A.I.I., Feijoo, G., Moreira, M.T.T., Lema, J.M.M., 2012. Operation of stirred
tank  reactors  (STRs)  and  fixed-bed  reactors  (FBRs)  with  free  and  immobilized
Phanerochaete chrysosporium for the continuous removal of pharmaceutical compounds.
Biochem. Eng. J. 66, 38–45. doi:10.1016/j.bej.2012.04.011

Rodríguez-Rodríguez, C.E., Jesús García-Galán, M., Blánquez, P., Díaz-Cruz, M.S., Barceló, D.,
Caminal, G., Vicent, T., 2012. Continuous degradation of a mixture of sulfonamides by
Trametes versicolor and identification of metabolites from sulfapyridine and sulfathiazole.
J. Hazard. Mater. 213–214, 347–354. doi:10.1016/j.jhazmat.2012.02.008

Rodríguez Couto, S., Rodríguez, A., Paterson, R.R.M., Lima, N., Teixeira, J.A., 2006. Laccase
activity from the fungus Trametes hirsuta using an air-lift bioreactor. Lett. Appl. Microbiol.
42, 612–616. doi:10.1111/j.1472-765X.2006.01879.x

Rousk, J., Bååth, E., 2007. Fungal and bacterial growth in soil with plant materials of different
C/N ratios. FEMS Microbiol. Ecol. 62, 258–267. doi:10.1111/j.1574-6941.2007.00398.x

Rubirola,  A.,  Llorca,  M.,  Rodriguez-Mozaz,  S.,  Casas,  N.,  Rodriguez-Roda,  I.,  Barceló,  D.,
Buttiglieri, G., 2014. Characterization of metoprolol biodegradation and its transformation
products generated in activated sludge batch experiments and in full scale WWTPs. Water
Res. 63, 21–32. doi:10.1016/j.watres.2014.05.031

Ruiz-Duenas, F.J., Martinez, M.J., Martinez, A.T., 1999. Molecular characterization of a novel
peroxidase isolated from the ligninolytic fungus Pleurotus eryngii. Mol. Microbiol. 31, 223–
235. doi:10.1046/j.1365-2958.1999.01164.x

Sankaran, S., Khanal, S.K., Pometto, A.L., van Leeuwen, J. (Hans), 2008. Ozone as a selective
disinfectant  for  nonaseptic  fungal  cultivation  on  corn-processing  wastewater.  Bioresour.
Technol. 99, 8265–8272. doi:10.1016/j.biortech.2008.03.055

Sauvé, S., Desrosiers, M., 2014. A review of what is an emerging contaminant. Chem. Cent. J. 8,
15. doi:10.1186/1752-153X-8-15

Sharma, A.,  Padwal-Desai,  S.R.,  1985. On the relationship between pellet  size and aflatoxin
yield  in  Aspergillus  parasiticus.  Biotechnol.  Bioeng.  27,  1577–1580.
doi:10.1002/bit.260271109

Shreve, M.J., Brockman, A., Hartleb, M., Prebihalo, S., Dorman, F.L., Brennan, R.A., 2016. The
white-rot  fungus  Trametes  versicolor  reduces  the  estrogenic  activity  of  a  mixture  of

40

982
983
984

985
986
987
988

989
990
991
992

993
994
995
996

997
998
999

1000
1001

1002
1003
1004
1005

1006
1007
1008

1009
1010
1011

1012
1013

1014
1015
1016

1017
1018

39



emerging contaminants in wastewater treatment plant effluent. Int. Biodeterior. Biodegrad.
109, 132–140. doi:10.1016/j.ibiod.2016.01.018

Sirtori,  C.,  Zapata,  A.,  Oller,  I.,  Gernjak,  W.,  Agüera,  A.,  Malato,  S.,  Agu,  A.,  2009.
Decontamination industrial  pharmaceutical  wastewater  by combining solar  photo-Fenton
and biological treatment. Water Res. 43, 661–668. doi:10.1016/j.watres.2008.11.013

Sitanggang, A.B., Wu, H.-S., Wang, S.S., Ho, Y.-C., 2010. Effect of pellet size and stimulating
factor  on  the  glucosamine  production  using  Aspergillus  sp.  BCRC  31742.  Bioresour.
Technol. 101, 3595–3601. doi:10.1016/j.biortech.2009.12.084

Spiker,  J.K.,  Crawford,  D.L.,  Crawford,  R.L.,  1992.  Influence of  2,4,6-trinitrotoluene (TNT)
concentration on the degradation of TNT in explosive-contaminated soils by the white rot
fungus Phanerochaete chrysosporium. Appl. Environ. Microbiol.

Stojan, J., Komel, R., Jawallapersand, P., Mashele, S.S., Kovac, L., Syed, K., Pakala, S.B., Kras,
N., Kovačič, L., Stojan, J., Komel, R., Pakala, S.B., Kraševec, N., Syed, K., Jawallapersand,
P., Mashele,  S.S., Kovac,  L., Syed, K., Pakala, S.B., Kras, N., 2014. Cytochrome P450
monooxygenase CYP53 family in fungi: Comparative structural and evolutionary analysis
and  its  role  as  a  common  alternative  anti-fungal  drug  target.  PLoS  One  9,  e107209.
doi:10.1371/journal.pone.0107209

Tang,  W.,  Jia,  R.,  Zhang,  D.,  2011.  Decolorization  and  degradation  of  synthetic  dyes  by
Schizophyllum  sp.  F17  in  a  novel  system.  Desalination  265,  22–27.
doi:10.1016/j.desal.2010.07.024

Ternes, T.A., Stüber, J., Herrmann, N., McDowell, D., Ried, A., Kampmann, M., Teiser, B.,
2003.  Ozonation:  a  tool  for  removal  of  pharmaceuticals,  contrast  media  and  musk
fragrances  from  wastewater?  Water  Res.  37,  1976–1982.  doi:10.1016/S0043-
1354(02)00570-5

Torán, J., Blánquez, P., Caminal, G., 2017. Comparison between several reactors with Trametes
versicolor immobilized on lignocellulosic support for the continuous treatments of hospital
wastewater. Bioresour. Technol. 243, 966–974. doi:10.1016/j.biortech.2017.07.055

Trueba-Santiso,  A.,  Parladé,  E.,  Rosell,  M.,  Lliros,  M.,  Mortan,  S.H.,  Martínez-Alonso,  M.,
Gaju, N., Martín-González, L., Vicent, T., Marco-Urrea, E., 2017. Molecular and carbon
isotopic  characterization  of  an  anaerobic  stable  enrichment  culture  containing
Dehalobacterium sp.  during dichloromethane fermentation.  Sci.  Total Environ. 581–582,
640–648. doi:10.1016/J.SCITOTENV.2016.12.174

Valentín,  L.,  Lu-Chau,  T.A.,  López,  C.,  Feijoo,  G.,  Moreira,  M.T.,  Lema,  J.M.,  2007.
Biodegradation  of  dibenzothiophene,  fluoranthene,  pyrene and chrysene in  a  soil  slurry
reactor by the white-rot fungus Bjerkandera sp. BOS55. Process Biochem. 42, 641–648.
doi:10.1016/j.procbio.2006.11.011

Van Driessel, B., Christov, L., 2001. Decolorization of bleach plant effluent by mucoralean and

41

1019
1020

1021
1022
1023

1024
1025
1026

1027
1028
1029

1030
1031
1032
1033
1034
1035

1036
1037
1038

1039
1040
1041
1042

1043
1044
1045

1046
1047
1048
1049
1050

1051
1052
1053
1054

1055

40



white-rot fungi in a rotating biological contactor reactor. J. Biosci. Bioeng. 92, 271–276.
doi:10.1016/S1389-1723(01)80261-9

van Leeuwen, J.H., Hu, Z., Yi, T., Pometto, A.L.I., Jin, B., 2003. Kinetic Model for Selective
Cultivation  of  Microfungi  in  a  Microscreen  Process  for  Food  Processing  Wastewater
Treatment  and  Biomass  Production.  Acta  Biotechnol.  23,  289–300.
doi:10.1002/abio.200390036

Verlicchi,  P.,  Al  Aukidy,  M.,  Zambello,  E.,  2015.  What  have  we  learned  from worldwide
experiences on the management and treatment of hospital effluent? - An overview and a
discussion  on  perspectives.  Sci.  Total  Environ.  514,  467–491.
doi:10.1016/j.scitotenv.2015.02.020

Verlicchi, P., Al Aukidy, M., Zambello, E., 2012. Occurrence of pharmaceutical compounds in
urban wastewater: Removal, mass load and environmental risk after a secondary treatment -
A review. Sci. Total Environ. 429, 123–155. doi:10.1016/j.scitotenv.2012.04.028

Verlicchi,  P.,  Galletti,  A.,  Petrovic,  M.,  Barceló,  D.,  2010. Hospital  effluents as a source of
emerging pollutants: An overview of micropollutants and sustainable treatment options. J.
Hydrol. 389, 416–428. doi:10.1016/j.jhydrol.2010.06.005

Viswanath, B., Rajesh, B., Janardhan, A., Kumar, A.P., Narasimha, G., 2014. Fungal laccases
and  their  applications  in  bioremediation.  Enzyme  Res.  2014,  1–21.
doi:10.1155/2014/163242

Wang, D., Sui, Q., Lu, S.G., Zhao, W.T., Qiu, Z.F., Miao, Z.W., Yu, G., 2014. Occurrence and
removal of six pharmaceuticals and personal care products in a wastewater treatment plant
employing anaerobic/anoxic/aerobic and UV processes in Shanghai, China. Environ. Sci.
Pollut. Res. 21, 4276–4285. doi:10.1007/s11356-013-2363-9

Wen, J., Gao, D., Zhang, B., Liang, H., 2011. Co-metabolic degradation of pyrene by indigenous
white-rot  fungus  Pseudotrametes  gibbosa  from  the  northeast  China.  Int.  Biodeterior.
Biodegradation 65, 600–604. doi:10.1016/j.ibiod.2011.03.003

Wittier, R., Baumgartl, H., Lübbers, D.W., Schügerl, K., 1986. Investigations of oxygen transfer
intoPenicillium chrysogenum pellets by microprobe measurements. Biotechnol. Bioeng. 28,
1024–1036. doi:10.1002/bit.260280713

World Health Organization, 2016. WHO | Antibiotic resistance. WHO 1–11.

Xiao, P., Mori, T., Kamei, I., Kondo, R., 2011. A novel metabolic pathway for biodegradation of
DDT by the white rot fungi, Phlebia lindtneri and Phlebia brevispora. Biodegradation 22,
859–867. doi:10.1007/s10532-010-9443-z

Yadav, J.S.,  Reddy, C.A., 1993. Degradation of benzene,  toluene,  ethylbenzene,  and xylenes
(BTEX)  by  the  lignin-degrading  basidiomycete  Phanerochaete  chrysosporium.  Appl.
Environ. Microbiol. 59, 756–762.

42

1056
1057

1058
1059
1060
1061

1062
1063
1064
1065

1066
1067
1068

1069
1070
1071

1072
1073
1074

1075
1076
1077
1078

1079
1080
1081

1082
1083
1084

1085

1086
1087
1088

1089
1090
1091

41



Yadav,  M.,  Srivastva,  N.,  Shukla,  A.K.,  Singh,  R.S.,  Upadhyay,  S.N.,  Dubey,  S.K.,  2015.
Efficacy  of  Aspergillus  sp.  for  Degradation  of  Chlorpyrifos  in  Batch  and  Continuous
Aerated  Packed  Bed  Bioreactors.  Appl.  Biochem.  Biotechnol.  175,  16–24.
doi:10.1007/s12010-014-1244-0

Yang, J., Li, J., Dong, W., Ma, J., Cao, J., Li, T., Li, J., Gu, J., Liu, P., 2016. Study on enhanced
degradation of atrazine by ozonation in the presence of hydroxylamine. J. Hazard. Mater.
316, 110–121. doi:10.1016/j.jhazmat.2016.04.078

Yang, S., Hai, F.I., Nghiem, L.D., Nguyen, L.N., Roddick, F., Price, W.E., 2013. Removal of
bisphenol A and diclofenac by a novel fungal membrane bioreactor operated under non-
sterile  conditions.  Int.  Biodeterior.  Biodegrad.  85,  483–490.
doi:10.1016/j.ibiod.2013.03.012

Yang,  Y.,  Ok,  Y.S.,  Kim,  K.,  Kwon,  E.E.,  Tsang,  Y.F.,  2017.  Occurrences  and removal  of
pharmaceuticals and personal care products (PPCPs) in drinking water and water/sewage
treatment  plants:  A  review.  Sci.  Total  Environ.  596–597,  303–320.
doi:10.1016/j.scitotenv.2017.04.102

Zhang, Y., Geißen, S.U., 2012. Elimination of carbamazepine in a non-sterile fungal bioreactor.
Bioresour. Technol. 112, 221–227. doi:10.1016/j.biortech.2012.02.073

Zhuo,  R.,  Ma,  L.,  Fan,  F.,  Gong,  Y.,  Wan,  X.,  Jiang,  M.,  Zhang,  X.,  Yang,  Y.,  2011.
Decolorization  of  different  dyes  by  a  newly  isolated  white-rot  fungi  strain  Ganoderma
sp.En3 and cloning and functional analysis of its laccase gene. J. Hazard. Mater. 192, 855–
873. doi:10.1016/j.jhazmat.2011.05.106

Table 1. Removal efficiencies of fungal systems for pharmaceutically active compounds.

43

1092
1093
1094
1095

1096
1097
1098

1099
1100
1101
1102

1103
1104
1105
1106

1107
1108

1109
1110
1111
1112

1113

1114
1115

1116

1117

1118

42





1120

43



Table 2. Removal efficiencies of fungal systems for endocrine disruptors.1121
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